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Abstract As known, in a Winkler type of analysis

the soil medium underneath the foundation is violently

replaced by a row of parallel springs having constant

ks. For the effective calculation of the latter, which is

called the modulus of subgrade reaction, the two

elastic constants of the soil (the elastic modulus, E and

the Poisson’s ratio, m) must be known. Although for

homogenous soils this generally seems not to be a

problem, the same does not stand for stratified

mediums or mediums with linearly increasing modu-

lus with depth. In addition, in a Winkler type of

analysis, the proper pair of elastic constant values of

soil should be selected. This refers to a Poisson’s ratio

value equal to zero corresponding to the deformation

pattern of springs (compression with no lateral

expansion) and the respective modulus. In the present

paper a method for calculating the equivalent elastic

constants for the above mentioned mediums is

proposed based on the theory of elasticity combining

the principle of superposition. Various cases are

considered, since the equivalent modulus, Eeq,

depends on the rigidity and the shape of the footing.

As shown, the derived Eeq values not only return

reliable settlement results, but also settlement profiles

that are similar to those corresponding to the original

soil mediums.

Keywords Equivalent modulus of elasticity � Mat

foundations � Shallow foundations � Stratified soil �
Winkler’s spring method � Soil-structure interaction

1 Introduction

Since 1949, according to the best knowledge of the

author (Pantelidis 2019), eighteen methods calculating

the equivalent modulus of elasticity (Eeq) of stratified

mediums have been proposed; indeed, eight of them

after 2000 indicating that this research topic remains

open. Parallelly, it makes sense that these methods

refer exclusively to stratified soil mediums, although

soil mediums with linearly increasing modulus with

depth are often met in practice. In brief, Odemark’s

(1949), de Barros’s (1966), Sridharan et al.’s (1990),

Hirai and Kamei’s (2003, 2004), Hirai’s (2008), Abu-

Farsakh and Chen’s (2012) methods are based on the

concept of the flexural rigidity of thin slabs, Egorov

and Nichiporovich (1961), Barden (1962), Gorbunov-

Possadov and Malikova (1973), Sadrekarimi and

Akbarzad (2009), Brahma and Mukherjee (2010),

Budhu (2011) approached the problem from the

mathematical mean point of view, Salamon (1968),

Wardle and Gerrard (1972) and Gerrard (1982)

suggested methods based on stress–strain relation-

ships of the theory of elasticity while Ueshita and

Meyerhof (1967), Fraser and Wardle (1985) and
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HariBharghav et al. (2017) proposed methods purely

based on the theory of elastic settlement analysis. The

comprehensive review of these methods offered

recently by the author (Pantelidis 2019) clearly shows

that there is still not a reliable method.

In the present paper a method for calculating both

Eeq and meq of stratified soil mediums or homogenous

mediums with linearly increasing modulus with depth

is proposed. This method is based on the theory of

elasticity.

2 Derivation of the Proposed Equivalent Elastic

Moduli

2.1 Derivation of the Proposed Equivalent Elastic

Modulus for Flexible Rectangular Footings

According to Boussinesq (1885), the normal stress

increase at any point in a homogenous, elastic and

isotropic semi-infinite medium due to a concentrated

load P on its surface is:

Drx ¼
P

2p
3x2z

L5
1

� 1 � 2mð Þ x2 � y2

L1r2 L1 þ zð Þ þ
y2z

L3
1r

2

� �� �

ð1Þ

Dry ¼
P

2p
3y2z

L5
1

� 1 � 2mð Þ y2 � x2

L1r2 L1 þ zð Þ þ
x2z

L3
1r

2

� �� �

ð2Þ

Drz ¼
P

2p
z3

r2 þ z2ð Þ
5
2

ð3Þ

where L1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and m is

the Poisson’s ratio (see Das 2007). The notation

followed is shown in Fig. 1.

Considering a rectangular, uniformly loaded area

which extends from x1 to x2 and from y1 to y2 (in the x-

and y- direction respectively) on the surface of the

elastic medium, the increase in the normal stress at any

point in the medium in question will be:

Dri;S ¼
Zx2

x1

Zy2

y1

Dri x; y; zð Þ ð4Þ

The differentials dx and dy of the variables x and y are

included in Dri as P ¼ qdydx (recall Eqs. 1 to 3; q is

the uniform loading). Consequently, from Hooke’s

law, the unit vertical strain is:

ez ¼
1

Es
Drz;S � m Drx;S þ Dry;S

� �� �
ð5Þ

Using Eqs. 1 to 3, the latter can be rewritten as

follows:

ez ¼
q

Es

Zx2

x1

Zy2

y1

z 1 þ mð Þ 3z2 � 2 x2 þ y2 þ z2ð Þmð Þ
2p x2 þ y2 þ z2ð Þ5=2

dxdy

ð6Þ

The settlement, q, at the foundation level corre-

sponding to a layer extending from z ¼ 0 (level of

foundation) to z ¼ H, derives from the integration of

Eq. 6 between these limits, that is:

q ¼
ZH

0

ezdz ð7Þ

The problem has been solved by Steinbrenner

(1934) for a general B� L footing. The solution can be

found in any geotechnical engineering book, usually,

combined with Fox’s (1948) embedment depth factor

IE. More specifically,

q ¼ q a0B0ð Þ 1 � m2

Es
IsIE ð8Þ

where,

Is ¼ F1 þ
1 � 2m
1 � m

F2 ð9Þ

Fig. 1 Stresses in an elastic medium caused by a point load

acting on the surface of a semi-infinite mass
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F1 ¼ 1

p
A0 þ A1ð Þ ð10Þ

F2 ¼ n1

2p
tan�1 A2 ð11Þ

A0 ¼ m1 ln
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ 1
p	 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
1 þ n2

1

p
m1 1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ n2
1 þ 1

p	 
 ð12Þ

A1 ¼ ln
m1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ 1
p	 
 ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ n2
1

p
m1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ n2
1 þ 1

p ð13Þ

A2 ¼ m1

n1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ n2
1 þ 1

p ð14Þ

Also, a0 ¼ 4; B0 ¼ B=2; m1 ¼ L=B and n1 ¼
H=ðB=2Þ for the settlement at the center of foundation

and a0 ¼ 1; B0 ¼ B; m1 ¼ L=B and n1 ¼ H=B for the

settlement at the corner of foundation.

Apparently, there is an equivalent homogenous soil

medium with elastic constants Eeq; veq
� �

producing

under identical loading conditions the same settlement

with the original soil medium. Equating these settle-

ments (note: for the stratified medium the principle of

superposition is necessary to be applied; see Barnes

2016)

q a0B0ð Þ
1 � m2

eq

Eeq
Isðhn; veqÞIEðveqÞ

¼ q a0B0ð Þ
Xn
i¼1

1 � m2
i

Es;i
Isðhi; viÞ � Isðhi�1; viÞð ÞIEðviÞ

ð15Þ

and solving the latter as for Eeq, the following

expression is obtained:

Eeq ¼
Isðhn; veqÞ � IEðveqÞ � 1 � m2

eq

	 

Pn

i¼1
Isðhi;viÞ�Isðhi�1;viÞ

Es;i
IEðviÞ � 1 � m2

ið Þ
h i ð16Þ

where, hi is the vertical distance extending from the

level of foundation to the bottom of the i-th layer (that

is, it is not the thickness of the i-th layer); there are n

such layers. Also, it is Is h0; v1ð Þ ¼ 0. Equation 16 has

two unknowns, namely, Eeq and meq; however as

shown later, the two unknowns can easily be reduced

to one, the equivalent modulus Eeq. Finally, from

Eq. 16 it is inferred that, Eeq depends on the point

considered on the plan-view of footing, as the

parameter n1 in the Is factor depends on the location

of this point (recall Eqs. 12–14). By suitably applying

the principle of superposition on the foundation level

(see Barnes 2016), Eq. 16 can be used so that the Eeq

value to be calculated at any point on the plan-view of

footing.

It is noted that, Eq. 16 stands for any Is factor

derived from a settlement equation of the form:

q ¼ q Width or Diameter of footingð Þ 1 � m2

Es
IsIE

ð17Þ

2.2 Derivation of the Proposed Eeq for Circular

Footings

2.2.1 Circular Flexible Footings

In a similar way, the settlement at the center of a

flexible circular footing is:

q ¼ q 2r1ð Þ 1 � m2

Es
IsIE ð18Þ

where

Is ¼ 1 � r1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1 þ H2
p

 !

þ 1 � 2m
2 1 � mð Þ 1 � Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
1 þ H2

p
 !

H

r1

ð19Þ

and r1 is the radius of footing and H is the thickness of

the compressible medium measured from the founda-

tion level.

Equations 18 and 19 (ignoring the IE factor) derives

from the following single integral:

ez ¼
q

Es

Zr1

0

z 1 þ mð Þ 3z2 � 2 r2 þ z2ð Þmð Þ
2p r2 þ z2ð Þ5=2

2pr1ð Þdr

ð20Þ

where, the term x2 þ y2 in Eq. 6 has been replaced by

r2. Eeq is then obtained from Eq. 16 using the Is factor

of Eq. 19.
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2.2.2 Circular rigid footings

The settlement of a rigid circular footing is (see Kézdi

and Rétháti 1988):

q ¼ 1 þ mð Þ qr1

2Es
2 1 � mð Þ p

2
� a

	 

� sin a cos a

h i

ð21Þ

where a ¼ arctanðr1=HÞ and r1 and H as before.

Equation 21 is rewritten in the form of Eq. 17 as

follows:

q ¼ q 2r1ð Þ 1 � m2

Es
IsIE ð22Þ

where,

Is ¼
1

2

p
2
� a

	 

� sin a cos a

1 � m

� �
ð23Þ

Eeq is then obtained from Eq. 16 using the Is factor of

Eq. 23.

2.3 Derivation of the Proposed Eeq for Flexible

Rectangular Footings Founded on Soil

Medium with Linearly Increasing Elastic

Modulus

Considering now that, a flexible rectangular footing

rests on ‘‘Gibson’s soil’’ (Gibson 1967), that is, on a

soil with elastic modulus linearly increasing with

depth as follows:

Es;z ¼ Es;0 þ k � z ð24Þ

Equation 6 then becomes:

ez;G ¼ q

Es;0

ZB=2

�B=2

ZL=2

�L=2

z 1 þ mð Þ 3z2 � 2 x2 þ y2 þ z2ð Þmð Þ
1 þ k

Es;0
z

	 

2p x2 þ y2 þ z2ð Þ5=2

dxdy

ð25Þ

where, Es;0 is the soil modulus immediately below the

footing, k is the rate of increase of the modulus per unit

depth and z is the depth measured from the foundation

level.

On the other hand, the strain at depth z for the

equivalent homogenous medium is:

ez;eq ¼
q

Eeq

ZB=2

�B=2

ZL=2

�L=2

z 1 þ meq
� �

3z2 � 2 x2 þ y2 þ z2ð Þmeq
� �

2p x2 þ y2 þ z2ð Þ5=2
dxdy

ð26Þ

Assuming, now, that the soil medium has thickness H,

the equivalent elastic modulus, Eeq, derives from the

numerical solution of the equation below:

ZH

0

ez;eqdz ¼
ZH

0

ez;Gdz ð27Þ

The results are given in chart form in Fig. 2 for

various aspect ratio of footing L=B and meq ¼m
(assuming that all layers have the same Poisson’s

ratio value) or meq ¼ 0. H in Fig. 2 is the influence

depth of footing as proposed by Terzaghi et al. (1996),

i.e.:

zl ¼ 2B 1 þ log
L

B

� �
ð28Þ

Recalling Eq. 24, the depth where the elastic modulus

of soil is equal to the equivalent one is:

zeq ¼ Eeq � Es;0

� �

k ð29Þ

In this respect, zeq


zl versus k=E0 charts for various

L=B cases for meq ¼m (0.1 B m B 0.5) are given in

Fig. 3. It is noted that, Eqs. 25 and 26 refer to the

center of footing.

3 Application Examples

3.1 Schmertmann’s (1970) Stratified Medium

The multilayer soil profile used by Schmertmann’s

(1970; ‘‘Figure 6’’) is also used here. This consists of

eleven (horizontal) soil strata over bedrock; the

thickness and modulus of each soil stratum is given

in Table 1. A perfectly flexible, a smooth rigid and a

rough rigid circular footing of 2.6 m diameter resting

on the surface of the stratified medium were consid-

ered. Each one of these footings carries uniform load

of 200 kPa. The Poisson’s ratio value for all strata is

the same and equal to 0.4. The derived homogenous

equivalent soil mediums were compared against the

original stratified medium in a finite element analysis

framework using Rocscience’s RS2. The criterion
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E0 versus k=E0 charts for various L=B cases for meq ¼m (left) and meq ¼ 0 (right). m ranges from 0.1 to 0.5 (from the lower to

the upper curve) with 0.1 interval
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used was that a homogenous soil medium is equivalent

to a stratified one if under the same loading conditions,

the two footings over them yield the same settlement.

Prior to running the finite element models, the validity

of the models was checked against analytical results

(see Appendix).

Considering that meq ¼ 0.4, Eq. 16 (with the use of

the Is factor of Eq. 19) gave Eeq ¼ 9132 kPa; for meq ¼
0 it was found that Eeq ¼ 11,108 kPa. The settlement

values obtained are summarized in Table 2. As shown,

the error due to the use of the equivalent elastic

constants is negligible. It is very interesting that, as

shown in Fig. 4, not only the maximum settlement

values do not differ but also the whole settlement

profiles of the equivalent mediums are almost similar

to the original one. Indeed, the same profile is taken

using any ðmeq;EeqÞ pair of values derived from

Eq. 16; these pair of values are shown in Fig. 5. In

the same figure, the relative difference ðRdÞ in Eeq is

also given; the following formula for Rd was used:

Rd ¼ 1 � Eeqðmeq ¼ mÞ
Eeqðmeq ¼ 0Þ ð30Þ
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Fig. 3 zeq


zl versus k=E0 charts for various L=B cases for meq ¼m. m ranges from 0.1 to 0.5 (from the lower to the higher curve) with 0.1

interval
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It is a common practice, however, a study to be

restricted to a specific influence zone depth (recall

Eq. 28), due to the phenomenon of cementation of

soils. Cementation refers to the additional bonding

between particles through certain extraneous chemical

substances present and hence exhibit higher resistance

against deformation (Nagaraj et al. 1995); it con-

tributes to the shear strength of a soil only where the

shear strain is kept at low levels (0.001%; see Budhu

2011). Considering an influence zone depth equal to

two times the footing diameter (value suggested for

circular and square footings; see Schmertmann et al.

1978 and Terzaghi et al. 1996), the equivalent

modulus of elasticity, Eeq, for the example studied

herein is 8336 kPa and 10,580 kPa for meq ¼ 0.4 and 0

respectively; the variation of Eeq with the ‘(normal-

ized) influence zone depth’ for the present example is

also given (see Fig. 6) for both meq ¼ 0.4 and 0.

Table 1 Es values and vertical extend of each layer (based on qc given in Schmertmann (1970); also, according to Schmertmann

et al. (1978), EsðkPaÞ ¼ 2:5 qc for the axisymmetric case)

# of layer zup � zlo ðmÞ Es ðkPaÞ # of layer zup � zlo ðmÞ Es ðkPaÞ

1 0.0–1.0 6622 7 6.5–7.5 15,206

2 1.0–3.0 9074 8 7.5–8.5 24,525

3 3.0–3.5 17,658 9 8.5–10 10,301

4 3.5–4.5 7848 10 10–11 16,677

5 4.5–5.0 21,337 11 11–14 29,430

6 5.0–6.5 41,693 12 14-? Bedrock

Table 2 Comparison of settlements derived from Schmertmann’s (1970) original example medium and its equivalent both for meq ¼
0.4 and 0

Case Original, stratified soil medium Equivalent medium

meq ¼ 0.4, Eeq ¼ 9132 kPa meq ¼ 0, Eeq ¼ 11,108 kPa

Flexible footing (center) 45.7 mm 44.1 mm 44.1 mm

Rigid smooth footing 31.8 mm 31.1 mm 28.6 mm

Rigid rough footing 31.8 mm 31.1 mm 28.6 mm

0
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Equivalent mediums; two curves,               
a. veq=0.4, Eeq=9132 kPa, 
b. veq=0, Eeq=11108 kPa

Fig. 4 Comparison of settlement profiles derived from Sch-

mertmann’s (1970) original example medium and its equivalent

both for meq ¼ 0.4 (Eeq ¼ 9132 kPa) and 0 (Eeq ¼ 11,108 kPa)
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Fig. 5 Black, solid line: ðmeq;EeqÞ combinations giving the

same settlement profile in the example considered (obtained

from Eq. 16). Gray, dashed line: Relative difference of the Eeq

value between the meq ¼m and the meq ¼ 0 case (Eq. 30)
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Some more examples are given in Table 3 for

comparison purposes. From the table in question it is

inferred that footing rigidity also affects the Eeq value;

in this respect, Eeq is greater for rigid footings. The

effect of footing area on Eeq is also shown; the

difference in Eeq between footings of different foot-

print area is attributed to the fact that, as known, bigger

footings have greater influence zone depth (bigger

stress bulb) and thus, the Eeq value is affected by the

deeper strata. Moreover, as shown in Table 3, the

effect of the footing point (on plan-view) considered

on Eeq is significant for square (flexible) footings and

negligible for (flexible) long footings. It is additionally

noted that, the relative difference between any meq ¼ v

case and the meq ¼ 0 case can be taken by the simple

empirical formula Rd ¼ m2; that is, the same Rd value

is obtained for any BxL footing, footing width or

location on footing’s plan-view (see Table 3). The Eeq

value corresponding to meq ¼ 0 and infinite influence

zone depth can be taken by the following equation:

Eeqðmeq ¼ 0Þ ¼ Eeqðmeq ¼ mÞ
1 � m2

ð31Þ

For comparison purposes ‘‘Bowles’’ (Egorov and

Nichiporovich 1961; Bowles 1996) Eeq value is also

given in Table 3:

Eeq ¼
P

HiEiP
Hi

ð32Þ

where Hi and Ei are the thickness and modulus of the

i-th layer.

‘‘Bowles’’ method is probably the most widely used

method among practitioners; it is noted however that,

it does not consider the effect of the Poisson’s ratio of

soils, the footing shape and size, the location on the

plan-view of footing and more importantly, the
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Fig. 6 Variation of Eeq with the normalized influence zone

depth for the example considered for both the meq ¼ 0.4 and 0

case

Table 3 The equivalent elastic modulus for various footing cases on Schmertmann’s (1970) stratified medium both for meq ¼ 0.4 and

0 (the depth of influence zone was considered to be the whole thickness of Schmertmann’s (1970) medium)

Method Footing type Location on footing’s plan-view Footing dimensions (m) Eeq (kPa) Rd (%)

2r or B� L meq ¼ 0.4 meq ¼ 0

Proposed Flexible circular Center 2.6 9132 11,108 17.8

Center 5.2 10,188 13,239 23.0

Rigid circular n/a 2.6 9920 12,069 17.8

n/a 5.2 11,953 14,918 19.9

Flex. square Center 1.0 9 1.0 8109 9654 16.0

Center 2.6 9 2.6 10,167 12,104 16.0

Center 5.2 9 5.2 12,491 14,870 16.0

Corner 2.6 9 2.6 12,491 14,870 16.0

Corner 5.2 9 5.2 15,449 18,391 16.0

Flex. rectangular Center 1.0 9 10 9213 10,967 16.0

Center 2.6 9 26 10,464 12,457 16.0

Corner 2.6 9 26 10,883 12,956 16.0

Bowles’ (1996) Any Any Any 19629a 19629a 0

aThe same value is used in all footing and m cases; Considering Bowles’ (1996) zl ¼ 5B ¼ 13 m suggestion, Eeq ¼ 18,875 kPa
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vertical distance of each soil layer from the foundation

level. In every case, for the example cases considered

herein, Bowles’ Eeq value is very high and thus, on the

non-conservative side (see Table 3). Finally, for

circular flexible footings, the diameter seems to affect

the relative difference in a neither significant nor

negligible manner, whilst for rigid circular footings,

the footing diameter plays less significant role.

3.2 Reducing the Elastic Modulus

of a Homogenous Medium to a Value

Suitable for a Winkler Spring Analysis

One of the important outcomes of the present paper is

that, since the actual deformation pattern of soil

mediums defers from the respective one assuming an

array of Winkler springs, it is mandatory that, the

elastic modulus of soil in a Winkler’s spring analysis

be modified as to correspond to a m ¼ 0 medium, even

when the soil is homogenous. The meq ¼ 0 value

corresponds to compression with no lateral expansion,

that is, to the deformation pattern of springs. For

example, if the soil below a circular foundation of

diameter 2.6 m is homogenous with v = 0.2 and Es ¼
5000 kPa, the correct Es value for a Winkler type

analysis, according to Eq. 16 (for n ¼ 1), is 5332 kPa

if zl=2r ¼ 2, and 5208 kPa if zl=2r ¼? (both values

stand for v = 0); the 5208 kPa value can alternatively

be obtained from Eq. 31, i.e. 5000/(1–0.22) = 5208. If,

now, the soil below the same foundation had v = 0.4

and Es ¼ 5000 kPa, the correct Es value would be

6346 kPa for zl=2r ¼ 2 and 5952 kPa for zl=2r ¼?
(again both values stand for v = 0).

4 Summary and Conclusions

The two elastic constants of soil are essential param-

eters for assessing the rigidity of shallow foundations

(e.g. Gupta 2007), calculating the critical column

spacing (e.g. ACI Committee 336, Ulrich et al. 1988)

and calculating the modulus of subgrade reaction of

soil, ks (e.g. Vesic 1961). The latter is used as the

spring constant in a Winkler type analysis. These

springs must effectively represent the deformability of

the ground in every case, that is, in homogenous soils,

stratified mediums or homogenous soils with linearly

increasing modulus; an effective representation

involves the use of the Eeq value corresponding to

meq = 0 so that the equivalent soil to be consistent with

the deformation pattern of Winkler’s springs (com-

pression with no lateral expansion). This paper

presents a method for the determination of the

equivalent elastic constants, Eeq and meq, of the

above-mentioned cases. The method in question is

based on the theory of elasticity combining the

principle of vertical and horizontal superposition.

Flexible rectangular footings over stratified mediums

or over homogenous mediums with linearly varying

modulus, as well as rigid and flexible circular footings

over stratified mediums were considered. The results

are presented either as closed-form expressions or in

chart form. A number of application examples are also

given. As shown, the derived Eeq values not only

return reliable settlement results (reliable as for the

‘‘equivalency’’), but also settlement profiles that are

similar to those corresponding to the original soil

mediums.

Appendix: Numerical Modeling and Validation

with Analytical Modeling

The numerical modeling carried out using Roc-

science’s RS2 (v9.028) was checked against analytical

modelling. A flexible circular footing (axisymmetric

model) having radius equal to one meter was consid-

ered (Fig. 7). The mesh used is shown in Fig. 7; this

extends 15 m horizontally and 10 m vertically, while

the geometry consists of 5651, 6-noded, triangular

elements (77 nodes per square meter on average). The

nodes of the external boundaries were fixed, while the

nodes along the axis of rotation were free to slide in the

vertical direction indicating a perfectly smooth

boundary. The model of Fig. 7 refers to a homogenous

soil with E = 10,000 kPa and m = 0.499. The sur-

charge is uniform and equal to 100 kPa, simulating a

circular, flexible footing. Perfectly elastic conditions

were considered. The maximum settlement obtained

(at the center of the footing), was equal to 0.013458 m

(shown in Fig. 7). The analytical modelling, on the

other hand, gave 0.013507 m (use of Eq. 18 with

IE = 1).
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