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Ambient temperature 
and subsequent COVID‑19 
mortality in the OECD countries 
and individual United States
Costas A. Christophi1,2,10, Mercedes Sotos‑Prieto2,3,10, Fan‑Yun Lan2,4, 
Mario Delgado‑Velandia3, Vasilis Efthymiou5, Gabriel C. Gaviola2, Alexandros Hadjivasilis1, 
Yu‑Tien Hsu6, Aikaterini Kyprianou1, Irene Lidoriki7, Chih‑Fu Wei2, 
Fernando Rodriguez‑Artalejo3,8 & Stefanos N. Kales2,9*

Epidemiological studies have yielded conflicting results regarding climate and incident SARS‑CoV‑2 
infection, and seasonality of infection rates is debated. Moreover, few studies have focused on 
COVD‑19 deaths. We studied the association of average ambient temperature with subsequent 
COVID‑19 mortality in the OECD countries and the individual United States (US), while accounting 
for other important meteorological and non‑meteorological co‑variates. The exposure of interest was 
average temperature and other weather conditions, measured at 25 days prior and 25 days after the 
first reported COVID‑19 death was collected in the OECD countries and US states. The outcome of 
interest was cumulative COVID‑19 mortality, assessed for each region at 25, 30, 35, and 40 days after 
the first reported death. Analyses were performed with negative binomial regression and adjusted 
for other weather conditions, particulate matter, sociodemographic factors, smoking, obesity, ICU 
beds, and social distancing. A 1 °C increase in ambient temperature was associated with 6% lower 
COVID‑19 mortality at 30 days following the first reported death (multivariate‑adjusted mortality 
rate ratio: 0.94, 95% CI 0.90, 0.99, p = 0.016). The results were robust for COVID‑19 mortality at 25, 35 
and 40 days after the first death, as well as other sensitivity analyses. The results provide consistent 
evidence across various models of an inverse association between higher average temperatures 
and subsequent COVID‑19 mortality rates after accounting for other meteorological variables and 
predictors of SARS‑CoV‑2 infection or death. This suggests potentially decreased viral transmission in 
warmer regions and during the summer season.

The global pandemic of Coronavirus disease 2019 (COVID-19), which is caused by Severe Acute Respiratory 
Syndrome Coronavirus-2 (SARS-CoV-2), was first identified in Wuhan, China in December 2019. Since then, 
it has affected over 213 countries and territories around the world, has resulted in more than 300,000 deaths 
globally (data accessed on May 15)1 and continues to spread.

Evidence suggests that respiratory viruses spread by both person-to person transmission and after hand 
contact with contaminated surfaces followed by facial self-contamination. Many different factors (the viral agent, 
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the host, and the environment)2 may be associated with the rate of viral transmission and subsequent disease 
severity including: contagiousness, seasonality, ambient temperature, ultraviolet index, humidity, wind speed, 
air pollution, population density, crowded housing, co-morbidities, etc.2–5.

Experimental evidence has found that SARS-CoV-2 is more stable at low humidity and lower temperatures, 
and decays faster at higher relative humidity and  temperatures6. The virus is even less stable at higher tempera-
tures combined with simulated solar light (half-life, 3 min)6. Similarly, animal studies with the influenza virus 
showed that the transmission was more efficient at 5 °C than at 20 °C7. Additionally, like the SARS-CoV (which 
caused severe acute respiratory syndrome coronavirus, SARS in 2002), SARS-CoV-2 emerged during the winter 
months of the Northern hemisphere. However, possible seasonality for SARS-CoV-2 is still debated.

In addition to the potential direct effect of climate on viral survival/infective capacity, the seasonality of res-
piratory infections may also relate to socio-behavioral changes observed during warmer weather, such as more 
time spent outdoors and less time spent indoors in more crowded and less ventilated  spaces3. Casual observation 
of crude data supported initially lower COVID-19 mortality rates in typically warmer US states (e.g., California, 
Texas and Florida) and warmer countries (e.g., Australia, Greece, Cyprus, and Israel)1.

Recent epidemiological data has suggested that a 1 °C increase in temperature was associated with a statisti-
cally significant 3% reduction in daily COVID-19 cases, while a 1% increase in relative humidity was associ-
ated with a 0.5% decrease in daily new COVID-19 deaths in 166  countries8. Likewise, Liu et al. showed that 
1 °C increase in ambient temperature and diurnal temperature range was associated with a decline in daily 
confirmed case counts in 17 cities in  China9. In Brazil, dose–response curves suggested a negative linear rela-
tionship between higher temperatures and daily cumulative confirmed cases within the range of 16.8–27.4 °C10. 
However, other studies showed no significant association or mixed results between ambient temperature or 
UV and transmissibility in  China11–14, incidence and cumulative cases in  Spain15,16, or epidemic  growth17. In 
addition to meteorological conditions, there is research showing geographic differences and population-level 
factors to be associated with COVID-19 incidence and mortality. These factors include population density, age 
distribution, and diagnostic testing  capacity18. Population-based community mitigation measures, such as social 
distancing, containment, and community-wide mask wearing have also shown to be effective in reducing viral 
 transmission17,19–21. Moreover, accumulating evidence demonstrates possible correlations between air pollution 
and COVID-19 incidence or  mortality22,23, which therefore, is taken into account in the present study.

As COVID-19 continues to spread and warmer temperatures are expected in most of the Northern hemi-
sphere for the summer, the possible effect of meteorological conditions is emerging as a key question. In light 
of the preliminary experimental and epidemiologic data, but the lack of definitive evidence regarding mortality, 
we conducted the current study to provide additional evidence on the associations between ambient factors and 
COVID-19, using a more hard endpoint, disease mortality, to decrease outcome misclassification and screening 
bias (incident cases) to differential testing rates. Accordingly, we examined the association of average ambient 
temperature prior to and after the first reported COVID-19 death, with subsequent COVID-19 mortality rates 
in the 37 Organization for Economic Co-operation and Development (OECD) countries, the 50 United States 
(US) and District of Columbia while adjusting for other important meteorological and non-meteorological vari-
ables. The OECD is an intergovernmental economic organization founded in 1961, aiming to facilitate world 
trade, endorse democracy, and commit to market economy. In general, the members of the OECD are regarded 
as developed countries, sharing similar political values, socioeconomic development and stability, as well as 
policy responses toward the current COVID-19  pandemic24.

Methods
Data was collected on all US States and the District of Columbia (DC) as well as the other 35 OECD countries 
from publicly available sources (see supplementary methods). Colombia joined OECD on April 28, 2020 after 
the start of the pandemic, and therefore, was not included in the current analysis (Table 1). We chose the OECD 
countries for our study because they provide a group of nations/regions with varied climatic conditions, all of 
which have been affected by the pandemic. Additionally, to achieve OECD membership, all countries have met 
certain developmental criteria regarding their economies, infrastructure and political systems, such that they are 
likely to provide reliable and comparable COVID-19 mortality and covariate data. Data included information on 
COVID-19 mortality as well as other characteristics, such as average temperature, humidity, and precipitation, air 

Table 1.  List of the 86 geographic areas included in the study. OECD The Organization for Economic 
Co-operation and Development.

Individual states in the US (plus the District of Columbia) (n = 51)

Alabama, Alaska, Arizona, Arkansas, California, Colorado, Connecti-
cut, Delaware, District of Columbia, Florida, Georgia, Hawaii, Idaho, 
Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maine, Maryland, 
Massachusetts, Michigan, Minnesota, Mississippi, Missouri, Montana, 
Nebraska, Nevada, New Hampshire, New Jersey, New Mexico, New 
York, North Carolina, North Dakota, Ohio, Oklahoma, Oregon, 
Pennsylvania, Rhode Island, South Carolina, South Dakota, Tennessee, 
Texas, Utah, Vermont, Virginia, Washington, West Virginia, Wiscon-
sin, Wyoming

Other OECD countries (n = 35)

Australia, Austria, Belgium, Canada, Chile, Czechia, Denmark, 
Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, 
Israel, Italy, Japan, Latvia, Lithuania, Luxembourg, Mexico, Nether-
lands, New Zealand, Norway, Poland, Portugal, Slovakia, Slovenia, 
South Korea, Spain, Sweden, Switzerland, Turkey, United Kingdom
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pollution, measures of social distancing, measures of population density, economic and health indices. These are 
described in further detail below and in Supplementary Fig. S1. In order to adjust for the onset of the epidemic in 
each region, we used the date of the first local COVID-19 death to define a baseline date for each location from 
which to collect subsequent mortality outcomes, days of social distancing/confinement metrics, and meteoro-
logical data before and after the index date.

Exposure (average ambient temperature) and meteorological covariates. The primary expo-
sure variable was average ambient temperature over the 25 days prior to the first reported COVID-19 death. 
The secondary exposure variable was average ambient temperature over the 25  days after the first reported 
COVID-19 death in order to account for possible differences in the duration of COVID-19 incubation and clini-
cal progression. We also collected relative humidity, and cumulative precipitation, air pollution (average  PM2.5 
levels) data for the same time periods for each region. For data that were available on the city level, we used the 
first and second largest  cities5,6 of the individual states and countries. These values were averaged before using 
in the analysis.

Non‑meteorological covariates. We collected data on the population size, population density, days of 
social distancing prior to first reported COVID-19 death, the Gini index as a measure of socioeconomic inequal-
ity, ICU beds, prevalence of obesity, smoking prevalence, and proportion of the population older than 75 years.

Further details on the sources used for the different variables are provided in the “Supplemental methods 
information S1”, including the sources for other characteristics that were collected but were eventually not used in 
the current manuscript. For the exposure and covariates, we retained for analyses only one variable for scenarios 
where two or more variables were correlated or otherwise not independent (e.g. nursing home residents and 
persons older than 75 years; PM2.5 and PM10, etc.) and chose the factor with the most complete and reliable 
information for all regions.

Outcome variables. The primary outcome of interest was COVID-19 mortality. The data were extracted 
from open-access databases, namely NY  Times25 for the US States and DC and  Worldometer26 for the other 
OECD countries. We used the date of the first reported local COVID-19 death as the reference date. We then 
collected the cumulative number of deaths for the period of 25, 30, 35, and 40 days after the first death and com-
puted the corresponding mortality rates per 100,000 population.

Statistical analysis. Data are presented as mean ± Standard Deviation (SD) for characteristics with sym-
metric distributions or as median (Quartile 1, Quartile 3) for characteristics with skewed distributions. Deaths at 
30 days after the first COVID-19 death was chosen as the main outcome as all regions had accumulated 30 days 
from the first local death at the time of data collection. Given the over-dispersion in the data, 30-day mortality 
was modeled using negative binomial regression models with the natural log of the population size used as the 
offset variable, which has been widely used in other COVID-19 mortality  studies27–29. The main predictor of 
interest was the average temperature 25 days prior to the first death and the models were adjusted for a number 
of other meteorological and non-meteorological covariates, namely average humidity and average precipitation 
25 days prior to 1st death, average PM2.5, days of social distancing, density of the largest city, the Gini index, the 
proportion of the population over 75 years old, the prevalence of obesity and smoking, and ICU beds per million 
population. In addition to the mortality at 30 days, the 25-day, 35-day, and 40-day mortality were also analyzed. 
For 35- and 40-day mortality (i.e. secondary outcomes), we used the secondary exposure variable, or the average 

Table 2.  Major study variables for all OECD countries and US states. 35 OECD countries, 50 US states and the 
District of Columbia.

Variable N Mean SD Median Q1 Q3

COVID-19 Deaths at 30 days after 1st death 86 654 1567 149 52 425

Population 86 15,240,771 25,247,032 5,807,319 2,722,291 11,589,616

COVID-19 Mortality at 30 days after 1st death (per 100 K people) 86 5.35 7.53 2.68 1.29 5.61

Average temperature 25 days prior to 1st death (°C) 86 6.70 5.68 5.70 2.90 8.65

Average  PM2.5 25 days prior to 1st death (μg/m3) 86 8.15 4.57 7.11 5.46 8.38

Days social distancing before 1st death (days) 86 − 1.03 8.82 − 2.00 − 7.00 5.00

Density of largest city (hundreds of persons/km2) 86 29.95 32.61 18.75 9.36 42.30

Gini index 86 0.404 0.084 0.449 0.325 0.472

Population older than 75 years old (%) 86 7.4 1.9 7.1 6.5 8.3

Prevalence of obesity (%) 86 27.9 6.3 28.6 23.6 32.3

Prevalence of smoking (%) 86 18.6 4.7 17.7 15.5 22.0

ICU beds (per million population) 86 199 104 205 97 283

Average humidity 25 days prior to 1st death (%) 86 59.1 19.1 66.4 43.1 72.4

Average precipitation 25 days prior to 1st death (mm) 86 55.7 45.6 44.5 24.6 70.2
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ambient temperature over the 25 days after the first death (Supplementary Fig. S1 illustrates the lag periods we 
estimated for viral transmission, disease incubation and clinical progression in fatal cases).

The robustness of the estimates was also checked in other sensitivity analyses, including analyses excluding 
areas with less than ten deaths over the 30-day period, excluding very cold areas with average temperatures < 0 °C, 
or excluding areas that could be influential, such as New York, Italy, Spain, Japan, and South Korea for distinct 
local reasons. In addition, while the NY Times dataset is largely derived from the Johns Hopkins University 
(JHU) COVID-19  database30, which has been widely used for scientific  research31, we conducted an additional 
validation analysis using the mortality data directly extracted from the JHU database. The Mortality Rate Ratio 
(MRR), which is derived by exponentiating the beta coefficient from the negative binomial regression model, 
together with the corresponding 95% Confidence Interval (CI) and p-value are presented. The Statistical Analysis 
System SAS version 9.4 (SAS Inc, Cary, NC, USA) was used for all analyses and statistical significance was set at 
p = 0.05 with all tests performed being two-tailed. The GENMOD procedure in SAS was used for building the 
negative binomial regression models.

Results
There was available exposure and outcome information for 86 geographic areas selected for study: including 
the 50 US States and the District of Columbia as well as the other 35 OECD countries (Table 1). The cumulative 
number of COVID-19 deaths reported over 30 days after the first local COVID-19 death in each area ranged 
from 6 (South Dakota) to 9378 (New York).

Summary measures of the major study characteristics considered in the analysis are presented in Table 2. The 
median mortality rate 30-days after the first reported COVID-19 death was 2.7 per 100,000 population (quartiles: 
1.3, 5.6 per 100 K) and the average temperature over the 25-day period preceding the first COVID-19 death 
had a mean value of 6.7 ± 5.7 °C. Furthermore, the mean number of days of social distancing prior to the first 
reported death was − 1.0 ± 8.8 days and the proportion of people in the population over the age of 75 years old 
was 7.4 ± 1.9%. The relationship of the 30-day mortality rates (per 100,000 population) and the average ambient 
temperature over the 25 days prior to the first death is shown in Fig. 1; Fig. 1A is presenting the scatterplot for all 
geographic areas together, Fig. 1B for the OECD countries only, and Fig. 1C for the individual USA states only.

In multivariable negative binomial regression models (Table 3), the average temperature over 25 days prior 
to the first death was associated with a statistically significant lower mortality. For a 1 °C increment in average 
temperature there was a 6% lower mortality rate at 30 days (MRR: 0.94; 95% CI 0.90, 0.99; p = 0.016). Similarly, 
the number of days enforcing social distancing before the first death was also associated with a lower mortality 
(MRR: 0.97; 95% CI 0.95, 1.00; p = 0.044). In addition, the density of the largest city (in hundreds of persons/
km2) and the percentage of the population older than 75 years were associated with increased mortality (MRR: 
1.02; 95% CI 1.01, 1.03; p = 0.001 and MRR: 1.21; 95% CI 1.03, 1.41; p = 0.020, respectively).

In secondary analyses, we assessed the effect of average temperature on COVID-19 mortality in different 
scenarios to assess the robustness of our results. These scenarios included excluding New York, further excluding 
Japan and South Korea, excluding areas with less than ten deaths, and excluding areas with average temperature 
less than 0 °C. The results remained similar when excluding various outliers, including areas with less than ten 
deaths or with average temperatures less than 0 °C (Table 4). The association of average ambient temperature 
with lower mortality showed similar effect in stratified analyses within OECD countries and the US States as 
well (Table 4).

We performed other sensitivity analyses. The effect of average temperature on mortality was also statistically 
significant when the outcome was mortality at 25 days after the first death. Similarly, changing the exposure to 
the average temperature during the period 25 days after the first death was significantly associated in multivari-
able models with mortality at 35 days and at 40 days as the outcome (Supplementary Table S1 online). Days of 
social distancing, density of the largest city, and the proportion of the population over 75 years old also remained 
significant in these sensitivity analyses.

In the additional validation analysis using the dataset extracted directly from the JHU mortality database, 
the main findings remain consistent. The multivariate adjusted MRRs for the mortality rate at 30 days were 0.94 
(95% CI 0.90, 0.99; p = 0.017) for a 1 °C increment in average temperature, 0.97 (95% CI 0.95, 1.00; p = 0.045) for 
the number of days enforcing social distancing before the first death, 1.01 (95% CI 1.00, 1.03; p = 0.020) for the 

Figure 1.  Scatterplot about the 30-day mortality rates (per 100,000 population) and the average ambient 
temperature over the 25 days prior to the first death in (A) all geographic areas together (B) OECD countries 
only and (C) in the individual USA states only. AU Australia, AT Austria, BE Belgium, CA Canada, CL Chile, CZ 
Czechia, DK Denmark, EE Estonia, FI Finland, FR France, DE Germany, GR Greece, HU Hungary, IS Iceland, 
IE Ireland, IL Israel, IT Italy, JP Japan, LV Latvia, LT Lithuania, LU Luxembourg, MX Mexico, NL Netherlands, 
NZ New Zealand, NO Norway, PL Poland, PT Portugal, SK Slovakia, SI Slovenia, KR South Korea, ES Spain, SE 
Sweden, CH Switzerland, TR Turkey, GB United Kingdom, AL Alabama, AK Alaska, AZ Arizona, AR Arkansas, 
CA California, CO Colorado, CT Connecticut, DE Delaware, DC District of Columbia, FL Florida, GA Georgia, 
HI Hawaii, ID Idaho, IL Illinois, IN Indiana, IA Iowa, KS Kansas, KY Kentucky, LA Louisiana, ME Maine, MD 
Maryland, MA Massachusetts, MI Michigan, MN Minnesota, MS Mississippi, MO Missouri, MT Montana, 
NE Nebraska, NV Nevada, NH New Hampshire, NJ New Jersey, NM New Mexico, NY New York, NC North 
Carolina, ND North Dakota, OH Ohio, OK Oklahoma, OR Oregon, PA Pennsylvania, RI Rhode Island, SC South 
Carolina, SD South Dakota, TN Tennessee, TX Texas, UT Utah, VT Vermont, VA Virginia, WA Washington, 
WV West Virginia, WI Wisconsin, WY Wyoming.

◂
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density of the largest city (in hundreds of persons/km2), and 1.20 (95% CI 1.02, 1.40; p = 0.026) for the percentage 
of the population older than 75 years, respectively.

Discussion
In this study we found that after accounting for other meteorological variables and factors predictive of SARS-
CoV-2 infection/mortality rates, including age distribution, population density, social distancing, income ine-
quality, and availability of ICU beds, a 1 °C increase in ambient temperature is associated with about 6% lower 
COVID-19 mortality in the subsequent 30 days, across many countries and the individual United States and 
District of Columbia. The results were consistent when average temperature was measured during the same and 
subsequent periods before and after the first reported COVID-19 death and for subsequent mortality at 25, 35 
and 40 days; also, they were robust across several sensitivity analyses.

Only a few studies have analyzed the effect of ambient temperature on COVID-19 mortality rates, and to 
our knowledge none following our approach, thus direct comparison of our results is difficult. Ma et al. found a 
positive correlation (r = 0.44) between diurnal temperature range and daily deaths, but their analysis is severely 
limited by the failure to use sufficient time lag periods (only 0–5 days, with non-stable results) and included only 
the Wuhan  population32. Wu et al., studied the association between climate and daily new cases and deaths in 
166 countries. After adjusting for median wind speed, age, Global Health Security, Human Development Index, 
and population density, no significant association with temperature and daily deaths was found, although after 
limiting the analysis to countries with over 10 days since the first reported case and over 100 cumulative cases, a 
1 °C increase was associated with a 1.2% reduced number of daily  deaths8. Again, this study was also limited by 
short lag periods and by not adjusting for other important prognostic factors, such as social distancing. Finally, 
Falcao et al. found no association between temperature and COVID-19 deaths but did find an inverse relation-
ship between country average temperature and COVID-19  infections33. Our study overcomes the limitations 
in previous studies by (1) studying mortality rates during different periods after the first reported death in each 
country or state (25, 30, 35 and 40 days) allowing sufficient time for effects of temperature on viral transmission, 
incubation and clinical progression using lag times (up to 25–30 days); (2) accounting for other meteorological 
factors; and (3) including non-meteorological predictors of SARS-CoV-2 transmission and mortality (population 
density, number of ICU beds, population over 75 years, and social distancing measures to control the epidemic).

Several epidemiological studies have also analyzed the impact of temperature and other weather conditions on 
COVID-19 incidence, global transmission or reproduction rate with inconclusive  results9,12–17,33–35. While some 
studies showed no association between temperature in the range 5–18 °C and cumulative COVID-19 cases such 
as in  Spain15, or temperature (median 12.8 °C) and epidemic  growth17, more recent evidence conducted using 
worldwide data or data of particular regions including China, Indonesia, Spain, and US are in line with our find-
ings and suggest a beneficial effect of higher temperature on new daily COVID-19  cases9,34,36–40. Our results are 
consistent given that average temperature 25 days prior to the first death was associated with mortality 30 days 
after, because mortality reflects earlier transmission and clinical disease progression. Specifically, one study has 
shown that COVID-19 growth rates peaked in temperate regions of the Northern Hemisphere with mean tem-
perature of about 5 °C, and specific humidity of 4–6 g/m3, during the outbreak period, while rates were lower both 
in warmer/wetter and colder/dryer  regions39, after adjustment for socio-economic variables. Our crude results 
(Fig. 1) also suggest low mortality in very cold regions, but conclusions are difficult given the small number of 
observations, the low number of deaths in these areas, and generally the lower population densities of very cold 
regions. Also in agreement with our results, a recent preprint study has reported an inverse relationship between 
temperatures above 25 °C and the estimated SARS-CoV-2 reproduction number (3.1% reduction)34. Another 
data-driven study looks into both short-term and long-term COVID-19 transmission patterns, and builds pre-
diction models based on meteorological factors using worldwide data. For the long-term prediction, average 
temperatures are negatively associated with incident cases two weeks later with a non-linear  relationship41.

Experimental studies have shown that SARS-CoV-2 can be stable at 4 °C but it is very sensitive to heat: with 
an incubation temperature of 70 °C the survival time of the virus is 5 min, it achieves over 3 log-unit reduction 
after 7 days of incubation at 22 °C, and no virus is detected at 14 days; also 1 day of incubation at 37 °C leads 
to over 3 log-unit reduction in viral level, and no detection  afterward42. This is in line with evidence on other 
respiratory viruses, such as SARS-CoV, which shows less stability at 22-25 °C43. Moreover, seasonal viruses, like 
the influenza, peak at winter months with cold weather compromising the host immunity, but also increasing 
the conditions for person-to-person transmission indoors if ventilation is low and humidity outside is 40–60%3. 
Taking together, this information makes plausible the association of temperature and other weather conditions 
with SARS-CoV-2 viral infection and death.

Under the assumption that warmer temperatures may help slow down the viral transmission, the summer 
season may offer an opportunity for public health authorities in each country to strengthen the preparedness 
and response strategies against a new wave of COVID-19 in the fall. During summer, when in most countries 
COVID-19 metrics fall, authorities may accelerate vaccination programs to ensure high vaccine coverage before 
new virus variants, potentially resistant to the existing vaccines, could emerge. Policymakers must also be aware 
that extreme hot and humid weather may increase social gathering in air-conditioned indoor spaces which, 
because they are cool and sometimes poorly ventilated, may become ideal environments for virus transmis-
sion. Indeed, social distancing measures helped to contain the virus and flatten the peak around the world; in 
our study, days of social distancing before the first local death was negatively associated with mortality rates at 
25–40 days, which is in line with recent  research17. Finally, unexpected increases in virus transmission or disease 
mortality, resulting from currently unknown or poorly understood factors, cannot be ruled out. This possibil-
ity must also be seriously considered by policymakers and public health officials when enacting or updating 
COVID-19-related policies.
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Of note is that the observed association between ambient temperature and lower COVID-19 mortality holds 
after accounting for variables, which, as expected, were strong mortality predictors, such as population density, 
age structure, and economic inequality. There is previous evidence of a greater COVID-19 fatality rates among 
older people, living either in communities with crowded housing or especially in nursing  homes44. In our model, 
we captured these aspects through the Gini index, population density and the proportion of people older than 
> 75  years44. Indeed, there was a significant correlation between the proportion of people over 75 years old and 
nursing homes (r = 0.46, p < 0.001). Adjustment for population density is also important because it is known that 
cities with higher density also tend to have more people in crowded housing, higher proportion of socioeconomi-
cally disadvantaged persons, and greater income and health disparities, also reflected by the Gini index, which 
are important drivers of COVID-19 contagion and mortality.

Strengths of our study are: (1) accounting for a good number of meteorological and socio-demographic 
predictors of COVID-19 infection and mortality; (2) using data on weather conditions before the first reported 
COVID-19 death, and therefore before most of the countries and US states declared the confinement actions, 
which could minimize the effect of ambient temperature; (3) analyzing COVID-19 mortality rates, rather than 
incidence rates, which are less subject to screening and reporting biases, (4) examining the exposure and out-
comes across different time periods and in different sensitivity models. Some limitations should also be acknowl-
edged. The most important is that a single measure of ambient temperature may not be fully representative of an 
entire country or State if it is rather large. Also, we cannot rule out small errors in the dates of the first reported 
death in each country, due to the different data sources as well as differences in epidemiological surveillance 
across countries.

Table 3.  Multivariable negative binomial regression model for the mortality at 30 days after the first COVID-
19 death. MRR mortality rate ratio.

MRR (95% CI) p

Average temperature 25 days prior to 1st death (°C) 0.94 (0.90–0.99) 0.016

Average  PM2.5 25 days prior to 1st death (μg/m3) 1.01 (0.94–1.08) 0.782

Days social distancing before 1st death (days) 0.97 (0.95–0.99) 0.044

Density of largest city (hundreds of persons/km2) 1.02 (1.01–1.03) 0.001

Gini index (per 0.1 increase) 1.36 (0.82–2.26) 0.231

Population older than 75 years old (%) 1.21 (1.03–1.41) 0.020

Prevalence of obesity (%) 1.01 (0.92–1.10) 0.888

Prevalence of smoking (%) 0.96 (0.89–1.03) 0.255

ICU beds (per million population) 1.00 (1.00–1.01) 0.050

Average humidity 25 days prior to 1st death (%) 1.00 (0.99–1.02) 0.726

Average precipitation 25 days prior to 1st death (mm) 1.00 (1.00–1.01) 0.408

Table 4.  Average temperature (°C) 25 days prior to first death and mortality at 30 days after the first death. 
MRR mortality rate ratio. a Adjusting for average PM2.5 25 days prior to 1st death, days of social distancing 
before 1st death, density of largest city, Gini index, proportion older than 75 years, prevalence of obesity, 
prevalence of smoking, ICU beds, average humidity 25 days prior to 1st death, average precipitation 25 days 
prior to 1st death. b Includes District of Columbia.

MRR (95% CI)a p

Countries and statesb

All (n = 86) 0.94 (0.90–0.99) 0.016

Excluding New York (n = 85) 0.95 (0.90–0.99) 0.026

Excluding New York, Japan, Korea (n = 83) 0.95 (0.91–0.99) 0.011

Excluding areas with < 10 deaths (n = 82) 0.94 (0.89–0.99) 0.013

Excluding areas with temperature < 0 °C (n = 80) 0.93 (0.89–0.98) 0.005

Countries

All countries (n = 35) 0.98 (0.87–1.10) 0.752

Excluding Japan and S. Korea (n = 33) 0.94 (0.87–1.01) 0.093

Excluding Japan, S. Korea, Italy, and Spain (n = 31) 0.92 (0.86–0.98) 0.011

Excluding countries with temperature < 0 °C (n = 33) 0.92 (0.80–1.05) 0.204

US States

All US states (n = 51)b 0.94 (0.89–0.99) 0.011

Excluding New York (n = 50) 0.95 (0.90–0.99) 0.036

Excluding states with temperature < 0 °C (n = 47) 0.93 (0.89–0.98) 0.006



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:8710  | https://doi.org/10.1038/s41598-021-87803-w

www.nature.com/scientificreports/

Conclusion
In conclusion, our results showed that a higher average temperature is associated with a subsequent reduc-
tion in COVID-19 mortality rates across various developed countries and the individual United States, after 
accounting for average humidity, precipitation, PM2.5, social distancing, population density, socioeconomic 
level, the proportion of the elders in the population, the prevalence of obesity and smoking, and ICU beds avail-
ability. While the study is limited by possible measurement errors in ambient factors due to using data from the 
two biggest cities as a proxy, and inherent heterogeneity in the data sources across regions, our main findings 
remained robust in several sensitivity analyses. Thus, they suggest that mortality from COVID-19 is likely to be 
reduced during the summer season as a result of warmer weather, possibly decreasing viral survival/infectivity/
virulence45 and environmental conditions that favor greater time spent outdoors and less indoor gatherings, and 
thus, less viral transmission.

Data availability
Access to the data used can be freely accessed to the scientific community (see “Supplementary data S1”).
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