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Abstract: On-time seed variety recognition is critical to limit qualitative and quantitative yield loss
and asynchronous crop production. The conventional method is a subjective and error-prone process,
since it relies on human experts and usually requires accredited seed material. This paper presents a
convolutional neural network (CNN) framework for automatic identification of chickpea varieties by
using seed images in the visible spectrum (400–700 nm). Two low-cost devices were employed for
image acquisition. Lighting and imaging (background, focus, angle, and camera-to-sample distance)
conditions were variable. The VGG16 architecture was modified by a global average pooling layer,
dense layers, a batch normalization layer, and a dropout layer. Distinguishing the intricate visual
features of the diverse chickpea varieties and recognizing them according to these features was
conceivable by the obtained model. A five-fold cross-validation was performed to evaluate the
uncertainty and predictive efficiency of the CNN model. The modified deep learning model was
able to recognize different chickpea seed varieties with an average classification accuracy of over
94%. In addition, the proposed vision-based model was very robust in seed variety identification,
and independent of image acquisition device, light environment, and imaging settings. This opens
the avenue for the extension into novel applications using mobile phones to acquire and process
information in situ. The proposed procedure derives possibilities for deployment in the seed industry
and mobile applications for fast and robust automated seed identification practices.

Keywords: Cicer arietinum; convolutional neural network; grad-CAM; image classification; ImageNet;
VGGNet; VGG16

Highlights

A CNN approach for automatic identification of chickpea varieties by seed images.
Two camera types were employed, while light and imaging conditions varied.
The VGG16 architecture was modified by adding four layers.
An average classification accuracy of over 94% was obtained.
Seed industry use possibilities and mobile applications can be derived.
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1. Introduction

For agriculture, seeds represents the first crucial input. Employing seeds of the
appropriate variety is a prerequisite to reach the optimum yield potential and secure a
uniform product. Compromised seed varietal purity adversely affects cultivation practices,
and eventually limits plant growth and productivity. On this basis, there is a growing
pressure on the seed producers, processors, and distributors to assert seed purity. Varietal
impurity and misidentification may be introduced in any step of the seed production chain,
expanding from cultivation of the mother plants (pre-basic, basic, and certified material)
to processing. Varietal impurity may also be the result of intentional adulteration via
including seeds of another variety of reduced cost. In this perspective, methods of variety
identification and discrimination are highly needed.

Manual seed grading based on morphology is frequently performed by trained
experts. This is a time-consuming process, requiring dedicated personnel and variety
miss-identification cannot be eliminated. Seed variety identification may be accurately per-
formed by genetic marker-based methods. However, the pitfalls (invasive, time-consuming,
and costly) carried by this approach set it unsuitable for routine analysis. In this perspec-
tive, there is a growing demand for rapid, non-invasive, and unbiased techniques of variety
identification and discrimination.

As non-invasive methods, imaging approaches for seed variety identification and
testing include hyperspectral imaging [1,2], near infrared imaging [3,4], and magnetic
resonance imagers [5,6]. However, these techniques are characterized by the drawbacks of
necessitating costly equipment (conducted by specialized personnel), while subsequent
data analysis is highly sophisticated and complicated.

Visible image processing techniques (400–700 nm) offer the advantages of being low-
cost and rapid [7,8]. They have been successfully employed across several studies for
seed variety identification generally utilizing the most important visual seed features [9].
Rapeseed variety recognition has been conducted by using a method based on computer
vision and machine learning [10]. Respective work on rice employed image processing
and sparse-representation-based classification methods [11]. Despite being successful and
promising, the above-mentioned techniques are based on manual feature engineering in
the classification tasks, requiring distinct sections (i.e., feature extraction, selection, and
learning). On this basis, there is a necessity for new approaches that can automatically
handle these distinct sections. Feature engineering-based approaches additionally require
defined illumination conditions during image acquisition. The required specific illumi-
nation restricts the applicability of the technique to controlled-light environments [8]. A
method independent of the ambient light conditions would be cost-effective, portable, and
could be readily employed in the seed industry.

Unlike feature engineering (extraction and selection), where features are created by
experts, the feature learning step employs an unattended machine learning algorithm to
pick up and create useful features from raw data. The deep learning technology has been
increasingly applied for automated tasks (e.g., pattern recognition and image classification),
due to its dual ability of automatically extracting efficient visual features directly from
input images, and learning complex and vast systems [12–14]. Therefore, the potential of
deep learning methods is expected to be more powerful and user-friendly than manually
engineered features.

Convolutional neural network (CNN) is a specific class of deep learning and a set of
non-linear transformation functions. Since 2000, CNN has presented unparalleled success
and high performance to object detection, segmentation and recognition, and in this way
effectively addressed many classification problems [15]. CNN can automatically perform
the feature extraction and selection, owing to the network depth and weight sharing among
nodes which assist in reducing over-fitting [16]. CNN has many layers that increasingly
calculate image features. Convolutional and fully connected layers are generally two
different types of layers on CNN. Input and output in convolutional layers are images that
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highlight unique patterns, while fully connected layers produce an enhanced vector from
prior inputs.

The aim of this study was to develop a proof-of-concept method for variety identifica-
tion and discrimination by employing CNN. Such models are gradually gaining popularity
in deciphering agricultural enigmas such as seeds classification [17–19]; however mainly
focusing on interspecies variations. Since low-cost image acquisition tools were used,
the proposed method can be readily employed in industrial applications, considerably
reducing processing time, labor, and associated errors. Chickpea (Cicer arietinum L.) was
employed as the model species, since previous research on seed variety identification is
relatively absent and several diverse types (desi and kabuli) can be used. Chickpea is
considered as one of the earliest domesticated legumes, since millennian-old remains have
been discovered in the Fertile Crescent and the broader Middle East region [20]. It serves as
a nutritional powerhouse (fiber and protein source) to the majority of vegetarians globally,
and to individuals where vegetarian attitude is mostly based on economic income in devel-
oping countries. In Iran, the area under chickpea cultivation is approximately 450,000 ha,
and is mostly (>98%) located in dryland areas (http://www.fao.org/faostat/en/#data/QC
accessed on 6 July 2021)), under sustainable cultivation schemes.

2. Materials and Methods
2.1. Chickpea Seed Samples

Four commercially prominent chickpea varieties (Adel, Arman, Azad, and Saral) were
evaluated. For seed image acquisition, both a mobile phone camera (LG V20, 16-megapixel
resolution; LG Electronics Inc., Seoul, Korea) and a digital camera (PowerShot SX260 HS,
12.1-megapixel resolution and 6.2 × 4.6 mm sensor; Canon, Kyoto, Japan) were employed.
The latter has a small sensor size, which is comparable with the cameras of mobile phones.
During image acquisition (in total 400 images, 100 samples for each variety were obtained),
lighting conditions and image capture settings (i.e., background, focus, capturing angle,
and camera-to-sample distance) were not fixed. Representative images are displayed
in Figure 1.

2.2. Deep Convolutional Neural Network-Based Model

CNN consists of convolutional and pooling layers to train red, green, and blue (RGB)
images. Convolutional layers involve filters (the so-called kernels) that are used for extract-
ing low-level features (e.g., instance edges and blobs), while pooling layers are applied
for the image size reduction [21]. In the CNN structure, common fully connected layers
can be employed as in neural networks. The CNN training (according to the comparison
between network output and actual labeled output) includes the feed-forward and back-
propagation stages. During the feed-forward stage, the image data is applied as the input
of the network. In the back-propagation stage, the parameter gradients are obtained using
the calculated error in feed-forward, and then each parameter is upgraded according to the
calculated gradients [22].

Numerous powerful pre-trained CNN constructions were effectively trained using a
great number of labeled images, such as ImageNet which includes 1000 several classes [23].
By employing the obtained chickpea seed variety images, the network-extracted features
were not applicable for variety classification. This limitation was resolved by employing
the fine-tuning technique. This technique, as a transfer learning concept, was applied to
reuse the model. During this procedure, the new data were used to update the model
parameters. This indicates that the available network weights were utilized to start the
network training procedure instead of initiating with random weights [24].

Commonly employed pre-trained CNNs include AlexNet [25], GoogLeNet [26],
ResNet [27], and VGGNet [28]. In the current research, VGGNet was selected due to
its superlative performance in the classification operations [24,29]. One of the VGGNet
architectures is the VGG-16, which comprises more than 15 million parameters of convolu-
tional layers.

http://www.fao.org/faostat/en/#data/QC
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Homogeneous construction of VGG-16 involves five blocks in sequence, while the
output of each block is specified as the input of the next block (Figure 2). Extraction can
exploit the powerful image features, including shape, color, and texture. Two convolutional
layers were utilized to build the first two blocks, and three convolutional layers for the last
three blocks. The stride and padding of these 13 convolutional layers have 3 by 3 kernels,
which are equivalent to 1 pixel, and the Rectified Linear Unit (ReLU) function was applied
for each one. A 2 by 2 max-pooling layer with stride of 2 followed each block. This layer
was utilized as a sub-sampling one and was employed for dimension reduction of the
feature map. Overall, 64 filters were applied to the first block of convolutional layers. In
every next block, the number of filters was increased by a factor of 2 as compared to the
previous block. At the end, the network had three dense layers.
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Figure 2. Schematic of VGG-16 architecture (top panel) and classifier block structure (bottom panel) evaluated in the
current research.

There were 4096 channels in the first two layers, and 1000 channels in the last layer
with a softmax activation function [28]. The last three dense layers were replaced by the
classifier block to modify the original VGG-16 architecture.

The global average pooling layer (dense layer) included the ReLU function as the
activation function. It also included batch normalization for holding the inputs of layers
on the same range. Additionally, it involved dropout as regularization technique for
decreasing the overfitting risk of training. The final dense layer with softmax classifier was
organized with the classifier block. The last layer had four neurons in order to confirm the
network to the present case study.

By minimizing overfitting, the global average pooling layer decreased the number
of parameters. In this way, the spatial dimensions of an h × w × d tensor was decreased
to 1 × 1 × d dimensions. Each h × w feature map was transformed into a single number
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according to the mean values of the h × w matrix [30]. The ReLU function was conducted
by carrying out the mathematical operation (Equation (1)) on each input data (Parameter x
in Equation (1)). The Softmax function (Equation (2)) was used to estimate the normalized
possibility value of each neuron (pi):

f (x) =
{

x, i f x > 0
0, otherwise

(1)

pi =
exp(ai)

∑n
j=1 exp

(
aj
) (2)

Parameter ai denotes the softmax input for node i (class i) and i, j ∈ {1, 2, . . . , n},
where n is the number of classes [31].

2.3. Training CNN Model

CNN includes millions of parameters, and its learning requires huge training data
and costly calculations. Consequently, feature extraction by a pre-trained network and fine-
tuning of the pre-trained network (i.e., transfer learning) are considered as the fundamental
strategies to cope with this limitation [15].

For the VGG-16-based model, the fine-tuning process was performed, while training
was conducted by the ImageNet dataset [23]. In this way, the information acquired by
ImageNet was transferred to the existing case study. At first, VGG-16 was trained by
ImageNet. Next, the last fully connected layers were replaced with another classifier block.
Training of this block was deployed through random weights for 10 epochs, while the
whole convolutional blocks were frozen. Eventually, training of the VGG-16-based model
was performed with the dataset of the obtained chickpea seed variety images. Cross-
entropy loss function [32] and Adam optimizer [33] were used for procedure training with
0.0001 learning rate and 2e−6 learning rate decay.

The VGG-16-based model contained over 15 million trainable parameters. Owing to
the great number of parameters, the network overfitting risk was developed. In order to
develop the robustness and generalizability of the network, image processing techniques,
a slight distortion (comprised of rotation, height and width shifts), and scaling changes
were applied to augment the training of a given image.

2.4. K-Fold Cross-Validation and Assessment of Classification Accuracy

The VGG16-based model followed by the classifier block was applied for automatic
chickpea variety identification and discrimination. The construction of the classifier block
was comprised of a global average-pooling layer, various dense layers (1 × 512 neurons
and 1 × 512 neurons), a batch normalization layer, and a dropout layer (Figure 2). Training
of the CNN network was performed for 100 epochs in every five folds (Figure S1). The
weight matrix of the model was acquired according to the minimum loss function value
without any over-fitting.

The collective image dataset was divided into training (80% of images) and test (20% of
images) sets. Then, a five-fold cross-validation was performed to evaluate the uncertainty
and predictive efficiency of the CNN model. Thus, the training dataset was divided into
five disjoint equal segments. Then, four out of five subsets were used as the training
sets, while the remaining one as the validation set for training the CNN model. Next, a
confusion matrix (Figure 3) was estimated for the assessment of classification efficiency on
the independent test data [34].
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Figure 3. Confusion matrix for classification of four classes.

The terms (nij) correspond to the pixels that are classified into class number i by the
CNN classifier (i.e., C*

i), when they actually belong to class number j (i.e., Cj, i = 1, 2, 3, 4).
Accordingly, the right diagonal elements (i = j) correspond to correctly classified instances,
while off-diagonal terms (i 6= j) represent incorrectly classified ones. When considering
one class i in particular, one may distinguish the following four instances. True positives
(TP) and false positives (FP) are instances correctly and incorrectly identified as C*

i. True
negatives (TN) and false negatives (FN) are instances correctly and incorrectly rejected as
C*

i, respectively. The corresponding counts are determined as nTP = ni,i, nFP = ni,+ − ni,i,
nFN = n+,j − ni,i and nTN = n− nTP − nFP − nFN where ni,+ and n+,j are the sums of the
confusion matrix elements over row i and column j, respectively.

The classification performances were measured based on the values of the confu-
sion matrix, and included accuracy (Equation (3)), precision (Equation (4)), sensitivity
(Equation (5)), specificity (Equation (6)), and area under the curve (AUC; Equation (7)).

Accuracy =
nTP + nTN

nTP + nTN + nFP + nFN
(3)

Precision =
nTP

nTP + nFP
(4)

Sensitivity(Recall) =
nTP

nTP + nFN
(5)

Speci f icity =
nTN

nTN + nFP
(6)

AUC =
1
2

(
nTP

nTP + nFN
+

nTN
nTN + nFP

)
(7)

Accuracy focuses on the overall effectiveness of the CNN classifier. Precision evaluates
the class agreement of the data labels with the positive labels defined by the classifier. Sen-
sitivity shows the effectiveness of the CNN classifier to recognize positive labels. Specificity
denotes how effectively a classifier identifies negative labels. AUC indicates the ability of
the CNN classifier to avoid false classification.
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The confusion matrix values demonstrate the actual and predicted classes. This
process was repeated five times through the shifting validation set. Assessment of the CNN
classifier performance was done by using the evaluated statistical parameters according
to the confusion matrix values in each repetition. These statistical parameters included
accuracy, precision, sensitivity, specificity, and AUC. Lastly, overall efficiency of the CNN
model was obtained by the average value of the five performances [34,35]. All steps
regarding creating and training the proposed CNN model were executed under the Google
Collaboratory environment using Python 3.7 and Keras with TensorFlow backend.

3. Results and Discussion
3.1. Evaluation of Quantitative Classification

For the training dataset, the average values of classification accuracy and cross-entropy
loss were 0.9131 and 0.2529, respectively (Table 1). For the validation dataset, the corre-
sponding values were 0.9333 and 0.1902, respectively. For the test dataset, the average
values of prediction accuracy and cross-entropy loss were 0.8841 and 0.3943, respectively.

Table 1. Comparison of the proposed Convolutional Neural Network performance in each fold.

Fold
Training Validation Testing

Accuracy Loss Accuracy Loss Accuracy Loss

1 0.9234 0.2364 0.9062 0.2501 0.8977 0.3708
2 0.9133 0.2417 0.9062 0.2481 0.8636 0.4368
3 0.9294 0.2136 0.9375 0.1731 0.8636 0.3889
4 0.8909 0.3086 0.9667 0.1117 0.9318 0.3477
5 0.9087 0.2643 0.9500 0.1679 0.8636 0.4275

Average 0.9131 ± 0.01 0.2529 ± 0.03 0.9333 ± 0.02 0.1902 ± 0.05 0.8841 ± 0.03 0.3943 ± 0.03

In statistical clustering, algorithms, and models for the classification of data into a de-
terminate set of classes are generally employed. Since such models are not flawless, several
data points can be erroneously classified. As a result, an estimation of accuracy is manda-
tory usually via a confusion matrix (a tabular summary presenting the model’s value). In
the current study each fold, confusion matrix and statistical parameters (Equations (3)–(7))
on the independent test dataset were applied for analyzing the efficiency of the superlative
VGG16-based model. The average of the whole five folds was used for evaluation of the
total efficiency of the CNN model.

To further verify the model’s versatility in total four chickpea varieties were included
(Adel, Arman, Azad, and Saral). Due to the comparable shape of diverse varieties of chick-
pea, it is somewhat hard to discriminate them with morphologically using just the naked
eye. Based on the constructed model, the identification accuracy levels were satisfactory.
Figure 4 presents the average value of confusion matrices, denoting that chickpea variety
identification and discrimination was correctly done and with high accuracy. The class of a
single variety (Saral) included additional misclassified images, which were confused with
images of other variety classes.

By classification of the test dataset into four classes, the average values of statistical
parameters accuracy, precision, sensitivity, specificity, and AUC were 94.21, 90.49, 96.13,
88.41, and 92.27, respectively (Table 2). The obtained results of the developed model
assessment in different folds show that the introduced model has the required performance
for chickpea variety identification and discrimination.
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Figure 4. Average confusion matrix evaluated from the proposed Convolutional Neural Network
model with four various classes.

Table 2. Average statistical parameters of proposed Convolutional Neural Network model.

Class Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) AUC (%)

Adel 95.46 ± 1.13 84.72 ± 3.26 100 ± 0.00 93.94 ± 1.51 96.97 ± 0.76
Arman 92.96 ± 2.03 79.06 ± 5.09 98.18 ± 2.49 91.21 ± 2.49 94.69 ± 1.85
Azad 97.5 ± 0.95 98.18 ± 2.49 91.82 ± 4.98 99.39 ± 0.83 95.61 ± 2.23
Saral 90.91 ± 3.68 100 ± 0.00 63.64 ± 14.72 100 ± 0.00 81.82 ± 7.36

Average
per-class 94.21 ± 1.52 90.49 ± 2.24 88.41 ± 3.05 96.13 ± 1.01 92.27 ± 2.03

3.2. Qualitative Analysis

The training process of the CNN models comprises two feed-forward and back-
propagation steps. In back-propagation step, learning these models for optimization of
their kernels (filters) is performed. Low- and high-level features are extracted by these
optimized kernels. They also demonstrate the most significant regions for recognizing
chickpea variety images for each class. Therefore, the accuracy of the models is specified
by kernels, and visualization of kernels is essential for assessing the model performance.

Extracted filters or features of diverse layers, by using the model, are applied to deter-
mine the ultimate accuracy of the modified model. Assessment of the visual patterns of the
filters’ response is known as an appropriate method for estimation of the modified model
performance in order to extract low- and high-level features. To achieve this goal, different
filters’ extraction of diverse convolutional layers of the model was done. Particular filters
were applied in specific filters of the first and last convolutional layers (Figure 5). The first
layer filters encoded the colorful features and directional edges (Figure 5). Texture partic-
ular patterns of the images, which were constructed of colors’ and edges’ compositions,
were encoded by the last convolutional layers’ filters (Figure 5). Therefore, the modified
model according to the shape, color, and texture has simulated various effective filters.
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Figure 5. Visualizing nine filters of the first (a) and last (b) convolutional layers.

The Gradient-weighted Class Activation Mapping (Grad-CAM) is an efficient method
for debugging the prediction process. The Grad-CAM was utilized for visualization of
the regions of random input images used for feature extraction, which was employed for
prediction of the images’ class. By using this technique, a class activation heatmap of the
input image was created and computed for all of its locations. The 2D grid class activation
heatmap was used for specifying the significance grade and resemblance level of each
image location according to the particular class.

To acquire the class activation heatmap, initially the feature map extraction of the
final convolution layer for a specified image was done, and the gradient of the particular
class was calculated by considering the feature map of the convolutional layer. Next, the
neuron weights were computed by using these gradients. Eventually, the weight of any
channel of the feature map was calculated by using these weights. The results of applying
this technique on the selected random images of the four different chickpea varieties are
displayed in Figure 6. The CNN model had the capability for accurate feature extraction of
the right location (Figure 6). This accurate feature extraction of the appropriate location
was feasible, even though the camera was placed distantly from the samples. This fact
fortifies the ability and consistency of the optimized model.
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In order to diagnose the features from each class of an image, which were extracted
by the CNN model from any given sample, the content of a single sample was manually
isolated. This manually cut sample was evaluated with the CNN model. Next, the class
saliency map of these images was computed. The class saliency map consisted of 46 and
488 channels for the first and last convolutional layers, respectively (Figures 6 and 7).
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Figure 7. The class saliency map visualization of channel 46 from the first convolutional layer of the Convolutional Neural
Network model.

The class saliency map is used for pixel visualization of an image, which assists in
the classification. Initially, the derivative of class score function was computed for an
input image via backpropagation, having m rows and n columns. The First-order Taylor
expansion adequately approximates the class score function as a linear function of the
specified image. Next, the elements of the computed derivative were rearranged to obtain
the saliency map. Every component of the saliency map in the RGB image is the uppermost
value of the calculated derivative among the three-color channels.

Particular filters in the first layer, which were learned, represent the surface color
(Figure 7). Several low-level features (e.g., colors, edges, and colored edges) can be extracted
by these layers. The possibility of the filters’ focus on the sample color activated neurons
on the sample surface. The entire boundary of the sample is denoted in Figure 8. The
activated neurons on the sample outline serve as a set of gradient operators, which are
employed for detection and extraction of the sample edge structure at diverse orientations.
The extraction of more complex levels of features was done based on the deeper layer
(i.e., last convolutional layer). A set of self-learned features from low- to high- levels was
seen at the feature visualization and class saliency maps. Consequently, distinguishing the
intricate visual features of the diverse chickpea varieties and recognizing them according
to these features is conceivable by CNN models.

High-level understanding from digital images, and recognition of objects in particular,
has been the epicenter of computer vision in recent years, and progress on that field has
been exponential. Particularly, the Pascal Visual Object Classes (VOC) challenge [36],
and lately the Large-Scale Visual Recognition Challenge (ILSVRC) [23] founded on the
ImageNet dataset [37] are extensively employed as standards for several visualization-
related enigmas in computer vision, and especially object sorting. In the past decade, a
large, deep CNN reached a 16.4% error for imaging classification into thousands of probable
classes [25]. In the succeeding years, several progresses in deep CNN depressed the error
rate to 3.57% [26,28,38]. The prediction efficiency recorded in this study was at the highest
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end of the range, when considering previous reports assessing seed variety identification
and discrimination by using other methods (67.5–91.3% accuracy of the classification
results for test datasets; [39–43]. Even though training large neural networks can be proven
a laborious process, nevertheless the accomplished models have the ability to swiftly
recognize and categorize images, making them suitable for smartphones applications.
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4. Conclusions

Rapid seed variety determination remains a difficult undertaking in agricultural sector.
It often relies on human experts, and in this way is a subjective and error-prone process.
The proposed Convolutional Neural Network employs a powerful deep learning model
alternative in order to establish the deep relation among the input data and the target
output. The competence of the model was correspondingly established by experimental
results. In addition, the proposed vision-based model was proven very robust and flexible
for seed variety identification, since two different types of cameras were used for imaging,
while light and image acquisition (e.g., distance, angle, background) conditions were
variable. Instead, feature engineering-based approaches require defined illumination and
image acquisition conditions. Therefore, it was established that the required imaging data
can be acquired by using easily accessible devices such as mobile phones, tablets, or action
cameras (GoPro). In this way, there is a potential that a smartphone may evolve as a
very flexible alternative and a seed variety identification platform, via developing a CNN
model-based mobile app. Our results indicate that the proposed CNN algorithm is reliable
and very efficient for straightforward seed variety identification and discrimination, thus
showing a great potential for application in seed producers, processors, and distributors.
This presents a great potential for extension into new applications using mobile phones
to acquire and process information in situ. The proposed protocol consists of a smart,
non-invasive, and reliable technique for online identification of chickpea seed varieties.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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AUC area under the curve
CNN convolutional neural network
FN false negatives
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ReLU Rectified Linear Unit
RGB red, green and blue
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