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Abstract: Land cover mapping is often performed via satellite or aerial multispectral/hyperspectral
datasets. This paper explores new potentials for the characterisation of land cover from archive
greyscale satellite sources by using classification analysis of colourised images. In particular, a
CORONA satellite image over Larnaca city in Cyprus was used for this study. The DeOldify
Deep learning method embedded in the MyHeritage platform was initially applied to colourise the
CORONA image. The new image was then compared against the original greyscale image across
various quality metric methods. Then, the geometric correction of the CORONA coloured image was
performed using common ground control points taken for aerial images. Later a segmentation process
of the image was completed, while segments were selected and characterised for training purposes
during the classification process. The latest was performed using the support vector machine
(SVM) classifier. Five main land cover classes were selected: land, water, salt lake, vegetation, and
urban areas. The overall results of the classification process were then evaluated. The results were
very promising (>85 classification accuracy, 0.91 kappa coefficient). The outcomes show that this
method can be implemented in any archive greyscale satellite or aerial image to characterise preview
landscapes. These results are improved compared to other methods, such as using texture filters.

Keywords: historical land cover; CORONA; feature extraction; classification; MyHeritage; deep
learning; Cyprus

1. Introduction

Land cover mapping is considered one of the most well-documented research areas
of remote sensing science [1,2]. Numerous applications have been presented in the past
dealing with this topic [3–6]. The majority of these studies focus on the exploitation of
multispectral and hyperspectral data sets to generate land cover maps [7–10]. At the end
of a classification process, the satellite image is labelled into the pre-defined thematic land
use classes, while the overall results are evaluated via different classification metrics. In
an attempt to improve the overall results, the classification process has been shifted from
pixel-based to object-oriented and segmentation analysis during recent years [11–13].

Land cover maps are considered essential for studying diachronic landscape changes
that can promote sustainability. Indeed, land cover analysis is fundamental for a wide
range of applications like ecology, environment, agriculture, transport, spatial planning,
and others. The conversion of land cover to artificial cover can lead to many environmental
issues, including land surface temperature [14], loss of ecosystem services, urbanisation,
changes in water yields, or habitat degradation. Analysis of time-series land cover maps can
provide details for land cover dynamics [15], land-use emissions [16], urban extent [17], and
artificially impervious areas [18]. In addition, land cover maps can be used for monitoring
natural hazards like floods and soil erosion. For instance, [19] used Landsat images to
deliver land cover maps to characterise the 2014 flood of the Indus River in Pakistan.
Moreover, land use maps generated from satellite images were used for flood monitoring
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in the area of Yialias in Cyprus [20]. Land cover maps obtained from space sensors have
also been used in soil erosion studies [21].

The CORINE Land Cover (CLC) inventory is considered one of the earliest databases
at the European level delivering land cover maps. CLC was created to standardise data
collection related to land in Europe to support environmental policy development. It was
initiated in 1985 (with the reference year of 1990) and continues until today to characterise
the various thematic classes at a European level. CLC updates have been produced in 2000,
2006, 2012, and 2018 [22,23].

Scientists today have access to a variety of high-resolution satellite imagery, like the
WorldView sensor with a special resolution of up to 30 centimetres. However, these images
became available during the last two decades, after the launch of the IKONOS sensor, the
first commercial satellite sensor in 1999. Before that period, scientists could work with
medium resolution satellite data with a spatial resolution between 10 to 30 through the
Landsat space program (since 1972) and the Satellite pour l’Observation de la Terre (SPOT)
sensor in the 1980s.

During the 1960s and 70s, available information from intelligence satellite sensors
could be accessed through other space programmes, like those of the CORONA sensor. The
specific images were initially used for reconnaissance purposes and to produce maps for
US intelligence agencies. In 1992, an Environmental Task Force evaluated the application
of early satellite data for environmental studies, and the images were declassified by
Executive Order 12,951 in 1995 [24].

The use of CORONA archive images and other similar datasets for producing his-
torical land cover maps has already been presented in the literature [25–28]. In [29], the
researchers used aerial photographs from 1944 to map agricultural lands and forests,
while CORONA satellite images were used to map agricultural lands following an object-
based image analysis (OBIA). In [30], the authors proposed an image texture derived
method to characterise historical land cover from CORONA data. Other studies have
used the CORONA datasets for land cover analysis using classification image processing
techniques [31], density slicing [32], as well as image interpretation and digitisation [33].
Recently, Deshpande et al. [34] have worked with convolutional neural networks (2D-CNN)
and texture extraction obtained through geometric moments (GM) to produce classification
results from greyscale CORONA images. In addition, an effort to improve the interpreta-
tion of CORONA images, for archaeo-landscape studies, by adding colour from recently
acquired satellites or airborne sensors was presented by [35].

This paper aims to present a methodology where historical land cover maps can be
retrieved from CORONA imagery using deep learning colourisation techniques, feature
extraction, and vector machine classification. An example of this proposed methodology
is presented here using a medium resolution CORONA image from 1963. The overall
assumptions, evaluation metrics, and results are presented below.

2. Materials and Methods

The overall methodology followed in this study is presented in Figure 1. Initially, a
CORONA greyscale image was downloaded from the USGS Earth Explorer platform [36].
The CORONA image with Entity ID DS009056009DA077 and coordinates 35.080, 34.067
(WGS 84 geodetic system) was chosen. The image covers Larnaca city in Cyprus, while
the acquisition date was 27 June 1963. The CORONA mission number was 9056, using the
KH-4 mission designator and a 70 mm panoramic film type. The resolution of the image is
estimated to be 25 feet (equivalent of 7.62 m).

After the image was downloaded, an image enhancement using histogram linear
stretching techniques (2%) was applied to improve the image interpretation and quality
of the original image. Then, a selection (subset) of the image covering the area of interest
over Larnaca city was made. This subset was uploaded to the MyHeritage in ColorTM

platform [37] for colourising purposes. The specific platform has licensed the DeOldify deep
learning model [38] exclusively, using an improved version of the generative adversarial
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networks (GANs). This pre-defined model was trained using millions of real photos and
could colourise greyscale photos [37]. Various other examples from this process can be
found on the MyHeritage in ColorTM platform website [37]. The original code of the
DeOldify deep learning model can be accessed from [38].
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It should be mentioned that the final colourisation image remains a simulation,
and consequently, an evaluation of the final output is needed. We have therefore com-
pared the original CORONA image with the colourised one using different quality im-
age metrics. Specifically, we have explored five different quality metrics as follow (see
Equations (1) to (5)):
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The Bias method estimates the deviation degree between the colourised and the orig-
inal CORONA image, while Image Entropy quantifies the information of the colourised
image based on the Shanon theorem. The ERGAS (erreur relative globale adimension-
nelle de synthèse) estimates the ratio between pixels of the colourised and the original
CORONA image. The RASE (relative average spectral error) method characterises the
average performance of the colourised image, and finally, the RMSE (root mean squared
error) method measures the difference between the reference image and the colourised
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image. More details regarding these quality image methods can be found in [39,40]. These
quality methods were implemented in the MathWorks MATLAB R2016b environment
based on [40] toolbox.

Once the above evaluation had been performed, a geometric correction of the colourised
image was carried out using a second-order polynomial model. Fifteen ground control
points were used, uniformly scattered over the case study for the geometric transformation,
using a high-resolution aerial orthophoto image as reference. The aerial dataset was
obtained from the same period as the CORONA images (1963) and was provided by the
Department of Land and Surveyors (as WMS service). The accuracy of the reference images
is estimated to be 1.25 m (scale 1: 5000), which is sufficient for the CORONA correction
(pixel size 7.62 m). The geometric correction was applied in the ArcGIS v10.2 environment
(ESRI).

The next step included the classification of the colourised image using training samples.
The colourised image is composed of three spectral bands, namely the blue, green, and
red (compared with a single spectral layer of the original CORONA image). Therefore,
different supervised classification techniques can be applied. In this study, we explored
the potentials of the object-oriented classification through the segmentation of the image
and the classification strategy using the support vector machine (SVM) classifier, as this
was found to be promising in other relevant studies [14]. Training samples after the
interpretation of the CORONA image were used for classification purposes.

The SVM classifier is a supervised classification approach developed from a statistical
learning theory. SVM is capable of modelling nonlinear connections while avoiding
overfitting through regularisation [41–44]. The classifier separates the various classes
with a decision surface (optimal hyperplane) that maximises the margin between the
classes. Here, the radial basis function (RBF) kernel function was used to estimate the
weights of nearby data points in estimating target classes (Equation (6)). The degree of the
kernel polynomial was set to 1, while the Gamma parameter (g) was set to 0.03. Finally, the
penalty parameter was set to 100.

RBF = K(xi,xj) = exp(−g||xi − xj||2), g > 0 (6)

This classification process was repeated (e.g., including new training samples) to
improve the classifier’s overall performance. Finally, the land cover map was produced
with the following five thematic classes: land, water, salt lake, vegetation, and urban
areas. The overall results were then evaluated using the error matrix and classification
metrics accuracy. The following three metrics were used: (a) the overall accuracy, which is
calculated by summing the number of correctly classified values and dividing by the total
number of values (see Equation (7)); (b) the accuracy per class, which is the percentage
of the corrected classified pixels divided by the total number of the correct pixels in this
class (see Equation (8)), and (c) Kappa coefficient that measures the agreement between
classification and truth values. A kappa value of 1 represents perfect agreement, while a
value of 0 represents no agreement (see Equation (9))

Overall accuracy =
(corrected classified pixels)

(total classified pixel)
(7)

Accuracyclass =
(corrected classified pixels)class

(total classified pixel)class
(8)

kappa =
N ∑n

i=1 mi,i − ∑n
i=1(Gi Ci)

N2 − ∑n
i=1(Gi Ci)

(9)

where i is the class number, N is the total number of classified values compared to truth
values, mi,i is the number of values belonging to the truth class i that have also been
classified as class i, Ci is the total number of predicted values belonging to class i, and Gi is
the total number of truth values belonging to class i.
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3. Results
3.1. Colourisation of the CORONA Image

Figure 2 shows the initial CORONA greyscale image as obtained from the USGS Earth
Explorer platform. The image was taken over Larnaca city, shown in the centre of Figure 2.
Just on the city’s southern outskirts, the salt lake of Larnaca is visible with a bright tone.
The eastern part of the city, indicated with a dark tone of grey, is the Mediterranean Sea. At
the same time, the rest of the image is primarily agricultural fields with some vegetated
areas.

The colourised image as downloaded from the MyHeritage platform is displayed in
Figure 3. The new figure is composed of three bands, creating a pseudo-realistic image of
the area back in 1963. The interpretation of the new figure is easier as the added colour
may enhance the interpretation procedure and therefore support visual recognition and
target detection. In Figure 3, we can recognise Larnaca’s salt lake with white colour, while
the agricultural fields are shown with various tones of brown colour. Vegetation cover can
be seen with a dark green colour.

As we mentioned earlier, the production of the new colourised image is performed
through a deep learning model (DeOldify), and as a result this modifies the original image.
Five quality metrics have been applied to evaluate the performance of the DeOldify deep
learning model (Equations (1) to (5)). This was performed by comparing the original
grayscale image with the colourised product, using the MathWorks MATLAB R2016b
toolbox [35]. The initial CORONA grayscale image was used as a reference image, while
the new colourised image was compared, pixel by pixel, to the reference image. The results
per quality metric are provided in Table 1.

Table 1. Quality metrics results.

Quality Metric Equation Result

Bias (1) 0.236
image entropy (2) 0.249

ERGAS (3) 5.256
RASE (4) 25.015
RMSE (5) 12.932

These methods estimate the (spectral) difference between the original (CORONA
greyscale image) against the colourised CORONA image following a different mathematical
equation. Values that are closer to zero indicate no significant spectral difference between
the two images. From the results mentioned before, it is evident that a small distortion
of the modified colour image occurs. The above metrics also quantify the changes in the
colourisation procedure.
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A closer look at specific classes over the area of Larnaca is shown in Figure 4. The
greyscale CORONA image is shown on the left column of Figure 4, while on the right
column, we see the colourised image. Figure 4a shows a part of the urban area of Larnaca,
with the building blocks and the road network as well as other constructions in the sea.
Figure 4b displays an agricultural area in the west part of Larnaca city. No apparent
cultivation can be seen, as the acquisition period of the CORONA was taken during the
summer season (June). Finally, Figure 4c shows a part of the salt lake of Larnaca.
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3.2. Classification Results

Upon the colourisation of the CORONA image, the new product was imported into
the ENVI remote sensing software. The image was initially segmented, experimenting
with different scale parameters. The segmentation process can be defined as partitioning
an image into objects by grouping neighbouring pixels with common values. In this study,
we have followed the “edge” algorithm of the ENVI software for the segmentation process
at a scale of 40 and the “full Lambda” merge algorithm. A kernel texture of 3 × 3 window
size was also applied.

In addition, as mentioned earlier, five thematic classes have been selected for land
cover as follows: land, water, salt lake, vegetation, and urban areas. Different segments
from the previous process have been selected, through visual interpretation, as training
samples (ground truths). This procedure was repeated after the end of each classification
attempt in order to improve the overall classification results. The SVM algorithm was
applied for the classification process, as this was also tested against other classifiers with
better results.

The outcomes of the classification process can be found in Figure 5. The different
colours represent the different thematic classes selected before. Urban and other build-up
areas are shown with red and land is shown with a yellow. Water bodies are light blue,
while the salt lake is shown with dark blue. Finally, the vegetation is depicted with a green
colour.
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A closer look at the classification results of Figure 5 is shown in the following figure
(Figure 6). Three examples are provided in this figure: (1) over the built-up areas of Larnaca
city (first row, Figure 6), (2) near the Salt Lake of Larnaca (second row, Figure 6), and (3) an
example of agricultural fields in the western part of the figure (third row, Figure 6).
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The land coverage of each class, in percentage, is shown in Figure 7. As is indicated,
the class "land" covers approximately half of the image area (49.41%), while a significant
proportion of the image is characterised as “water bodies” (25.27%). The “vegetation” and
the “salt lake” are estimated to be at 10.05% and 10.65%, respectively. Finally, the urban
areas are only a small part of the image, less than 5% (4.62%).
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An error matrix has been tabulated to evaluate the classification results, and from
there, other statistics have been generated. Based on the error matrix, we can estimate the
overall accuracy of classification outcome and the accuracy per class. In this study, we have
used 250 random points scattered all over the image. The class for each one of these points
was then generated automatically from the GIS environment, while the correct (true) class
was visually interpreted and recorded. Therefore, for each class, both the classification
outcome and the true class were retrieved. The overall results of this analysis are shown in
Table 2.

Table 2. Error matrix of the classification outcomes. The diagonal results, indicated as bold, represent
the number of points for which the predicted label is equal to the true label, while off-diagonal results
are those that are mislabeled by the classifier.

Reference Total

Class U V W L SL

Classification

U 8 0 0 0 0 8

V 0 16 2 0 0 18

W 0 2 69 1 0 72

L 1 2 0 122 5 130

SL 0 0 0 1 21 22

Total 9 20 71 124 26 250

The overall accuracy was calculated at 0.94, while the kappa coefficient was estimated
to be 0.91. The accuracy per thematic class was estimated as follows: for urban areas = 89%,
for vegetation = 80%, for water bodies = 96%, for land = 97%, and for salt lakes = 81%.
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It is therefore evident from the classification statistics that high accuracy can be
achieved for producing historical land cover maps (>90%); however, the accuracy for each
class can vary (from 81% to 97%). Nevertheless, these numbers remain high (close or higher
than 85%), which are considered reasonable by the literature for developing thematic land
cover maps (see, for instance, CORINE classification thematic accuracy, [14]).

4. Discussion

The overall methodology presented in this study is composed of two main steps:
the colourisation of the CORONA image using deep learning modelling and the image
classification using segmentation and a machine learning classifier. The latter has been
achieved with high accuracy; however, variations between the classes were reported.
Indeed, we can report a good correspondence between the land cover classification results
and the original CORONA image, as shown in Figure 6. The first column of Figure 6 shows
the CORONA image, the second column in Figure 6 shows the colourised image, and the
third image displays the classification result.

The accuracy of the classification result obtained is similarly and sometimes improved
compared to other relevant studies that have used different classification strategies. For
instance, in [45], the Kappa coefficient was estimated to be between 0.81 and 0.90, while
in [46], the accuracy was estimated to be between 0.60 and 0.88. In these examples and
elsewhere, the classification of the CORONA image was performed using input multiband
images from the original CORONA image (e.g., through texture analysis). In contrast, in
this study, we propose colourised CORONA input layers (red-green-blue).

Of course, this approach has its shortcomings. Three false positive classification
results have been observed through this process. The first one regards the classification
of the shallow waters as vegetation instead of water bodies. Despite the efforts made to
improve these results through the additional training sampling, the problem remained, as
this is evident in the first row of Figure 6 (last column). The presence of the near-infrared
spectral band could improve the outcome results due to the characteristic of water bodies to
absorb the electromagnetic radiation in this part of the spectrum (approximately between
760–900 nm).

The second problem that occurred through the classification process regarded the
incorrect classification of the land area as urban. This was visible in areas where we had
a bright tone of soil, similar to the spectral profile of the urban areas. The use of texture
analysis is expected to improve this mismatch. Finally, another mismatch was observed
regarding the classification of the salt lake and especially in its boundaries, as this was
classified as land.

A major concern that remains, beyond the classification accuracy, is the colourisation
process. As mentioned earlier (see quality metrics), the colourised image used for the
classification process is not the same as the original greyscale CORONA image. An
example from the results from the image quality metrics is visualised in Figure 8. On
the left part of Figure 8, we can see the results of the ERGAS metric. Areas that have not
changed between the colourisation process are visualised with a dark tone of grey, while
areas that have changed through the colourisation process are shown with brighter grey
tones. As shown, most of the changes are primarily observed in the water bodies on the
eastern part of the image. Minor changes are also observed in other parts of the image,
like near the salt lake and within the urban area (Larnaca city). This metric image can be
used as an index of truthfulness for the classification results (see Figure 8 on the right part),
going a step above and beyond the traditional classification accuracy. This index can also
be helpful to explain some errors in the classification outcomes.
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Figure 8. (Left): Image quality metric (ERGAS) comparing the original CORONA image against the colourised CORONA
image. Similarities between the two images are shown with a dark tone, while areas that have changed through the
colourisation process are white. (Right): the classification outcome of the colourised CORONA image.

5. Conclusion

Historical land cover maps are important for several applications spanning from
environmental studies to historical analysis. In addition, these maps can be beneficial
to better understand the changes in the landscape, especially in areas where significant
urbanisation has been reported in recent decades.

Although traditional classification techniques and other more sophisticated methods
can produce high accuracy landcover maps, these can be generated through high-resolution
multispectral satellite data. In contrast, historical archive satellite data does not have the
same resolution, neither spectral nor spatial, which makes the process of classification
difficult.

This study used the CORONA image, a widely known archive satellite dataset avail-
able only in recent years. The spectral resolution from the specific sensor was limited to
the panchromatic spectral band, thus providing only greyscale images. For this reason,
the classification process cannot be performed in a traditional multispectral dimensional
space. Several attempts have been made in the literature to solve this problem, mainly by
adding additional layers of information through texture information. Other studies have
attempted to perform supervised classification and evaluate the overall results.

This study proposed an alternative method where the greyscale image is firstly
colourised using pre-defined deep learning models. Then, an OBIA classification process is
applied through the segmentation and the application of machine learning classifiers. The
outcomes can be evaluated in both steps. Quality metrics can be applied to compare the
original image against the colourised product. Then, a confusion matrix and a classification
accuracy can be estimated for the land cover product.

The overall results were found to be promising, providing a land cover map with
high accuracy: more than 85% overall accuracy and a kappa coefficient of 0.91. The
proposed methodology can be implemented in any other greyscale image, whether they
were taken from space or air. Future improvements can be made towards the automation
of the classification process based on spectral libraries of specific thematic classes and
integrating other input multiband images (e.g., after texture processing) to improve the
results further. The ultimate goal is to develop a pre-defined deep learning model for
colourisation purposes using training samples from CORONA and other historical satellite
data.
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