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ABSTRACT

During the past few decades, the interest in understanding the peculiar rheological behavior of shear-thickening fluids has increased due to
their potential use in various commercial applications. In such an endeavor, the optimal design of these fluids is essential, which necessitates
our in-depth understanding of their properties from a modeling perspective. We herein introduce a continuum model to predict the rheolog-
ical behavior of shear-thickening polymer solutions using non-equilibrium thermodynamics that guarantees, by construction, consistency
with the laws of thermodynamics as extended to handle non-equilibrium systems. This is made possible by using a scalar structural variable
that characterizes the formation of the shear-induced structure at sufficiently high shear rates, and a conformation tensor that characterizes
the deformation of the polymer segments. The model predicts the exhibition of a shear-thickening behavior for all steady shear flow material
functions (shear viscosity and normal stress coefficients), which is then followed by a shear-thinning behavior if finite extensibility or aniso-
tropic effects are considered. We further document that these model predictions are in line with available shear viscosity rheological data for
shear-thickening polymer solutions.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0053604

I. INTRODUCTION

A dilatant or shear-thickening fluid (STF) is a fluid whose viscos-
ity increases with the shear rate.1 At low shear rates, STF approaches a
Newtonian plateau, but its viscosity increases dramatically when the
shear rate exceeds a critical value; this behavior is reversible as once
the applied flow is removed, the fluid relaxes and exhibits small viscos-
ity values. The shear thickening behavior is noted in a variety of poly-
mer solutions, such as aqueous solutions of high-molecular-weight
poly(ethylene oxide) (PEO),2 and particulate systems, such as fumed
silica suspensions in polyethylene glycol3,4 and polymethylmethacry-
late particles in glycerin–water mixtures.5 In such systems, the shear-
thickening behavior is attributed to the shear-induced aggregation of
chains, due to their hydrophobicity (such as the aggregation of PEO
chains in aqueous environments2,6 or aqueous rod-like micellar solu-
tions7), or due to the dominance of hydrodynamic forces over inter-
particle repulsive forces leading to the formation of particle aggregates
in the case of suspensions;8–10 the structure formed is referred to as a
shear-induced structure (SIS).6 Under equilibrium conditions, no
attractive forces are acting on the particles, meaning that the suspen-
sion is comprised of primary particles (i.e., no aggregates). STFs have
attracted considerable attention over the past few decades due to their
emerging importance in dampers,11,12 body armor,4,9,13 medical

equipment to prevent injuries,8 as shields against high-velocity micro-
meteoroid/orbital debris impacts on spacecraft operating in the near-
Earth space environment,14 self-consolidating concrete,15 and
enhanced oil recovery.16 However, the proper tailor-design of STFs to
address these specific commercial applications necessitates the avail-
ability of a constitutive equation that accurately predicts their rheologi-
cal behavior.

From a theoretical standpoint, several phenomenological models
that provide a particular shear-rate dependency of the shear viscosity
have been proposed that are fully parameterized using available experi-
mental data (e.g., Refs. 17 and 18). However, these models usually pro-
vide expressions for the shear viscosity alone and ignore normal
stresses. One of the first models to account for the effect of shear-
thickening on both the shear stress and the normal stress differences is
the Bautista–Manero–Puig (BMP) model19 that coupled the Oldroyd-
B model with the kinetic (fluidity) equation proposed by
Fredrickson.20 The BMP model was later extended,21,22 via the use of
extended irreversible thermodynamics (EIT),23 to accommodate both
the shear-thickening and shear-thinning behaviors. However, in these
generalized BMP models, kinetic parameters rely empirically on the
second invariants of the deformation rate and shear stress tensors.
More recently, Tamano et al.24 coupled the Giesekus and FENE-P
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models with Fredrickson’s kinetic equation; the use of the anisotropic
Giesekus parameter in the former allowed for the prediction of a non-
vanishing second normal stress coefficient. Both normal stress
coefficients have been predicted to shear thicken followed by a shear
thinning behavior. Possibly, the first thermodynamically admissible
model for STFs is the one proposed by Edwards and co-workers25,26

who employed the two-coupled Maxwell modes (TCMM) model27

derived using the generalized bracket formalism28 of non-equilibrium
thermodynamics (NET).28–31 In this model, two conformation tensors
were considered: one characterizing the conformation of dissolved
polymer chains and one that is associated with the SIS formed under
shear and correlates with their size. The coupling between these two
conformation tensors is controlled by an interaction parameter, and
both tensors are considered to deform linearly (as Hookean dumb-
bells).27 This model has been shown to compare favorably against
available viscosity and dichroism data.

In this work, we will employ NET to develop a simple mathemat-
ical model addressing the rheological behavior of STFs, primarily
shear-thickening polymer solutions (STPSs); in particular, we aim to
show that the models using the fluidity methodology (such as the ones
proposed in Refs. 19, 21, 22, and 24) are not thermodynamically
admissible unless certain corrections are added to them. To accom-
plish this, we will develop the model using the Generalized bracket for-
malism28 of NET,28–31 by means of which several microstructured
systems have been addressed, such as polymer melts and solu-
tions,28–30,32,33 polymer nanocomposites,34,35 micellar systems,36,37

blood,38–40 drilling fluids,41 and thixotropic fluids.42 Thus, we guaran-
tee that the model derived will be consistent with the law of thermody-
namics as extended for beyond equilibrium systems. Also, we
guarantee that the coupling between the various variables is accom-
plished self-consistently. The customarily employed methodology to
derive constitutive models is to add terms to state variables’ evolution
equations, such as the conformation tensor and the scalar structural
variable that we are to introduce in Sec. II, and the stress tensor with-
out necessarily considering whether these additions should be done in
a self-consistent way. In other words, a term added to the stress tensor
should dictate the term to be added in, say, the scalar structural vari-
able evolution equation, and not to be independent of it. In complete
disaccord to this usual practice, in our approach, this is done automati-
cally via the use of a non-equilibrium thermodynamics formalism.

The paper is structured as follows: in Sec. II, the new model is
introduced, whereas Sec. III presents the model predictions along with
a comparison with available rheological data. The paper concludes
with Sec. IV where we elaborate on the significance of our work and
future plans are highlighted and discussed.

II. METHODOLOGY
A. The vector of state variables

Throughout this work, we consider an isothermal and incom-
pressible flow, meaning that both the mass density of polymer seg-
ments, q, and the entropy density (or temperature) are excluded from
the vector of state variables. To describe the rheology and microstruc-
ture of the polymer segments, we follow previous works39,40,43 and use
a contravariant second-rank conformation tensor density defined as
C ¼ qc to characterize the deformation of polymer segments, mod-
eled as elastic dumbbells. Here, c ¼

Ð
RRw R; tð Þd3R is the second

moment of the distribution function w R; tð Þ for the end-to-end

connector vector R.28–30,32,33 To account for the shear-thickening
behavior, we need to employ one additional scalar structural variable,
k, to properly characterize the SIS formed when these segments aggre-
gate at sufficiently high shear rates. At equilibrium, no SIS is noted,
that is, only free polymer segments in polymer solutions or particles in
suspensions exist, meaning that k¼ 0, whereas as the shear rate
increases the scalar structural variable should increase, as the SIS is
gradually formed, reaching eventually to a constant value, k1. Thus, k
accounts for the number of segments that are attached to the SIS rela-
tive to the number of all segments. To mention just one example, as
the shear rate is increased, randomly oriented short rod-like micelles
merge to form longer rod-like micelles.7 Since, in this case, the merg-
ing leads to an increase in the length of the rod-like micelles, which
can be monitored as a function of the shear rate, the rescaling of the
length could be an indirect way of obtaining k experimentally. On the
other hand, it can very easily and directly be accessed via the use of
non-equilibrium molecular dynamics simulations, either coarse-
grained, such as the work of Castillo–Tejas and Manero,44 or using a
combined approach based on coarse-grained simulations followed be
reverse-mapped all-atom molecular dynamics simulations.45 Finally,
we consider the momentum density M as the hydrodynamic variable,
so that overall the vector x of state variables is expressed as
x ¼ M; c; kf g. Note that as the mass density of polymer segments is
constant, due to incompressibility, we may employ the conformation
tensor c directly.

B. The resulting evolution equations

The complete derivation is presented as supplementary material.
The final evolution equations for each structural variable are as follows:

_~c ½1� ¼ �
1

sR kð Þ
ah2 tr~cð Þ~c � ~c þ h tr~cð Þ 1� 2að Þ~c � 1� að ÞI
� �

; (1a)

Dk
Dt
¼ @k
@t
þ u � rk ¼ 1

sk
ln 1� kð Þ þ k1 � kð Þ ruð ÞT : ~c; (1b)

where ru is the velocity gradient tensor (XT is the transpose of X),
_c � ru þ ruð ÞT is the rate-of-strain tensor, and I is the unit tensor.
The left-hand side (LHS) of Eq. (1a) is the upper-convected time
derivative, defined in supplementary material, Eq. (SM.6c), whereas
the right-hand side (RHS) is the relaxation term aiming to relieve
stress and thus bring the conformation tensor back to its equilibrium
value, once the applied flow is ceased. The LHS of Eq. (1b) defines the
material time derivative, whereas the first term in the RHS is the relax-
ation term of k that accounts for the breakup of the SIS, and the sec-
ond term accounts for the increase of the scalar structural variable
with the imposed flow as a result of the buildup of the SIS. We should
here stress that the precise form of the second term in the evolution
equation of k has been chosen by selecting the tensor g, first appearing
in the Poisson bracket given in supplementary material, Eq. (SM.4b),
to closely match the corresponding term in the fluidity evolution equa-
tion, see Eq. (4). By making this selection, the precise form of the cor-
responding term in the stress tensor expression, last term in
supplementary material, Eq. (SM.7), involving the g tensor is automat-
ically specified [note that its form cannot be chosen arbitrary but
should obey the constraints imposed by supplementary material, Eq.
(SM.4c), so that the Poisson bracket satisfies the Jacobi identity; a
check whether the Poisson bracket fulfills the Jacobi identity can also
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be done using a computer-assisted method46]. As such, this additional
term in the stress tensor expression, the second term in the square
brackets in Eq. (2) below, is obtained in a self-consistent manner, with-
out ambiguities, in complete disaccord to the usual practice, wherein
the terms added in the various equations (evolution equations and the
stress tensor equation) are introduced independently. Also, h tr~cð Þ ¼
b� 3ð Þ= b� tr~cð Þ is the spring force law for finite-extensible dumb-
bells with b the extensibility parameter (the dimensionless maximum
length of the chain) defined as b ¼ 3L2= R2h ieq, with L denoting the

maximum length of the chain and R2h ieq the mean square chain end-
to-end distance at equilibrium. For given polymer chemistry, the
extensibility parameter should not be considered as an adjustable
(free) parameter but rather as a known constant that can be calculated

via b ¼ ½3 0:82ð Þ2=C1� M=M0ð Þ where C1 is the polymer characteris-
tic ratio, M the molecular weight, andM0 the average molar mass per
backbone bond, which is equal to half the monomer molecular weight.
When the polymer is entangled, the entanglement molecular weight,
Me; should be used instead of the molecular weight.47,48 Also, a is the
second-order (Giesekus) anisotropic parameter28,32,33,49,50 that deter-
mines the degree of anisotropy of the frictional properties as first pro-
posed by Giesekus;50 the consideration of a non-vanishing anisotropic
parameter permits, as is to be illustrated below, the prediction of a
non-vanishing second normal stress coefficient. Furthermore,
~c ¼ ð3= R2h ieqÞc is the dimensionless conformation tensor, k1 is
the maximum value of the scalar structural variable, and sR kð Þ
¼ sR;eq= 1� kð Þ and sk are the polymer chain deformation relaxation
time and the breakup relaxation time, respectively. The former con-
trols the deformation of the polymer segments, whereas the latter con-
trols the breakup of the SIS as the shear rate decreases. In the
following, we consider sk ¼ esR;eq, where the parameter e quantifies
the relative importance between the breakup and the flow-induced
buildup of the SIS. When e! 0, the time needed for the breakup is
much smaller than the one needed for the buildup of the SIS leading
to a vanishing scalar structural variable, k! 0, and shear-thickening
will not occur. On the other hand, when e� 1, the time needed for
the breakup is much larger than the one needed for the buildup of the
SIS, meaning that the SIS will occur instantaneously, that is, k! 1.
Thus, the appearance or not of a shear-thickening behavior is con-
trolled by the parameter e. Finally, the stress tensor is given as

r¼ gs _cþrp¼ gs _cþG h tr~cð Þ�1
2

k1�kð Þln 1�kð Þ
� �

~c� I

� �
: (2)

Here, rp is the polymer stress tensor, gs is the viscosity of the solvent,
and G ¼ nkBT is a (constant) elastic modulus, where n is the number
density of polymer chains, kB is Boltzmann’s constant, and T is the
absolute temperature. Note that the proof of the thermodynamic
admissibility of the proposed constitutive model is presented in the
supplementary material.

In total, we need to specify five parameters:

(1) The extensibility parameter, b (the dimensionless maximum
length of the chain); for given polymer chemistry, the extensi-
bility parameter should not be considered as an adjustable
(free) parameter but rather as a known constant. For example,
in the case of polystyrene (PS) b¼M/(248 g/mol) where M is
the polymer molecular weight.47

(2) The second-order (Giesekus) anisotropic parameter, a, that allows
for the prediction of a non-vanishing second normal stress coeffi-
cient; as such, as usually these are not available experimentally we
could set a ¼ 0, as we will do in Sec. III B.

(3) The parameter e that quantifies the relative importance between
the breakup and the flow-induced buildup of the SIS; equiva-
lently, we could have used as a parameter the breakup relaxa-
tion time, sk ¼ esR;eq, of the SIS. This parameter could be
assessed experimentally by first applying a shear rate sufficient
for the formation of the SIS, such as the merging of short rod-
like micelles into longer ones,7 and then monitor the time-
dependent relaxation of k toward its equilibrium value once
flow has ceased. The corresponding characteristic time obtained
from this relaxation curve could be identified with sk.

(4) The maximum value of the structural variable, k1, which for
simplicity could be considered to be equal to unity.

(5) The elastic modulus, G ¼ nkBT , which is proportional to the
polymer concentration

Furthermore, the following parameters that are needed can be
obtained directly from the rheological measurements:

(1) The polymer concentration, Cs, which is available from the
sample that has been rheologically measured.

(2) The viscosity of the solvent, gs, can be obtained directly from
the sample used in the rheological experiments.

(3) The polymer viscosity at equilibrium, gp;eq, can also be obtained
directly from the sample used to perform the rheological
experiments, via gp;eq ¼ g0 � gs, where g0 is the zero-rate shear
viscosity.

(4) The polymer chain equilibrium relaxation time, sR;eq, can be
obtained from the equation sR;eq ¼ gp;eq=G. Note that via the
use of atomistic simulations, sR;eq can be easily obtained
through the orientational autocorrelation function of the end-
to-end vector of the polymer chain, see, for example, Ref. 51.

C. Comparison with other models using the fluidity
notion

It is important to elaborate as to how the new constitutive model
for STPSs, as derived here in the context of the generalized bracket for-
malism of NET, compares with previously proposed models using the
fluidity methodology.19,21,22,24 To do this, we first write down the evolu-
tion equation of the polymer stress tensor by using Eq. (2) in Eq. (1a):

sR _rp
½1� þ h tr~cð Þ þ f kð Þ

� �
rp þ a

G
rp � rp

� 	

þ sR rp þ GIð ÞD ln h tr~cð Þ þ f kð Þ
� �

Dt

þ Gf kð Þ h tr~cð Þ þ f kð Þ
� �

~c � af kð Þ

� Gf kð Þ~c � ~c � ~c � rp � rp � ~c
� �

¼ sRG _c; (3)

where we have considered f kð Þ ¼ � 1
2 k1 � kð Þln 1� kð Þ, and, fol-

lowing Refs. 19, 21, 22, and 24, the product gp ¼ GsR as a polymer vis-
cosity and gp;eq ¼ GsR;eq its equilibrium value. Note that the evolution
equation is not independent of the conformation tensor. According to
the fluidity methodology,19,21,22,24 the relaxation time is given as
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sR ¼ Guð Þ�1 where u is the fluidity (equal to the inverse polymer
viscosity). The equilibrium relaxation time is thus given as
sR;eq ¼ Gu0ð Þ�1 where u0 is the zero-rate fluidity. Thus, given these
two expressions for sR; the following relation between the scalar struc-
tural variable employed in our model and the fluidity can be obtained:
u� ¼ u=u0 ¼ 1� k. As such, the evolution equation for k, Eq. (1b),
can be written as an evolution equation for the fluidity:

Du
Dt
¼ �u0

sk
ln u=u0ð Þ þ

u1 � uð Þ
G h tr~cð Þ þ f kð Þ
� � ruð ÞT : ~c; (4a)

whereu1 ¼ u0 1� k1ð Þ is the minimum value of the fluidity. By lin-
earizing, we finally get

Du
Dt
¼ u0 � u

sk
þ

u1 � uð Þ
G h tr~cð Þ þ f kð Þ
� � ruð ÞT : ~c: (4b)

This is the same expression as the one customarily employed by research-
ers invoking the fluidity methodology. Note, however, that the appearance
of the term h tr~cð Þ þ f kð Þ in the denominator of the second term is not
found in their expression. Finally, we may also rewrite Eq. (3) as

sR;eq
u�

_rp
½1� þ h tr~cð Þ þ f kð Þ

� �
rp þ a

G
rp � rp

� 	

þ sR;eq
u�

rp þ GIð ÞDln h tr~cð Þ þ f kð Þ
� �

Dt

þGf kð Þ h tr~cð Þ þ f kð Þ
� �

~c � af kð Þ

� Gf kð Þ~c � ~c � ~c � rp � rp � ~c
� �

¼
gp;eq
u�

_c: (5)

Except for the extra terms related to the function f kð Þ that arise as a
result of the self-consistency of our methodology relative to the fluidity
methodology, Eq. (5) is identical to the one obtained using the fluidity
methodology. In particular, when a ¼ 0 and h ¼ 1 (Hookean dumb-
bells), we obtain the BMP model; when a ¼ 0, we obtain the f-FENE
model;24 and when h ¼ 1, we obtain the f-Giesekus model.24 As such,
our approach provides the proper evolution equation when both
anisotropic and finite extensibility effects are concurrently considered.
Altogether, our present NET approach explicitly and unequivocally
states that the BMP model,19 as well as its generalizations,21,22,24 is not
thermodynamically admissible unless additional terms, concerning the
function f kð Þ in Eqs. (4) and (5), are introduced.

We should here clarify that Manero et al.21 also claim their model
to be thermodynamically admissible via the use of EIT. In our present
work, we have employed the Generalized bracket formalism of NET
proposed by Beris and Edwards.28 Alternatively, we could have also
used the more general GENERIC formalism of €Ottinger and
Grmela.29–31 The intrinsic difference between these two formalisms is
the employment in the latter of two different generators, total energy,
E, and total entropy, S, functionals, whereas only one, the
Hamiltonian, is needed in the former; this fundamental difference
does give more flexibility in the choice of the state variables.29 Despite
this, except for subtle issues in the case of systems described, for exam-
ple, by the Boltzmann equation52 (i.e., through the use of distribution
functions as state variables) that favor GENERIC, the two formalisms
are in complete agreement,53 and may be used interchangeably. In
these formalisms, the state variables comprise of the hydrodynamic
ones, such as the momentum density, and of structural ones, such as

the conformation tensor that relates to the microstructure of the sys-
tem. On the other hand, in EIT the independent variables chosen are
the fluxes, which are more macroscopic than the structural internal
variables used by the two aforementioned formalisms.54 Also, in EIT,
like GENERIC and the Generalized bracket formalism, a non-
equilibrium entropy expression is considered that depends on the
independent variables, which comes directly from the requirement in
EIT of a non-negative entropy production;29 however, in EIT this is
usually assumed to have a quadratic dependence on the independent
variables. Jou and Casas-V�azquez54 do mention that GENERIC and
Generalized brackets provide, unlike EIT, a systematic methodology to
derive non-equilibrium thermodynamic pressures. Overall, the
Generalized bracket and GENERIC formalisms are not necessarily
equivalent to EIT and are more appropriate to use beyond the second
order of approximation in non-equilibrium perturbations.54

It should also be emphasized here that, as mentioned by Jou and
Casas-V�azquez,54 there is no counterpart of the Jacobi identity for the
reversible dynamics in EIT, and the convected time derivatives are
usually introduced rather than derived. Thus, in earlier works using
EIT, the Jacobi identity is considered implicitly. On the other hand,
when using the Generalized bracket or the GENERIC formalisms
checking the Jacobi identity is a straightforward, albeit time-
consuming, exercise. This difference is particularly important for our
present work since the inconsistency between our derived model and
the one of Manero et al.21 lies exactly on the extra Poisson bracket
considered, the second integral in supplementary material,
Eq. (SM.4b), that includes the tensor g whose precise form is dictated
through supplementary material, Eq. (SM.4c).

III. RESULTS

In this section, we consider homogeneous flows and present the
predictions of the new model in the case of steady-state and startup
simple shear, described by the kinematics u ¼ _cy; 0; 0ð Þ, and how
they compare with available experimental data. The material functions
to analyze are the shear viscosity g ¼ ryx=_c and the two normal stress
coefficients, W1 ¼ rxx � ryyð Þ=_c2 andW2 ¼ ryy � rzzð Þ=_c2. The
results have been obtained by numerically solving the constitutive
model, Eqs. (1a) and (1b), using MATLAB.

A. Material functions in simple shear flow

In Fig. 1, we depict the predictions of the structural variable k as
a function of the dimensionless shear rate, Wi ¼ sR;eq _c, for various
values of the model parameters. We note that k always approaches the
value of k1 at large shear rates irrespective of the values of the remain-
ing model parameters. By increasing e; we note that k reaches the
value of k1 at smaller shear rates, whereas by increasing the aniso-
tropic parameter it shifts to intermediate Wi, approximately between
0.2 and 10. The consideration of Hookean dumbbells, instead of FENE
ones, is noted not to significantly affect k.

Then, in Fig. 2 we depict the predictions of the steady-state
dimensionless shear viscosity (without the solvent’s contribution) as a
function of the dimensionless shear rate for various values of the
model parameters, while keeping a ¼ 0 [panel (a)] and b ¼ 100
[panel (b)] fixed. In both panels, the black line depicts the model pre-
diction when shear-thickening is not predicted, that is, when e! 0.
In all cases, at small shear rates the shear viscosity reaches its low-rate
value, gp;eq ¼ GsR;eq. Concerning the predictions when a ¼ 0
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[panel (a)], we note that as e is increased to unity the viscosity first
shear thickens, reaching a maximum at Wi 	 2, and thereafter shear
thins. Although the power-law behavior at large shear rates is the same
as when e! 0, the curve is seen to shift upward slightly. By increasing
the value of k1; the shear-thickening behavior intensifies, whereas by
increasing e the shear-thickening behavior is presented at smaller shear
rates and the position of the maximum shifts to about Wi 	 1 without
affecting the prediction at large shear rates. When the force law is
Hookean (b!1) and a ¼ 0, the shear viscosity approaches a con-
stant value at large shear rates, equal to 1� k1ð Þ�1. Finally, when
we increase the value of a, we note that the whole curve after about
Wi 	 0:3 shifts downward [panel (b)]. Overall, the predictions con-
cerning finite values of the finite extensibility parameter and a 6¼ 0 are
in line with available rheological measurements of STFs.2,16,55

In Fig. 3, we depict the predictions of the steady-state dimension-
less first [panel (a)] and second [panel (b)] normal stress coefficient as
a function of Wi for various values of the model parameters. In both
panels, the black line depicts the model prediction when shear-
thickening cannot be predicted, that is, when e! 0. We see that the
behavior is similar to the one noted for the shear viscosity (Fig. 2).
At small shear rates, they reach their low-rate values, that is,
W1;0 ¼ 2sR;eqgp;eq and�W2;0 ¼ asR;eqgp;eq. When considering a finite
value of e, both coefficients are noted to first shear thicken, reaching a
maximum at about Wi 	 2, and then shear thin. For both normal
stress coefficients, by increasing k1 the shear thickening intensifies,
whereas by increasing e the position of the maximum shifts to
Wi 	 1. When the value of a is increased, then W1 shifts downwards
after about Wi 	 0:3, whereas the �W2 curve shift upwards. An
interesting trend is that although the power-law behavior at large shear
rates is the same as when e! 0, W1 is noted to shift upwards when
k1 increases and shifts downwards as a increases. On the contrary,
the prediction of �W2 at large shear rates is the same irrespective of
the model parameters. Finally, when the force law is Hookean
(b!1) and a ¼ 0, we then note that W1 approaches, following the
behavior of the shear viscosity, at large shear rates a constant value,
equal to 2 1� k1ð Þ�2.

In Fig. 4, we present the model predictions for the growth of the
shear viscosity, gþ tð Þ, and the two normal stress coefficients, Wþ1 tð Þ
and Wþ2 tð Þ, respectively, upon inception of shear flow at two different
values of the dimensionless shear rate Wi (¼1, and 10), along with the
prediction of the linear viscoelastic (LVE) behavior (dotted orange
line) given by Eq. (6):

gþ tð Þ � gs
gp;eq

¼ 1� exp � t
sR;eq

� 	
;

Wþ1 tð Þ
sR;eqgp;eq

¼ 2 1� 1þ t
sR;eq

� 	
exp � t

sR;eq

� 	� �
;

�Wþ2 tð Þ
sR;eqgp;eq

¼ a 1� 1þ t
sR;eq

� 	
exp � t

sR;eq

� 	�

þ exp � t
sR;eq

� 	
1� t

sR;eq
� exp � t

sR;eq

� 	� ��
: (6)

FIG. 1. Representative model predictions for the structural variable k as a function
of the dimensionless shear rate, Wi, for various values of the model parameters.

FIG. 2. Representative model predictions for the steady-state dimensionless shear
viscosity, minus the solvent’s contribution, as a function of the dimensionless shear
rate, Wi, for various values of the model parameters. The following parameters are
kept fixed: in (a) a ¼ 0 and (b) b ¼ 100.
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We note that irrespective of the shear rate and the values of the
parameters considered, at sufficiently short times, all viscometric
curves follow the LVE prediction, which is the expected theoretical
prediction. At small shear rates (Wi¼ 1), we note that all three
material functions are seen to approach their steady-state values
monotonically when e ¼ 0.32,33 On the other hand, when e > 0, an
overshoot is noted, which intensifies as e increases. Also, all visco-
metric curves are noted to reach to steady-state values that are
larger than those when e ¼ 0, which is the expected outcome of
the shear-thickening behaviour occurring at these shear rate, cf.
Figs. 2 and 3. As the shear rate increases (Wi¼ 10), the non-shear-
thickening fluids are noted to go through an overshoot before they
reach to their steady-state values.32,33 The shear-thickening fluids
are noted to exhibit a more intense overshoot, but their shear vis-
cosity and first normal stress coefficient also go through an under-
shoot right after the overshoot. Both gþ tð Þ and Wþ1 tð Þ are noted
to go over (instead of below) the LVE predictions. Finally, the
behavior of the transient second normal stress coefficient is noted
to be more complicated as it does not seem to follow the LVE enve-
lope at small-to-intermediate times.

FIG. 3. Same as Fig. 2 but for the steady-state dimensionless (a) first normal stress
coefficient, and (b) second normal stress coefficient.

FIG. 4. Growth of the transient dimensionless (a) shear viscosity, and the (b)
first and (c) second normal stress coefficients upon inception of shear flow
at different dimensionless shear rates (Wi¼ 1 for the uppermost curves,
and Wi¼ 10 for the lower ones) for several values of e when keeping
a ¼ 0:1; b ¼ 100; k1 ¼ 0:9 constant. The LVE envelope is depicted as a
dashed orange line.
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B. Comparison with experimental data

Next, we validate the capacity of the derived model to compare
with available experimental measurements. Figure 5 presents a com-
parison between model predictions and experimental data55 on the
shear viscosity of a dilute aqueous (thus gs ¼ 1mPa s) nonionic sur-
factant, mainly consisted of oleyl-dimethylamine oxide [ODMAO,
C18H37N(CH3)2O], solutions for different ODMAO concentrations
Cs ¼ 500; 1000; and 1500 ppm at T¼ 20 
C. Since no data for �W2

are available, we consider a ¼ 0, and for simplicity, we consider
k1 ¼ 1. As no information pertinent to the calculation of the extensi-
bility parameter of ODMAO can be found, we will consider it here as
an adjustable parameter; given the small size of ODMAO chains, we
consider b¼ 5. The elastic modulus is given via G ¼ G0Cs with
G0 ¼ 0:12mPa. The value of the polymer viscosity at equilibrium,
gp;eq, is obtained directly from the zero-rate shear viscosity via
gp;eq ¼ g0 � gs, whereas sR;eq is obtained via sR;eq ¼ gp;eq=G. The only
remaining parameter to specify is e. The selected values of gp;eq, G,
sR;eq, and e for each ODMAO solution are depicted in Table I. The
comparison, presented in Fig. 5, shows that the model is capable of
reproducing the rheological data quite well.

IV. CONCLUSIONS

During the past few decades, there has been a widespread interest
in understanding the rheological behavior of shear-thickening fluids
that stems from their increasing applicability in numerous commercial
applications, from body armor to injury-preventing medical equip-
ment. Given the tremendous span of their commercial applications, it
is necessary to tailor-design each STF to properly address all

engineering issues related to each application. Thus, it is essential to
have a rheological model that adequately addresses their distinct rheo-
logical footprint.

We have herein introduced such a constitutive model for shear-
thickening polymer solutions that is derived via the use of non-
equilibrium thermodynamics, allowing therefore for the proper cou-
pling between the two structural variables, the conformation tensor
and the scalar structural variable k, with each other and with the flow
field and consistency with the thermodynamic laws. To the best of the
author’s knowledge, the present model is the first to include two struc-
tural variables (one tensorial and one scalar) and is developed using
NET, employing the more general generalized bracket28 formalism,
except for the use of EIT by Manero et al.21 and Land�azuri et al.22

However, we show that our NET approach explicitly and unequivo-
cally states that the BMP model19 and its generalizations21,22,24 are not
thermodynamically admissible unless specific amendments to their
functional form are undertaken. As such, the model proposed in this
work, Eqs. (4a) and (5), should be employed in the future.

We have showcased that the model can predict the shear viscosity
of dilute nonionic surfactant (ODMAO) solutions.55 Furthermore, we
have shown that, in addition to the shear viscosity, the first and second
normal stress coefficients also shear thicken, in line with previous
works.24 However, we have been unable to judge whether this behavior
is a physical one since no such rheological data are available.

We do admit that the current version of our model bears certain
limitations. At first, various rheological measurements show that some
STFs first shear-thin before shear-thicken.3,4,56 The present version of
the model is unable of reproducing this behavior. This may be
amended by considering coupling terms between the structural varia-
bles, which we have currently omitted for mere simplicity. Second,
currently the model only accommodates the aggregation of polymer
segments. To accommodate for the existence of particles in suspen-
sions, we need to add to the vector of state variables the orientation
tensor, following our previous work on suspension rheology.34,35 In
the context of rod-like particles, the scalar structural variable could be
considered to be the scaled length of the rods that increases under
flow, as done by Dutta and Graham.57 We plan to undertake this gen-
eralization in a future publication.

SUPPLEMENTARY MATERIAL

See the supplementary material for the complete model deriva-
tion using non-equilibrium thermodynamics and a proof of its ther-
modynamic admissibility.
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