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ABSTRACT Computer-Aided diagnosis (CAD) is a widely used technique to detect and diagnose diseases
like tumors, cancers, edemas, etc. Several critical retinal diseases like diabetic retinopathy (DR), hypertensive
retinopathy (HR), Macular degeneration, retinitis pigmentosa (RP) are mainly analyzed based on the
observation of fundus images. The raw fundus images are of inferior quality to represent the minor changes
directly. To detect and analyze minor changes in retinal vasculature or to apply advanced disease detection
algorithms, the fundus image should be enhanced enough to visibly present vessel touristy. The performance
of deep learning models for diagnosing these critical diseases is highly dependent on accurate segmenta-
tion of images. Specifically, for retinal vessels segmentation, accurate segmentation of fundus images is
highly challenging due to low vessel contrast, varying widths, branching, and the crossing of vessels. For
contrast enhancement, various retinal-vessel segmentation methods apply image-contrast enhancement as a
pre-processing step, which can introduce noise in an image and affect vessel detection. Recently, numerous
studies applied Contrast Limited Adaptive Histogram Equalization (CLAHE) for contrast enhancement, but
with the default values for the contextual region and clip limit. In this study, our aim is to improve the
performance of both supervised and unsupervised machine learning models for retinal-vessel segmentation
by applying modified particle swarm optimization (MPSO) for CLAHE parameter tuning, with a specific
focus on optimizing the clip limit and contextual regions. We subsequently assessed the capabilities of the
optimized version of CLAHE using standard evaluation metrics. We used the contrast enhanced images
achieved using MPSO-based CLAHE for demonstrating its real impact on performance of deep learning
model for semantic segmentation of retinal images. The achieved results proved positive impact on sensitivity
of supervised machine learning models, which is highly important. By applying the proposed approach on
the enhanced retinal images of the publicly available databases of {DRIVE and STARE}, we achieved a
sensitivity, specificity and accuracy of {0.8315 and 0.8433}, {0.9750 and 0.9760} and {0.9620 and 0.9645},
respectively.

INDEX TERMS CAD tools, healthcare, contrast enhancement, CLAHE, PSO, modified PSO, semantic
segmentation, deep learning.

I. INTRODUCTION
The high blood pressure and diabetes are primary causes
of well-known eye diseases, such as glaucoma and diabetic
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retinopathy (DR), with DR is a leading cause of blindness
in young populations. These diseases can develop advanced
stages without major symptoms, whereas general symptoms
include lesions in the form ofmicroaneurysms (MAs), hard or
soft exudates, intraretinal microvascular abnormalities, dot,
or blot hemorrhages, and leakages. Individuals are frequently
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unaware of these symptoms, which can often only be detected
by ophthalmologists examining the retinas of the patient and
grading the disease by quantifying the lesions and identifying
their types and severity. These diseases represent the primary
causes of vision impairment in working-age populations [1].

The human eye has several constituent parts, including the
macula, iris, vitreous, vessels, optic disk, optic cup, cornea,
and pupil. A symptom of DR is MA caused by leakage from
retinal vessels, with the MAs shown as red in color and
circular in shape. Hemorrhages are formed on the retina when
the walls of MAs rupture, and if the leakage from blood
vessels contains lipids and proteins, exudates as another type
of lesion are formed and can be either hard or soft and
lead to vision impairment if occurring near the macula. The
hemorrhages are dark in color, whereas the exudates are
bright lesions [2]. Among the different constituent parts of the
human eye, vessels are particularly important and frequently
used for analyses of different eye diseases, including DR [3].

Retinal images are captured using fundoscopy, which is
a complex optical-imaging method that uses a system com-
prising several lenses. The captured images are important
for diagnosing different eye diseases, including DR and
glaucoma, and provide a telescopic view of the retina [4].
Ophthalmologists examine and grade these images manually,
which is a cumbersome and time-consuming task. Further-
more, manual grading can contain significant variations due
to subjectivity and differences in interpretation. However,
automated methods based on machine learning models are
potentially capable of improved accuracy and consistency,
as well as their utility for large-scale screening of the general
population.

The performance of automated methods for analyzing reti-
nas to diagnose eye diseases has improved due to the uneven
progress in the fields ofmachine learning (ML), deep learning
(DL), artificial intelligence (AI), and the use of graphical pro-
cessing units. Additionally, ML and DL methods can poten-
tially offer increased performance in the automated system
for larger scale public screenings [5].

The contrast of retinal fundus images is generally inade-
quate for direct processing for multiple reasons, including eye
movement, media opacity, poor focus, camera misalignment,
and small pupil size, with inadequate contrast in captured
images potentially resulting in narrow vessels being unidenti-
fiable from background [5]. Therefore, preprocessing of reti-
nal images for contrast enhancement is a compulsory step that
includes extraction of a suitable image component for further
processing. Splitting the green, red, and blue channels of the
RGB image allows discrimination (contrast enhancement) of
high degrees of order between blood vessels and background
in the green channel [6]. However, the red and blue chan-
nels allow significantly lower discrimination (contrast). After
selecting the green channel of the RGB image, the next step
is the contrast enhancement of the green channel.

The authors in [7] applied the shade-correction algo-
rithm for contrast enhancement of green channel of retinal
images. In [8], the authors proposed a hybrid model with a

combination of histogram fitting and multi-scale transforma-
tion (top-hat) for enhancing the retinal images. They claimed
that their developed hybrid model is effective for enhanc-
ing the retinal image contrast, and successfully separated
the vessels from background. But, they mentioned that their
developed model is ineffective if the parameters of histogram
fitting are not selected cautiously.

The authors in [9] a simple, effective, iterative and
multi-step scheme for image denoising system using Wiener
filter. In their developed scheme, the output from one stage
is provided as input to next contiguous stage and so on.
The ending criterion for stopping the denoising process is
based on a certain level of image energy. They tested their
developed iterative algorithm based on real clinical images
using standard evaluation metrics.

The authors in [10] proposed contrast and luminos-
ity enhancement technique for improving the retinal fun-
dus images. They achieved the luminance gain matrix by
applying gamma correction of value channel of HSV color
space for enhancing the R, G, and B channels. Then they
applied CLAHE for Contrast enhancement. The perfor-
mance of their proposed method is evaluated on a database
of 961 poor-quality retinal fundus images. They achieved
better contrast enhancement compared to other image
enhancement techniques.

The authors in [11] developed coarse-to-fine (unsuper-
vised) machine learning algorithm for retinal vessel segmen-
tation. Before segmentation of the vessels, they enhanced the
retinal images by applying various methods including mor-
phological top-hat filtering, Gaussian smoothing and contrast
enhancement.

The authors in [12] adapted Sparse Coding and
Multi-dictionary based based approach for contrast Enhance-
ment of retinal vessel images. They used two dictionaries
named Representation Dictionary and Enhancement Dictio-
nary which are generated from original retinal image and
labelled images respectively. These two dictionaries were
used for saving the details of the vascular structures. They
evaluated their developed approach for contrast enhancement
of two well-known retinal image databases i.e. DRIVE and
STARE.

The researchers of all these different studies have applied
image contrast enhancement using different techniques.
Specifically, for contrast enhancement of retinal fundus
images, CLAHE has been used by numerous researchers but
they used it with the default parameters values for clip limit
and contextual regions, which are not optimized. There is
a need for contrast enhancement of retinal fundus images,
by exploring/applying an exhaustive way for finding optimal
parameter values for clip limit and contextual regions of
CLAHE.

The block diagram of the proposed strategy for contrast
enhancement of retinal fundus images is shown in Figure 1
In the present study, we improved the contrast of retinal

fundus images by obtaining optimized parameters values for
clip limit and contextual regions of CLAHE. We proposed
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FIGURE 1. Proposed strategy for contrast enhancement of retinal fundus
images.

to apply the modified particle swarm optimization (MPSO)
for finding optimized parameter values for clip limit and
contextual regions. We have assessed its efficiency using
various state-of-the-art evaluation metrics. Then, a DL model
is applied for semantic segmentation of the contrast-enhanced
retinal fundus images. The contrast enhancement is a basic
pre-processing step in retinal vessel segmentation. In the past,
researchers have applied CLAHE with default parameters for
contrast enhancement [13], [14]. However, using the default
parameters for all the fundus images might result in noisy
image for some fundus images which makes it difficult to
segment the retinal vessels accurately. In this paper, instead
of using default values of contextual region and clip limit for
CLAHE, we have applied modified particle swarm optimiza-
tion (MPSO) to optimize the parameters of CLAHE. For the
demonstration purpose, we apply the proposed method on
publically available DRIVE and STARE retinal databases.
The results demonstrated significant improvement in sensi-
tivity of deep learning model for semantic segmentation by
using the combination of MPSO and CLAHE for contrast
enhancement of retinal fundus images.

The following are the contribution of this study.
• The PSOwas applied to tune CLAHE parameters, which
were subsequently used to enhance the contrast of the
extracted green channel of retinal fundus images.

• We applied two objective functions to evaluate the
CLAHE parameters determined byMPSO, including the
structural similarity index (SSIM) and entropy.

• The performance of the proposed method was exten-
sively evaluated using multiple evaluation metrics.

• We demonstrated improved contrast enhancement of
retinal fundus image using a combination of the MPSO
with CLAHE.

• We demonstrated improvement in sensitivity of deep
learning model for semantic segmentation using
enhanced retinal fundus image obtained by applying
the proposed method of combination of MPSO and
CLAHE.

The remaining paper is structured as follows. The review
of the existing literature is provided in section 2 while the
details of methods are given in section 3. The experimental
results are presented in section 4. Performance enhancement
(specifically improving the sensitivity) of DLmethod for reti-
nal vessels segmentation is presented in section 5. Eventually,
section 6 concludes the paper.

II. RELATED WORK
Image quality is often reduced during the acquisition process
as a result of device flicker, object rotation, and/or uneven
background illumination. Consequently, image-quality
enhancement is a fundamental step in image analysis and pro-
cessing. Various image enhancement methods aim to improve
images to make them more suitable for target applications.

A histogram is a probability density function having dis-
crete values for the number of pixels representing various
gray levels in an image. Histogram equalization (HE) is often
applied for contrast enhancement, which homogeneously
allocates intensity levels throughout the image. In medical
imaging, such as retinal fundus images and mammograms,
the local contrast of various image regions is more significant
than the global contrast. For such applications, global (G)HE
is inadequate because it cannot address the enhancement of
local features of various sections in an image. HEmanipulates
the image histogram by applying a transformation function as
the basis for various spatial-domain methods used for image
contrast enhancement [15]–[17].

Adaptive (A)HE differs from GHE in that it produces
several histograms for different sections of an input image
and uses them to redistribute the intensity levels in the output
image, with a drawback of this method being noise amplifi-
cation. CLAHE is a variation of AHE that enables control of
the noise level using the clip limit.

The combined use of CLAHE with a discrete wavelet
transform for image-contrast enhancement was previously
proposed [18], with the authors emphasizing that CLAHE
promotes noise amplification and contrast overstretching.
To address these issues, they proposed the application of
a weighted-averaging operation in both the reconstructed
and original images in order to regulate the enhance-
ment levels in the different regions in the original image.
However, their methodwas only evaluated using non-medical
images. Another study [19] applied an ML approach to
hyper-parameter tuning for CLAHE in order to obtain a
trade-off between image enhancement and noise amplifica-
tion. They used the clip limit and the kernel size as tools to
determine this trade-off; however, their evaluation was also
limited to only non-medical images. Additionally, [20] for-
mulated and implemented multidimensional CLAHE, which
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generates a random number of dimensions in the image,
with this subsequently applied to spectroscopy and fluores-
cence microscopy datasets. Furthermore, CLAHE has been
used to increase image contrast in a number of applications.
[13], [21]–[26] and [27]. In biomedical-image processing,
it has been used to enhance mammography images [21], [22],
ultrasonography images [23], cell-image segmentation [16],
[24], bone-fracture images [25], and retinal-vessel detec-
tion [13], [26], [27].

Evolutionary computation is a branch of AI often used
to solve optimization problems. Previous studies applied
CLAHE in combination with meta-heuristics algorithms
for contrast improvement in medical images [28]–[30].
Additionally, [29] presented a PSO-based parameter tuning
method for CLAHE for mammogram images, achieving sig-
nificantly better results as compared with exiting techniques
by applying local contrast modification for contrast enhance-
ment of mammogram images. Moreover, they evaluated their
proposed method based on different objective functions,
including edge information and entropy. Furthermore, [30]
applied CLAHE for contrast enhancement of mammograms.
Notably, ML and deep learning have recently been investi-
gated for use in image-contrast enhancement with promising
outcomes [31]–[34].

[35], [36] applied a genetic algorithm with transformation
functions using different parameters to enhance the contrast
of a grayscale image, and [37] used PSO with an objective
function to evaluate image enhancement by considering the
entropy, as well as the number of edges, in the image. The
current research is the first to our knowledge that focuses
on parameter tuning in CLAHE for contrast enhancement of
retinal fundus images.

III. METHODS
This section unfolds the standard PSO, its basic equations,
the modified PSO and MPSO-CLAHE.

A. THE STANDARD PARTICLE SWARM OPTIMIZATION
The PSO is an evolutionary method and based on the repro-
ductive behaviors of living things, including schools of fish,
flocks of birds, etc. As an optimization algorithm, PSO
applies a population based hunting strategy to individuals
(i.e., particles), which hover around in a multidimensional
search space searching for local, as well as global, opti-
mal positions. All particles have a specific velocity, which
affects their movement in the multidimensional space. Con-
trast enhancement of an image requires a transformation
function to transform each pixel intensity from the input
image into a different intensity level for the corresponding
pixel in the output image. An optimization function is applied
for optimizing CLAHE parameters, and an objective function
is applied to the input and output images to assess the quality
of the enhanced image.

Contrast enhancement is assessed using the entropy and
SSIM parameters, with the local- and global-best particles

updated accordingly. Following the determination of the
global-best particle, it is used for contrast enhancement.

The authors in [29] applied the standard PSO for contrast
enhancement of mammogram images. For the initial anal-
ysis, we also implemented the standard PSO for contrast
enhancement of retinal fundus images. But the main issue
with standard PSO is that both the position and velocity
vectors (particles) may get stuck in the local best positions.
Due to this issue, optimum contrast enhancement cannot be
guaranteed. For the readers convenience, the details of the
standard PSO algorithm are disclosed below.

In standard PSO algorithms, the position as well as the
velocity of the particles changes with time. Each particle has
a position vector and velocity vector associated with it. The
algorithm begins with a randomly initialized values of the
velocity and position vectors for each particle. The velocity
vector and position vector of a jth particle in a D-dimensional
space is expressed by equations (1) and equation (2)
respectively.

Xj = xj1, xj2, xj3, . . . , xjD (1)

Vj = vj1, vj2, vj3, . . . , vjD (2)

For every particle, its current position vector is provided
to the objective function, which generates a fitness value.
If the current output of the objective function is greater than
the previous, the local-best position of the particle is updated
accordingly. The globalcbest value of the position vector is
then updated by comparing its value with the value of all
the particles. The updated value of the velocity vector of
each particle is determined using the local- and global-best
positions along with other control parameters. Equation (3)
describes the update of particle-velocity.

vij = (w ∗ vi−1j + c1 ∗ r1 ∗ (best
i−1
j − X i−1j )

+c2 ∗ r2 ∗ (gbest
i−1
j − X i−1j ) (3)

In equation (3), the w is the inertial weight, vij is the velocity
vector of the jth particle in ith iteration, the parameters c1 and
c2 are used for the acceleration of the local and global parts,
the r1 and r2 are two random numbers which are uniformly
distributed. The pbest i−1j is the particle’s local best position
while gbest i−1j is the particle’s global best position in the
whole swarm. The updated velocity vector of each particle is
utilized for updating their respective position vector accord-
ing to the equation 4.

x ij = x i−1j + vij (4)

In equation (4), the term x ij represents the position vector of
jth particle in the ith iteration. The parameters in equation (3),
such as inertial weight, random numbers, and acceleration
constants, all play a role in the particle’s convergence to its
global best place. The inertial weight governs the effect of
a particle’s previous velocity vector on its current velocity
vector. It acts as a trade-off between the entire swarm’s global
and local search capabilities. The value of the inertial weight
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is generally kept constant in regular PSO. The researchers
experimented with several different ways to control the iner-
tial weight in order to speed up the convergence of the particle
to its global best location. Parameters c2 and c1 assist each
particle in the swarm in finding the global and local optimal
position. For convergence of the PSO algorithm, the values
of these two parameters must obey the rule c1 + c2 <= 4,
otherwise, there’s a probability the particle will get trapped in
a nearby minima. The values of r1 and r2 must be generated
uniformly and randomly in the range of [0, 1] to preserve
variability in the generated population of particles.

Equation (1) and (2) are the general representation of
position vector and velocity vector respectively whereas
Equation (3) and equation (4) are the original PSO equations
for velocity and position vector update respectively. The local
and global best position searching mechanism of standard
PSO algorithm from [38] is shown in Figure 2. It shows the
influence of particle best (Pbest) and swarm best (Gbest)
on the movement (both position and velocity) of particle
evolution during iteration ‘i’. It indicates that the particle
in iteration ‘i’ is attracted proportionately towards current
best and global best position which are Pbest and Gbest
respectively.

FIGURE 2. Illustration of particle ‘j ′ movement in solution space for i and
i + 1 iterations. It indicate the influence of best position of particle i.e.
Pbest , and best position the whole swarm i.e., Gbest on the movement of
particle ‘j ′ .

B. THE MODIFIED PARTICLE SWARM OPTIMIZATION
The proposed method aims to identify optimal values for the
contextual region and clip limit in order to allow CLAHE to
optimally enhance the contrast of a given image. Equation (5)
is the particle definition for our proposed method where
each particle of the PSO comprises the contextual region
(Rx, Ry) and the clip limit (Cl), with the position of a particle
represented as a three-dimensional vector.

Particleposition = (Rx,Ry,Cl) (5)

In equation (5), Rx @ [2 . . .M ], Ry @ [2 . . .M ] where
M, N are the number of columns and rows of the image
respectively. The Cl is the clip limit in the range [0 1]. We
modified the standard PSO to penalize the velocity of the
particle in order to keep it within the dimensions of the
image. We used a technique that adjusts the particle velocity
to keep it within the [Vmin Vmax] range. If the combination
of the position vector and the velocity vector results in a
particle leaving the image’s dimensions, the particle velocity
is penalized. These alterations ensure that the particle remains
within the boundary of the search space represented by the
dimension of the image.

The Vmax and Vmin parameters are determined using
equation (6) and (7).

Vmax = lambda ∗ (MaxSS −MinSS ) (6)

Vmin = −Vmax (7)

where the wordsMaxSS andMinSS refer to the search space
limits, and lambda refers to the element used to clamp the
velocity of each particle. The value of lambda is 1 by default.
The velocity of the ith particle in the Dth dimension is con-
trasted with if V(i,D) > Vmax then V(i,D) = Vmax and if
V(i,D) < Vmin then V(i,D) = Vmin. When the particle velocity
is updated based on velocity clamping using equation (6) and
equation (7), then the sum of position and velocity vector
is calculated. If the resultant position vector falls outside
the search boundary i.e. either V(i,D) + X(i,D) > MaxSS or
V(i,D) + X(i,D) < MinSS then V(i,D) = 0, X(i,D) = −X(i,D).
Where, the termX(i,D)is the position of the ith particle in the

Dth dimension. If the resultant vector from the addition of the
position vector and velocity vector is outside the dimension
of the image, then the penalization is performed by setting the
velocity to zero and altering the direction of the particle posi-
tion. After penalization is performed, the updated particle’s
position is determined using equation (4) of the standard PSO.
The various parameters in the proposed MPSO are initialized
according to Table 1.

TABLE 1. The parameters values of the MPSO.

The range of clip limit as well as contextual region is set
before running the optimization algorithm. For the clip limit,
the standard range is [0, 1] whereas for the contextual region
[Rx, Ry] the lower bound is 2 and the upper bound is 32.
The upper bound for the contextual region is set based on
the experimentation so to avoid over-enhancement or noise
amplification in fundus images. In addition, the larger value
of the upper bound would result in higher computational
cost. When the optimization algorithm is applied, in the
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first iteration, the MPSO will randomly assign values to the
contextual region as well as clip limit within the specified
range. From the second iterations onward, the MPSO will
assign values to the contextual region as well as clip limit
based on equation (4).

C. BASIC CLAHE
Numerous studies used basic CLAHE for contrast enhance-
ment due to its proven results in biomedical images [21], [23],
[25]–[27], [39], [40]. CLAHE offers a controlled selection
of a local histogram-transformation function for application
to input images after they are split into suitable regions.
It adjusts the intensity levels of the image by applying a non-
linear transformation for maximizing the contrast for every
pixel in its input image. A drawback of the adaptive histogram
equalization (CLAHE) method is noise amplification, which
is usually controlled by choosing a suitable clip limit and con-
textual regions. But, applying CLAHE may lead to creation
of boundaries at places of abrupt gray levels changes in input
images, which are abundant for the case of retinal fundus
images. Additionally, un-optimized selection of clip limit and
contextual regions of CLAHE did not guarantee optimum
contrast enhancement. As a result, in order to ensure optimal
contrast enhancement of retinal images, thorough exploration
of finding optimal values for clip limit and contextual regions
of CLAHE is needed.

D. THE PROPOSED MPSO-CLAHE METHOD
In the MPSO, the swarm is initialized with a selected number
of particles and searches for local- and global-best parti-
cles by updating through a selected number of iterations.
In each iteration, every particle is updated by comparing it
with two optimal values, one of which represents the best
particle (solution) obtained among all particles of one iter-
ation (i.e., the local best). The other optimal value repre-
sents the best particle (solution) in the swarm (population)
(i.e., the global-best). These particles are responsible for
forcing other particles to move toward the best position. In the
CLAHE part of the algorithm, the input image is divided into
several contextual regions, each having dimension Rx and Ry.
Each particle (vector) in the swarm comprises Rx, Ry, and a
clip limit, the ranges of which dictate how various particles
are formed. In each iteration of the PSO algorithm, fifty parti-
cles are randomly formed by assigning random values to Rx,
Ry, and the clip limit. Every particle is subjected to CLAHE,
the enhanced image is assessed using the objective function,
and the local best particle is calculated. By comparing the
individual best of the fifty particles, the global-best particle
is updated after every iteration, with the overall best selected
by PSO through a selected number of iterations. The PSO
algorithm is executed 100 times (empirically selected), which
ensures a reasonable global-best particle and transformation
of an input image into an output image with significantly
enhanced contrast.

For contrast enhancement, CLAHE divide a given image
into many parts and apply histogram equalization to them.

It adjusts the intensity levels of the image by applying a non-
linear transformation for maximizing the contrast for every
pixel locally in the divided parts of the image. CLAHE has
two main parameters which are contextual regions (Rx, Ry)
and clip limit (Cl) and researchers usually use fixed values
for their considered databases. The main problem with such
an approach is that optimal contrast enhancement cannot be
achieved for the different images, as contrast enhancement
using CLAHE is mainly dependent on the optimal selection
of its parameters. Hence, there is a need for exploring a
systematic way for optimal selection of contextual regions
and clip limit, which will result in optimal contrast enhance-
ment for the different images in any database. The PSO
is an evolutionary optimization method, which is based on
the reproduction behaviors of the living being including fish
schooling, bird flocking, and swarm theory. For the case of
CLAHE, contextual regions and clip limit are the particles.
In our proposed MPSO-CLAHE method, we are trying to
optimize (find best particles) the contextual regions (Rx, Ry)
and clip limit (Cl) for the different images of two well
known retinal image databases called DRIVE and STARE.
So, the MPSO algorithm is trying to optimize the values for
Rx, Ry, and Cl for the different images of these two databases.

In Algorithm 1, we have presented the modified PSO for
which the particle definition is the parameters of CLAHE
(Rx, Ry, and Cl). Our search space is 3D i.e. each particle
consisted of three elements; Rx, Ry, and Cl where Rx, Ry
represent the contextual region and Cl represents the clip limit
of CLAHE. We consider fifty particles where each particle
position and velocity are randomly assigned during the first
iteration. The CLAHE is used as a transformation function to
generate the enhanced image for each particle. We evaluate
the fitness function using equation (8) to update the personal
best of each particle. Next, we update the global best particle
by comparing the personal best of the fifty particles. From
the second iteration onwards, each particle velocity and parti-
cle position is updated based on equation (3) and equation (4)
respectively. TheCLAHE is used as a transformation function
and the fitness function is evaluated to find the personal
best as well as global best. With the progression of the opti-
mization algorithm towards the stopping criteria, the fitness
function is maximized and the particle that corresponds to the
maximum value of the fitness function represents the optimal
contextual region and clip limit of CLAHE for that particular
fundus image.

The MPSO-CLAHE algorithm is presented in Figure 3,
which shows how the parameters of the CLAHE are tuned
based on the PSO. The interaction among the CLAHE,
the PSO, and the particles is presented in Figure 4. The
parameters including the randomly assigned values of the
contextual regions and the clip limit are used to form a particle
(i.e. vector) which is provided to the CLAHE for enhancing
the input image. The enhanced picture (CLAHE output) is
assessed using an objective function to find the best local and
global particles. The algorithm shown above is repeated until
a specific number of iterations is passed.
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FIGURE 3. The MPSO-CLAHE Algorithm.

E. OBJECTIVE FUNCTION
The authors in [37], proposed an objective function for evalu-
ating three performance metrics (the sum of edge intensities,
entropy, and edge number) and is shown in (8). We applied
this function to evaluate the quality of the enhanced image
output using the proposed method.

F(Ie) = log(log(E(Is))).
nedges(Is)
M ∗ N

.H (Ie) (8)

where, the term Ie is the enhanced image obtained by apply-
ing CLAHE on the original image, Is is the edge image
obtained by applying the Sobel edge operator, nedges repre-
sents the number of edges in the obtained edge image,H (Ie)
is the entropy of the image having enhanced contrast and the
E(Is) is the sum of the pixel intensities in the obtained edge
image. TheM and N denote the number of columns and rows
of the original image respectively. Our aim in this work has
been on maximizing the fitness function.

We also used two additional objective functions to assess
the quality of the enhanced image (SSIM and entropy). SSIM
is a coefficient used to measure the degree of distortion in an
enhanced image and determined block by block. Therefore,
for two blocks of the original and enhanced images (repre-
sented by Ix and Ey, respectively), SSIM can be determined

FIGURE 4. The graphical representation of the MPSO-CLAHE algorithm.

using equation (9).

SSIM (I ,E) =

(
2uIxuEy + C1)

(
2σIxσEy + C2)(

u2Ix + u
2
Ey + C1)

(
σ 2
Ix + σ

2
Ey + C2))

(9)

where uIx and uEy are the intensity variances for the original
and enhanced image, respectively. Furthermore, the σIx and
σEy are the covariance between the original and enhanced
image respectively. If the denominator becomes zero, the
parameters C1 and C2 are used to stabilize the division.
Entropy is an objective function for assessing the randomness
of the given image. The entropy of a given image can be
determined using equation (10).

Entropy = −
L−1∑
i=0

π ∗ log2(π )[bits] (10)
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where the term π is the probability of occurrence of gray
levels i in the image. Furthermore, the term L is the maximum
level of the grayscale in the given image. This entropy is
an interesting metric as it is closely related to the typical
brightness of the given image. The entropymetric assists us in
assessing the contrast enhancement of the given image. In our
recent studies in [41] and [42], we discovered that the contrast
of the fundus images has a major effect on the efficiency
of both supervised and unsupervised approaches for retinal
vessel segmentation. For further improvement of evaluation
metrics of these previous studies, in the current study, we aim
for contrast enhancement of retinal fundus images.

IV. EXPERIMENTAL RESULTS
The subjective and objective analysis for comparing the per-
formance of the proposed approach with previous methods is
unfolded in this section.

A. SUBJECTIVE COMPARISON OF CLAHE
WITH CLAHE-MPSO
We quantitatively and qualitatively evaluated the perfor-
mance of the proposed method using two standard datasets
[Digital Retinal Images for Vessel Extraction (DRIVE) and
Structured Analysis of the Retina (STARE)] and according to
entropy and SSIM metrics. DRIVE is a collection of retinal
fundus images from the Netherlands that covers a wider age
range of diabetic patients [43], and STARE is a collection
of 40 retinal fundus images from the United States [44].
For each image in the DRIVE dataset, the blood vessel is
segmented manually. Additionally, a binary mask is provided
with every retinal image that delineates the field of view.
Table 2 lists the descriptions of these two retinal fundus image
databases.

TABLE 2. Information of the databases used in our analysis.

Figure 5 shows the subjective analysis where we fixed the
clip limit to 0.01 and progressively increased the contextual
region (Rx, Ry) by a step size of 4. This figure clearly shows
the significant impact of contextual region on the contrast
of fundus image. When the contextual region is smaller,
the enhanced image achieved local contrast. However, for
the larger contextual region the global contrast is achieved
with a larger dynamic range and overall increase contrast.
Instead of empirically choosing the parameters of CLAHE,
the heuristic optimization approach is used to optimally select
the CLAHE parameters for each fundus image for avoiding
over-enhancement and noise amplification.

In the images of Figure 5, we can observe that the slight
variations in the contextual regions resulted in minor differ-
ences in contrast enhancements of images which were not

observable by the human eye. However, a comparison of the
first and last image from each database revealed observable
differences in contrast enhancement. The results indicated
that contrast was improved by increasing the size of the
contextual regions, although over-enhancement (noise ampli-
fication) was eventually observed, resulting in decreased per-
formance of the vessel detection algorithm. These findings
suggested that careful selection of parameters for the contex-
tual region is necessary to avoid over-enhancement or noise
amplification. The performance of CLAHE is sensitive to the
variations in the values of its parameters. For an explorative
analysis of the sensitivity of CLAHE’s parameters, we have
performed several simulations where the values of Rx and Ry
are varied from 4 to 48 with a step size of 4, and the results
are presented in Figure 5.

Figure 6 shows a visual comparison between CLAHE with
a default parameters and optimized parameters of CLAHE
shown in third column and fourth column of Figure 6 respec-
tively. The first column of Figure 6 is the green channel
image of test Image from the DRIVE and STARE databases.
In fourth column of Figure 6, we are able to visualize the
enhancement of retinal blood vessels (especially the thin ves-
sels and those near the optic disk) relative to the background.

For illustration purpose, we randomly select three images
from the DRIVE and STARE database and compare the
MPSO – CLAHE with the default parameters CLAHE
enhancement of the original image. As shown in the Figure,
the optimal parameters of CLAHE using MPSO enhanced
the retinal vessels much better than the default parameters
of CLAHE. This enhancement is more visible in the optic
disc region where it is very challenging to extract the retinal
vessels.

Based on the analysis of the subjective evaluations
in Figure 5 and Figure 6, we concluded that optimum values
for the parameters of the contextual regions are needed to
be determined for each of the different images in each of
the standard datasets. For such analysis, we performed more
simulation using the proposed method of the modified PSO.
In the modified PSO, the penalization is performed for find-
ing the local as well as global best positions of the particles.
The results based on objective analysis of the images from
both the DRIVE and STARE databases are evaluated and
presented in the next subsection.

B. OBJECTIVE COMPARISONS OF THE METHODS
BASED ON EVALUATION METRICS
Figure 7 shows the comparisons of entropy metrics for
DRIVE images enhanced using CLAHE and CLAHE-
MPSO. CLAHE uses the MATLAB function ‘‘adapthisteq’’
and default parameters for the contextual regions (Rx =
8, Ry = 8) [13], [14]. We found that the entropy of the
enhanced images obtained using CLAHE-MPSO was bet-
ter than those from CLAHE, suggesting that the optimized
parameters resulted in improved contrast enhancement that
allowed visualization of the optic cup, optic disc, and vessel
segmentation in the retinal-vessel images.
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FIGURE 5. Exploration of parameters optimization for DRIVE and STARE databases (image 12 of both databases) by varying the values
of Rx and Ry from 4 to 48 with a step size of 4. Both very low and very high parameters values results in poor enhancement.

Figure 8 shows the comparison of the SSIM for the
20 images of the DRIVE dataset which are enhanced through
the proposed method i.e. MPSO and the SCLAHE. From

the bars in Figure 8, we can perceive that the SSIM of the
enhanced images obtained through the proposed algorithm
is significantly lower compared to those obtained through
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FIGURE 6. Subjective analysis of impact of MPSO based CLAHE: (a) The green channel. (b) Standard CLAHE with default parameter.
(c) Optimized parameter obtained using Proposed MPSO based CLAHE.

SCLAHE. The lower SSIM values signify that the contextual
regions obtained through MPSO for the different images of
each dataset, which is desired. The entropy and SSIM of the

20 images of the STARE database are presented in Figure 9
and Figure 10 respectively.We can observe that the evaluation
metrics for each of the images of the STARE database too,
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FIGURE 7. Comparison of the entropy metric of DRIVE images enhanced
using CLAHE and MPSO-CLAHE.

FIGURE 8. Comparison of the SSIM metric of DRIVE images enhanced
using CLAHE and MPSO-CLAHE.

FIGURE 9. Comparison of the entropy metric of STARE images enhanced
using CLAHE and MPSO-CLAHE.

are significantly better for MPSO than that of the SCLAHE.
Based on the results obtained based on the analysis of both
the DRIVE and STARE databases, we can conclude that
the contextual regions for the different images of the two
databases are optimum.

FIGURE 10. Comparison of the SSIM metric of STARE images enhanced
using CLAHE and MPSO-CLAHE.

The best result in terms of entropy gain and loss of
SSIM for MPSO-CLAHE was taken for every test image in
DRIVE and STARE database, and results are listed in Table 3
and Table 4 respectively. As shown in these tables, the entropy
of the enhanced image using default – CLAHE is lower than
that of the MPSO – CLAHE for all the fundus images in
DRIVE and STARE databases respectively. The subjective
analysis from Figure 6 and quantitative analysis from Table 3
and Table 4 prove the PSO optimization over default CLAHE
parameters.

For all the images of two considered databases, the values
of optimized parameters obtained using the proposed MPSO
based method are presented in Table 3 and Table 4 of the
manuscript. It is worthy to mention here that for different
medical imaging applications, The MPSO algorithm should
be firstly used for determining the optimized parameter val-
ues, which in turn will lead to significantly better contrast
enhancement using CLAHE.

V. PERFORMANCE ENHANCEMENT OF DEEP LEARNING
MODEL FOR SEMANTIC SEGMENTATION
For the validation of the proposed method, we have used our
previously developed deep learning model in [41]. In this
section, we present the detailed performance analysis by
applying the deep learning model on the enhanced retinal
images obtained using MPSO based CLAHE.

A. EVALUATION METRICS
The developed deep learning model is applied for vessel
segmentation to extract vessels from retinal images in the two
considered well-known databases. We have used the ‘‘ground
truth’’ images provided with these standards for assessing the
performance of our developed deep learning model. Usually,
the researchers apply the four evaluation metrics described
below for assessing the performance of their developed deep
learning model (DLM):

1) True Positive (TP): The vessel pixels which are cor-
rectly identified by the DLM

47940 VOLUME 9, 2021



K. Aurangzeb et al.: Contrast Enhancement of Fundus Images by Employing Modified PSO

TABLE 3. The entropy of the original and enhanced images along with their respective optimized contextual regions and clip limit for DRIVE database.

TABLE 4. The entropy of the original and enhanced images along with their respective optimized contextual regions and clip limit for STARE database.

2) False Negative (FN): The vessel pixels which are incor-
rectly identified as background by the DLM

3) True Negative (TN): The background pixels which are
correctly identified by the DLM

4) False Positive (FP): The background pixels incorrectly
identified as vessels pixels by the DLM

The parameters elaborated above are generally applied for
assessing the various evaluation metrics [45]:

Acc =
TP+ TN

TP+ FN + TN + FP
(11)

Se =
TP

TP+ FN
(12)

Sp =
TN

TN + FP
(13)

The Acc, Se, and Sp, in the above equations are accu-
racy (correctly identified pixels), sensitivity, and specificity,
respectively.

B. PERFORMANCE COMPARISON WITH REPRESENTATIVE
MODELS FROM LITERATURE
The performance of the developed deep learning model
is evaluated based on two openly available retinal image
databases i.e. DRIVE and STARE. The obtained evaluation
metrics including accuracy, sensitivity, and specificity are
presented in tabular form and are compared with the rep-
resentative model from the literature. In order to validate
the proposed method, the MPSO is executed 100 times for
each retinal fundus image. The average values of sensitivity,
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TABLE 5. Comparison of developed model with best models from literature on DRIVE database.

TABLE 6. Comparison of developed model with best models from literature on STARE database.

specificity and accuracy is derived for each image and the
results are listed in Table 5 and Table 6 for DRIVE and
STARE database respectively. It can be observed in Table 5
that for the test images of the DRIVE database, we attained
0.8315, 0.9750, and 0.9620 for three standard evaluation met-
rics including sensitivity, specificity, and accuracy respec-
tively. This table indicates that the sensitivity of the developed
deep learning model is better compared to existing literature.
In both Table 5 and Table 6, the SS represent semantic
segmentation.

It can be observed in Table 6 that for the test images
of the STARE database, we attained 0.8433, 0.9760, and
0.9645 for the standard evaluation metrics including sensitiv-
ity, specificity, and accuracy respectively. These results indi-
cate that the sensitivity of the developed model is much better
compared to the representative model from the literature.

Furthermore, the accuracy is also reasonably better (third
best) than the models of previous explorations.

Based on the observations in Table 6 and Table 5, we can
conclude that image contrast enhancement based on MPSO
and CLAHE enabled the developed deep learning model for
attaining significantly better evaluation metrics compared to
the representative models from the existing literature.

VI. CONCLUSION
The use of ML methods to accurately analyze retinal blood
vessels has become essential to the prognosis and diagno-
sis of various eye diseases. In this study, we described a
method for enhancing the contrast of retinal images using
CLAHE by applying the proposed modified PSO algorithm
to optimize the parameters i.e. contextual regions and clip
limit. Two additional evaluation metrics i.e. entropy and
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SSIM have been used to quantitatively evaluate the enhanced
images using the proposed method. The optimal parame-
ters using MPSO–CLAHE resulted in minimum distortion
and maximum contrast enhancement in the retinal fundus
images from two publicly available databases (DRIVE and
STARE). The MPSO specifically penalizes swarm-particle
velocity and position (representing the contextual regions and
clip limit) for leaving image boundaries, thereby promoting
more efficient identification of both a local- and global-best
particle, which aided in determining the optimal combination
of parameters necessary to enhance the images. The con-
trast enhancement by applying MPSO based CLAHE will be
helpful for the researchers in boosting the sensitivity of the
retinal vessel segmentation approaches with minimal impact
on the accuracy and specificity. This method will be useful to
researchers interested in the segmentation of medical images
especially the retinal-vessel images and assist the acquisi-
tion of optimal contrast enhancement to promote diagnoses
using retinal images. Furthermore, significant improvement
in the performance of the deep learning model is observed
for semantic segmentation of enhanced retinal images.
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