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Abstract The problem of settlement of shallow

foundations is among the most important ones in

classical soil mechanics. And while for the settlement

of flexible foundations elastic solutions are widely

used, for rigid rectangular foundations where the

actual contact pressure distribution is still unknown,

the problem is approximated either analytically

assuming a contact pressure distribution or semi-

empirically combining the theory of elasticity with

experimental and/or numerical results. A third and

often attractive choice is the use of simple empirical

relationships or relevant tabulated values relating the

elastic settlement of rigid foundations (qR) with the

settlement of the respective flexible foundations (e.g.

at the center, qCe). Reviewing the relathionships of this
third approach, the author revealed serious lack of

consesous between the various sources; for example,

according to the literature, qR ranges between 68 and

125% of qCe, the time when it is well-known that

qR\ qCe. In this paper, comparison of the settlement

of 210 rigid foundation cases derived from 3D elastic

finite element analysis, with the settlement of the

respective flexible foundations derived from the

theory of elasticity, led to simple empirical relation-

ships between qR and qCe as well as between qR and

qAv (qAv = average settlement of the flexible founda-

tion) with coefficient of determination (R2) almost

unity. The analysis showed that these relationships are

largely independent of the aspect ratio of foundations

and the thickness and Poisson’s ratio (m) of the

compressible medium, although separate relationships

are given for m = 0.5, slightly increasing R2. Finally, a

correction factor for foundation rigidity is given

exploting the known linear relationship that exists

between the relative stiffness factor of foundations and

settlement.

Keywords Elastic settlement analysis � Flexible
foundations � Rigid foundations � Empirical

correlations � Foundation rigidity

1 Introduction

The problem of settlement of shallow foundations is

among the most important ones in classical soil

mechanics. The settlement of flexible foundations is

usually calculated based on the widely acccepted

theory of Boussinesq (1885) and the constitutive

relationship of Hooke’s law. For rigid rectangular

foundations, the exact solution is still not available,

since the contact pressure distribution is unknown. In

this respect, analytical approximations based on

assumed contact pressure distribution have been
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provided by Borodachev (1976), Borodachev and

Galin (1974), Brothers et al. (1977), Butterfield and

Banerjee (1971), Dempsey and Li (1989), Fabrikant

(1986), Gorbunov-Possadov et al. (1984), Mullan et al.

(1980), Noble (1960), Panek and Kalker (1977) and

Sovinc (1961). Semi-empirical approaches combining

the theory of elasticity with experimental and/or

numerical results have been proposed, among others,

by Foye et al. (2008), Lee and Salgado (2002), Mayne

and Poulos (1999), Schmertmann (1970) and Sch-

mertmann et al. (1978). Among these, one of the most

popular approaches is Schmertmann et al.’s (1978)

method, which is included in various design codes and

public agencies’ reference manuals, such as,

AASHTO (2010), Eurocode 7 (EN 1997-2 2007) and

FHWA NHI-06-088/089 (Samtani and Nowatzki

2006). An in-depth review of Schmertmann’s method

has been offered by the author in Pantelidis (2020a);

as it has been shown, Schmertmann’s method has been

proposed without proper and adequate documentation,

whilst it presents serious weaknesses related to its

calibration and the values adopted for various factors

used. In addition, comparison between measured and

calculated settlement values of structures or full-size

test footings indicates that Schmertmann’s method is a

poor prediction tool. An attractive approach to this

rather confusing problem, especially to practitioners

who often seek for handy solutions, is the adoption of

an empirical relationship between the settlement of

rigid foundation and the settlement of the respective

flexible foundation; the latter may be the average, the

maximum (at the centre) or the minimum (at the

corner) settlement value (or an algevraic combina-

tion). In the present paper the validity of probably the

most commonly met empirical relationships in liter-

ature is examined. New relationships are then pro-

posed comparing the settlement values of rigid

foundations derived from 3D elastic finite element

analysis with the respective ones of flexible

foundations.

2 Literature Review

The relationships between the settlement of a rigid

foundation and the settlement of the respective flexible

foundation can generally be distinguished into three

categories.

The relationships belonging in the first category

ignore the influence of all the factors affecting the

magnitude of settlement, such as, the aspect ratio of

foundation and the thickness of the compressible

stratum. These are summarized in Table 1. According

to these relationships, the settlement of rigid founda-

tions (qR) ranges between 75 and 93.1% of the

maximum settlement (i.e. at the center, qCe) or

between 92.6 and 100% of the average settlement

(qAv) of the respective flexible foundations. According
to Davis and Taylor (1962), on the other hand, the

settlement of rigid foundation, qR, is equal to a

weighted average between the maximum and mini-

mum settlement of the flexible foundation., i.e.

qR � 2qCe þ qCoð Þ=3; qCo is the settlement at the

corner of the foundation.

The relationships of the second category take into

account the aspect ratio of foundations. Such relation-

ships are presented in chart form in Fig. 1. In addition

to the fact that there is not a consensus between the

different sources, the great fluctuation of the qR=qCe
(or qR=qCo or qR=qAv) values as the L/B ratio increases

is highlighted. It is moreover mentioned that some of

these relationships present minimum for L/B approx-

imately equal to 3 and also some extreme or rather not

consistent values.

The relationships of the third category consider, in

addition to the L/B ratio, the effect of the thickness of

the compressible medium on the qR=qCe (or qR=qCo or
qR=qAv) value. Such qR=qCe values derived from

Fraser and Wardle’s (1976) work are given in Table 2

(see also Barnes 2016); these qR=qCe values range

from 0.68 to 0.8 depending on H/B and L/B. qR=qCe
values depending on both L/B and H/B have also been

given by Derski et al. (2012); these are presented in

chart form in Fig. 2. Derski et al. considered both the

case of smooth and rigid substratum (meaning the

stratum below the compressible layer). It is interesting

that in the case of smooth substratum, these values

present minimum forH/B about equal to unity. Also, it

seems that the settlement is greatly affected by the

roughness of the substratum, even if the substratum

lies below the influence depth of foundation, zl; the

latter was given by Terzaghi et al. (1996) as

2B 1þ log L=Bð Þð Þ. It is even more interesting that,

according to Derski et al., for small H/B values, the

settlement of the rigid foundation appears to be greater

or much greater than the settlement at the centre of the

respective flexible foundation.
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Proposed or reproduced by:

{1}: (Craig and Kanppett 2012)

{2}: (Barksdale and Blight 2012)

{3}: (Briaud 2013)

{4}: (Murthy 2007)

{5}: (Lommler 2012)

{6}: (Venkatramaiah, 2006; attributed to 
“Terzaghi and Skempton”). Values 
standing for cohesionless soils.

{7}: (EPRI 1983; AASHTO 2010)

{8}: (NAVFAC 1982; Day 2010; Fang 2013)

Fig. 1 Empirical relationships of the second category

Table 1 Empirical relationships of the first category

Empirical relationships Introduced or reproduced bya

qR � 0:75qCe Wesley (2010), Briaud (2013)

qR � p
4
qCe ¼ 0:785qCe Mayne and Poulos (1999, it refers to the their IF factor), Aysen (2002)

qR � 0:8qCe IS8009 (1976), Kaniraj (1988), Charles (2005), Varghese (2005), Murthy (2007), Barnes (2016)

qR � 0:833qCe Ishibashi and Hazarika (2015)

qR � 0:85qCe Coduto (2001)

qR � 0:93qCe Bowles (1996), Baban (2016), Das (2019)

qR � 2qCe þ qCoð Þ=3 Davis and Taylor (1962), Kaniraj (1988), Poulos and Davis (1991)

qR � 0:9qAv Das (2019)

qR � 0:926qAv Aysen (2002)

qR � 0:93qAv Schleicher (1926), Kaniraj (1988)

qR � qAv Fox (1948), Kaniraj (1988)

aAn older or a sole reference does not necessarily indicate the researcher(s) who introduced the respective relationship. Also, some of

these relationships derived by the author from tabulated values appeared in the indicated source
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Two additional observations can be made. First, all

the empirical relationships appear to be independent of

the Poisson’s ratio (m) value of soil. Second, some of

these relationships relate the settlement of the rigid

foundation with the average settlement of the respec-

tive flexible foundation. This, in essence, cancels the

most important advantage of the empirical relation-

ships, which is the ease of use. In this respect, an

effective calculation of the average settlement requires

integration or the calculation of a great number of

settlement values over the plan-view of the flexible

foundation. According to the best knowledge of the

author, such solutions, giving the average settlement

value, have been provided by Schleicher (1926) and

Janbu et al. (1956). The first one, however, refers

exclusively to compressible layers of infinite depth,

while the second one, which has been offered in

chart form, stands only for m equal to 0.5 (an improved

chart has been published by Christian and Carrier

1978).

3 Derivation of the Proposed Empirical

Relationships

The problem of elastic settlement of a B 9 L rectan-

gular flexible foundation resting on the surface of a

homogenous stratum of thickness H has been solved

analytically by Steinbrenner (1934). The solution,

which is based on Boussinesq’s (1885) theory and

Hooke’s law, has as follows:

q ¼ accqB
1� m2

E
Is ð1Þ

where acc ¼ 1 or 4 for the corner or the center of the

foundation respectively, E and m are the modulus and

the Poisson’s ratio of the compressible layer, B is the

width of the foundation, q is the uniform surcharge of

foundation (in the same units with E) and Is is a

dimensionless factor taking into account the shape of

foundation and the thickness of the compressible

stratum. The foundation is supposed to rest on the

surface of the compressible medium. More

specifically,

Is ¼ F1 þ
1� 2m
1� m

F2 ð2Þ

with

F1 ¼
1

p
A0 þ A1ð Þ ð3Þ

F2 ¼
n

2p
tan�1 A2 ð4Þ
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Fig. 2 Empirical

relationships of the third

category (Derski et al. 2012)

Table 2 Empirical relationship of the third category (see

Barnes 2016; Fraser and Wardle 1976): Table giving the

qR=qCe value for various H/B and L/B ratio values

H/B L/B = 1 L/B = 2 L/B = 3, 4, 5

1 0.68 0.72 0.79

? 0.77 0.78 0.8
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A0 ¼ m ln
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ 1
p

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ n2
p

m 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ n2 þ 1
p

� � ð5Þ

A1 ¼ ln
mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ 1
p

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ n2
p

mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ n2 þ 1
p ð6Þ

A2 ¼
m

n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ n2 þ 1
p ð7Þ

and m ¼ L=B and n ¼ 2H=B or H/B for the center and

the corner of the foundation respectively.

Working with this basic solution for the corner of

the foundation and using the principle of superposition

(Barnes 2016), the settlement at any point on the plan-

view of the foundation can be calculated. The average

settlement of the foundation can be obtained from the

same method with settlements averaged over the

rectangular area. All settlement values in the case of

flexible foundation have been calculated using Wol-

fram Mathematica.

Any settlement value of a B 9 L foundation can

conveniently be rewritten as follows:

qi ¼
qB

E
Ai ð8Þ

where i = Ce and Co for the settlement at the centre

and the corner of the foundation respectively, while

i = Av for the average settlement of the foundation

(the case of rigid foundations is indicated by the

subscript R, i.e. qR and AR). Ai is the chart area

bounded by the strain influence factor (Iz) curve and

the normalized depth (z/B) axis over the influence

depth of the foundation (Pantelidis 2020b, c) and it is

dimensionless.

The settlement of rigid rectangular footings is

calculated, herein, using the finite element method. In

this respect, the rsetl3d program developed by Pro-

fessors D.V. Griffiths and G. Fenton has been used (the

rsetl3d program is freely available at http://random.

engmath.dal.ca/rfem/). Although the program in

question performs three-dimensional probabilistic

shallow foundation settlement analysis (Fenton and

Griffiths 2005), it also returns the deterministic elastic

settlement value of the problem considered. Various

cases were considered, which are discretized by the

aspect ratio of foundation as well as by the thickness

and the Poisson’s ratio of the compressible medium.

These are shown in Table 3, while the Poisson’s ratio

values considered were m = 0, 0.1, 0.2, 0.3, 0.4, 0.45

and 0.499. To avoid indeterminate behavior in the

finite element analysis of the undrained condition, a m
value equal to 0.499 was used instead of 0.5.

According to Potts and Zdravković (2001), if a value

of Poisson’s ratio m = 0.499 is used, the results would

be very similar to that for m = 0.5; a m value equal to

0.49 results to a modest error. Homogenous conditions

were considered for the compressible medium. The

foundation width B was kept constant and equal to

1.0 m for all 210 cases analyzed. The relative

dimensions of the finite element mesh considered in

each case are also given in Table 3 (B0 and L0 are the
dimensions of mesh along the B and L side of foun-

dation). The finite element mesh for the case having L/

B = 1 and H/B = 2 is indicatively shown in Fig. 3.

Eight-noded cubic elements of edge 0.1 m were used

in all cases.

The results are presented in tabular form in Table 4,

where AR, AR=ACe, AR=AAv and AR=ACo values are

given for various L/B, H/B and m values. Based on

these results, several very strong relationships

(R2[ 0.98) have been drawn in Fig. 4. The author

noticed that the m = 0 and m = 0.5 are special cases.

The m = 0 is rather unrealistic and thus, it has not been

processed further. The m = 0.5 case was processed

separately from the other m values, because it produces
its own cloud with points on the relevant charts. This

very peculiar behavior was further investigated in the

present paper. As shown in the AR (also ACe, ACo and

AAv) versus m example chart of Fig. 5, in the close

vicinity of the m = 0.5 value an abrupt reduction in the

AR value is observed. Such a behaviour is not observed

for the respective ACe, ACo and AAv values.

Finally, the proposed relationships are summarized

below for: the settlement of rigid footings under

drained soil conditions (m = 0.1–0.45)

qR �

0:898qAv
0:902 1:515qCe þ 0:485qCoð Þ=2

0:907 1:5qCe þ 0:5qCoð Þ=2
0:761qCe

ðR2 ¼ 0:9985Þ
ðR2 ¼ 0:9961Þ

ðR2 also 0:9961Þ
ðR2 ¼ 0:9968Þ

8

>

>

>

>

<

>

>

>

>

:

ð9Þ

and the settlement of rigid footings under undrained

soil conditions (m = 0.5)
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qR �
0:713 qB=Eð Þ AAvð Þ1:515

0:637 1:3qCe þ 0:7qCoð Þ=2
0:863 qB=Eð Þ ACeð Þ1:545

ðR2 ¼ 0:9818Þ
ðR2 ¼ 0:9903Þ
ðR2 ¼ 0:9804Þ

8

>

<

>

:

ð10Þ

The application of the relationships of Eq. 10 which

rely on the strain influence area (ACe or AAv) requires

either homogenous medium or the use of the equiv-

alent elastic modulus value (Pantelidis

2019, 2020d, 2021).

L’

L
B’

H

Fig. 3 3D finite element mesh referring to the case of rigid footing with B = 1.0 m, L/B = 1 andH/B = 2. Eight-noded cubic elements

of edge 0.1 m were used in all models

Table 3 Geometric data

for the finite element

models considered. The

dimension of each element

was 0.1 m, while the

foundation width, B,
considered in all cases was

1.0 m (meaning 10

elements along the small

side of foundation)

L/B log (L/B) H/B B0/B L0/B L0/B log (L/B) H/B B0/B L0/B

1 0 1 6.4 6.4 5.6 0.75 1 9.6 17.6

1.5 6.4 6.4 1.5 9.6 17.6

2 6.4 6.4 2 9.6 17.6

4 6.4 6.4 2.5 9.6 17.6

1.8 0.25 1 9.6 11.0 3 9.6 17.6

1.5 9.6 11.0 3.5 9.6 17.6

2 9.6 11.0 7 9.6 17.6

2.5 9.6 11.0 10 1 1 9.6 25.0

5 9.6 11.0 1.5 9.6 25.0

3.2 0.5 1 9.6 13.4 2 9.6 25.0

1.5 9.6 13.4 2.5 9.6 25.0

2 9.6 13.4 3 9.6 25.0

2.5 9.6 13.4 3.5 9.6 25.0

3 9.6 13.4 4 9.6 25.0

6 9.6 13.4 8 9.6 25.0
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Table 4 AR, AR=ACe, AR=AAv and AR=ACo values with respect to L/B, H/B and m

L
B

H
B

m AR
AR

ACe

AR

AAv

AR

ACo

L
B

H
B

m AR
AR

ACe

AR

AAv

AR

ACo

1 4.0 0 0.659 0.657 0.786 1.479 1 2.0 0 0.580 0.650 0.792 1.660

0.1 0.667 0.674 0.808 1.526 0.1 0.586 0.670 0.817 1.729

0.2 0.657 0.688 0.826 1.569 0.2 0.577 0.689 0.842 1.803

0.3 0.633 0.705 0.847 1.620 0.3 0.550 0.703 0.861 1.877

0.4 0.580 0.707 0.850 1.642 0.4 0.497 0.704 0.865 1.932

0.45 0.536 0.692 0.834 1.621 0.45 0.455 0.650 0.804 2.014

0.5 0.342 0.472 0.570 1.117 0.5 0.272 0.444 0.548 1.270

1.0 1.5 0 0.533 0.648 0.796 1.784 1 1.0 0 0.454 0.650 0.804 2.014

0.1 0.537 0.669 0.823 1.869 0.1 0.456 0.674 0.835 2.135

0.2 0.527 0.689 0.849 1.962 0.2 0.445 0.695 0.864 2.267

0.3 0.449 0.703 0.869 2.058 0.3 0.415 0.709 0.883 2.408

0.4 0.446 0.700 0.870 2.133 0.4 0.360 0.699 0.874 2.526

0.45 0.403 0.680 0.846 2.127 0.45 0.316 0.667 0.836 2.520

0.5 0.220 0.404 0.505 1.311 0.5 0.132 0.308 0.388 1.240

1.8 5.0 0 0.870 0.671 0.801 1.528 1.8 2.5 0 0.759 0.667 0.810 1.731

0.1 0.881 0.689 0.824 1.579 0.1 0.766 0.687 0.835 1.805

0.2 0.870 0.706 0.845 1.630 0.2 0.753 0.706 0.860 1.883

0.3 0.832 0.718 0.861 1.674 0.3 0.716 0.720 0.880 1.963

0.4 0.759 0.717 0.861 1.693 0.4 0.646 0.720 0.883 2.022

0.45 0.698 0.700 0.841 1.665 0.45 0.591 0.705 0.866 2.019

0.5 0.449 0.483 0.581 1.160 0.5 0.376 0.485 0.598 1.426

1.8 2.0 0 0.710 0.666 0.813 1.831 1.8 1.5 0 0.637 0.667 0.819 1.986

0.1 0.715 0.687 0.840 1.917 0.1 0.641 0.691 0.849 2.094

0.2 0.702 0.707 0.866 2.011 0.2 0.626 0.712 0.877 2.213

0.3 0.664 0.722 0.887 2.107 0.3 0.587 0.727 0.897 2.339

0.4 0.593 0.720 0.888 2.186 0.4 0.515 0.721 0.893 2.446

0.45 0.538 0.701 0.867 2.185 0.45 0.459 0.696 0.864 2.450

0.5 0.323 0.459 0.569 1.480 0.5 0.247 0.412 0.513 1.525

1.8 1.0 0 0.526 0.678 0.830 2.251 3.2 6.0 0 1.093 0.695 0.823 1.618

0.1 0.526 0.705 0.864 2.399 0.1 1.104 0.713 0.845 1.671

0.2 0.510 0.731 0.895 2.567 0.2 1.088 0.729 0.866 1.723

0.3 0.470 0.747 0.916 2.749 0.3 1.036 0.739 0.879 1.767

0.4 0.398 0.733 0.900 2.909 0.4 0.935 0.732 0.873 1.776

0.45 0.341 0.692 0.851 2.911 0.45 0.856 0.712 0.850 1.745

0.5 0.138 0.315 0.388 1.441 0.5 0.553 0.494 0.590 1.225

3.2 3.0 0 0.936 0.693 0.832 1.838 3.2 2.5 0 0.883 0.694 0.835 1.918

0.1 0.943 0.714 0.858 1.917 0.1 0.889 0.716 0.862 2.008

0.2 0.926 0.734 0.883 2.003 0.2 0.870 0.736 0.888 2.104

0.3 0.877 0.748 0.902 2.087 0.3 0.821 0.751 0.908 2.202

0.4 0.786 0.747 0.903 2.149 0.4 0.731 0.749 0.908 2.279

0.45 0.716 0.729 0.883 2.144 0.45 0.661 0.730 0.886 2.278

0.5 0.467 0.518 0.629 1.565 0.5 0.415 0.501 0.609 1.617

3.2 2.0 0 0.710 0.666 0.813 1.831 3.2 1.5 0 0.715 0.702 0.844 2.189

0.1 0.817 0.720 0.868 2.132 0.1 0.717 0.729 0.877 2.316
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Table 4 continued

L
B

H
B

m AR
AR

ACe

AR

AAv

AR

ACo

L
B

H
B

m AR
AR

ACe

AR

AAv

AR

ACo

0.2 0.797 0.742 0.896 2.246 0.2 0.697 0.754 0.907 2.457

0.3 0.748 0.758 0.916 2.363 0.3 0.647 0.770 0.928 2.606

0.4 0.657 0.754 0.913 2.459 0.4 0.557 0.762 0.919 2.730

0.45 0.588 0.731 0.886 2.462 0.45 0.488 0.731 0.882 2.731

0.5 0.348 0.476 0.579 1.673 0.5 0.254 0.425 0.513 1.681

3.2 1.0 0 0.575 0.717 0.855 2.446 5.6 7.0 0 1.314 0.726 0.850 1.735

0.1 0.574 0.750 0.893 2.614 0.1 1.324 0.744 0.873 1.793

0.2 0.553 0.780 0.927 2.804 0.2 1.299 0.760 0.892 1.848

0.3 0.505 0.799 0.949 3.010 0.3 1.228 0.767 0.901 1.888

0.4 0.418 0.782 0.926 3.181 0.4 1.094 0.752 0.885 1.884

0.45 0.350 0.733 0.867 3.167 0.45 0.990 0.724 0.854 1.835

0.5 0.135 0.326 0.384 1.539 0.5 0.625 0.493 0.581 1.266

5.6 3.5 0 1.097 0.725 0.853 1.948 5.6 3.0 0 1.042 0.727 0.855 2.010

0.1 1.104 0.747 0.880 2.032 0.1 1.046 0.750 0.883 2.100

0.2 1.079 0.767 0.905 2.119 0.2 1.023 0.772 0.910 2.198

0.3 1.018 0.782 0.923 2.206 0.3 0.961 0.788 0.929 2.294

0.4 0.905 0.779 0.920 2.263 0.4 0.850 0.784 0.925 2.362

0.45 0.818 0.758 0.896 2.248 0.45 0.764 0.762 0.900 2.350

0.5 0.518 0.524 0.621 1.598 0.5 0.488 0.534 0.631 1.697

5.6 2.5 0 0.972 0.730 0.858 2.087 5.6 2.0 0 0.884 0.734 0.861 2.191

0.1 0.976 0.755 0.888 2.189 0.1 0.886 0.761 0.893 2.306

0.2 0.951 0.778 0.915 2.297 0.2 0.861 0.786 0.922 2.432

0.3 0.891 0.794 0.935 2.406 0.3 0.801 0.803 0.943 2.559

0.4 0.780 0.790 0.930 2.485 0.4 0.693 0.797 0.935 2.654

0.45 0.697 0.766 0.901 2.474 0.45 0.612 0.769 0.902 2.643

0.5 0.427 0.518 0.610 1.735 0.5 0.353 0.495 0.580 1.776

5.6 1.5 0 0.767 0.740 0.866 2.340 5.6 1.0 0 0.606 0.752 0.875 2.577

0.1 0.767 0.770 0.901 2.478 0.1 0.605 0.787 0.915 2.755

0.2 0.743 0.798 0.933 2.630 0.2 0.581 0.820 0.953 2.956

0.3 0.685 0.817 0.955 2.787 0.3 0.527 0.841 0.975 3.167

0.4 0.581 0.807 0.942 2.907 0.4 0.429 0.821 0.950 3.327

0.45 0.501 0.770 0.899 2.891 0.45 0.354 0.765 0.882 3.287

0.5 0.252 0.439 0.511 1.744 0.5 0.131 0.329 0.379 1.548

10 8.0 0 1.531 0.765 0.882 1.877 10 4.0 0 1.239 0.759 0.872 2.044

0.1 1.539 0.784 0.904 1.938 0.1 1.245 0.784 0.900 2.131

0.2 1.492 0.794 0.916 1.980 0.2 1.214 0.806 0.925 2.218

0.3 1.407 0.802 0.926 2.027 0.3 1.137 0.819 0.940 2.296

0.4 1.230 0.776 0.896 1.996 0.4 0.999 0.811 0.930 2.333

0.45 1.096 0.738 0.853 1.923 0.45 0.896 0.786 0.901 2.303

0.5 0.639 0.465 0.538 1.231 0.5 0.563 0.542 0.622 1.626

10 3.5 0 1.182 0.761 0.874 2.089 10 3.0 0 1.114 0.763 0.875 2.143

0.1 1.187 0.787 0.903 2.181 0.1 1.118 0.790 0.905 2.243

0.2 1.156 0.809 0.928 2.275 0.2 1.088 0.814 0.933 2.346

0.3 1.083 0.826 0.946 2.365 0.3 1.016 0.831 0.951 2.444

0.4 0.948 0.818 0.937 2.409 0.4 0.886 0.824 0.943 2.500
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A useful relationship between the average and

the maximum settlement of flexible footings for

m = 0–0.5 is also given (see also Fig. 6):

qAv � 0:848qCe ðR2 ¼ 0:9994Þ ð11Þ

4 Correction Factor for Foundation Rigidity

According to ACI Committee 336 (Ulrich et al. 1988),

DIN 4018 (1974) and IS 2950-1 (1981), whether a

foundation behaves as a rigid or a flexible structure

depends on the relative stiffness of the structure and

the foundation soil. The relative stiffness factor, Kr, is

given as follows:

Kr ¼
EbI

EL3B
ð12Þ

where EbI is the flexural rigidity of the superstructure

and foundation per unit length at right angles to B and

Eb is the modulus of concrete. An approximate value

of EbI per unit width of building can be determined by

summing the rigidity of foundation, EbIF , the rigidity

of beams, EbIb and the rigidity of

shearwalls,Ebtwh
3
w

�

12:

EbI ¼ Eb IF þ
X

Ib þ twh
3
w

�

12
� �

ð13Þ

where tw and hw are the thickness and height of the

shearwalls respectively (e.g. see Ulrich et al. 1988;

DIN 4018 1974; IS 2950-1 1981; Varghese 2005).

Ignoring the effect of superstructure, the relative

stiffness factor simplifies to:

Kr ¼
Eb

12E

d

L

� 	3

ð14Þ

because, I ¼ Bd3
�

12, where d is the thickness of

foundation.

Alternatively, the expression including the Pois-

son’s ratio values can be used (e.g. see Milovic 1992):

Kr ¼
Eb 1� m2ð Þ
12E 1� m2b

� �

d

L

� 	3

ð15Þ

Generally, the foundation is considered to be rigid

when Kr [ 0:5 and flexible when Kr\0:5: Based on

the finite element analysis carried out by Brown (1969;

see also Mayne and Poulos 1999), however, a

foundation can be regarded as flexible if Kr\0:05,

rigid if Kr [ 5 and of intermediate rigidity if

0:05�Kr � 5. Indeed, between the limits defining

the intermediate condition, a linear relationship exists

between Kr and settlement. In this respect, the

Table 4 continued

L
B

H
B

m AR
AR

ACe

AR

AAv

AR

ACo

L
B

H
B

m AR
AR

ACe

AR

AAv

AR

ACo

0.45 0.847 0.792 0.907 2.379 0.45 0.787 0.797 0.911 2.469

0.5 0.530 0.546 0.625 1.683 0.5 0.493 0.553 0.631 1.763

10 2.5 0 1.033 0.766 0.877 2.214 10 2.0 0 0.931 0.768 0.879 2.306

0.1 1.035 0.794 0.909 2.322 0.1 0.932 0.798 0.913 0.429

0.2 1.005 0.819 0.937 2.435 0.2 0.903 0.825 0.944 2.559

0.3 0.935 0.837 0.957 2.545 0.3 0.836 0.844 0.965 2.688

0.4 0.809 0.829 0.948 2.611 0.4 0.715 0.835 0.954 2.769

0.45 0.714 0.800 0.914 2.583 0.45 0.623 0.801 0.915 2.737

0.5 0.427 0.533 0.608 1.780 0.5 0.351 0.507 0.579 1.806

10 1.5 0 0.801 0.770 0.883 2.442 10 1.0 0 0.626 0.775 0.889 2.660

0.1 0.800 0.802 0.919 2.585 0.1 0.624 0.813 0.932 2.845

0.2 0.772 0.832 0.954 2.742 0.2 0.598 0.847 0.971 3.050

0.3 0.709 0.853 0.977 2.901 0.3 0.540 0.868 0.995 3.259

0.4 0.594 0.838 0.960 3.002 0.4 0.436 0.844 0.967 3.403

0.45 0.508 0.797 0.913 2.969 0.45 0.356 0.782 0.896 3.339

0.5 0.249 0.445 0.510 1.455 0.5 0.128 0.329 0.377 1.536
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y = 0.7614x
R² = 0.9677

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.5 1.0 1.5 2.0

ρR

ρCe

ν=0.1-0.45

(a)

y = 0.8628x1.5446

R² = 0.9804

y = 0.8869x - 0.1353
R² = 0.9817

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.2 0.4 0.6 0.8 1.0

AR

ACe

ν=0.5

(b)

y = 0.8979x
R² = 0.9853

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.5 1.0 1.5 2.0

ρR

ρAv

ν=0.1-0.45

(c)

y = 0.7709x - 0.1234
R² = 0.9898

y = 0.7129x1.5145

R² = 0.9818

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.5 1.0 1.5

AR

AAv

ν=0.5

(d)

y = 0.9071x
R² = 0.9603

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.0 0.5 1.0 1.5 2.0

ρR

(1.5ρCe+0.5ρCo)/2

v=0.1-0.45

(e)

y = 0.6371x
R² = 0.9343

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.2 0.4 0.6 0.8 1.0 1.2

ρR

(1.3ρCe+0.7ρCo)/2

v=0.5

(f)
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following linear interpolation for calculating the

settlement of footings of intermediate rigidity is

suggested:

qInt ¼ qRIF ð16Þ

where

IF ¼ 1þ 5� Kr

4:95

qCe
qR

� 1

� 	

ð17Þ

qCe is calculated using the theory of elasticity

(Steinbrenner 1934; Harr 1966) or based on Table 4.

The author narrowed the Kr ¼ 0:01 and 10 limits,

initially proposed by Mayne and Poulos (1999), to

exploit the linear relationship that exists for

0:05�Kr � 5. This does not affect the results because

these limits are, in essence, values indicating the two

starting points (on the ‘‘flexible’’ and ‘‘rigid’’ side) of

the asymptotic behavior.

5 Summary and Conclusions

The problem of settlement of shallow foundations is

among the most important ones in classical soil

mechanics. For rigid rectangular foundations as the

actual contact pressure distribution is unknown, the

problem is often approximated analytically assuming

a contact pressure distribution or semi-empirically

combining the theory of elasticity with experimental

and/or numerical results. A third and often attractive

choice is the use of simple empirical relationships or

relevant tabulated values relating the elastic settlement

of rigid footings (qR) with the settlement of the

respective flexible footings (qCe). According to the

literature, the settlement of rigid footings (qR) ranges
between 68 and 125% of the maximum settlement of

the respective flexible footings (qCe), between 86 and

115% of the average settlement of the respective

flexible footings (qAv) and between 145 and 172% of

the minimum settlement of the respective flexible

footings (qCo). These values indicate that, not only

there is not a consensus in the literature but also some

rather unrealistic relationships exist.

The problem of approximating the settlement of

rigid footings through simple empirical relation-

ship(s) has been revisited in the present paper com-

paring the settlement of 210 rigid foundation cases

derived from 3D elastic finite element analysis with

the settlement of the respective flexible footings. In

this respect a number of relationships with coefficient

of determination (R2) almost unity have been pro-

posed. The analysis shows that these relationships are

rather insensitive to the aspect ratio of foundation as

well as to the thickness and the Poisson’s ratio of the

compressible layer, although for undrained conditions

(m = 0.5) a separate relationship gives slightly better

approximation. Under drained conditions the author

bFig. 4 Charts indicating the proposed relationships
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Fig. 5 A (i.e. AR, ACe, ACo and AAv) versus m chart for L/B = 1

and H/B = 2 (the maximum m value for the rigid footing

considered was 0.499)
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Fig. 6 The derived relationship between the maximum and

average settlement of flexible rectangular foundations
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suggests that qR � 0:9qAv or qR � 0:76qCe, while

under undrained conditions

qR � 0:64 1:3qCe þ 0:7qCoð Þ=2. For the average set-

tlement of flexible footings, the author suggests that

qAv � 0:85qCe. Finally, because often footings are

neither flexible nor rigid, but of intermediate rigidity, a

interpolation correction factor for foundation rigidity

is given, exploiting the known linear relationship that

exists between the relative stiffness factor of founda-

tion and its settlement.
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