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ABSTRACT  

With the nearly Zero Energy Buildings (nZEBs) EU Directive (2010/31/EU) currently 

in force, all new buildings shall simultaneously reduce their primary energy 

consumption (energy from utility grids) and increase their energy share from Renewable 

Energy Sources (RES). Based on the fact that nZEBs are commonly addressed during 

their design and construction phase, this Thesis proposes a novel mathematical 

optimization approach, which attempts to maintain a low import and export energy 

profile (i.e., net grid electrical energy), daily, in an adaptive manner, and hence, 

allowing the building to further reduce its primary energy consumption throughout the 

year. For this purpose, a Linear Programming (LP) model is developed for allowing the 

battery’s optimum daily dispatch. The LP model is assisted by tools such as Artificial 

Neural Networks (ANN) for forecasting the next day’s hourly load consumption and 

Photovoltaic (PV) generation, and Genetic Algorithm (GA) for optimally driving LP 

and maintaining the building’s daily net grid electrical energy as close to zero as 

possible (i.e., nearly zero). Moreover, for addressing the non-linear and complex nature 

of the battery the proven freeware System Advisor Model (SAM) of National 

Renewable Energy Laboratory (NREL) is integrated with the proposed approach. Using 

real data of PV generation and load consumption of a building, in Cyprus, the obtained 

results show that the daily hourly profile of the import and export energies is smoothed 

and flattened; thus, achieving, a nearly zero grid energy of the building. The results 

suggest that this method is superior than a conventional rule-based battery dispatch and 

can lead to the reduction of the annual aggregated grid usage by 53% and to the increase 

of the building’s RES share by 60%, when compared to a no storage scenario. Finally, 

the proposed approach further decreases the primary energy consumption of the 

building, when compared to the no storage scenario and a battery dispatch approach 

driven by a conventional rule-based algorithm. Based on these findings, the proposed 

paradigm provides a tool contributing to the enhancement of the daily building’s energy 

consumption; thus, supporting the nZEB philosophy, in addition to the design measures 

taken for nZEBs so far.  
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1 Introduction 

Buildings are responsible for the 20% and 40% of the total energy consumption across 

the globe and the EU, respectively. The EU Proposal 2016/0381 (COD) [1], states that 

approximately 75% of existing buildings are energy inefficient and approximately only 

1% of those buildings undergo a renovation for upgrading their energy efficiency. 

Consequently, the 2010/31/EU Directive introduced nearly Zero Energy Buildings 

(nZEBs) as buildings of high energy efficiency with very low primary energy needs 

and, simultaneously, covering their low energy needs with integrated (or nearby) 

Renewable Energy Sources (RES) as much as possible. The Directive requires now 

(2020 onwards) that each new building shall comply and be a nZEB. 

 

 

Figure 1: Global Electricity final consumption by sector [2] 

 

Further to the high energy consumption levels in buildings, Figure 1 highlights the high 

share and the trend increase of electricity final energy consumption in the residential 

sector, within the global energy system. With such an increasing trend of electricity 

share in a building’s total energy mix (e.g. transition from natural gas heating systems to 

heat pumps) and the non-neglected total energy consumption of buildings, it is therefore 

vital to concentrate on the buildings’ electrical energy management further to common 

passive energy efficiency measures, such as thermal insulation, building orientation, PV 
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system sizing and so on. Such passive approaches are widely adopted and used, but can 

only be applied and utilized for designing and constructing nZEBs only. It is known that 

in general, while a building is in operation, its energy consumption levels are strongly 

related to human behaviour and RES stochasticity and, hence, significant deviations 

between the measured and pre-estimated energy consumption levels may be present. 

Therefore, energy efficiency measures utilized during the construction of a building 

may not be adequate for supporting the nZEB concept while the building is in operation. 

Based on the above fact, for supporting an nZEB while in operation and be in line with 

the relevant EU Directive, the energy exchange between the building itself and the 

utility grid should be minimized, on a daily basis, and be as close to zero as possible. 

With this way, it is possible to maintain its annual primary energy consumption to low 

energy levels, as required by the aforementioned Directive. For instance, a nZEB daily 

energy profile, from an electrical point of view, should minimize both the import and 

export energies and cover its needs by the energy generated from the integrated RES, 

during the whole day. Such a phenomenon, for the sake of this Thesis, will be called as 

the daily nearly zeroing of the net-grid electrical energy. 

For achieving the daily nearly zeroing of a building’s net-grid electrical energy, 

Building Energy Management (BEM), which can be achieved utilizing storage and 

Renewable Energy Sources (RES), is essential. In this context, mathematical 

optimization (mostly Convex Optimization) is a proven method and is utilized for 

achieving lower energy targets. Convex Optimization is considered an ideal method for 

BEM schemes as it gives global solutions, compared to other techniques such as 

Heuristic Optimization.  

Within this context and as it will be shown in the next Chapter, literature shows that the 

majority of existing methods focus on themes such as minimizing the daily operational 

and energy costs, (peak) loads, user discomfort levels, annual CO2 emissions and user 

economic benefits. Although such studies contribute toward lower energy use from 

utility grids, they are beyond the nZEB philosophy as clearly identified above. 

Moreover, as Lu et al. [3] mentions, there is a lack of methods for designing and 

controlling nZEBs during their operation, due to the complexity and stochasticity of 

both Renewable Energy Generation (REG) and energy consumption, as well as 

difficulties concerning energy storage. This phenomenon was also verified and reported 

by Ipsos and Navigant [4], who mentioned the low adoption of nZEBs in the EU. 



19 

Therefore, one may conclude that there is still a need for a method, that is in line with 

the nZEB Directive and literally integrating a criterion related to the nearly zeroing of 

the building’s net-grid energy, within the optimization problem.  

In summary: (i) Buildings are associated with high energy consumption levels; (ii) 

electricity consumption continually increases its share of the final energy consumption 

in buildings; (iii) nZEBs are becoming more attractive in EU and are mainly addressed 

at the design and construction phase; (iv) according to the author’s best knowledge,  all 

studies utilizing mathematical optimization and storage in buildings mainly focus on 

themes not in line with the nZEB EU Directive, as mentioned above. Consequently, this 

Thesis proposes a novel method, which utilizes the energy coming from the building 

integrated PV and – based on a nearly zero net-grid energy criterion accommodated 

within the optimization problem – the battery’s daily operation is optimally decided, in 

order to achieve a low annual primary energy consumption throughout the year. Hence, 

the proposed method contributes to the conservation of an nZEB’s low energy 

consumption, while in operation.  

Such a target is achieved through Convex Optimization combined with adopted tools 

such as Artificial Neural Networks (ANN), Genetic Algorithm (GA) and a realistic 

dispatch software known as System Advisor Model (SAM) developed from National 

Renewable Energy Laboratory (NREL). According to the author’s best knowledge, the 

proposed approach and its consequent contribution was not attempted before in the 

literature.  

More specifically, the dispatch problem is modelled as a Linear Programming (LP) 

problem – a Convex (global) Optimization method – and through the utilization of 

ANN, GA and SAM the battery is optimally dispatched throughout the day. Thus, the 

daily net-grid energy profile of the building is smoothed, flattened and remains close to 

the desired zero net-grid energy, according to the studied scenario. As a result, the 

import and export energies, throughout the day are minimized, giving an even lower 

annual primary energy consumption, compared to the no storage scenario and a 

conventional rule-based battery dispatch technique. The applied approach proves to be 

appropriate for the further enhancement of the nZEB concept for buildings also not 

necessarily built within the rules of the EU Directive for nZEBs nor having a high 

energy certificate.  
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The methodology regarding the chosen approach is as follows. Since the daily nearly 

zeroing of the building’s electrical energy requires global optimization and input 

parameters need to be known a priori, the proposed methodology utilizes ANNs, which 

provide the hourly forecast for both the PV generation and load consumption of the next 

day. Based on the forecasts and the daily nearly zero net-grid energy criterion used, GA 

searches for the optimum parameters (objective function weights) of LP. The LP then, 

based on the parameters provided by the GA, runs the dispatch problem and decides, in 

an adaptive manner, the optimum battery charge and discharge energies, throughout the 

day. Finally, the battery dispatch resulting from LP is then imported in SAM, which 

accounts for the non-linear and complex battery behaviour and contributes to giving the 

final and realistic energy dispatch – another novel feature of the proposed methodology 

– with the outcome of the dispatch containing the optimum battery charge/discharge 

energies, import/export energies and battery storage level, throughout the day. Finally, 

the uncertainties in both PV generation and load consumption are handled with the 

model continually recalculating the battery dispatch at every time-step (hour) of the 

optimization horizon (day), based on the current measurements of PV and load. As a 

result, the energy balance between PV, load, battery and grid is maintained and the 

battery operates within its physical limits. It should be noted here that the novelty of this 

Research is not designated by each individual model presented hereafter, but by the 

proposed holistic integration of the developed LP model and the three tools (ANN, GA 

and SAM) utilized. 

In the sequel of this Thesis, Chapter 2 presents a literature review in fields relevant to 

the problem under investigation, that is BEM through storage and Convex Optimization. 

Hence, the existing gap in literature is identified from the different studies reviewed 

showing the absence of such an approach. For further reading regarding nZEBs, Convex 

Optimization and ANNs, relevant background material can be found in Appendix I.  

Following the literature review, Chapter 3 presents the proposed approach and 

methodology beginning with a brief overview of the holistic integrated model, which is 

then followed by an explanation of the general methodology used in MATLAB for 

developing LP problems along with the presentation of the complete LP model 

developed here in matrix form and implemented in MATLAB. Following the 

mathematical presentation and explanation of the proposed LP model, intermediate 

results of a base study, when the proposed LP model is applied, are shown, for 
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demonstrating the LP behaviour and enabling the reader to have a better understanding 

of the model. The needs for adoption and utilization of a heuristic optimization 

approach (GA) as well as a forecasting tool (ANN) are then presented, and finally the 

holistic integration of the LP, GA, ANN and SAM and how the complete model 

behaves are demonstrated.  

In Chapter 4, using real data of PV generation and load consumption from a building in 

Cyprus, the approach is tested and cross-validated showing the achievement of the daily 

nearly zeroing of the building’s net-grid energy and its reduced primary energy 

consumption (from an electrical point of view). Moreover, a potential application of the 

proposed method is described. 

The main conclusions drawn by this study as well as the potential future work are 

finally outlined in Chapters 5 and 6, respectively.  
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2 Literature Review for Building Energy Management 1 

As mentioned in the Introduction, the achievement of the nearly zeroing of a building’s 

daily net-grid energy requires energy management and thus global optimization. To this 

end, the sequel of this Chapter focuses on the field of managing (dispatching) the 

energy profile in a building through Convex Optimization. The different studies 

reviewed are grouped according to the Convex Optimization used such as LP, Mixed 

Integer (Non) Linear Programming (MI(N)LP) and Quadradic Programming (QP). The 

approach of each study is presented and summarized with their aim/contribution 

categorized and discussed in the end. Finally, this review aims to present the state-of-art 

in BEM and identify the existing gap in literature regarding methods that can be applied 

in a building’s daily operation and further contribute to the decrease of the primary 

energy consumption, as required by the nZEB EU directive. 

2.1 Building Energy Management using Convex Optimization 

Energy optimization in buildings, using convex optimization, attracted the academic 

interest, in recent years, mainly due to the high consumption levels in buildings. Many 

researchers found that convex optimization regarding the energy costs minimization can 

be superior than common rule-based and heuristic optimization techniques.  

In general, the dispatch problem, which is simply the conservation of the energy balance 

between load and different energy sources such as grid, RES and storage, is modelled as 

an optimization problem. The optimization problem is composed by an objective 

function (aka cost function) and different constraints that represent the physical nature 

of the problem under investigation. For instance, the objective function may represent 

the minimization of the daily electricity buying cost, while the energy balance as well as 

battery limitations constitute the problem’s constraints. The problem in this case might 

be linearly (LP, MILP) or non-linearly (MINLP, QP) modelled – depending on the 

problem’s nature – and is solved with main target either to minimize or maximize the 

objective function.  

The configuration presented in Figure 2 represents an electrical system consisting of 

RES, storage, grid and load. For a dispatch problem the equivalent optimization 

 

1 Material from published paper [82] 
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problem here is to optimally dispatch the different energy sources (e.g. PV and battery) 

and/or loads (e.g. electrical appliances, HVACs and so on) for minimizing the objective 

function at the point of common coupling. In the sequel of this Chapter, the different 

studies reviewed are grouped based on the optimization method utilized, with the main 

features and contribution of the studies being highlighted. 

 

 

Figure 2: Equivalent optimization network diagram 

 

Linear Programming 

Figueiredo and Martins [5] demonstrated a method for optimizing the production of the 

RES, based on the generation costs of different sources such as PV, Biomass, Wind and 

Oil. The optimization is achieved through an LP formulation and targets the 

minimization of the operational cost. Moreover, Demand Side Management (DSM), 

Building Automation System and Energy Production System Management interact with 

each other, so as to enable the control of the load and the management of the RES 

production. Storage and on-site renewables are also considered into the optimization 

problem. Nottrott et al. [6] presented an LP routine for reducing the net-peak load with 

the aid of a grid-connected PV and a battery system, in an optimized manner. 

Forecasted data of both the load profile and the PV output, on a 24-hour basis and a 15-

M
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STORAGE

minimize f



24 

minute interval, are taken as inputs to the main algorithm, which decides the optimum 

scheduling of the battery during the peak periods. Hanna et al. [7] further improved the 

model presented in [6], so as to address the uncertainties of forecasting in both solar 

radiation and load demand of the building, using LP. The output dispatch scheme was 

updated based on the pre-calculated net error forecast between the forecasted and 

measured PV output and load demand. This allowed the model to be more practical and 

applicable in real life situations, with an improved performance avoiding also 

conservative dispatch schemes. Chen et al. [8] developed an LP model for scheduling 

the battery and appliance operation in a building. The problem is modelled using 

deterministic LP and load, and PV uncertainties are modelled through a pre-selected 

adaptation variable. PV and battery operational and maintenance costs are integrated 

within the objective function for optimally coordinating the electrical appliances. By 

considering the renewable generation and storage, the financial expenses of the building 

are reduced, based on a time-varying electricity pricing scheme. Youn and Cho [9] used 

LP for scheduling the battery, based on gaussian and binomial distributions of load and 

on-site generation, respectively. The main aim of the study was to maximize storage 

revenues and hence, user benefits, based on electricity buying and generation 

operational costs. Georgiou et al. [10] made a first attempt to use a hybrid optimization 

approach using LP in combination with GA for optimally dispatching a battery in a 

building having PV installed. The objective function integrated the import and export 

energies, the battery charging and discharging energies and the storage level, which are 

normalized, weighted and summed. The main aim of the study was to find the optimum 

values of the LP weights through GA, based on the daily PV and consumption data and 

hence, minimize the grid import and export energies.  

Further to the studies reviewed above, which is a selection aiming at explaining the 

basic applications of mathematical optimization within the BEM, Table 1 presents more 

studies found in the literature, concerning the LP scheme. The table – as well as Tables 

2 and 3 for MILP and QP, respectively – show the different parameters considered in 

the optimization, such as appliance scheduling (load dispatch), grid usage, energy 

storage dispatch, on-site generation utilization, energy prices consideration and 

prediction, with the latter shown only in case the study presented a model for 

forecasting generation and/or load consumption. 
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Table 1: Studies related to LP energy management in buildings 

Ref Yr* LD* Grid ES* OSG* EP* PR* Approach 

[11]  2016  ✓ ✓ ✓ ✓ ✓ 

Schedule the operation of a plug-in hybrid electric vehicle (PHEV) battery when 

connected as well as a diesel generator, using LP and GA. GA is used for 

determining which energy source will operate at what time interval of the day. LP 

decides the amount of power to be delivered to the load from each energy source. 

Forecasted PV and load are provided by ANN and uncertainties are addressed 

through Model Predictive Control (MPC). The objective function accounts for the 

operational cost of the diesel generator, PEV battery and electricity purchase 

from the grid. 

[12] 2015  ✓ ✓  ✓  

Schedule the battery operation with LP and Markov Decision Process (MDP). The 

problem is initially modelled as LP and then it is reformed as a MDP problem to account 

for the load uncertainties. A constraint related to keep the load under the peak demand is 

integrated within the problem 

[13] 2015  ✓ ✓ ✓ ✓  

Schedule the battery operation with LP, based on the given PV generation and load 

demand. Load and PV uncertainties are addressed with the use of MPC. The objective 

function accounts for the grid purchase price and the battery wearing cost 

[14] 2014  ✓ ✓ ✓ ✓  

Schedule the battery of a PEV. The objective function considers the grid purchase and 

selling price as well as a subsidy for self-consuming the renewable energy. The limits of 

the charging/discharging rates are based on the travelling times and parking times of the 

PEV. 

[15] 2010 ✓ ✓   ✓ ✓ 

Schedule the appliances with LP, based on price prediction. A weighted average price 

prediction filter is applied for providing the electricity price forecast. The objective 

function accounts for the grid purchase price and the associated cost of waiting of the 

appliances until they operate.  

[16] 2017  ✓ ✓ ✓ ✓  
Schedule the battery operation with LP, based on the daily energy cost. The optimization 

function also includes the battery operating cost. 

[17] 2008 ✓      
Control the illuminance level output of luminaires of the room with LP, subject to user 

satisfaction. The occupants' preferences are assumed to be known in the model. 

* Year (Yr), Load Dispatch (LP), Energy Storage(ES), On Site Generation (OSG), Energy Prices (ES), Prediction (PR)  
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Table 2: Studies related to daily MILP energy optimization in buildings 

Ref. Yr LD Grid ES OSG EP PR Approach 

[18] 2013 ✓ ✓ ✓ ✓ ✓  

Schedule the operation of appliances, storage on site generation with MILP. The objective function considers operational, 

maintenance, electricity purchasing costs as well as revenues from selling energy to grid. Peak demand charges are also integrated 

within the objective function. 

[19] 2013 ✓ ✓ ✓ ✓ ✓  

Schedule appliance operation, storage charging/discharging and onsite generation with MILP. The objective function consists of the 

power consumption, renewable generation, power export, storage charge/discharge rates and thermal energy flows. Electricity 

buy/sell prices and storage maintenance costs are included in the objective function  

[20] 2017  ✓ ✓ ✓ ✓  

Schedule battery charging/discharging with MILP. The optimization function consists of the associated costs and revenues resulted 

from power imported from and exported to the grid, respectively and takes into account priorities related to the PV, battery 

discharge and EV discharge powers exported to the grid. The priorities are set manually using priority parameters for each power 

source. Uncertainty of the PV is characterized by the probability of a PV scenario to occur and is embedded in the objective 

function.  

[21] 2016 ✓ ✓ ✓  ✓  

Using MILP for scheduling electrical appliances scheduled taking into account electricity tariff and CO2 footprint, which are 

integrated within the normalized objective function via weighted sums. The weight value could be chosen by the end-users, 

depending on their preferences. Uncertainty parameters, pre-estimated by empirical load models of the users were embedded in the 

objective function for handling user consumption variations.  

[22] 2016 ✓  ✓ ✓   
Optimally schedule different load appliances, in a priority fashion, and the battery with MILP. Loads are prioritized based on user's 

needs. 

[23] 2015 ✓ ✓ ✓ ✓ ✓  

Dispatch loads, battery, grid and on-site generation (diesel) with MILP. Two optimization problems with 1-hour and 5-mins 

intervals were sequentially solved. The dispatch from the first optimization problem is used by the second one, which is updated at 

every time-step, in a receding manner, and gives the final dispatch, based on the updated state of the system and the ahead schedule 

pre-calculated. operational costs, associated with the diesel generators and the battery were also included in the objective functions 

[24] 2015 ✓ ✓ ✓ ✓ ✓  

Schedule the operation of battery and loads with MILP. Two objective functions are used; one for accounting for the total 

operational cost (electricity, gas, PV, wind-turbine) and the other for the user discomfort. The two objective functions are weighted 

and lumped in a single one. The weights' values are chosen a priori, from the end-users. 

[25] 2015 ✓ ✓ ✓ ✓ ✓  
Schedule the operation of a plug-in-electric vehicle (PEV) battery, a combined heat and power (CHP) unit and loads with MILP. 

Electricity and gas energy tariffs are considered in the objective function.  

[26] 2014 ✓ ✓ ✓ ✓ ✓ ✓ 

Schedule the operation of a battery, electrical and thermal loads as well as the operation of a CHP unit with MILP. The objective 

function considers the power supplied by the grid and the power provided by the CHP. Electricity and gas tariffs are also accounted 

in the objective function. Uncertainty in the load and PV generation are based on probabilities, which are embedded in the objective 

function. The forecasts for electrical and thermal loads as well as solar generation are provided by an ARMA model. A multi-stage 
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Ref. Yr LD Grid ES OSG EP PR Approach 

scenario-tree generation method is used for providing the load and generation uncertainties. The models are updated in a rolling 

schedule manner and steps forward one time-step once the updated information arrives.  

[27] 2015 ✓ ✓ ✓ ✓ ✓  

Schedule the operation of battery and loads with MILP. The different objective functions associated with user discomfort, energy 

cost (electricity and gas), electricity consumption, carbon emissions and peak electricity power are normalized, weighted and 

lumped in a single objective function. Weights are assumed to be constant. Monte Carlo simulations are utilized for providing the 

uncertainties of different parameters (temperature, load RES generation, water usage and non-controllable loads), which are then 

provided to the optimization model and handled via MPC. 

[28] 2015 ✓ ✓ ✓ ✓ ✓  
Schedule the battery of a PEV and load with MILP. The objective function considers the electricity cost, the electricity benefit from 

selling energy to the grid and the user discomfort. 

[29] 2015 ✓ ✓ ✓ ✓ ✓ ✓  

[30] 2015 ✓ ✓   ✓  

A two stage MILP optimization is used. At the first stage the optimum hours of an appliance to be scheduled is determined. Based 

on the appliance scheduled predefined, the running of the appliances in the second stage is achieved through random behaviour 

models of the energy consumption generated by Monte Carlo Simulation. 

[31] 2014 ✓ ✓  ✓ ✓  

Schedule the operation of different power loads with MILP, based on given electricity prices, generation and load ahead profiles. 

The objective function integrates the benefits gained from each service appliance, electricity cost and a penalty cost related to peak 

power consumption and deviation from the optimum appliance operation  

[32] 2014 ✓ ✓  ✓ ✓  

Schedule the operation of the appliances based on PV generation, through MILP. The objective function accounts for electricity 

cost associated with the energy consumed by the dispatched appliances and the benefit gained from the utilization of the generated 

power from the PVs. 

[33] 2012 ✓ ✓   ✓  

A multi-layer structure is used for providing the real-time appliance control with MILP, interfacing the system with grid 

information such as different electricity price schemes, informing the system for upcoming potential energy savings based on future 

electricity prices and energy consumption and optimally dispatching the different appliances over the optimization horizon. The 

objective function utilizes the electricity cost based on each appliance operation as well as start-up cost when an appliance starts 

operating. Recalculation of the dispatch is caused once a variation in energy consumption, grid prices and so on. 

[34] 2012 ✓ ✓ ✓  ✓  

Scenario-based stochastic and robust optimizations are used and compared for optimally dispatching the different appliances and 

the battery of a PEV, using MILP. In stochastic optimization, Monte-Carlo simulation is utilized for generating scenarios regarding 

potential future electricity prices. The objective function in the stochastic optimization accounts for the measured power of each 

appliance and electricity cost of the first time-step and the future scenarios for power consumption and electricity prices. In robust 

optimization, the objective function accounts for the measured power of each appliance and electricity cost of the first time-step and 

the future best case and worst-case scenarios (minimum and maximum values) in future electricity prices. Hence, Monte-Carlo 

simulation is not needed. A rolling window, stepping forward in time, is used in both approaches, which is updated with the current 

status of price and demand at every time-step and provides the optimum dispatch. 
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[35] 2012  ✓  ✓ ✓ ✓   
A battery and a CHP unit are dispatched with MILP, based on pre-defined energy prices (electricity and gas), PV generation and 

load demand.  

[36] 2009  ✓ ✓ ✓ ✓ ✓  

Schedule the battery and different loads with MILP. The objective function included electricity buying/selling cost and an 

associated penalty cost related to the error of the forecasted and actual PV generation. Such difference is embedded as an absolute 

term within the objective function and linearization is achieved by substituting the absolute term with a constrained slack positive 

variable 

[37] 2017 ✓ ✓ ✓ ✓ ✓  

Schedule different power loads and battery with MILP, based on perfect predictions for both PV generation and load demand. 

Different non-linear load models are linearized using state-space equations. The objective function considers only the maximum 

and minimum values, throughout the optimization horizon, of the net grid power (daily total import - export powers) and of the 

ratio between the purchasing and selling electricity prices (buy-back ratio), respectively. 

[38] 2017 ✓ ✓   ✓  

Schedule the operation of different power loads with MILP, while preserving the user thermal comfort (predicted mean vote index - 

PMV) constraint within the desired levels. State-space modelling is utilized for the energy balance equation and different 

uncertainties in parameters such as indoor/outdoor temperatures, load consumption and so on are handled by an event triggered 

mechanism, which decides the recalculation of the whole dispatch in case an event occurs. The objective function accounts for the 

energy consumption of different loads and electricity cost. Recalculation of the dispatch occurs in a moving horizon manner 

[39] 2016 ✓      

Adjust the temperature set-points and thus power demanded from HVAC systems with MILP. The maximum power demand of the 

HVACs for each time-step is provided to the model and the objective function accounts only for the time-step corresponding to the 

maximum HVAC power (peak hour), throughout the optimization horizon. Temperature limits set by the users are also embedded 

in the model. 

[40] 2016  ✓ ✓ ✓ ✓  

Dispatch the battery and a fuel cell operation with MILP, for covering electrical and thermal loads. Two objective functions are 

used. The one accounts for the annual electricity and gas costs as well as benefits from selling the surplus electrical energy to the 

grid. The other objective function accounts for the total annual CO2 emissions resulted from the energy consumed from electrical 

and gas grids. The two optimization functions integrate a monthly fixed base rate, energy tariffs, the grid power demanded for 

covering the loads, the grid power demanded for charging the battery, the power output of the fuel cell for covering thermal loads 

and the heat recovered and generated for supplying thermal loads 

[41] 2017  ✓ ✓ ✓ ✓  

Schedule the charge/discharge of a battery and of a PEV battery with MILP. The objective function considers the grid import 

power, the power outputs of PV and micro-wind turbine, the discharging rates of the PEVs and the battery and the power exported 

to the grid. Operation and maintenance costs of the PV and micro-wind turbine systems, maintenance costs of the battery and PEVs 

as well as purchasing and selling electricity prices are also embedded in the objective function. Different scenarios regarding 

variations of the solar irradiance, consumption and number of EVs present are tested. 

[42] 2016 ✓ ✓ ✓ ✓ ✓  
Dispatch the charge/discharge of a battery, the on/off operation of HVACs and the operation of a Distributed Generator (DG) with 

MILP. The objective function considers the operation costs of DG and battery and electricity purchasing costs. A battery constraint 

is developed for ensuring that there is enough battery SOC at the end of the day in order to compensate for any uncertainties in the 
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weather. The battery costs are related to the battery charging/discharging and cycling. MPC is utilized, in a rolling window scheme, 

for adapting the scheduled dispatch when variations occur. 

[43] 2014  ✓ ✓ ✓ ✓  

Schedule the charging/discharging of electrical and thermal storage systems as well as the operation of a Combined Cooling, 

Heating and Power (CCHP) generation unit with MILP. Two objective functions are used. The one considers the power imported 

from the grid, e fuel consumptions of the boiler and the CCHP, the discharging rate of the battery along with electricity time-of-use 

tariffs, natural gas prices and battery degradation cost related to discharge cycling. The second objective function considers the 

power imported from the grid and the fuel consumptions of both CCHP and boiler as well as the CO2 emissions associated with 

electricity and fuel consumption. The two functions are lumped via a weighted sum approach. 

[44] 2012 ✓ ✓ ✓ ✓ ✓  

Schedule the operation of HVAC, battery, internal combustion engine and CCHP with MILP. The objective function considers the 

import and export powers, the operation of the CCHP, the operation of the battery as well as investment costs of the battery, water 

tank and ice storage devices. 

[45] 2011 ✓ ✓ ✓ ✓   

Schedule the operation of different loads, distributed generators and a battery charging/discharging with MILP. The objective 

function takes into account the power generated from the distributed generators, the consumed power of the controllable loads, the 

power imported from the grid, the power exported to the grid, the charging and discharging rates of the batteries and the battery 

SOC. Uncertainties in the distributed generation and energy consumption are handled by a real-time controller, in a receding 

horizon fashion, which updates the dispatch. The objective function minimizes the cost by choosing the sum of the argmin values 

from the set of the dispatch decisions.  

[46] 2009 ✓ ✓ ✓ ✓ ✓  

Schedule the operation of different loads and battery with a two-layer optimization, using MILP. The first layer is the one giving 

the initial dispatch, throughout the optimization horizon and its objective function accounts for electricity purchasing cost and 

earnings from the energy exported to the grid. In the second layer, the uncertainty in generation and demand is handled. A second 

objective function here is applied and triggered once a variation incident occurs and recalculates the dispatch for the remaining 

optimization horizon, with initial conditions obtained from the previous time step. A third and non-linear objective function is used 

in case no feasible solution is found to the second one, which allows the load to be shed, so as to match generation and demand. 

The absolute difference of the new dispatch and the initial dispatch is the main goal of this objective function. The non-linear term 

is linearized by introducing a slack variable constrained accordingly.    

[47] 2011 ✓  ✓ ✓ ✓ ✓  

Two MILP optimization schemes are proposed, one for a single user and one for multi-users. Both schemes concentrate on 

optimally dispatching different loads and batteries. In the multi-user scheme the amount of energies purchased by and sold to the 

grid is aggregated in the objective function. Both optimization functions consider the energy bought and sold to the grid, while the 

amount of maximum energy that can be bought (i.e. peak demand) by the single or multi-user schemes is limited with the aid of an 

added constraint.  

[48] 2016 ✓ ✓ ✓ ✓ ✓  

MILP, Piecewise MILP and epsilon Differential Evolution (eDE - metaheuristic) are individually used and compared for 

dispatching the operation of different power loads, generation units and storage. In the MILP and piecewise MILP schemes the 

non-linear loads and generation units characteristics are simply and piecewise linearized, respectively, where in eDE the full non-

linear nature of the problem is utilized. The objective function aggregates the operational cost of the different loads and power 
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generation sources used. Energy prices for both electricity and gas are also integrated in the objective function. The three 

optimization methods are compared in terms of objective function value and time for convergence. 

[49] 2012 ✓  ✓ ✓ ✓ ✓  

Schedule the operation of different loads and battery with MILP. The optimization horizon is divided in a number of adjacent 

intervals of equal length, where the non-controllable loads are considered. Those adjacent intervals are further divided in smaller 

intervals, in a similar manner, where the controllable loads are considered. The amount of power imported from the grid is also 

limited below a threshold with the aid of a constraint. The user comfort is also taken into account. Uncertainties are handled by 

generating different scenarios.  

 

Table 3: Studies related to daily QP energy optimization in buildings 

Ref. Yr LD Grid ES OSG EP PR Approach Aim/Contribution 

[50] 2015 ✓ ✓  ✓ ✓  

Dispatch different loads with QP based on PV day ahead production. The objective function takes into account 

the total power demanded by each appliance and the power generated by the PV, as well as electricity time-of-

use and feed-in tariffs. A robust technique is developed for tuning the degree of the schedule response, based on 

the uncertainty level of the PV generation. In other words, users can select how much the load scheduling 

responds to PV uncertainties, by tuning a single parameter. The uncertainty of the PV generation is described 

by the minimum and maximum generation levels. The forecasted PV generation is assumed to be known.  

 

[51] 2014 ✓ ✓ ✓  ✓  

Dispatch a group of users' appliances and PEVs batteries with QP, based on game-theoretic energy purchase 

and sale. The objective function considers the electricity cost and benefit based on the amount of total power 

demanded from each appliance and the amount of total power sold to the grid by the PEVs, respectively. The 

decided dispatch – i.e., the energy imported for appliances and the energy sold to the grid from PEVs - is based 

on the Nash equilibrium, at which all users have benefit and in case any user decides to alter the proposed 

dispatch the cost will be higher and thus the benefit lower.  

 

[52] 2013   ✓ ✓   
Dispatch the operation of a diesel generator and a battery with QP, based on load and PV generation. The 

objective function considers the quadratic cost function of the diesel generator. 
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[53] 2017 ✓ ✓ ✓ ✓ ✓ ✓ 

Dispatch the operation of load, battery and PV with QP. The objective function takes into account the thermal 

discomfort, energy cost, carbon emissions associated with PV curtailment, user inconvenience based on 

appliance desired operation and battery degradation. The different objectives are aggregated in the objective 

function, via weighted sum and the weights are calculated based on a survey conducted related to multiple user 

preferences. Forecasting used only for load via a simple averaging method.   

 

[54] 2020  ✓ ✓ ✓   

Schedule the charging/discharging of PEV with QP. The optimization was set up and tested for individual and 

centralized PEV charging/discharging. The optimization horizon begins when PEVs arrive and when PEVs 

depart. Both quadradic optimization functions take into account, respectively, the individual (single-user) and 

centralized (multi-user) charging power of the PEV battery, the net load power (power demanded - solar power 

generated) and the mean net load during parking period. The arrival and departure EV profiles were based on a 

survey adopted and Monte-Carlo simulations were utilized for generating random demand profiles. Perfect 

forecasts for load and PV generation are considered 
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Mixed Integer Linear Programming 

Ha et al. [55] developed a MILP controlling different loads and storage using dynamic 

models for loads, user satisfaction, storage and power sources. Required forecasted data 

(solar radiation, energy consumption, etc.) were provided as inputs with all the non-

linear dynamic models linearized. Objective functions for energy cost, user 

dissatisfaction, CO2 rejection and autonomy are proposed and uncertainties in the 

different input data are also handled. Tsui and Chan [56] achieved a building load 

management by dispatching the operation of different appliances and storage, using 

MILP. A regularization method is proposed for transforming the binary decision 

variables to continuous real-valued variables, in order to maintain the convexity of the 

problem. Weight factors are used for each transformed decision variable, which are 

manually predefined, and electricity prices are also incorporated into the problem. The 

objective function takes into account electric cost and user discomfort resulting from the 

appliances' operation. A MILP approach was also proposed by Zong et al. [57] with two 

objective functions. The first one is activated in case the renewable generation is larger 

than the minimum renewable generation threshold, while the second one is activated 

when the renewable generation is lower than the minimum renewable threshold. The 

first objective function considers the associated electricity cost when the load consumes 

energy from local RES and from grid, while the second objective function considers the 

associated electricity cost when load consumes energy from the grid. Both objective 

functions aggregate electricity cost with the weighted absolute temperature difference 

between the actual indoor temperature and the desired indoor temperature (i.e., user 

comfort) and with the weight factor being manually selected. The objective functions 

are modelled using Model Predictive Control (MPC) for handling uncertainties. Ashouri 

et al. [58] developed a MILP model for selecting optimum design parameters of 

different electrical and thermal power generation sources, storage systems and loads and 

dispatching the different selected system components. The objective function accounts 

for the total investment cost, the running energy cost, the user discomfort in terms of 

building desired temperature and subsidies for each of the selected system component. 

The Net-Present Value (NPV) for the components’ operation is used and the period of 

operation is extended up to 20 years. Constraints related to CO2 emissions (ton/m2/yr) 

and nZEB consumption (kWh/m2/yr) are also used for maintaining the energy 

consumption and CO2 emission levels below a desired threshold. Stadler et al.  [59] 
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demonstrated a MILP dispatch problem for managing the operation of different loads 

and storage. The objective function aggregates, via a weighted sum approach, the 

normalized annual energy costs and CO2 emissions. The weighting factor takes values 

from 0 to 1 and, depending on the desired scenario (minimization of cost or carbon 

emissions or a combination of both), this value is manually selected. A Zero Net Energy 

Building equality constraint is used for maintaining the annual sum of electricity 

imported, electricity exported and electricity generated on site, to zero. Sichilalu and 

Xia [60] presented an optimized battery dispatch scheme, using MILP, for scheduling 

the battery charge/discharge operation with the battery only allowed to charge from the 

grid, during time slots when electricity prices are cheap. The objective function 

considers the difference of electricity purchased from the grid and the electricity sold 

back to the grid with the two terms weighted. The weight values are manually selected, 

based on the desired scenario such as minimization of electricity purchase and/or 

maximization of electricity sale back to the grid. Meinrenken and Mehmani [61] 

proposed a MINLP scheme with two optimization schemes being concurrently solved. 

The one is used for obtaining the optimal battery capacity, based on historical weather 

and load data and the annual profit (difference of annual tariff charge reduction and the 

annual battery cost resulted from investment and financing). The other (real-time) one is 

used for adjusting the grid demand limits by scheduling the battery 

charging/discharging strategy. The day ahead battery operation is driven by the pre-

generated day ahead load profiles and with the day-ahead load profiles generated from 

historical weather data. The uncertainties in load profiles are handled by using the 

Particle Swarm Optimization (PSO) method. Hassan et al. [62] developed a MILP 

method with the objective function considering the PV generation, PV power export and 

grid import power for covering the load by charging/discharging the battery. PV 

incentives for generating power and for exporting power to the grid as well as electricity 

tariffs are considered in the optimization problem. The objective function aggregates the 

costs and revenues, where costs are directly related with the grid imported power and 

benefits, which are related to the PV generation, PV export power and battery discharge 

power. The authors did not consider any uncertainties in either the load or the PV. 

Fratean and Dobra [63] proposed a MILP strategy for scheduling the battery 

charging/discharging. The objective function considers the powers supplied to the load 

from grid, PV and battery, the power supplied from PV to battery and the power 



34 

exported from PV to grid. Real-time prices, feed-in-tariffs, PV levelized cost of 

electricity as well as levelized cost of storage are also incorporated within the objective 

function. Wi et al. [64] presented a MILP method for scheduling the 

charging/discharging of an EV battery, based on the PV generation and electricity 

consumption profiles. An exponential smoothing model is used for pre-estimating the 

PV generation and electricity consumption. An adaptation model is used for adjusting 

the pre-estimated value. The objective function integrates the electrical energy profile 

and the energy prices. Agnetis et al. [65] developed a MILP approach for optimizing the 

appliance and battery operation, based on three objective functions representing the 

overall energy related rewards provided by the market aggregator, user preferred time 

slots for appliance operation and climatic comfort. The objective functions are lumped 

in a single one via weights. Weights are constant at all times and are manually 

preselected based on the desired operational mode. Wang et al. [66] proposed a MILP 

optimization scheme for scheduling the charging/discharging of an EV storage. The 

stochastic objective function consists of the day-ahead prices for buying/selling energy 

and the associated penalty costs related to the mismatch between the estimated and 

measured energy consumption. Further similar studies using MILP are shown in Table 

2, in the same manner as Table 1. 

Quadratic Programming 

Ratnam et al. [67] proposed an approach for charging/discharging a battery with QP and 

Greedy search heuristic algorithm. The objective function accounts for the quadratic net 

power balance, which is defined as the difference between load, generation and battery. 

For maximizing customer benefits, the net power balance is multiplied by a weighting 

factor at each time-step. Each time-dependent weighting factor is optimally selected 

with the aid of a Greedy-search heuristic algorithm, based on time-of-use and feed-in 

tariffs and the amount of electricity purchased/sold from/to the grid. Dagdougui et al. 

[68] addressed the optimization of different RES (PVs, flat plate solar collectors, wind 

turbines and biomass) along with an electrical storage system, in a green building. The 

operation of a storage and on-site generation was driven by QP, for meeting electrical 

and thermal loads as well as domestic water needs. The objective function aggregates, 

through a weighted sum approach, the equivalent energy balances for meeting thermal, 

electrical and domestic water demands, the overall energy imported from grid and the 

battery storage level. MPC is mentioned for handling uncertainties, but its performance 
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or method of application is not demonstrated. Tazvinga et al. [69] proposed an optimum 

battery dispatch scheme for scheduling the operation of a battery and a diesel generator 

with QP to meet the load demand, based on the PV production. The optimization 

function aggregates, through a weighted sum approach, the power output of the diesel 

generator, the battery charging/discharging rate and the PV generation. Based on the 

battery operation and degradation characteristics, the wear cost is calculated. Fuel cost 

of the diesel generator and battery wear cost are also integrated in the objective function 

with the weights of the objective function being manually selected. Tazvinga et al. [70] 

further developed their initial model presented in [69] and added wind generation into 

their quadratic optimization problem. Nevertheless, neither study utilizes a forecasting 

tool. Similar to the previous optimization methods and in the same manner as Table 1, 

Table 3 shows other studies using QP for optimizing a building’s energy consumption. 
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2.2 Convex Optimization versus other Energy Management methods 

Convex optimization always guarantees global optimum solutions, if they exist. 

However, in many engineering optimization problems, especially in the building sector, 

complex and nonlinear dynamics are present, where not a single global optimum 

solution exists, and the problem is thus, non-convex. In that case, heuristic approaches 

are able to handle such problems. Examples of such heuristic approaches are GA, 

Simulated Annealing, Tabu Search Algorithms, PSO, Lyapunov Optimization 

Approach, Markov Decision Process, Imperialist Competitive Algorithm, Quantum 

behaved Particle Swarm Optimization, Ant Colony Optimization, Cuckoo Optimization 

Algorithm and others. Such methods  may be used mainly for searching for a near 

optimum or approximate solution within the optimization space [12], [71]–[76].  

On the other hand, conventional algorithms based on different scenarios may be used 

for BEM applications. Conventional algorithms (aka rule-based algorithms) rely on 

different possible scenarios, which, for instance, may represent: (i) The discharge of the 

storage system during the period where electricity price is high and the charge of the 

battery when electricity price is low; (ii) the charge of the battery when there is a 

surplus PV generation and the release of the stored energy when the load is greater than 

the PV generation [77]. 

Comparing the different optimization methods (convex and non-convex) together is 

difficult and can be done in a very general way, as each problem is modelled and 

defined differently. Therefore, neither the methods are application specific nor the 

problem can be solved with any available method. The selection of the right approach is 

strictly dependent on the initial problem definition. Yet, such an attempt is made in the 

sequel of this subsection by summarizing the different comparisons reported by some 

authors who tried to solve the same problem with different approaches. Nevertheless, 

this should not be taken as a rule-of-thumb, as each method has its own properties and 

effectiveness for each specific application. Nevertheless, in general, it is known that 

convex optimization, always guarantees global solutions and hence, if applicable, it is 

mostly preferred.  

Chen et al. [8] reported a 41% expense reduction when deterministic LP – along with a 

stochastic appliance schedule – was applied, compared to a traditional rule-based 

scheduling scheme. Hanna et al. [7] also demonstrated that their LP model is superior 
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and has a better performance, compared to a traditional real-time on/off strategy of the 

battery for peak load reduction. The main reason was that the battery was utilized in a 

more optimized manner due to the forecasting of the demand and the forecasting error 

handling capability of the model. Nottrot et al. [6] compared the proposed LP routine 

with two traditional battery schedule algorithms. The two algorithms, named by the 

authors as OFFON and Real Time, were based on the same principle; to charge the 

battery during the off-peak hours and discharge it during the on-peak hours. The authors 

found that a 26% and a 45% cost reduction was possible, compared to the OFFON and 

Real Time strategies, respectively. Ha et al. [55] showed that the proposed advanced 

MILP management model compared to the Basic Management (e.g. turn the heater on 

when the temperature level is below the threshold) is superior, as it achieved ~22% 

reduction in the operational cost and ~65% reduction in CO2. However, the 

dissatisfaction indices were slightly increased. Wi et el. [64] tested a MILP model for 

the optimal charging of EVs in a building and found that it can reduce operational costs 

by 6% when compared to the baseline scenario of charging the electric vehicles as soon 

as they park, and 15.2% compared to the baseline scenario of charging the available 

electric vehicles after lunchtime. Similar comparisons between CP and rule (or basic) 

based management techniques were also made in [23], [27], [28], [30], [37], [43], [53] 

indicating the superiority of mathematical optimization.  

Paridari et al. [78] used MILP for optimizing the daily operation of smart appliances 

with storage, by both considering electricity bills and CO2 reduction, in a building 

block. The authors also compared their proposed method with two other optimization 

methods known as Dynamic Programming (DP) and Minimum Cut Algorithm (MCA). 

They found that in terms of computational time, DP and MCA are better, where in terms 

of cost optimality MILP is more suitable. Zhou et al. [13] developed an LP model in 

combination with a MPC) an advanced control tool for handling 

variabilities/uncertainties of the input variables within an optimization problem, for 

optimally dispatching the battery of a building. The authors made comparisons of the 

net income earnings when MPC-LP (closed-loop control) and LP (open loop control) 

were applied and found that the MPC-LP model could increase the net income earnings 

by 31%, in the case when the actual demand is larger than the predicted one and by 27% 

in the case when the actual PV generation was larger than the predicted one. Pickering 

et al. [48] compared the case of reducing electrical and thermal energy needs, with the 
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aid of local PVs and electrical storage in a hotel, using three individual optimization 

approaches, namely single linear MILP, piecewise MILP (piecewise refers to a common 

method for linearizing non-linear functions) and epsilon Differential Evolution (a 

metaheuristic approach). They showed that for the case studied, piecewise MILP was 

the best option as it reduced the costs by 0.1% and 0.7% compared to the simple linear 

MILP and epsilon Differential Evolution, respectively. The times to find the optimum 

solution for simple linear MILP, piecewise MILP and epsilon Differential Evolution 

were 0.08s, 1.64s and 295s, respectively. 

2.3 Discussion 

As can be concluded from the previous sub-sections, three main algorithms are mostly 

used for globally optimizing the energy consumption of a building, with such methods 

being LP, MILP and QP. Other convex optimization methods exist in the literature (e.g. 

conic optimization, geometric optimization, or special cases of the ones addressed 

above), which are all more complex and more time-consuming to solve and are hence, 

very seldom used in building energy optimization problems. As this concept is not very 

mature, due to the ongoing research on BEM, the number of studies (n = 66) reviewed, 

to the author’s understanding, constitutes a sufficiently large indicative sample. 

It is clear from Tables 1–3 presented, that when there is a need for different loads (e.g. 

electrical appliances, HVAC) to be dispatched, MILP is preferred, due to the load’s 

nature (on/off operation). Furthermore, RES along with electrical storage are found in 

nearly all studies, as this combination is promising and very effective for daily building 

energy optimization. Additionally, nearly all studies considered energy prices, which is 

found useful for shifting the renewable generation with the aid of storage from peak 

periods, where electricity prices may be higher, to non-peak periods. Nevertheless, 

driving the optimization problem with energy tariffs is highly sensitive to the applied 

energy policies and may not be efficient in potential policy amendments affecting 

energy tariffs.  

In the context of daily BEM global optimization, the values of the uncontrolled 

variables must be known a priori and hence, some studies also use forecasting methods 

for predicting parameters such as weather, electricity prices, demand and RES ([11], 

[15], [26], [29], [53], [64]). Furthermore, stochasticity in such variables always exist 

and thus, the uncertainty of the forecasted parameters is also addressed in some studies, 
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even if a forecasting model was absent. Such uncertainties are commonly addressed by 

MPC optimization or by simply updating the predicted values with the measured ones 

and recalculating the dispatch in a receding horizon manner, or driving the dispatch 

problem using scenario-based approaches such as Monte Carlo simulation (e.g. [23], 

[42], [54]). 

Another feature commonly found in global optimization schemes is the so-called 

weighted sum method – see also section I.2 in Appendix I. This approach integrates 

multiple objective functions in a single one and hence, allows multi-objective 

optimization with a low computational burden. For instance, in some studies the main 

aim/contribution was the simultaneous energy cost and consumer discomfort level 

minimization. For allowing a concurrent optimization of these objectives, the weighting 

sum approach may be utilized, which weighs each objective function accordingly and 

lumps them in one. Nevertheless, manual weight pre-selection is mostly preferred, since 

finding the optimum values of such weights requires advanced techniques (e.g. heuristic 

methods), as it was attempted by Ratnam et al. and Georgiou et al. [10], [67], [79].  

Despite the use of weighted multi-objective optimization by the majority of the studies, 

each study – focusing in the sector of the daily BEM optimization – may be generalized 

and categorized based on their aim/contribution. The aim/contribution may be defined 

by the parameters included in the objective function proposed. For instance, an 

objective function integrating parameters for minimizing the daily energy cost and the 

daily operational cost may be included in two separate categories, such as (1) 

minimization of operational costs and (2) minimization of energy costs. In general, six 

different categories may be extracted from the presented literature, and are listed and 

summarized below. 

• Minimization of operational cost: It includes the studies that integrate in the 

objective function operational costs of the different on-site generation sources. 

Therefore, fuel costs, levelized cost of electricity for RES and/or storage and 

battery wearing costs may be included. The dispatch of the different power 

generation sources is decided based on the lowest operational cost of the day 

• Minimization of energy cost: It includes the studies that integrate in the objective 

function energy prices related to the energy purchase and sale from and to the 

grid. A variety of electricity tariffs may be present (e.g. dynamic prices, flat-rate 
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prices and so on), according to the policy applied. The dispatch (usually battery 

and/or load) is decided based on the lowest energy costs (billing costs) of the 

day 

• Maximization of economic benefits: It includes studies that integrate in the 

objective function economic benefits gained from the RES self-consumed 

energy and any revenues gained from feed-in-tariffs or other incentives. The 

energy dispatch (usually battery) is decided based on the maximum economic 

benefit of the day 

• Minimization of load: It includes studies that integrate in the objective function 

the power demanded from different loads or from the building itself. The 

dispatch (usually load and/or battery) is decided in order to minimize the daily 

peak load 

• Minimization of CO2 emissions: It includes studies that integrate in the objective 

function the associated CO2 emissions. The dispatch of the day (usually non-

RES power generation sources, battery and/or load) is driven by the amount of 

CO2 emitted by non-RES (e.g. gas, diesel generators and so on)  

• Minimization of user discomfort: It includes studies that integrate the level of 

user discomfort into their objective function. The dispatch (usually thermal load 

dispatch such as HVAC operation) is based on the requirement for maintaining 

the user discomfort (e.g. Predicted Mean Vote Index, indoor temperature and so 

on) to minimum levels  

 

Figure 3: Aim/Contribution share of studies focusing on the daily BEM optimization  
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Figure 3 shows the percentage share among the six different categories mentioned 

above. It is clearly shown here that the majority of studies contribute in minimizing the 

daily energy cost of the building followed by the category related to the daily 

minimization of the operational costs, as both categories result to lower economic costs. 

Finally, minimization of user discomfort, CO2 emissions, load and economic benefits 

are also beneficial for BEM daily optimization; though they are not very commonly 

found. 

As it was shown, convex optimization is widely used in BEM optimization scenarios, as 

it guarantees global (best) solutions, regarding the reduced energy consumption of the 

building, while in operation. Moreover, different studies – presented in section I.1 of 

Appendix I – propose different nZEB design methods for lowering the primary energy 

consumption of a building and thus, are in line with the nZEB Directive. Recall that the 

EU nZEB Directive requires buildings to consume low (nearly zero) primary energy 

(i.e., grid energy) and utilize integrated RES as much as possible. Nevertheless, such 

studies lack in supporting the nZEB requirements on a daily basis, since the building 

consumes energy from the grids, while there is no REG and uncertainties in RES 

generation and load consumption in the long run exist.  

On the other hand, as it was shown, studies related to the optimum daily BEM focus in 

themes outside the nZEB philosophy. Although some studies attempted to minimize 

CO2 emissions and introduced nZEB constraints, they also integrate operational costs, 

energy costs and/or user dissatisfaction in the objective function, which are price 

sensitive and are clearly beyond the main requirement of the EU nZEB Directive. 

Hence, there is a lack of a method in supporting the conservation and possible further 

reduction of the building’s low primary energy levels, on a daily basis, and be in line 

with the Directive.  

Following the nZEB official definition, a method considering, on a daily basis, a nearly 

zero net-grid energy criterion and hence, maintaining a low primary energy 

consumption of the building throughout the year – despite the uncertainties of the RES 

and consumption profiles – is yet to be proposed. Within this context, the rest of the 

Chapters present, explain and demonstrate a novel holistic method that contributes 

toward a daily smooth and flat net grid energy of the building, which is closer to the 
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zero-energy requirement (i.e. nearly zero) and achieves a lower primary energy 

consumption of the building throughout the year. 
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3 Proposed Approach and Methodology 

As mentioned in the Introduction, the proposed approach in this Thesis utilizes (i) LP 

for dispatching a battery in a daily global optimum manner, (ii) ANNs, which are 

necessary for providing the load consumption and PV generation forecast a priori, so as 

to achieve global optimality, (iii) GA, necessary for automatically determining the LP’s 

weighting factors, based on the forecasted consumption and generation, so that the daily 

net-grid energy of the building is flattened, smoothed and brought closer to the desired 

zero level, and (iv) SAM for calculating a more realistic battery dispatch, based on that 

obtained from LP.  
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Figure 4: Proposed approach 

 

The integrated approach is illustrated in Figure 4, where it is shown how the battery 

dispatch is calculated from the beginning and up to the end of the optimization horizon. 

In summary, at the beginning of each day the ANNs provide the forecast for load 

consumption and PV generation, which are taken as inputs by the LP algorithm. Once 

the ANNs provide the forecasts, the GA algorithm repeatedly runs LP until the optimum 

weight factors are found, based on the forecasted data, and as soon as the optimum 

weights are found, LP decides for the optimum battery dispatch of the whole day, based 

on the precalculated weights. The ideal battery dispatch from LP is then imported in 

SAM, as it is necessary to calculate the final battery dispatch, driven by the optimum LP 
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dispatch. Once the load consumption and PV measurements are available at every time-

step, the battery dispatch is repeatedly updated for every time-step up to the last time-

step of the optimization horizon (i.e., end of the day). Hence, daily global optimization 

is possible, since LP repeatedly considers historical, current and future values of PV and 

load. Finally, the algorithm returns to its initial point at the end of each optimization 

horizon.  

The following sub-sections will present in detail each part of the algorithm – i.e., the 

mathematical model of LP, the mathematical model of GA and the ANN models, with 

some intermediate results, for demonstrating the individual behaviour and performance 

of LP, GA and ANN. 

3.1 Linear Programming Model2 

This sub-section presents the general formulation of a LP in MATLAB and the 

proposed LP model along with its outcomes when applied to a building case study. It is 

worth mentioning that, for simplicity, in this sub-section the predictions for PV and load 

are considered perfect. Nevertheless, the adaptiveness and ability of the proposed model 

to handle PV and load uncertainties is demonstrated later in section 3.4 through its 

holistic integration with a forecasting tool (ANN), a heuristic optimization method (GA) 

and a realistic dispatch software (SAM). 

3.1.1 Linear Programming in MATLAB 

This study uses MATLAB for solving the linear optimization problem through a LP 

algorithm. MATLAB requires the optimization functions, equality/inequality constraints 

and boundaries of the problem to be written in matrix form as shown below [80]. For 

further information regarding mathematical and convex optimization the reader may 

refer to section I.1 in Appendix I. 

 Minimize CT
x subject to {

Ax ≤ b,

Aeqx = beq

  lb ≤ x ≤ ub

 (1) 

where:  

 

2 Material from published paper [144] 
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• C is the real-valued the optimization function coefficients vector 

• A and Aeq are the inequality and equality constraints coefficients matrices 

• b, beq, lb, ub are the inequality and equality constraints constant vectors and the 

lower bound and the upper bound vectors, respectively 

• x is the real-valued vector of optimization variables  

Algorithms such as Dantzig’s simplex method and interior point method may be used 

for solving LP problems of the form of equation (1). LP may be found in many 

applications, especially in engineering and is mostly preferred due to the existence of 

mature and efficient algorithms for solving such problems [81], [82]. 

3.1.2 Mathematical formulation of the LP model 

The following non-linear optimization model was initially developed, integrating three 

optimization functions in a single objective function, using a weighted sum approach.  

 Minimize f (Egrid, Ebat, Es) = ∑{w1|Egrid
* (t)| + w2|Ebat

* (t)| + w3Es
*(t)}

24

t = 1

 (2) 

subject to 

 Egrid(t) – Ebat(t) = Eload(t) – EPV(t) (3) 

 – Ebat(t) + Es(t)  = Es(t – 1),   Es(0) = constant (4) 

 Egrid(t) ≤ Eload(t) (5) 

 Ebat(t) ≤ Eload(t) (6) 

 – Ebat,max ≤ Ebat(t) ≤ Ebat,max (7) 

 Es,min ≤ Es(t) ≤ Es,max (8) 

where: 

• f is the objective function to be minimized 

• t is the time interval [h] 

• w1, w2 and w3 are weights for each optimization term, with w1 + w2 + w3 = 1 and 

w1, w2, w3 ≥ 0 



46 

• Egrid is the electrical energy imported/exported from/to the grid – negative for 

exporting and positive for importing [kWh] 

• Ebat is the energy supplied or received by the battery – negative for supplying 

energy and positive for receiving energy [kWh] 

• Es is the energy stored in the battery [kWh] 

• EPV is the electrical energy supplied by the PVs [kWh] 

• Eload is the load consumption [kWh] 

• Ebat,max is the maximum energy that can be received by the battery [kWh] 

(meaning that –Ebat,max is the maximum energy that can be supplied by the 

battery) 

• Es,min and Es,max are the minimum and maximum allowable energy to be stored in 

the battery, respectively [kWh]. 

Note that the associated power of each energy source as well as the load can be 

calculated by dividing the energy with the time interval (step), which in this case is 

equal to 1. 

The star symbol means that the optimization variable within f is “normalized” (i.e., non-

dimensionalized). Normalization is achieved by dividing the optimization variable with 

the difference of its upper and lower bounds, as it will be shown later. The use of the 

“normalized” weighted sum method through w1, w2 and w3, allows for the determination 

of each variable (function – i.e., Egrid, Ebat and Es) importance within the objective 

function, depending on the scales and the nature of problem. Lumping these three 

variables together allows the management of both the building’s import and export 

energies and the battery usage, simultaneously. In addition, according to the definition 

of LP shown by equation (1), the objective function (CTx) is composed by the decision 

variables (x) defined within the problem. Hence, the decision variables Egrid, Ebat and Es 

are added within the objective function and are lumped using appropriate weights, due 

to the difference in their scale. Further to the mathematical definition of LP, lumping 

these variables within a single objective function allows for the individual control, via 

the weight values, of grid and battery. 

Moreover, both Egrid and Ebat may be assigned with negative values when energy is 

exported and battery discharges, respectively. The negative values within the objective 
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function drive the algorithm toward a solution with the largest negative value possible. 

In practice, this means that the export energy (negative Egrid) as well as battery 

discharging (negative Ebat) would become as large as possible, which is not desired in a 

low energy building such as nZEB. To overcome this, the absolute terms in equation (2) 

were introduced. Consequently, it is of great importance to have the daily net grid 

energy as close to zero as possible, which is achieved by assigning the appropriate 

weight values. 

Equation (3) refers to the energy balance between the different energy sources (PVs, 

battery and grid) and the load. It can be clearly seen by this equation that the difference 

between the PV generation and the load demand (i.e., a mismatch) is handled by the 

difference of import/export grid energy and the battery charging/discharging energy, 

depending on the combination decided by the LP model. The available dispatches 

through this equation are: i) when the PV generation is larger than (or equal to) the load 

consumption there is an option to charge the battery and/or export energy to the grid and 

ii) when the PV generation is lower than (or equal to) the load demand there is an option 

to discharge the battery and/or import energy from the grid. Whichever combination is 

decided by the LP, clearly depends on the PV and load profiles and weight values 

giving the minimum objective function. 

The dispatch cases mentioned are subjected to the constraints given by equations (3)–

(8). The minus sign appearing is necessary for distinguishing between the charging and 

discharging states of the battery. Equation (4) keeps a “record” of the energy left within 

the battery during interval t, based on the previous interval t – 1. It should be noted here 

that for the very first day of the optimization period the battery may have an initial 

storage, which may come directly from the manufacturer. Equation (5) ensures that the 

battery is never charged from the grid. A relaxation to the optimization problem may be 

allowed by removing this constraint; yet, ignoring such a constraint it is possible to 

induce peak loads (from the grid’s perspective), battery degradation due to increased 

usage, voltage drop and frequency unbalance to the grid as the battery draws power 

from the grid. Constraint (6) ensures that the battery never exports energy to the grid. 

Similar to constraint (5), the optimization problem may be relaxed by eliminating this 

constraint. Nevertheless, ignoring this constraint may cause voltage rise and frequency 

unbalance to the network. Finally, the battery limits are presented by boundaries (7) and 

(8).  
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The model governed by equations (2)–(8) is not linear. This inconvenience can be 

overcome by transforming the model into an equivalent linear model – which can be 

easily and effectively solved – through expressing variables Egrid(t) and Ebat(t) as the 

difference of two slack non-negative variables [81], [83] (see section I.2, in Appendix 

I). Specifically, letting Egrid(t) = Egrid,im(t) – Egrid,ex(t) and Ebat(t) = Ebat,ch(t) – Ebat,dis(t), 

which represent the energies imported/exported (not occurring simultaneously) from/to 

the grid and the energy received/supplied (not occurring simultaneously) by/from the 

battery, respectively, yields the following equivalent linear problem, where all variables 

are positive and given in their opposite form as negative (see constraints (12)–(15) 

below). 

 

Minimize f (Egrid,im, Egrid,ex, Ebat,ch, Ebat,dis, Es) 

 = ∑{w1[Egrid,im
 * (t) + Egrid,ex

 * (t)] + w2[Ebat,ch
 * (t) + Ebat,dis

 * (t)] + w3Es
 *(t)}

24

t = 1

 
(9) 

subject to: 

 Egrid,im(t) – Egrid,ex(t) – Ebat,ch(t) + Ebat,dis(t) = Eload(t) – EPV(t) (10) 

 –Ebat,ch(t) + Ebat,dis(t) + Es(t) – Es(t – 1) = 0,   Es(0) = constant. (11) 

 –Egrid,im(t) ≤ 0 (12) 

 –Egrid,ex(t) ≤ 0 (13) 

 –Ebat,ch(t) ≤ 0  (14) 

 –Ebat,dis(t) ≤ 0 (15) 

 –Ebat,ch(t) + Ebat,dis(t) ≤ Eload(t) (16) 

 Egrid,im(t) – Egrid,ex(t) ≤ Eload(t) (17) 

 –Ebat,ch(t) + Ebat,dis(t) ≤ Ebat,max (18) 

 Ebat,ch(t) – Ebat,dis(t) ≤ Ebat,max (19) 

 Es,min ≤ Es(t) ≤ Es,max (20) 

Note that the boundary condition (7) is replaced by inequality constraints (18) and (19) 

and that the conditions {Egrid,im(t) > 0 ∩ Egrid,ex(t) = 0}∪{Egrid,im(t) = 0 ∩ Egrid,ex(t) > 0} 

and {Ebat,ch(t) > 0 ∩ Ebat,dis(t) = 0}∪{Ebat,ch(t) = 0 ∩ Ebat,dis(t) > 0} are always true at 
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optimality. This means that, neither Egrid,im nor Egrid,ex can occur simultaneously, at any 

time-step. This condition also holds for Ebat,ch and Ebat,dis, and may be clarified through 

the following reduced problem, which is of similar type to the one above. 

 Minimize f (Egrid,im, Egrid,ex) = w(Egrid,im
 *  + Egrid,ex

 * ) (21) 

subject to: 

 Egrid,im ≥ 0 (22) 

  Egrid,ex ≥ 0 (23) 

 w > 0 (24) 

If for some reason (due to other possible constraints) the optimum value of f is greater 

than 0, then obviously next optimum value of f is either wEgrid,im
 *  or wEgrid,ex

 * , showing 

that at optimality the condition Egrid,im× Egrid,ex = 0 is always met, which is equivalent to 

the condition {Egrid,im(t) > 0 ∩ Egrid,ex(t) = 0}∪{ Egrid,im(t) = 0 ∩ Egrid,ex(t) > 0}; a 

condition that is also valid with variables Ebat,ch(t) and Ebat,dis(t). This key property 

allows the non-linear problem to be linearized without affecting optimization.  

Equations (9)–(20) may now represent a linear (convex) optimization problem, which 

can be used for minimizing the net grid energy of a building having PVs and a battery 

system installed. Finally, due to linearity, equation (9) can be further relaxed to 

 

Minimize f (Egrid,im, Egrid,ex, Ebat,ch, Ebat,dis, Es) 

 = ∑ {

wimEgrid,im
 * (t) + wexEgrid,ex

 * (t) 

+ wbat,chEbat,ch
 * (t) 

+ wbat,disEbat,dis
 * (t) + wsEs

 *(t)

}

24

t = 1

 

(25) 

where: 

• w
im

, w
ex

, w
bat,ch

, w
bat,dis

 and w
s
, are the weights associated with import energy, 

export energy, battery charging, battery discharging and energy stored, 

respectively  

As mentioned earlier, each decision variable within the objective function is of different 

scale and the normalization of the three different objective functions is necessary. 

Normalization here is achieved using the following mathematical formulation. 
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 Egrid,im
 * = Egrid,im (Eload,max

  – Eload,min)⁄  (26) 

 Egrid,ex
 * = Egrid,ex (EPV,max – EPV,min)⁄  (27) 

 Ebat,ch
 * = Ebat,ch (Ebat,ch,max – Ebat,ch,min)⁄  (28) 

 Ebat,dis
 * = Ebat,dis (Ebat,dis,max – Ebat,dis,min)⁄  (29) 

 Es
 *= Es (Es,max – Es,min)⁄  (30) 

where:  

• Eload,max and Eload,min are the maximum and minimum allowable demand, 

respectively, with Eload,min = 0 kWh  

• EPV,max and EPV,min are the maximum and minimum PV generation, respectively, 

with EPV
 min = 0 kWh 

• Ebat,ch,max and Ebat,ch,min are the maximum and minimum energies that can be 

received by the battery, during charging, respectively, with Ebat,ch,max = Ebat,max 

and Ebat,ch,min = 0 kWh 

• Ebat,dis,max and Ebat,dis,min are the maximum and minimum energies that can be 

supplied by the battery, during discharging, respectively, with Ebat,dis,max =  

Ebat,max and Ebat,dis,min = 0 kWh 

With the proposed approach, each desired weight w may be assigned accordingly with a 

value from 0 to 1, in order to select which variables are of greatest importance and thus 

need to be minimized. For instance, in nZEBs, where the minimization of the net grid 

energy is of high priority, wimEgrid,im
 * (t) + wexEgrid,ex

 * (t)  must be greater than 

wbat,chEbat,ch
 * (t) + wbat,disEbat,dis

 * (t) + wsEs
 *(t) and so on. 

3.1.3 MATLAB formulation of the Proposed LP model 

Based on equation (1), equations (10)–(20) and (25) should be written in matrix form so 

as the LP model can be developed in MATLAB. The mathematical algorithm is shown 

in the following equations.  

 C
T
 = [Ci] ∈ ℝ1 × (nv × h)    (i  = 1, ..., h) (31) 
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 x = [xi] ∈ ℝ(nv×h) × 1    (i  = 1, ..., h) (32) 

  Aeq = [Aeq
i ] ∈ ℝ(ne)(h) × (nv)(h)    (i  = 1, ..., ne)  (33) 

 beq = [beq
i ] ∈ ℝ(ne)(h) × 1    (i  = 1, ..., ne) (34) 

‘ A = [Ai] ∈ ℝ(ni)(h) × (nv)(h)    (i  = 1, ..., ni) (35) 

 b = [bi] ∈ ℝ(ni)(h) × 1    (i  = 1, ..., ni) (36) 

 lb = [lb1 ... lb1] ∈ ℝ(nv)(h) × 1  (37) 

 ub = [ub1 ... ub1] ∈ ℝ(nv)(h) × 1  (38) 

where:  

• nv represents the number of optimization variables, here equal to 5 

• ne represents the number of equality constraints, here equal to 2 

• ni represents the number of inequality constraints, here equal to 8 

• h represents the optimization horizon, here equal to 24.  

Expanding equations (31)–(38) the complete problem formulation is as follows. 

Ci = [wim(t) wex(t) wbat,ch(t) wbat,dis(t) ws(t)]∈ ℝ1 × nv,  (t = 1, ..., h) (39) 

xi = [Egrid,im(t) Egrid,ex(t) Ebat,ch(t) Ebat,dis(t) Es(t)]T ∈ ℝnv × 1,  (t = 1, ..., h) (40) 

Aeq
1

 = diag{Aeq
11

… Aeq
11} ∈ ℝh × (nv)(h) (41) 

Aeq
11

 = [1 – 1 – 1 1 0] ∈ ℝ1 × nv (42) 

Aeq
2

 = [diag{Aeq
22

… Aeq
22} + Y] ∈ ℝh × (nv)(h) (43) 

Aeq
22

 = [0 0 – 1 1 1] ∈ ℝ1 × nv (44) 

Y = [Y1 Y2] ∈ ℝh × (nv)(h) (45) 

Y1 = [
Y11

Y12
]  ∈ ℝh × (h – 1)(nv) (46) 

Y2 = 0 ∈ ℝh × nv (47) 

Y11 = 0 ∈ ℝ1 × (h – 1)(nv) (48) 



52 

Y12 = diag{Y12
1 ... Y12

1 } ∈ ℝ(h – 1) × (h – 1)(nv) (49) 

Y12
1  = [0 0 0 0 – 1] ∈ ℝ1 × nv (50) 

beq
1  = [Eload(t1) – EPV(t1) ... Eload(th) – EPV(th)]T ∈ ℝh × 1 (51) 

beq
2  = [Es(0) 0 ... 0]T∈ ℝh × 1 (52) 

Ai = diag{Aii … Aii} ∈ ℝnv × (nv)(h)   (i  = 1, ..., ni) (53) 

A11 = [– 1 0 0 0 0] ∈ ℝ1 × nv (54) 

A22 = [0 – 1 0 0 0] ∈ ℝ1 × nv (55) 

A33 = [0 0 – 1 0 0] ∈ ℝ1 × nv (56) 

A44 = [0 0 0 – 1 0] ∈ ℝ1 × nv (57) 

A55 = [0 0 – 1 1 0] ∈ ℝ1 × nv (58) 

A66 = [1 – 1 0 0 0] ∈ ℝ1 × nv (59) 

A77 = [0 0 – 1 1 0] ∈ ℝ1 × nv (60) 

A88 = [0 0 1 – 1 0] ∈ ℝ1 × nv (61) 

b1 = 0 ∈ ℝh × 1 (62) 

b2 = 0 ∈ ℝh × 1 (63) 

b3 = 0 ∈ ℝh × 1 (64) 

b4 = 0 ∈ ℝh × 1 (65) 

b5 =  [Eload(t1) ... Eload(th)]T ∈ ℝh × 1 (66) 

b6 = [Eload(t1) ... Eload(th)]T ∈ ℝh × 1 (67) 

b7 = [Ebat,max ... Ebat,max]T ∈ ℝh × 1 (68) 

b8 = [Ebat,max ... Ebat,max]T ∈ ℝh × 1 (69) 

lb1 = [–∞ –∞ –∞ –∞ Es,min]T ∈ ℝnv × 1 (70) 

ub1 = [+∞ +∞ +∞ +∞ Es,max]T ∈ ℝnv × 1 (71) 

Equations (31)–(38) show the mathematical algorithm of the problem and the size of 

each vector and matrix used. Equations (39)–(71) show the linear matrix equations built 
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in MATLAB, which correspond to the objective function and the constraint functions. 

The integer values appearing in the matrices above, indicate the status of the 

corresponding decision variables (i.e., active or non-active) within the objective 

function and the constraints and may also take non-integer values, depending on the 

problem’s formulation. Equations (45)–(50) were developed, as it is necessary to 

account for the current status of stored energy, which is related to the previous period. 

Concerning the upper and lower bounds (ub and lb), the infinity symbol is necessary for 

those variables that are not bounded, despite if they are present in other constraint 

functions. The minus sign indicates that these variables can be assigned with any 

negative value, while the positive sign indicates that these variables can be assigned 

with any positive value. 

3.1.4 Assessing a building base study with LP 

For the reader to understand the behaviour and performance of the LP model, some 

intermediate results are presented here, which determine how the LP model behaves 

under different scenarios and why ANN and GA models were necessary to be 

developed and utilized. It should be noted that, due to the need of utilizing ANN, the 

data here differs from the one used for examining the behaviour, performance and 

validity of the holistic-integrated model (ANN-GA-LP-SAM), which will be 

demonstrated in Chapter 4. 

Real measurements corresponding to PV generation and load consumption data, from a 

dwelling located in Nicosia, Cyprus, were used in this case. The reader may refer to 

section I.3, in Appendix I, for further reading on the simulation data and methodology 

used for this base study.  

For comparison reasons, two cases with and without battery were tested, in order to 

examine the benefits of utilizing storage in a building having integrated PV. In the 

scenario without battery wbat,ch, wbat,dis, ws, Ebat, Ebat,max, Es, Es,min and Es,max are forced to 

zero, with the problem formulation presented in section 3.1.2 remaining unchanged. The 

battery parameters used are shown in Table 4.  
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Table 4: Battery Parameters 

Parameter description Value [kWh] 

Minimum Capacity Es,min 0 

Maximum Capacity Es,max 13.5 

Max./Min. Energy during charging/discharging Ebat,max 5 

Initial stored energy Es(0) 0 

 

For the sake of simplicity, the values for Es,min and Es(0) were set to 0 kWh, which in 

practice may not be valid, since batteries have integrated mechanisms protecting them 

from deep discharges. Nevertheless, realistic battery parameters and power conversion 

losses are considered in a later section with the aid of SAM.  

Effect of weight variation 

As it is necessary to examine the effect of the weights on the LP behaviour, Table 5 presents the three 

weight cases attempted. Case 1 refers to the scenario where wim is maximum and wex is minimum. Case 2 

refers to the scenario when wim and wex are equal and Case 3 refers to the scenario where wim is minimum 

and wex is maximum. By studying these three cases, the daily utilization of battery can be examined when: 

i) only the import energy is “penalized” – Case 1, ii) export energy as well as import grid energy are 

“penalized” with the same amount – Case 2 and iii) only the export energy is “penalized” – Case 3. The 

idea behind this, is to examine the model’s performance in terms of the amount of import and export 

energies, with different weight values. Finally, for the sake of these results, the weights wbat,ch, wbat,dis and 

ws are assigned with the value of zero. Yet, as it will be demonstrated in a later section, these weights are 

considered when GA is applied. Figures 5(a)–(c), 6(a)–(c) and 07(a)–(c) show the load 

balance, the energy stored profile as well as the load dispatch for the different desired 

weights mentioned, respectively. 

 

Table 5: Experimental desired weight values 

Case wim wex wim – wex wbat,ch wbat,dis ws 

1 1 0 1 0 0 0 

2 0.5 0.5 0 0 0 0 

3 0 1 –1 0 0 0 
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(a) 

 

(b) 

 

(c) 

Figure 5: (a) Load balance for wim = 1 and wex = 0 (wim – wex = 1); (b) Load balance for wim = wex = 0.5 

(wim – wex = 0); (c) Load balance for wim = 0 and wex = 1 (wim – wex = –1) 
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(a) 

 

(b) 

 

 (c) 

Figure 6: (a) Es profile for wim = 1 and wex = 0 (wim – wex = 1); (b) Es profile for wim = 0.5 and wex = 0.5 

(wim – wex = 0); (c) Es profile for wim = 0 and wex = 1 (wim – wex = –1). 
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(a) 

 

(b) 

 

(c) 

Figure 7: (a) Load optimum dispatch for wim = 1 and wex = 0 (wim – wex = 1); (b) Load optimum dispatch 

for wim = 0.5, wex = 0.5 (wim – wex = 0); (c) Load optimum dispatch for wim = 0, wex = 1 (wim – wex = –1). 
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In the case when wim = 1 and wex = 0, Figures 05(a) and 06(a) show that the export 

energy is maximized and the battery is charged only with the amount of energy 

necessary to supply the load during the late hours when the PV generation is insufficient 

or zero. Such a scheme may increase the battery life, as the battery experiences low 

cycling during the day. However, the grid suffers from high energy exports, a 

phenomenon non-abiding with the concept of nZEB. On the other hand, the cases when 

wim = wex = 0.5 and wim = 0 and wex = 1, behave in a similar between them manner and 

opposite to the case when wim = 1 and wex = 0, as shown in Figures 05(b)–(c) and 

Figures 06(b)–(c). In cases 2 and 3 there is a penalty associated with the export energy 

and consequently the minimum value of f is achieved when the export energy is 

minimum. As a result, the battery is charged to maximum to store the surplus PV energy 

and releases energy during the late hours to supply the demand. Obviously, without the 

battery, all the surplus PV energy would be injected to the grid, resulting to a high 

imbalance of the net grid energy. Despite the optimum usage of battery, there is still 

some energy export to the grid as shown in Figures 05(b) and 05(c), which may lead to 

grid imbalance issues. This is due to the high mismatch between the PV generation and 

the load demand, in this case, which may be solved by the proper sizing of the PV and 

battery. However, this is an issue beyond the scope of this study.  

As shown by Figure 7, in all three cases the energy sharing of the load is identical, 

regardless of the different desired weight values. Particularly, the load during the early 

hours is supplied by the grid, as there is no initial stored energy (Es(0) = 0), later by the 

PV when there is enough generation and then by the battery, during the late hours, when 

there is insufficient or no PV generation. A possible question that may arise, when wex = 

1 and wim = wbat,ch = wbat,dis = ws =0, is why the battery discharges during the late hours, 

instead of having imported energy from the grid. The answer may be that due to the fact 

that the problem presented in equation (9) is convex and, by definition, only one global 

solution exists, any other dispatch scheme will result to a higher amount of export 

energy and thus to a higher value of f.  

Finding the Optimum Values for Weights wim and wex 

As it was observed Es is affected, based on the weight values and hence, the 

optimization scheme. Particularly, in cases when wex ≥ 0 the daily Es is either low with 

the battery being partially charged and fully discharged or high with the battery being 

fully charged and partially discharged. This implies that when wex > 0, Es(t = 0) is larger 
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than 0 and therefore, the battery is able to supply the load during the early hours of the 

next day. However, the amount of Es(t = 0) depends on both the PV generation and the 

load profiles for t = 0, 1, 2, …, 23 and therefore, the value of the objective function f 

changes, based on the amount of import and export energy. Consequently, finding the 

optimum combination of wim and wex, which gives the lowest value of f, is necessary. 

The mathematical algorithm for finding the optimum weights is shown below. It is 

worth mentioning that the non-convexity nature and the high number of combinations 

for finding the optimum values for battery related weights (wch, wdis and ws), in addition 

to those for wim and wex, require the use of a heuristic approach, as it is later 

demonstrated in section 3.2. 

Equations (72)–(83) show the mathematical algorithm developed for finding the 

optimum values for wim and wex. 

  EL(0) = [0(1×11)
0.1

(1×11)
… 1

(1×11)] ∈ ℝ1 × 121 (72) 

 Es(0) = Es
 maxEL(0)

(i)
 ∈ ℝ, i = {1, 2, …, 121} (73) 

 WIM = [Wg,im
i ] ∈ ℝ1 × 121, i = {1, 2, …, 11} (74) 

 Wg,im
i  = [1 0.9 … 0] ∈ ℝ1 × 11 (75) 

 WEX = [Wg,ex
i ] ∈ ℝ1 × 121, i = {1, 2, …, 11} (76) 

 Wg,ex
i  = [0 0.1 … 1] ∈ ℝ1 × 11 (77) 

 fval,tot= [g
i
] ∈ ℝ121 × 1, i = {1, 2, …, 121} (78) 

 extot= [hi] ∈ ℝ121 × 1, i = {1, 2, …, 121} (79) 

 imtot= [ki] ∈ ℝ121 × 1, i = {1, 2, …, 121} (80) 

 g
i
 = ∑ f

d
(WIM (i), WEX (i), EL(0)

(i))

D

d = 1

∈ ℝ (81) 

 hi = ∑ ∑ exd,t(WIM (i), WEX (i), EL(0)
(i))

T

t = 1

D

d = 1

∈ ℝ (82) 

 ki = ∑ ∑ imd,t(WIM (i), WEX (i), EL(0)
(i))

T

t = 1

D

d = 1

∈ ℝ (83) 
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where: 

• EL(0) is the vector containing all the battery energy level “multipliers” giving 

all the possible Es(0) values at the beginning of the day and vary from 0 up to 1 

in increments of 0.1 

• WIM and WEX are the vectors containing all the possible desired weight values 

and vary from 1 to 0 and 0 to 1, in increments of 0.1, respectively  

• fval,tot is the vector containing all the objective functions for all days simulated  

• gi is the sum of all the objective functions for each current day of optimization, 

based on the pregiven values of wim ∈ WIM, wex ∈ WEX and EL(0)
(i)

 ∈ EL(0) 

• d is the current day of simulation and fd is the corresponding value of the 

objective function 

• D is the total number of days simulated (here simulation is carried for a whole 

year – i.e., D = 365) 

• extot is the vector containing the export energies for each day simulated 

• hi is the sum of export energies exd,t for all time steps of the current day and for 

all days simulated 

• imtot is the vector containing the import energies for each day simulated 

• ki is the sum of import energies imd,t for all time steps of the current day and for 

all days simulated 

• t is the time step and T is the optimization period – here t = 1 and T = 24 

Note that the import and export energies (imd,t and exd,t), for each current day of 

optimization, are based on the pregiven values of wim, wex and EL(0)
(i)

. 
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(a) 

 

(b) 

 

 (c) 

Figure 8: (a) Effect of EL(0)
(i)

 and wim – wex on import energy; (b) Effect of EL(0)
(i)

 and wim – wex on 

export energy; (c) Effect of EL(0)
(i)

 and wim – wex on objective function f. 
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Figure 8 shows, for a whole year, how the normalized import and export energies as 

well as the normalized value of the objective f are affected with respect to wim, wex and 

EL(0)
(i)

. By examining these figures, it is easy to obtain the boundaries for the terms 

wim, wex and EL(0)
(i)

, for achieving the minimum export and import energy. Thus, in 

order to satisfy the requirements of a low energy building – i.e., have the minimum 

import and export energies as well as the minimum value of f – the following 

boundaries apply. 

• Figure 8(a) (import energy): –1 ≤ wim – wex ≤ 0.8 and 0 ≤ EL(0)
(i)

 ≤ 1 

• Figure 8(b) (export energy): –1 ≤ wim – wex ≤ 0.8 and 0 ≤ EL(0)
(i)

 ≤ 1 

• Figure 8(c) (value of f ): wim – wex = 0.8 and 0 ≤ EL(0)
(i)

 ≤ 1 

Based on the above boundaries, EL(0)
(i) can vary from 0 to 1 with wim – wex equal to 0.8 

(i.e., wim = 0.9 and wex = 0.1). This gives the minimum import and export energies as 

well as the minimum value for f. The above procedure could be repeated for each 

optimization horizon (i.e., every 24 hours), since the shape of the 3D plots change, 

depending on the upcoming load and PV generation profiles. For the sake of simplicity, 

the algorithm shown in equations (72)–(83) is applied on a yearly basis using data from 

the preceding year. 

Finally, a comparison is made in order to evaluate the use of storage in BEM. The 

simulation period considered here is for the whole year (i.e., D = 365) with the optimum 

values for wim and wex being 0.9 and 0.1, respectively. The results shown in Table 6 

indicate the dramatic decrease in import and export energies as well as the value of the 

objective function f when the battery is used. 

 

Table 6: Comparison of import energy, export energy and value of f with and without a battery 

Case Description 
Import Energy 

(kWh) 

Export Energy 

(kWh) 
f 

With Battery 352.11 3799.4 137.77 

Without Battery 2312.7 5764.7 1136.6 
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Cross-checking with SAM software 

In order to test the validity of the proposed model, a trusted software, known as SAM 

and developed by NREL, was used. This software is used by both academics and 

professionals mainly for designing and simulating PV systems with the option of 

storage. The validity of SAM as well as its battery models and dispatch algorithms can 

be found in [84]–[89].  

Here, the simulations and the results obtained from MATLAB (LP proposed model) 

were crossed-checked with SAM. The battery type used was a SAM’s default model, 

which refers to a default model for Li-on NMC with a storage capacity of 10 kWh-ac, a 

charging/discharging rate of 5 kW-ac and a maximum and minimum State of Charge 

(SoC) of 15% and 95%, respectively. For comparison reasons, these parameter values 

were also adopted in the proposed LP model. Moreover, SAM’s default value of 96% 

for both ac/dc and dc/ac power conversion efficiencies was also considered in the 

annual simulation.  

To check the validity of the proposed model, the results obtained from both SAM and 

the proposed LP model, under different case scenarios, were compared. The variables 

compared are the battery annual dispatch and the annual net grid energy. SAM has the 

option of running a load dispatch based on a user pre-imported battery dispatch, 

ensuring that the battery operates within its physical limits. For this reason, the resulting 

battery dispatch of the LP model was used as the pre-imported battery dispatch for 

SAM. Then the SAM’s resulting battery dispatch was compared to the one of the LP 

model. 

On the other hand, SAM has the additional option to run a dispatch based on a 

conventional dispatch algorithm, known as automated target controller, which aims to 

maintain the net grid energy below or close to a user predefined level, at every time-step 

during the simulation [86]. Hence, a level of 0 kWh was set for every time-step during 

the annual simulation. For such a scenario, SAM’s automated target controller 

discharges the battery once the load is larger than the PV production, charges the battery 

once the PV production is larger than load, or keeps the battery in idle when the PV 

production is equal to the load [86]. In addition to the above-mentioned comparison of 

the battery annual dispatch, the total net grid energy given by SAM was then compared 

to the one computed by the LP model. 



64 

Matlab LP Ideal Dispatch

Matlab LP Ideal Dispatch
SAM without power 

conversion losses

Final dispatch without 

power conversion 

losses

Matlab LP Ideal Dispatch
SAM with power 

conversion losses

Final dispatch with 

power conversion 

losses

SAM target controller 

without power 

conversion losses

Final dispatch without 

power conversion 

losses

SAM target controller 

with power 

conversion losses

Final dispatch with 

power conversion 

losses

 Case 1

Case 2

Case 3

Case 4

 Case 5

 

Figure 9: Different cases studied with the LP model and SAM. Power conversion losses mean the losses 

from dc to ac power conversion and vice versa 

 

Five different case scenarios were studied (Figure 9), referring to two main different 

dispatches: the proposed LP model and the SAM’s automated target controller. In 

summary, Case 1 refers to the resulting dispatch obtained from the proposed LP model, 

while Cases 2 and 3 refer to the combined LP-SAM resulted dispatch without and with 

the power conversion losses, respectively. Finally, Cases 4 and 5 refer to the dispatch 

obtained from SAM’s automated target controller, without and with the power 

conversion losses, respectively.  

Figure 10 shows the 24-hour average annual resulted dispatch of the battery given by 

the LP model and the combined LP-SAM model (i.e., Cases 1, 2 and 3 of Figure 9). It 

can clearly be seen that the profile of the LP model case is in a very good agreement 

with the two globally accepted as realistic cases of SAM, indicating a very good 

precision for a valid LP model. When comparing Case 1 with Case 3 (no losses) the 

normalized Root Mean Squared Error (nRMSE) is 1.88%, probably owing to the SAM’s 

non-linear battery model [87]. Particularly, during the running of SAM it was observed 

that, in SAM the battery requires longer time to fully charge than in the LP model.  

When comparing Case 1 with Case 2 (losses) the nRMSE is 2.10%, with the dispatch 

slightly reduced (shifted downward), as expected, due to energy lost inside the power 
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converters. The result of this comparison suggests that the combined LP-SAM model 

yields a probably even more accurate model for implementation. 

 

 

Figure 10: Annual 24-h average battery dispatch. Positive and negative power means discharging and 

charging, respectively. The resulting dispatch from the LP model (blue line) is also imported in SAM and 

SAM gives the final dispatch, with the red line corresponding to the combined LP-SAM final dispatch 

without power conversion losses, and the green line corresponding to the combined LP-SAM final 

dispatch with power conversion losses 

 

Finally, Figure 11 presents the annual net grid energy resulting from the dispatch 

models of Case 2 vs Case 4 and Case 3 vs. Case 5 of Figure 9. It is observed that either 

without or with the power conversion losses considered, the two resulting annual net 

grid energies are close to each other, with the proposed combined LP-SAM model 

giving a lower value for both scenarios than SAM’s automated target controller model.  

The corresponding Absolute Percentage Errors are 1.7% without losses and 2.0% with 

losses. The outcome of Figure 11 further enhances the trust for the validity of the 

proposed LP dispatch model, presented in section 3.1.2. Compared to SAM’s Target 

Controller, one has to mention that SAM (i) does not know the upcoming demand and 

generation and (ii) does not use a global optimization scheme. Since, the proposed LP 

paradigm can satisfy points (i) and (ii), a further reduction in Annual Net Grid Energy 

may be observed. 



66 

In the upcoming sections, the consideration of the automatic optimum determination of 

the appropriate desired weight values for enhancing the nearly zero energy target levels, 

the daily forecasting of both PV generation and load consumption and the effect of the 

forecasting error caused by the stochastic behaviour of PV generation and consumption 

are addressed. 

 

 

Figure 11: Annual net grid energy comparison between Case 2 and Case 4 (Figure 9) without power 

conversion losses, and between Case 3 and Case 5 (Figure 9) with power conversion losses. The blue bar 

refers to the resultant annual net grid energy with the SAM’s automated target controller dispatch. The 

orange bar refers to the resultant annual net grid energy with the combined LP-SAM model dispatch. 

 

3.2 Genetic Algorithm Model3 

As already mentioned, finding the optimum weight values is strongly related to the PV 

generation and load consumption profiles. Due to the stochasticity involved, the 

problem becomes a NP-hard optimization (non-convex) problem and thus, for 

addressing this issue, a heuristic optimization method, namely GA, is used in parallel 

with LP for finding the optimum weight values, based on the forecasted PV generation 

and load consumption provided by ANN (presented in section 3.3). Other heuristic 

optimization approaches may be applied of course; however, GA was chosen due to its 

 

3 Material from published paper [10] 
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general superiority when compared with other MATLAB available heuristic 

optimization methods [90].  

GA is a branch of AI and constitutes a method for solving constrained, NP-hard 

optimization problems relying on natural selection processes that imitates biological 

evolution [91]. In contrast to classical algorithms, which generate a single point at each 

iteration, GA produces a population of points and recommends the best point as an 

optimal solution to the next iteration [92]. Using random number generators (rather than 

deterministic computation), GA repeatedly modifies a population of solutions to 

progressively lead to an optimal solution. Hence, it constitutes a heuristic technique for 

optimization capable of minimizing the burden of computational time as well as the 

number of function evaluations needed [93].  

The main steps comprising the optimization process include the initial population 

generation, its evaluation, selection of the best candidate, crossover and mutation. This 

procedure is repeated until convergence. The general criterion for convergence is ‘a no 

change in the solution for n generations’ [92]. Thus, the exploitation of best solutions 

via the exploration of new regions guarantees a large search space, which heuristically 

provides a high-quality solution.  

The developed GA mathematical formulation, which searches for the optimum weight 

values based on the feedback from the proposed LP model, is shown below.   

 

Min. f
GA

 = ∑|Eim,LP(t) – Eex,LP(t)|

T

t

 (84) 

subject to 

 wim + wex + wch + wdis + ws = 1 (85) 

 wim, wex, wch, wdis & ws > 0 (86) 

 wim + wex ≥ wch + wdis + ws (87) 

where fGA corresponds to the GA objective function; Eim,LP and Eex,LP correspond to the 

import and export energies, respectively, obtained from the LP.  

The objective function in Equation (84), the nearly zero net-grid energy criterion as may 

be called, is necessary for flattening (or nearly zeroing) the daily net grid electrical 
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energy. Specifically, the absolute term is necessary for maintaining the positive 

difference between the import and export energies and thus, preventing the 

maximization of the export energy. In other words, the net sum of both energies shall 

ideally be 0 kWh or practically, as close to 0 kWh as possible.  

Due to the normalization of Equation (25), the sum of weights must equal to unity – see 

Equation (85) – and with constraint (86) none of the weights is assigned with the value 

of zero. To account for all optimization variables, this is also necessary for Equation 

(25). Finally, as mentioned in sub-section 3.1.2, for nZEBs the minimization of the net 

grid energy is of high priority and hence, the term wimEgrid,im
 * (t) + wexEgrid,ex

 * (t)  must be 

greater than wbat,chEbat,ch
 * (t) + wbat,disEbat,dis

 * (t) + wsEs
 *(t). This is ensured with the aid of 

constraint (87) and in this regard, the feasible exploration space is further decreased, 

mitigating the consequent computational burden. The mathematical model shown above 

constitutes an amelioration of a previously applied model presented in [10] and assists 

LP for minimizing the grid energy usage.  

Georgiou et al. [10] showed that the weights can adapt to the PV generation and load 

consumption of the day. For instance, with the aid of cross-correlation and Principal 

Component Analysis the authors presented that GA tunes each individual weight in a 

way that when the import energy is “penalized” with a low weight value, the battery 

discharging is penalized with a low weight value too, in order to increase its supply to 

the load. Similarly, when there is a need to charge the battery more, the weight 

associated with the energy storage is relaxed, in order to allow the battery to store more 

energy. This way, the export and import energies are minimized in an optimum manner, 

as it will also be demonstrated in Chapter 4.  

Figure 12 shows the different values assigned to the five different weights of the LP 

objective function by GA, for a complete annual simulation period. It can be clearly 

seen that wim and wex mostly share values closer to 1 and with the battery related 

weights (wch, wdis and ws) mostly sharing values closer to 0. With this figure it is clearly 

shown that GA mostly penalizes import and export energies with higher values, in order 

to allow the battery to harvest the PV energy as much as possible and thus minimize the 

energy exchange between the building and the grid.  
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Figure 12: Weights heat map 

 

3.3 Artificial Neural Network Model4 

As  already mentioned, for achieving daily global optimization, forecasting is necessary 

and for this purpose, two ANNs are utilized. The reader may refer to section I.4, in 

Appendix I, for more information regarding the relevant background theory, history and 

applications of ANN, as well as how a preliminary ANN design contributed toward the 

final ANN design presented here. 

The two ANN models here are used for forecasting the next day PV generation and load 

consumption, which are used as inputs by the LP-GA model. In this application two 

feedforward ANNs are used for forecasting the next day’s PV generation and load 

consumption, with their architectures shown in Figure 13. The ANN used for the 24-

hour PV forecasting (Figure 13(a)) utilizes as inputs the hourly PV ac generation of the 

previous day, from a dwelling located in the town of Nicosia in Cyprus, and the next 

day’s hourly forecast of the Global Horizontal Irradiance (GHI), for the same location. 

GHI is given from the Department of Meteorology of Cyprus, which uses a Numerical 

Weather Prediction (NWP) model for forecasting different meteorological parameters at 

20 different locations in Cyprus, as shown in Figure 14.  

 

4 Material from paper [79] 
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(b) 

Figure 13: (a) Proposed Feedforward ANN for PV Generation and (b) Proposed Feedforward ANN for 

load consumption forecasting 

 

 

Figure 14: Weather forecasting from Cyprus Department of Meteorology at 20 different locations (NWP 

model) 
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Further to the correlation results presented in section I.4.3.2.1, in Appendix I, using the 

generation of the previous day as one of the two inputs, allows exogenous factors 

affecting production, which are not measured or quantified in this case, to be captured 

and considered by the ANN. Such parameters may reflect to partial loss of production 

due to module, string and/or inverter failures, atmospheric pressure, PV panel soiling 

and so on. On the other hand, as it is known that, (i) the PV generation is highly 

correlated with Sun’s radiation, (ii) irradiance forecasts from Meteorological 

Departments are commonly given for horizontal surfaces and (iii) converting GHI to the 

actual irradiance hitting the PV modules (PoA Irradiance) is complex and not straight 

forward, GHI is chosen as the second input. With the aid of a trial and error approach, 

using nRMSE as the performance metric, 80 neurons in the hidden layer are used 

having sigmoid as their activation function and 1 output neuron in the output layer 

having a linear activation function for giving the next day’s PV generation forecast. 

With this configuration, a nRMSE of 11% was obtained for the studied year. 

Regarding the ANN used for the load consumption forecasting (Figure 13(b)), a similar 

to the PV forecast procedure explained above is followed. The load consumption of the 

previous day is used in this case, as it is necessary to capture exogenous factors not 

measured or quantified in this case, such as ambient temperature, CO2 concentration, 

natural illuminance (ambient lighting) and so on. Moreover, the weekday number along 

with the hour of the day for the forecasted period are used, as the load pattern is strongly 

correlated with the day of the week and the hour of the day. For instance, the load 

behaves differently in Sundays compared to Mondays and the peak load occurs, 

generally, in the afternoon. Lastly, for improving the learning of the load profile, inputs 

such as load’s moving average, moving minimum and moving maximum of the 

previous day are also utilized. With 30 neurons in the hidden layer having sigmoid as 

their activation function and 1 neuron in the output layer that possesses a linear 

activation function, a nRMSE of 6% is obtained for the studied year. In both networks, 

the training process is performed using the backpropagation learning algorithm and an 

annual training dataset obtained from a dwelling, located at Lat/Lon: 35.101765, 

33.348838, for 2017. 

 



72 

 

Figure 15: Monthly per daily-hour average of Forecasted and Measured PV and Load 

 

Finally, the ANN forecasts versus the measured values, on a monthly per daily-hour 

average, are shown in Figure 15, indicating the accuracy of the proposed ANN models 

and their ability to assist GA for searching the optimum weights and LP for minimizing 

the grid energy usage. Although the ANN models showed a good accuracy, it is known 

that the final solution of the dispatch becomes closer to the “real” optimum when the 

error between the predictions and the real values becomes lower. The study of such 

phenomenon requires a further considerable effort and consists a subject field of future 

work.  

3.4 Integrating ANN, GA, LP and SAM5 

So far, the proposed LP model was tested and validated with the aid of SAM using real 

– but at the same time historical – PV and load data without any consideration of the 

PV’s and load’s stochasticity. In other words, the proposed model, presented in section 

3.1, assumes perfect predictions and is not updated at every time-step when variations in 

the given (forecasted) PV and load may occur. Thus, it was impossible so far, to update 

LP with the SAM’s recalculated values (e.g. SoC) for every time-step and hence, 

achieve a more realistic global optimum dispatch. Moreover, due to the daily change in 

PV generation and load consumption, the optimum exploration of the daily optimum 

weights constitutes a NP-hard (i.e., non-convex) optimization problem and requires the 

 

5 Material from paper [79] 
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use of a heuristic approach. For addressing such issues above, the development, 

utilization and integration of both GA and ANN were necessary.  

This section demonstrates the holistic integration of ANN, GA, LP and SAM. With 

ANN forecasting the next 24-hour PV generation and load consumption, once per day, 

and GA giving the optimum weight values, based on the given forecasted data, the 

battery is dispatched in an adaptive and global optimum manner. This allows a battery 

dispatch to be globally optimized, daily, since historical, current and future values for 

both PV and load are recurrently considered, during the optimization horizon. 

Therefore, based on the input information mixture of the measured and forecasted 

values, the dispatch is rescheduled in a repetitive – but not receding – manner, for every 

timestep (one hour) of the optimization horizon (24 hours). As mentioned earlier in the 

Introduction and showed in section 3.1.4, for addressing the non-linear and complex 

nature of the battery and model its performance in a more realistic fashion, SAM is 

embedded in the proposed algorithm.  

At the end of each simulation day, the two ANNs forecast the next day’s PV generation 

and load consumption, while GA – based on the forecasts – repeatedly runs the LP 

algorithm until the next day’s optimum weights are found. With the resulting optimum 

weights, a forecasted dispatch for the next 24 hours is attained through LP and the final 

dispatch is then obtained with the aid of SAM. During the updating phase, at each time 

step, the matrices containing the PV and load forecasts are substituted by their 

corresponding measured values, the LP reruns relying on the new-updated data and 

SAM recalculates the final dispatch, based on the updated ideal battery dispatch from 

LP. Finally, at the end of the day, the resulting State of Charge (SoC) of the battery 

calculated by SAM is used as the initial SoC of the next day. This procedure is repeated 

for each day of the simulation period – i.e., for one year in this case. 

In Figures 16 and 17 the aforementioned procedure is graphically demonstrated with the 

aid of a block diagram and a flowchart. As mentioned earlier in this section, the 

information mixture of historical, current and future PV and load values leads to the 

daily global optimization scheme. This may be verified through Figure 16, as the input 

matrix to LP (PV and load) continually consists of previous (e.g., t – 1), current (e.g., t 

= 0) and upcoming (e.g., t = 1 … 23) PV and load values, for each time-step of the 

optimization horizon, and with the 24-hour dispatch repeatedly rescheduled for every 

time-step. Hence, based on the LP equations presented in section 3.1.2 and by the 
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definition of LP shown in section I.2 of Appendix I, a daily global optimization is 

always achieved. Finally, as of the algorithm’s flowchart shown in Figure 17, the 

parameters displayed on the right of each block, correspond to the output parameters of 

the current algorithm’s state, which are used as inputs by the algorithm’s next state. For 

instance, the state “GA weights optimization and LP”, the state at which both the 

optimum weights and the forecasted dispatch are obtained, provides the next state’s 

inputs such as the optimum battery charging and discharging energies along with the 

day’s initial storage level. 

Figure 18 shows an example of the proposed ANN-GA-LP-SAM model’s outcome, 

regarding the forecasted and updated dispatches and the battery’s SoC, for a three-day 

simulation period. A snapshot of the simulation, representing the forecasted dispatch for 

the 24th of January 2018 and the status of the updated dispatch for the same day at 

15:00, is shown in Figures 18(a) and 18(b).  

The top diagrams show the expected dispatch and the battery’s SoC of the day, whereas 

the bottom diagrams show how both the dispatch and the battery’s SoC evolve during 

the day when changes in PV and load occur. Similarly, Figures 18(c) and 18(d) show 

the overall forecasted (or expected) dispatch and the battery’s SoC along with their 

evolution, during the day, for the complete three-day simulation period. 

A visual comparison of the forecasted and measured values, for both PV and load, 

shows that a noticeable difference exists, resulting to a different from the expected 

dispatch. Despite the forecasting errors, it is clearly shown that the proposed model is 

able to adapt to any uncertain changes, in every timestep, and maintain the energy 

balance as well as the battery operation within its SoC limits. 
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Figure 16: Procedure of the forecasted and updated optimum dispatches, for a single day 
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Figure 17: Simulation algorithm flowchart 
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 (d) 

Figure 18: (a) Forecasted Dispatch for 24/01/2018 and updated Dispatch for 24/01/2018 (up to 15:00); 

(b) Forecasted battery SoC for 24/01/2018 and updated battery SoC for 24/01/2018 (up to 15:00); (c) 

Forecasted vs. updated Dispatch for 24–26/01/2018 and (d) Forecasted vs. updated SoC for 24–

26/01/2018. Storage Capacity = 9.3 kWh  
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4 Enhancing nZEBs based on Battery Performance, AI, Heuristic 

and Convex Optimization. A Base Study Results 6 

Chapter 3 demonstrated (i) the validity and the ability of the proposed LP model to 

reduce the daily import and export energies in a global optimum manner, (ii) the 

exploration of the optimum weight values utilizing a heuristic approach (GA) based on 

the forecasted data, (iii) the forecast of the next 24-hour PV generation and load 

consumption utilizing AI (ANN) and (iv) the integration of the LP along with ANN, GA 

and SAM for assisting the dispatch. Through the above, it was shown that the holistic 

proposed model is able to maximize the battery’s utilization throughout the day, based 

on the PV generation and load consumption and without worrying about users’ 

satisfaction, since the dispatch adapts to any uncertainties present in both the load 

consumption and PV generation.  

This Chapter presents the application of the proposed hybrid optimization model in a 

building case and demonstrates the outperformance of the proposed paradigm compared 

to the case when there is no storage and to an alternative dispatch case with storage. In 

particular, (i) the simulation data used is summarized and presented, (ii) a second cross-

validation (with the final simulation data) of the ideal dispatch obtained from the LP is 

attained with the aid of SAM, and (iii) a demonstration of the different annual results is 

made. 

4.1 Simulation Data 

As a base study, real PV and load measurements from a building, in Nicosia Cyprus, 

were collected and used for the period between 23 January 2018 and 22 January 2019. 

Recall that this this data is different from the one presented in section 3.1, since now an 

ANN is utilized using GHI forecasts for a different location given by the Cyprus 

Meteorological Department (Lat/Lon: 35.101765, 33.348838).   

With the PV and load data lying in the range of 15-min and hourly resolutions, 

respectively, the PV is converted to an hourly resolution data, by simply aggregating the 

15-min energy delivered in each hour. For instance, the hourly energy delivered at 

 

6 Material from paper [79] 
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08:00 am is the sum of the energy delivered at 07:15, 07:30, 07:45, and 08:00, and so 

on. 

For having a clearer understanding of the weather, at the location under study, Figure 19 

shows different weather-related parameters for one representative month per season in 

2018. The representative months selected are January for winter, April for spring, July 

for summer and October for autumn. By closely examining these parameters, one may 

conclude that in Cyprus the climate is significantly warm with high humidity levels. 

Despite the high temperature and humidity, which may affect the generation of the PV 

system, high irradiance levels are observed, leading to significant PV energy generation. 

On the other hand, the presence of high humidity and high temperatures lead to the 

intense use of cooling systems in summer, thus increasing the energy needs of a 

building. 

 

  

 

Figure 19: Maximum, Minimum and Average PV Generation, PoA Irradiance (including night-times), 

Ambient Temperature and Relative Humidity at the location under study 

 

Figures 20 and 21 present the total PV energy generated and load consumption and their 

daily average profiles, for the studied year, respectively. As can be observed, the highest 
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PV energy levels are gained in the 2nd quarter of the year (April – June), due to the high 

irradiance and relatively low temperatures, while the last quarter owns the lowest 

production, due to the increased number of cloudy days. With an average of a 12-hour 

daily generation (07:00–19:00), the concept of harvesting PV energy via storage in 

buildings, constitutes a key solution toward nZEBs. 

 

 

Figure 20: Total PV Generation and Load consumption by quarter in 2018 

 

 

Figure 21: Average 24-hour PV generation and Load consumption for 2018 

 

Compared to the PV generation, Figures 20 and 21 show that the total building’s energy 

needs, behave in a relatively opposite manner. Particularly, during quarters 2, 3 and 4 

either the load is greater or lower than the PV, with the only exception occurring in 

quarter 1, where generation is close to consumption. Moreover, the annual peak 
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consumption occurs in the 3rd quarter due to the increased cooling needs, the lowest 

consumption occurs in the 1st quarter due to the reduced cooling and heating needs and 

finally the daily peak load occurs roughly at 20:00. With the high imbalance between 

generation and consumption, which is a common phenomenon with existing building 

PV installations, the need of handling the daily and thus quarterly and annual 

mismatches is of great importance. As it was already shown, storage can enhance the 

daily self-consumption, by significantly reducing both the grid import energy (primary 

energy needs) and the grid export energy, contributing toward the nZEB attainment. 

This is also verified in the sequel of this Chapter. 

4.2 Cross-validating the proposed hybrid optimization model with 

SAM 

As showed in section 3.1.4, due to the non-linear and complex behaviour of batteries, 

SAM has been employed in this study for giving a more realistic and the final battery 

dispatch. According to the proposed mechanism, the final dispatch is driven by LP and 

obtained by SAM with the ideal battery dispatch imported in SAM, where the battery 

internal losses, dc and ac power conversion efficiencies and other complex calculations 

(e.g., SoC estimation, battery roundtrip efficiency and so on) are applied.  

As a case for the cross-validation analysis, PV and load data presented in sub-section 

4.1 along with a SAM model for Li-on NMC batteries were used. The main parameters 

of the battery used are mentioned in Table 7. 

 

Table 7: Battery Specifications 

Battery Parameter Value 

Storage Capacity 9.3 kWh 

Charging/Discharging Rate 5 kW 

Minimum SoC level 15% 

Maximum SoC level 95% 

dc-dc conversion efficiency 98% 

ac-dc charging efficiency 96% 

dc-ac discharging efficiency 96% 
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Further to the validation of the LP model shown by Figure 10, Figure 22 shows – for a 

ten-day simulation period – the resulting hourly dispatch of the battery given by the LP 

model and the final dispatch given by SAM. As can be seen, due to the various non-

linear and complex battery parameters, such as power losses and non-linear SoC 

estimation, the resulting final dispatch is slightly different from the one provided by LP. 

Specifically, the battery charging and discharging energies, initially dispatched by the 

LP model, are slightly lower and higher, respectively, due to the power losses of both 

the battery and the inverters.  

 

 

Figure 22: Battery Energy Dispatch of LP and LP–SAM for a 10-day simulation period with 9.3 kWh 

Storage Capacity. Positive energy means discharging and negative energy means charging 

 

Figure 23: Annual 24-hour average dispatch between the LP model and the combined LP-SAM model 

with a 9.3 kWh Storage Capacity 
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The existence of such phenomenon may also be verified with the aid of Figure 23, 

where the annual daily average of the battery’s ideal profile is slightly higher than the 

more realistic dispatch. Nevertheless, it can clearly be observed that the profile of the 

LP model case is again in a very good agreement with the globally accepted as realistic 

case of SAM, indicating a very good precision for a valid model. The result of this 

comparison suggests that the combined LP-SAM model yields a probably even more 

accurate model for implementation (an important novel feature of the proposed 

method). 

4.3 Annual Net-grid Energy, Self-Consumption and Primary Energy 

Consumption 

Maintaining low primary energy needs in buildings and simultaneously maximizing the 

consumption from buildings’ RES is vital and a key requirement toward nZEBs. In this 

regard and from the electrical point of view, the concept of balancing (or equating) the 

annual load consumption with the annual PV generation by merely sizing the system, 

either with or without storage, does not necessarily achieve the best solution for 

maintaining the import energy at low levels, without making use of a global 

optimization dispatch scheme. Even if a building is energy efficient and the annual 

aggregated PV generation is very close to the annual aggregated load consumption – a 

common design approach for nZEBs – a noticeable daily imbalance may exist, as shown 

with the grey line in Figure 24. 

 

 

Figure 24: Annual per daily-hour average profile of net grid energy with 9.3 kWh storage capacity 
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Therein, the annual per daily-hour average profiles of the net grid energy are presented 

for two different cases: (i) when no storage is used, and (ii) when daily global 

optimization dispatch, with storage, is utilized. When no storage is used, the REG is 

self-consumed only when there is PV generation and hence, with the surplus energy 

exported to the grid, whereas in the second case, the nZEB requirement is further 

achieved with the initial curve flattened, smoothed and maintained closer to the 

reference line of 0 kWh. This indicates that the proposed method for managing the 

nearly zero net-grid energy consumption, daily, may be in line with 2010/31/EU 

Directive requirement. 

To further highlight the need of a daily global optimization scheme, the proposed model 

is compared with a conventional default controller of SAM, known as Target Controller 

[86]. As already mentioned in section 3.1.4, this controller aims to maintain the grid 

energy at a predefined by the user level and thus, it is possible to preserve the net-grid 

energy to low levels by simply defining a level of 0 kWh for each timestep of the 

simulation period.  

 

 

Figure 25: Comparison of the annual Total Grid Energy (Import + Export) for cases without storage, with 

Target Controller and with the proposed model, for storage capacity cases of 6 kWh, 9.3 kWh and 11.4 

kWh 

 

For comparison purposes, a parametric study is also conducted in order to observe the 

effect of three different storage sizes of 6 kWh, 9.3 kWh and 11.4 kWh – found from 

residential batteries available in the market – leaving all parameters (see Table 7) other 
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than the storage capacity unaltered. As a first outcome of the parametric study, Figure 

25 illustrates the annual aggregated usage of the grid, described by the sum of the 

annual import and export energies. In this analysis, the three cases studied correspond to 

a scenario when (i) no storage is used, (ii) when storage is used and dispatched by a 

conventional controller (Target Controller) and (iii) when storage is used and dispatched 

by the proposed global optimization scheme (ANN-GA-LP-SAM).  

As can be observed, and as expected, without storage the annual aggregated usage of 

grid is much higher, compared to the cases when storage is used. The case with Target 

Controller returns an average (considering all battery sizes) reduction of ~48%. Finally, 

the case making use of the proposed global optimization scheme exhibits a further 

average reduction of 5% (total average: ~53%), thus indicating the dominance of a daily 

global optimization dispatch. Regardless of the further reduction in the aggregated 

usage of the grid as the battery sizes increases, as shown in Figure 25, it is found that 

with a battery size of 11.4 kWh a minimum usage of ~2090 kWh is achieved. However, 

it was found that the use of larger batteries does not imply further improvements, due to 

the nature of the studied PV and load.  

 

 

Figure 26: Self consumption for cases without storage, with Target Controller and with the proposed 

model, for storage capacity cases of 6 kWh, 9.3 kWh and 11.4 kWh 

 

Lastly, the outcome presented in Figures 24 and 25 is reflected in Figure 26, where the 

annual self-consumption seems to be enhanced by application of the proposed model. 

Compared to the case without storage, self-consumption is almost double on average 
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when storage is dispatched with Target Controller, and a further average increase of 3% 

is achieved when storage is dispatched by the proposed paradigm.  

 

 

Figure 27: Annual per daily-hour Self-Consumption without storage and with a 9.3kWh storage, shown 

with PV generation and building load 

 

 

Figure 28: Self-Consumption by Quarter, for the year studied, without storage and with a storage of 9.3 

kWh capacity, shown with PV generation and building load 

 

Furthermore, taking the high mismatch between the PV generation and load 

consumption into consideration (presented in Figures 20 and 21 and further verified in 

Figure 24), the significant enhancement – by the use of storage – of self-consumption in 

each hour and seasons, throughout the year, are demonstrated respectively in Figures 27 
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and 28. It is clearly shown here that without storage there is a strong daily mismatch 

between PV and load (Figure 27) and thus a higher import energy. 

On the other hand, self-consumption is increased, as shown in Figure 28, when storage 

and daily global optimization dispatch are considered, with the storage bringing self-

consumption closer to either the load consumption or the PV generation, in each of the 

annual quarters. Finally, the extended self-consumption throughout the day, due to the 

battery behaviour driven by the proposed model, may be observed in Figure 27. It is 

clearly observed here that the battery stores the PV surplus energy and supplies the load 

when there is not enough PV generation. Owing to this dispatch scheme and as one may 

conclude through Figure 28, 60% of the annual consumption is covered by the PV. 

Finally, for proving the enhancement of the nZEB levels of a building with the aid of 

the proposed approach, the primary energy consumption of the building throughout the 

annual simulation period is calculated and compared. According to a primary energy 

example calculation presented in the “Technical Guidance for nZEBs”, published by the 

Cyprus Ministry of Energy, a similar calculation may be attempted for verifying the 

outperformance of the proposed methodology in maintaining and enhancing the nZEB 

levels of a building. According to the example, the primary energy consumption of a 

building may be calculated by the difference of the grid energy needs and the energy 

self-consumed via the integrated RES such as PVs. Finally, by multiplying the resultant 

final energy with the final to primary energy conversion factor, the primary energy 

consumption of the building, in kWh/m2/year, may be obtained.  

Table 8 shows the primary energy consumption results for a 1-bedroom apartment case 

of 50m2, located in Limassol, Cyprus and built in 2008, before the current legislation for 

nZEBs in Cyprus. The measured data corresponds to the period of 23/01/2019 – 

22/01/2020 and as it was found the apartment consumed 60 kg of Liquefied Petroleum 

Gas (LPG) for heating, during a 4-month winter period (December – April). Moreover, 

the rest of the energy needs – i.e. cooling, lighting, cooking, domestic hot water and 

appliances – are supplied by electricity and it was measured that those needs correspond 

to a final electrical energy of 2299.76 kWh. By taking into account that a 1 kg of LPG 

contains 14.019 kWh of primary energy [94] and the final to primary energy conversion 

factor for electricity in Cyprus is 2.7 [95], the primary energy consumption of the 

apartment, during the measured period, can be calculated when: i) no PV is used; ii) a 

PV is used; iii) PV along with a battery is used and the proposed method is applied; iv) 
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PV along with a battery is used and the Target Controller of SAM is applied. The table 

shows that the proposed model outperforms a rule-based algorithm as the Target 

Controller, with the outcomes of both methods in a good agreement; hence, indicating 

once again the validity of the proposed model.  

 

Table 8: Primary Energy consumption calculation of a 50 m2 1-bedroom apartment for the period 

23/01/2019 – 22/01/2020 

 no PV PV 

PV+BESS 

(TARGET 

CONTROLLER) 

PV+ BESS  

(ANN-GA-LP-

SAM) 

LPG - Heating Primary Energy 

consumption (kWh) 
841.14 841.14 841.14 841.14 

All other energy needs from 

electricity (kWh) 
2299.76 1774.50 708.08 705.87 

Final to Primary Energy conversion 

factor (electricity) 
2.70 2.70 2.70 2.70 

Building Area 50.00 50.00 50.00 50.00 

Primary Energy Consumption 

(kWh/year) 
7050.49 5632.30 2752.96 2746.99 

Primary Energy Consumption 

(kWh/m2/year) 
141.01 112.65 55.06 54.94 

Notes:  

i) The PV system is 1.5 kWp and generates ~2277 kWh/year  

ii) For the sake of simplicity, the battery size was kept to 9.3 kWh 

iii) The scenario with the PV only is based on a simple if-else rule. If (Load – PV > 0) then (import energy = load –  

PV) else (import energy = 0). If (Load – PV < 0) then (export energy = │load - PV│) else (export energy = 0) 

 

Particularly, the 1-bedroom apartment has a primary energy consumption of 141.01 

kWh/m2/year and 112.65 kWh/m2/year without and with PV, respectively and according 

to the Cyprus 121/2020 Decree for the nZEBs consumption, new buildings from 2020 

onwards shall have a primary energy consumption of 100 kWh/m2/year. Although the 

apartment was built in 2008 – before the 2020 nZEB legislation – it is possible to 

further reduce its primary energy consumption and maintain it below the current 

thresholds, simply using a Battery Energy Storage System (BESS) along with a PV and 

the proposed method. Of course, passive measures – such as thermal insulation and so 

on – may also be applied for reducing the energy needs and allowing smaller PV and 

battery sizes. 
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4.4 Potential application of the proposed method 

For enabling the enhancement of a nZEB’s energy autonomy, a potential application of 

the proposed method may be achieved through a step-by-step procedure. Firstly, 

historical data of GHI, PV production and load consumption profiles, at the location of 

interest and for a sufficient period of time (e.g. one year), are essential for properly 

training the proposed ANN models. Measurements regarding GHI may be provided 

either by local Meteorology Authorities or downloaded from an online solar radiation 

platform, such as PVGIS, which is the EU’s official solar radiation database enabling 

access to hourly radiation profiles and other weather-related data at any location across 

Europe. Load consumption measurements may become available using either existing 

infrastructure of the building’s installation such as Smart Meters or digital energy 

meters, such as efergy®, installed after the main circuit breaker of the installation. 

Finally, PV measurements could be either accessed through the embedded software of 

the PV system’s inverter, or accurately estimated through a professional PV system 

design tool such as SAM. Nevertheless, it is recommended for the PV generation data to 

be obtained directly from the inverter, for a more accurate PV profile. Once a proper 

ANN training and validation is achieved and GHI forecasts are available through local 

Meteorology Authorities or Meteorology Companies (e.g. SOLARGIS), then the ANNs 

are ready to be embedded in the main algorithm.  

For enabling the battery dispatch to be derived for the next day, different 

parameterizations and set ups are needed within the ANN algorithm. Specifically, with 

the aid of existing programming interfaces (e.g. APIs), an extension of the main 

algorithm may be developed for enabling the automatic download of the next day’s GHI 

forecast (e.g. from PVGIS platform) and the previous day’s PV generation and load 

consumption profiles (e.g. from inverter and efergy® meter). The ANN forecasting 

algorithm can then be set up to download the aforementioned data and forecast the next 

day’s PV generation and load consumption profiles automatically, at the end of each 

current day (e.g. at 23:00). 

Once the forecasts of the PV and load profiles have been provided by the ANN 

algorithm, the GA-LP-SAM algorithm may now calculate the battery’s next 24-hour 

dispatch, as presented in Chapter 3. Moreover, once the measurements of the PV and 

the load are available at each current timestep (e.g. hour), the GA-LA-SAM algorithm is 
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ready to update and recalculate the 24-hour dispatch. Then, the fraction of the algorithm 

developed to communicate with the battery can send the command to the battery’s 

controller requesting the desired energy from the battery for the current timestep – i.e., 

charge, discharge or remain idle. Finally, this procedure is repeated for each timestep of 

the algorithm (e.g. every hour, every 30 minutes, and so on), with the algorithm 

returning to its initial state (forecasting) at the final timestep of the current day – i.e., 

23:00, 23:30 and so on.  
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5 Conclusions 

In general, the plethora of proposals for moving towards nZEBs address the 

determination of the building parameter during the design and construction phase of 

such buildings, and different approaches focusing on the daily BEM optimization 

mostly concentrate in themes related to financial costs minimization. Hence, a model 

integrating the nZEB concept during the daily operation of the building was yet to be 

proposed.  

Based on this fact, this Thesis proposed an approach, which mainly utilizes Convex 

Optimization for an nZEB’s daily energy optimization, via storage and integrated PVs. 

For being in line with the EU nZEB related Directive, a nearly zero net-grid energy 

criterion is integrated within the optimization problem, in order to achieve the flattering 

(nearly zeroing) of the grid energy usage of a building, in a daily, optimum and adaptive 

manner. Furthermore, having in mind the rising trend of electrification in buildings, the 

inspiration of this work also rises from the fact that, a simple, yet very efficient 

optimization dispatch model in line with storage, can highly assist the design measures 

already taken and thus, further contribute toward the implementation of nZEBs. 

To this extent, this work has aimed at covering the need for a new model able to manage 

an electrical storage system with an integrated PV system, on a daily basis. Such 

management allows the minimization of the primary energy consumption, from the 

electrical point of view, through a daily global optimization method within a building. 

This has been achieved through a novel approach holistically integrating ANNs’ 

forecasts with a hybrid and adaptive GA-LP optimization approach and a battery 

realistic dispatch software (SAM). The current study showed the significant reduction of 

a building’s aggregated grid usage, throughout the year, in relation to the sum of import 

and export energies. Owing to this minimization, the primary energy consumption of the 

building is further reduced, allowing the nZEB levels to be maintained, while the 

building is in operation. 

It must be stressed that the model proposed in this Thesis has mainly focused on zeroing 

the daily net electrical energy, as it is expected for nZEBs. In the context of nZEB 

definitions, electricity prices, investment costs, operation and maintenance costs and so 

on, do not necessarily act as a low energy target and remain beyond the scope of this 

study. To use such factors/parameters in a problem, as the one presented here, would 
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limit its possible findings as the solutions to a specific and not a global problem, since 

these factors strongly rely on subsidies, loans, surplus energy sell price, electricity 

buying price, PV and battery prices, and so forth. Some of these – e.g., subsidies – may 

not even be available in many countries and, more importantly, they may change in an 

unpredictable way, based on a country’s amendment on energy policies and/or energy 

economics. Hence, an optimized solution based on today’s situation may not be suitable 

for future times. On the other hand, addressing the sheer energy size and not its cost 

toward achieving low energy targets is a common and global problem that can be 

adopted irrespective of costs and prices. Besides, it was shown by many authors that 

electrical storage and RES prices are continually falling, leading to the increased 

adoption and utilization of such technologies. 

Returning to this study’s findings, with the battery essentially acting as an “extension” 

of the PV generation throughout the day, a parametric study conducted using three 

different storage sizes has shown that – within the framework of the base study – the 

average self-consumption can increase by a factor of two, the annual aggregated grid 

usage (import + export energies) can be reduced by 53% on average, the annual load 

can be mostly supplied by the PV at a rate of 60% and the building’s annual primary 

energy consumption can be significantly reduced, as compared to the no-storage 

scenario. Finally, by accurately forecasting the PV generation and the load consumption 

(RMSE of 11% for PV and RMSE of 6% for load) and optimally driving the coupled 

LP-SAM model through GA, an adaptiveness of the model in every timestep is 

observed, leading to better outcomes compared to a conventional, rule-based, dispatch 

model.  

Based on the findings of this research, the usefulness of a practical application of the 

proposed approach in each individual building consists in contributing toward an energy 

efficient system. Particularly, aiming the enhancement of an nZEB’s energy autonomy 

and its daily zeroing of the net grid energy, it is possible in a district to simultaneously 

achieve a higher penetration of Distributed Energy Resources (DER) and a lower energy 

exchange between the buildings and the grids. This will also allow existing grids to 

adapt to these challenges, without the need of introducing expensive and complex 

mechanisms from the Grid Operators. Yet, this remains a challenge, as current policies 

within the EU need to be altered in order to for support and enable such schemes. In this 

regard, researchers and professionals may be influenced toward the development of new 
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controllers, in order to meet the desired energy levels of an nZEB, on a daily basis and 

hence, throughout the year. 
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6 Future Work 

Further to the step-by-step procedure described in section 4.4 and the study of the effect 

of prediction error on optimality, the model presented in this Thesis may be used as a 

basis for a potential future application. Nevertheless, for a complete and integrated real 

application, fields such as battery aging and degradation along with the integration of 

the proposed approach on existing technologies (e.g. Field Programmable Gate Arrays – 

FPGA) are essential. 

With these kind of approaches existing PV systems may become, from passive 

generation systems, active generation systems, by adapting to users’ energy needs. 

Thus, any need of users to have expert knowledge in fields such as Artificial 

Intelligence and Convex Optimization will not be required. 
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Figure 29: Proposed future work 
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Figure 29 proposes a potential real-life application of the hybrid optimization model 

presented in this Thesis. In this figure, power flow (red lines) along with data flow (blue 

lines) are shown. Within this context, energy may be exchanged between the grid, 

battery, load and PV and different data such as current and historical PV generation and 

load consumption along with solar radiation forecasts may be available through the 

web. Additionally, a FPGA or similar device may be used to collect the web-based data 

and decide the updated battery charge or discharge, based on the data aforementioned as 

well as data related to battery health, such as energy throughput, remaining capacity, 

remaining charge, charging/discharging cycles and so on. Data collection and command 

signalling may be used via standard programming interfaces (e.g. API) and 

communication protocols (TCP/IP, Modbus and so on). Nevertheless, such an 

application requires a more considerable effort and analysis and constitutes a naturally 

consequent study for the future. 
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APPENDIX I – Supportive Material 

I.1 Zero Energy Buildings 

I.1.1 General definitions 

In 2015, the US Department of Energy published a guide titled as “A Common 

Definition for Zero Energy Buildings” stating that a ZEB is “an energy-efficient 

building where, on a source energy basis, the actual annual delivered energy is less 

than or equal to the on-site renewable exported energy” [96]. However, discussions and 

debates on how a ZEB should be and how the energy boundaries of the buildings are 

defined, makes the understanding and the development of such buildings more 

challenging [97]–[99]. For this reason, most of studies are suggesting and proposing 

new definitions for ZEBs and different calculation methodologies for the balance of 

both the energy and the carbon emissions associated with the building itself.  

Even with the variety of definitions found in literature, the main concept of a ZEB, 

which is the reduction of the energy needs – via energy efficiency – and the balance of 

the energy demanded from the different grids with the energy supplied by either local or 

nearby RES, remains common. Yet, what mainly differs in each study is the calculation 

methodology for achieving these balances in a low energy building.  

Torcellini et al. [100] stated that the general concept of a ZEB is the balance or the 

negative difference of the net sum between its annual grid energy and the energy 

supplied by local RES. Hence, the authors defined a Net ZEB (NZEB) as a building of 

high energy efficiency with low energy needs, so that the balance mentioned above can 

be achieved with the aid of RES. The authors expanded the term ZEB further and 

suggested definitions such as site ZEB, source ZEB, emissions ZEB and cost ZEB, 

depending on the climate, energy cost, greenhouse gas emissions, the investor and the 

project. The concept of a NZEB is the main interest in the study published by Sartori et 

al. [101], since the term ZEB may be more general and may also refer to standalone 

buildings. Another crucial point stated in this study, is the lack of an official 

characterization of a NZEB, which does not allow countries to define their own 

definition for a NZEB correctly, since these types of buildings solely depend on the 

energy targets-policies, climate conditions and so forth. Thus, the authors propose the 

term NZEB as a building connected to the grid and simultaneously balancing its energy 



115 

needs, but this energy balance needs to be addressed by different means such as 

defining the energy balance boundaries of the building, the physical boundary of the 

building, the metrics used and other parameters necessary towards a NZEB. Their main 

methodology is concentrated on a weighting system measuring and calculating different 

factors for reaching the so called Net ZEB Balance, which is simply the equality (or 

even negative value) of the difference between the weighted demand and the weighted 

supply within a period of time – usually a year. To this extent, they used different 

calculations and usable definitions necessary for achieving that balance.  

Kilkis [102] proved that a NZEB is not necessarily an environmental-friendly building, 

as it actually emits greenhouse gases even if its metric energy is balanced with on-site 

RES. The author suggests and proposes a new definition for ZEB called Net-Zero 

Exergy Building (NZEXB), since the exergies of the heat energy along with the 

electrical energy are not balanced even if their energy balance is achieved. Hence, 

through the new metric method, it is possible to rate the real environmental impact of 

the building by also considering the balance between the exergies of the building and 

the carbon emissions. The definition of the NZEXB is stated as a building, which “has a 

total annual sum of zero exergy transfer across the building-district boundary in a 

district energy system, during all electric and any other energy transfer that is taking 

place in a certain period of time” [102].  

Kurnitski et al. [103] proposed a framework for helping experts in EU member states to 

clearly understand the concept of a NZEB and a nZEB. They proposed the definition of 

a nearly net ZEB (nnZEB) based on the Energy Performance of Buildings Directive 

(EPBD) and related EU standards. They stated that a nnZEB is a building consuming a 

“national cost optimal energy greater than 0 kWh/m2/year of its primary energy”. Of 

course the minimum value for the primary energy shall be specified by each member 

state [104]. They defined primary energy as the difference between the delivered energy 

and the exported energy (RES) multiplied with the primary energy factor (final to 

primary) specified by the regulations of each member state. The authors also stated that 

the identification of the system’s boundary is very important, as it determines which 

types of energy flows are to be integrated into the problem. Finally, the system’s 

defined boundary should always take into account, as they mentioned, the energy flows 

related to the delivered energy for district heating, district cooling, electricity and 

renewable and non-renewable fuels and to the exported energy such as local RES.  
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In contrast with ZEB, whose definition is still under a wide discussion, the 2010/31/EU 

directive clearly defines a nZEB as a building of high energy efficiency with a 

significant portion of its very low energy needs to be supplied by either local or nearby 

RES. The main parameter set in this Directive, for quantifying the definition of nZEBs, 

was the building’s primary energy consumption measured in kWh/m2 per year. This 

parameter must remain as low as possible, depending on the EU member state energy 

needs, climate and so on. Hence, EU member states were obliged on proposing their 

own limits on the building’s primary energy consumption and on developing their own 

methodology for calculating the building’s primary energy consumption, according to 

EU standards and guidance provided within the EPBD. 

The Directive defines primary energy as the “energy from renewable and non-

renewable sources, which has not undergone any conversion or transformation 

process,” and demands energy needs for heating, cooling, ventilation, hot water and 

lighting to constitute the main parameters for calculating the building’s primary energy 

consumption. Moreover, it is also required that the positive effect of RES, electricity 

produced by cogeneration, district or block heating and cooling systems and natural 

lighting must be considered, when the primary energy is calculated. 

As aforementioned, each EU member state should define any requirements necessary 

for limiting the building’s primary energy needs. For instance, The Republic of Cyprus 

issued the latest nZEB requirements Decree 121/2020, which is in force from 1st of July 

2020 and requires each new building to comply with the requirements shown in Table 9. 

Furthermore, technical guides, examples and information related to nZEB are also 

published on the official website of Cyprus Ministry of Energy, Commerce and 

Industry, mainly for enabling the easier understanding, adoption and implementation of 

nZEBs. As it may be seen, such requirements compose passive measures and cannot 

manage the building’s primary energy consumption affected by the stochasticity of the 

users’ behaviour and renewable generation. 

Based on the definitions presented in literature, it is clear that a green building – i.e., a 

building of high energy efficiency with low energy needs (e.g. ZEB, NZEB, nZEB, and 

so on) – is a means for reducing its primary energy needs and, simultaneously, increase 

its share of renewable energy in an interconnected energy grid. However, maintaining 

the nZEB’s minimum requirements, daily, remains challenging, since the total primary 

energy of each building highly depends on the users’ behaviour. 
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Table 9: Minimum requirements for new buildings in Cyprus 

Requirements 

Energy efficiency on the energy certificate of the building A 

Maximum primary energy consumption for residential buildings 100 kWh/m2/year 

Maximum primary energy consumption for non-residential buildings, excluding hotels 125 kWh/m2/year 

Maximum primary energy consumption for hotels 220 kWh/m2/year 

Maximum average thermal permeability U for walls and elements of the construction (columns, beams 

and walls) contributing part of the building’s shell. The increase of the thermal permeability U (beyond 

this value) is only allowed in cases when passive solar systems are used (e.g. Trombe walls, walls with 

high thermal storage) 

0.4 W/m2/K 

Maximum average thermal permeability U for horizontal structural elements (floors, floors in cantilever, 

inclined roofs) and any other roofs being part of the building’s shell.   
0.4 W/m2/K 

Maximum average thermal permeability U for doors and windows, excluding shop showcases 2.25 W/m2/K 

The increase of the above thermal permeability values is only allowed when the total maximum average 

thermal permeability of the building’s shell is not greater than:  

Shop showcases are excluded 

0.65 W/m2/K 

Maximum average shading factor for windows being part of the building’s shell, excluding shop 

showcases 
0.63 

Maximum energy consumption for heating in residential buildings 15 kWh/m2/year 

Average maximum lighting power installed for office buildings 10 W/m2 

It is allowed to increase the above maximum lighting power installed in case of: The building is equipped with an automated management system, which allows: 
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Requirements 

i) The continuous monitoring, recording, analysis and the ability of adapting the 

lighting energy consumption 

ii) The comparative analysis of the building’s energy performance, locating any 

losses in building’s lighting efficiency and informing the technical manager or 

department regarding ways for improving the energy efficiency 

Least value of the total primary energy consumption coming from RES.  

RES systems installed shall consider the estimated consumption profile of the building, so as the energy 

generated being consumed by the building itself, where this is technically and economically feasible. 

For residential buildings having solar systems for domestic hot water needs, the installation must be in 

accordance with the Technical Guidance of Solar Systems and the terms of the competent Urban 

Planning Authority 

9% for hotels and 25% for all other building types 

  

Source: [105] 
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I.1.2 Moving toward ZEBs and some calculation methodologies 

As it has been presented in the previous sub-section, the implementation of a ZEB or a 

very low-energy building (e.g. nZEB) is quite challenging, due to the different factors 

affecting the energy performance of the building. Despite the energy performance 

problem, energy and investment costs are also becoming a challenge for such buildings. 

This section reviews studies found in literature related to the concept towards a ZEB. 

This includes, the different calculation methodologies at the design phase, the different 

methodologies for the energy management within a building and the different 

techniques for the maximum utilization of the renewable energy supplied by local RES 

in buildings. Obviously, a combination of the above may be necessary towards ZEB – 

especially for the balance or the reduction of the total primary energy, which is 

influenced by the building’s location, construction materials, weather conditions, user’s 

behaviour, building efficiency, energy and installation costs and so forth. 

Sartori et al. [101] presented different approaches towards a NZEB based on different 

selection criteria tools and on the type of balance selected according to the available 

data at the design phase. The core calculation of their methodology is the Net ZEB 

Balance shown in Figure 30. 

 

 

Figure 30: The net ZEB balance concept [101] 

 



120 

Kurnitski et al. [103] proposed a simplified method towards a nnZEB. The main target 

was to help experts in each EU member state to have a clear idea of the general concept 

of a ZEB and of the official definitions of a nZEB given in 2010/31/EU Directive [104]. 

Further to the different official definitions presented in the fields of delivered energy, 

exported energy, net delivered energy, system boundary, CO2 emission coefficient, 

primary energy and energy performance of the building, the authors propose the 

diagram shown in Figure 31 as the main driver towards a nnZEB.  

 

 

Figure 31: Energy boundary of net delivered energy [103] 

 

Hamdy et al. [106] developed a method in compliance with the 2010/31/EU Directive 

for selecting the optimum variables for a nZEB, such as wall insulation, roof insulation, 

floor insulation, types of windows, RES, heating system and so forth, under a cost 

optimum solution considering both the building’s primary energy consumption and 

investments. The method is based on minimizing two objective functions regarding the 

primary energy and the lifecycle cost of the building, through GA. The authors 

considered, among other technical service systems, the total energy needs of the 

building including heating, cooling, ventilation, lighting, pumps and fans, domestic hot 

water, cooking, appliances and the energy provided by RES. The defined solution is 

processed in three stages. The first stage is used to find the optimum variables for the 

building’s envelope affecting the thermal performance of the building (insulations, 
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window type, building tightness). The second stage is used for assessing the primary 

energy and the lifecycle cost of the optimal combinations derived from stage 1 and 

suggests the optimum heating options such as electrical heating, oil boiler, district 

heating or ground source heat pump. The third and final stage is used for further 

reducing the primary energy consumption and the lifecycle cost by finding the optimal 

sizes of the RES (solar-thermal and PV). Among their many conclusions, they found 

that the cost optimum primary energy consumption for a nZEB should lay in the range 

of 93 and 103 kWh/m2/year, the cost optimal size of the PVs – in buildings having high 

electrical demands (electrical heating and A/C units) – should be between 15–20m2 and 

5m2 for buildings having fuelled based heating systems and for a nZEB, the solar-

thermal collectors could be up to 15m2. Obviously, such conclusions may not be valid 

for every region or EU member state; nevertheless, application of this method could 

lead to analogous results. 

Model calculations for determining energy related cost optimal levels for a nZEB were 

proposed by Kurnitski et al. [107]. The authors propose the maximum primary energy 

requirement for a nZEB leading to a minimum life-cycle cost, without the need of using 

iterations or an optimization tool. The methodology is based on the calculation of the 

building’s envelope construction concept and the calculation of the NPV . Once the 

energy profiles of each building were known, the authors could estimate the global 

energy related cost. They concluded that, for a detached house in Estonia, a 110 or 140 

kWh/m2/year of primary energy was the cost optimum solution, when specific 

insulation levels and technical systems sizes (solar thermal collectors, ground source 

heat pumps, etc.) are adopted. Among different combinations of the technical systems it 

was shown that the cost optimum primary energy is reached using either systems, a 

ground source heat pump or a gas heating system. Finally, the authors stated that 

installing PVs the primary energy could be further reduced; however, this would 

increase the construction costs.  

Pikas et al. [108] used a similar approach as Kurnitski et al. [107] for finding the cost 

optimal primary energy consumption of an office building. The obtained results were 

based on data taken by [107] and on insulation levels as well as the window to wall 

ratio. With a 3-step procedure (1-optimal wall insulation thickness, 2-Cost optimal 

windows size and 3-Energy analysis with and without PV), the authors found that a 20-

year cost optimal primary energy consumption – for an office building in Estonia – is 
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between 100 and 130 kWh/m2/year using a smaller window to wall ratio, triple glazing 

and argon filled windows along with a wall insulation of 200 mm thickness.  

Silva et al. [109] presented a methodology for the transformation of existing buildings 

into nZEBs. A novel modification of the buildings’ façade under a multi-step procedure 

was introduced with the main target of optimizing the buildings’ performance at the 

lowest cost possible. The study took place in Portugal in compliance with the 

Portuguese building regulations and in line with the EPBD recast. The authors 

developed a low cost prefabricated retrofit module able to be attached on the existing 

walls of the building in order to improve its energy performance. The steps followed in 

the study were the optimization of the design module installation, the calculation of the 

optimum insulation thickness of the module with the aid of the NPV and Modified 

Internal Rate of Return and the application of other energy efficiency measures such as 

building envelope improvements, replacement of existing mechanical systems with new 

of a higher efficiency and the installation of local RES, as required by the EPBD recast. 

The authors were able to calculate the cost optimum solution regarding the 

transformation of an existing building to a nZEB, by simply attaching a special (low-

cost) material to the walls in addition to the standard energy efficiency measures (RES, 

window replacement, roof insulation, etc.). Finally, it was stated that the climate 

conditions are highly correlated with the results, as the climate conditions affect the 

buildings’ energy performance. Nevertheless, their proposed method can be used 

everywhere and for that reason they also suggest other solutions, such as variation of the 

retrofit module insulation thickness and construction material (Aluminium composite 

finishing, Rock wool insulation, etc.) that would give different U-values, heat flux and 

temperature distribution across its surface. 

Through this review on ZEBs, the main target of reducing the building’s primary energy 

remains unchanged across all the proposed definitions and methodologies towards 

nZEBs. Despite the variety and high number of proposals, the transition from the 

current low adoption case towards a high adoption case, so the defined energy target 

levels are met, is still challenging. Taking into account both the nZEB low adoption rate 

and the rising trend of electrification in building energy sectors (e.g., the transition from 

traditional heating systems to heat pumps) [4], [110], electrical storage may 

significantly contribute to the nZEB target, if it is seen as a BEM medium instead of an 

investment of high economic cost.  
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I.2 Convex Optimization 

This section explains, in brief, the relevant background theory of convex and linear 

optimization, as this Thesis utilizes LP. The main aim is to show how mathematical 

optimization is defined, how an optimization problem is mathematically expressed and 

how a non-linear (convex) problem may be transformed into an equivalent linear 

problem. 

Mathematical optimization, in general, is the topic in mathematics that is concerned 

with finding a solution, which minimizes or maximizes a function either locally or 

globally, with respect to certain criteria. In other words, finding the optimum x* that 

minimizes a function f(x) and satisfying the constraints, then there is no z such that f(z) 

< f(x*). Similarly, finding the optimum x* that maximizes a function f(x), then there is 

no z such that f(z) > f(x*) [81], [111]; where, z is an arbitrary value in the domain of f(x). 

The standard form of a mathematical optimization problem may be presented by 

equations (88) and (89) below.  

 minimise f
o
(x) (88) 

 subject to  f
i
(x) ≤ bi,    i = 1, …, m (89) 

where: 

• x is the vector containing the variables to be optimized 

• fo is the objective function (aka cost function) to be minimized or maximized 

• fi is the equality/inequality constraint functions 

• b is the vector containing the limits or boundaries of the constraint functions or 

problem 

According to Stephen Boyd and Lieven Vandenberghe [81], the above problem is linear 

if the objective function fo and the constraint functions fi are both linear. On the other 

hand, if the objective function fo and the constraint functions fi are convex, then the 

problem is said to be convex; for more information regarding linear and convex 

functions it is recommended for the reader to refer to [81].  

Convex Programming (CP) refers to convex problem optimization, while LP refers to 

linear problem optimization and, mathematically, a convex optimization problem along 
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with a linear optimization problem need to satisfy the conditions shown by equations 

(90) and (91), respectively.  

 f
i
(αx + βy) ≤ αf

i
(x) + αβ

i
(y),   ∀{x, y}∈ℝn & ∀ {α, β}∈ℝ (90) 

 f
i
(αx + βy) = αf

i
(x) + αβ

i
(y),  ∀{x, y}∈ℝn & ∀{α, β}∈R | a + b = 1, a ≥ 0, b ≥ 0 (91) 

where: 

• α, β are constants 

• x and y are the optimization matrices 

• ℝ is the set of real numbers. In bold, it is meant that it is a vector of real numbers 

of length n 

It can be clearly seen from the above conditions that a linear optimization problem is 

also a convex optimization problem and it is generally said that LP is a special case of 

CP. 

Furthermore, a multi-objective non-linear optimization problem may be described as 

follows [112]: 

 minimize f
i
(x), (i = 1, 2, …, m) (92) 

subject to  

 hj(x), ( j = 1, 2, …, J ) (93) 

 g
k
(x) ≤ 0, ( k = 1, 2, …, K ) (94) 

where: 

• fi(x) is, in general, a nonlinear function  

• h
j
(x) and g

k
(x) are, in general, the non-linear boundaries and the non-linear 

equality/inequality constraint functions, of function fi(x), respectively.  

In most relevant Engineering studies, instead of running an algorithm with concurrent 

objective functions (aka multi-objective optimization), it is common to observe a 

lamped version of equation (92) and thus, the problem may be transformed into a 

single-objective problem, expressed in the following form [112]. 
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 min

x ∈ X 
∑ wi fi(x)

m

i = 1

 (95) 

where: 

• w is a weight factor representing the weighting (or significance) of each 

objective function fi(x). Boundaries and constraints remain the same as equations 

(93) and (94)  

The most common convex optimization techniques used and proposed for solving the 

problem represented by equations (95), (93) and (94) are LP, Mixed-Integer Linear 

Optimization or Programming (MILP), Quadratic Optimization or Programming (QP), 

Non-Linear Optimization or Programming (NLP) and Mixed-Integer Non-Linear 

Optimization or Programming (MINLP), among which MILP dominates, due to its 

simplicity and convexity, which guarantees global solutions [82]. AI in some studies is 

also integrated for improving the model performance and reducing computational time, 

as Rahmani and Shen [11] proposed. In contrast, different heuristic optimization 

methods (e.g. PSO and GA) are now increasing their sharing in energy saving 

optimization applications, due to the increase of the problem’s complexities and non-

convex nature, as well as the need of solving multiple non-linear objective functions 

simultaneously, with high accuracy and performance [113].  Finally, AI such as ANN, 

fuzzy logic and GA are also integrated for improving model performance and reducing 

computational time [114].  

Global optimization is necessary, in BEM applications, as it always guarantees energy 

related costs reduction in both the short term and the long term. Such scheme refers to 

the optimization running within a specified time horizon – say 24 hours – in which the 

algorithm searches for a value (global minimum) that minimizes the objective function 

(aka cost function) and with respect to all other feasible points [115]. By slightly 

modifying equation (95), the algorithm for optimizing a cost function globally may be 

represented as follows.  

 
min

J

x ∈ X
 = ∑ ∑ wi,t  fi(x, t)

T

t = 1

M

m = 1

 (96) 

where: 



126 

• t, T, m and M refer to current timestep, optimization horizon (period), current 

iteration (e.g. day, month and so on) and total number of iterations (e.g. days, 

months, years and so on), respectively. Note that the objective function f 

becomes time dependent.  

Since each objective function f changes over time instant t and all values are known a 

priori, equation (96) ensures that the total value of J, within the whole period, is 

minimized in a global manner. Nevertheless, this model assumes perfect conditions and 

does not account for any variations in the objective functions and other proper tools 

(e.g. MPC) are required for addressing such an issue. 

For better understanding a convex optimization problem, an example, presented in 

Figure 32, shows a non-linear function along with its boundaries presented by the red 

lines. Clearly, the optimal point that minimizes the above function is at x* = 0, showing 

that the optimum value is f(x*) = 0. As there is no other point giving a lower value, then 

it is said that at x* = 0 global optimization is achieved.  

According to the definition given in [81], the function f(x) = x2 is convex and since the 

constraints x ≥ -3 ≡ –x ≤ 3 & x ≤ 3 are affine, then the problem it is said to be convex. 

This problem may also be solved using LP, but first, it is necessary to express function 

f(x) with an equivalent objective function able to be linearized, which is of course its 

absolute value – i.e., f(x) = |x|, see Figure 33. 

 

 

Figure 32: Objective Function f = x2 
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Figure 33: Objective Function f = |x| 

 

By expressing x as the difference of two slack variables x+ and x–, where x+, x– ≥ 0, then 

the original problem can be linearized as below [81]. 

 

 ff (x+, x
–

) = |x+ − x
–

| (97) 

 
 

⇔ f (x+, x
–

) = x+ + x
–

  

subject to  

 x+, x
–

 ≥ 0 (98) 

 −3 ≤ x+ −  x
–

 ≤ 3 (99) 

Note that the absolute term may be eliminated due to equation (98) and obviously by 

reversing the minus sign within the absolute term, since such a condition keeps the 

function always positive. Problem (97) is not the same as before, however it is an 

equivalent representation of the original problem f(x) = x2 | –3 ≤ x ≤ 3, which describes a 

non-negative function having an optimum solution at x* = 0. The linearization of the 

proposed model shown and discussed in this Thesis is based on the above principle – 

i.e., linearizing the absolute term of a cost function. 
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I.3 Simulation Data and Methodology for assessing a building base 

study with LP7 

PV measurements were taken from a residential 5 kWp PV system located in Nicosia, 

Cyprus, in 10-minute intervals, between the 1st of March 2015 and the 29th of February 

2016, as shown in Table 10. Load measurements were taken from the same dwelling, 

for the same period. PV data consists of different variables such as date and time, PV 

inverter energy output, PV inverter ac power output, utility grid voltage, PV inverter ac 

current output, PV inverter dc input voltage, PV inverter dc input current, PV inverter 

ac output current, ambient temperature, irradiance and wind speed. The parameters 

related to voltage, current, power and energy are directly measured from the inverter, 

with the weather-related parameters measured from an integrated weather station. All 

the parameters though are provided by the inverter’s integrated software platform and 

can be accessed and downloaded by the user. Load measurements were taken from the 

same dwelling through a digital energy meter installed at the building’s main circuit 

breaker. The measurements downloaded from the meter correspond to the hourly 

cumulative energy, as shown in the column “Meter reading [kWh]” in Table 10 and the 

hourly energy is simply calculated by subtracting the measurements between two 

consecutive hours. For instance, the grid energy imported (load consumption) between 

hours 01:00 and 02:00 is 686.6 kWh – 686.4 kWh = 0.2 kWh.  

A small fraction of the original PV and load data used in this study are shown in Table 

10. The complete PV and load profiles, for the whole year, are presented and discussed 

in the sub-sections. It should be noted here that the proposed approach uses parameters 

such as energy at the ac output of the PV inverter and the load consumption, which 

correspond to the “Energy [Wh]” and “Consumption [kWh]” columns in Table 10.  

 

 

 

 

7 Material from published paper [144] 
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Table 10: Small fraction of the real PV and load data 

PV DATA 

Date 
Energy 

[Wh] 

ac 

Power 

[kW] 

Grid 

Voltage 

[V] 

ac 

Current 

[A] 

dc 

Voltage 

[V] 

dc 

Current 

[A] 

Ambient 

Temp. 

[oC] 

Solar 

Irradiance 

[W/m2] 

Wind 

speed 

[m/s] 

31/12/2015 

06:30 
1.64 9.86 242 0.04 300 0.03 7 11 3 

31/12/2015 

06:40 
11.73 60.84 242 0.25 255 0.26 8 17 2 

31/12/2015 

06:50 
26.23 87.42 242 0.36 263 0.37 8 29 3 

LOAD DATA 

Date Time [h] Consumption [kWh] Meter reading [kWh] 

31/12/2015 1:00:00 0.0 686.4 

31/12/2015 2:00:00 0.2 686.6 

31/12/2015 3:00:00 0.2 686.8 
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Figure 34: Simulation algorithm flowchart 
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The main task of the algorithm shown in Figure 34 is to read the PV and Load 

measurements and based on this information provide the forecasted battery dispatch, 

aiming the minimization of the net grid energy usage. Below, each stage of the 

algorithm presented is listed and explained.  

• Read PV and LOAD from Excel (Import stage): The PV data downloaded from 

the PV inverter and the load data downloaded from the energy meter are stored 

in Excel and then imported in MATLAB.  

• Convert PV data to hourly measurements (Data pre-processing stage): Once the 

data is imported in MATLAB, the PV measurements from 10-min intervals are 

converted to one-hour intervals, in order to match the hourly resolution of the 

load data. Specifically, the recorded ac power, based on a 10-min sampling rate, 

is multiplied with the time interval – i.e., 10 min / 60 min – for representing the 

10-min energy flow. Then, the hourly energy is simply the sum of the 10-min 

energy delivered in each hour. For instance, the hourly energy delivered at 07:00 

am is the sum of the energy delivered at 07:00, 07:10, 07:20, 07:30, 07:40 and 

07:50 and so on.  

• Battery Present (Battery presence check stage): At this stage, the algorithm 

checks if a battery is present or not with the aid of a binary variable entered by 

the user.  

• Set related Input parameters (Pre-defined parameters stage): The user 

predefined parameters, such as battery initial storage, battery maximum and 

minimum charging and discharging energies, battery capacity, weight values and 

desired number of simulated days are set. In case a battery is not present, then all 

battery related parameters are set to zero. 

• Last simulation day reached: At this stage, the algorithm enters a loop and 

repeatedly checks if the current day of simulation is the last one. Otherwise, the 

algorithm moves to the next stage. 

• LP dispatch from MATLAB (LP optimization run): The algorithm runs, for each 

iteration (i.e., each simulation day) the LP model and gives the hourly optimum 

battery dispatch (charge/discharge) for the whole 24-hour period, based on the 

related PV generation and load consumption of the current day. 
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• Final dispatch from SAM (Final dispatch run): Once the LP dispatch is obtained 

from MATLAB, then the PV, load and the desired battery optimum dispatch are 

imported in SAM. Here, the whole dispatch is recalculated by SAM, following 

the given PV load and the desired LP dispatch obtained in MATLAB. In case the 

desired LP dispatch requires the battery to operate beyond its physical limits, 

then SAM recalculates the correct battery charge/discharge and the net grid 

energy, based on the energy balance equation and the available energy storage 

level of the battery at the current timestep. 

The last three stages run in a repetitive manner, once per simulation day, with the total 

number of iterations being equal to the total number of simulation days predefined by 

the user.  

I.3.1 PV Profile 

The recorded Plane of Array (PoA) irradiance (irradiance at the PV module’s surface), 

the ac exported power, in 10-minute intervals, the monthly average ac power, the 

monthly total ac energy generated and the average 24-hour ac power output between the 

1st of January 2015 and the 31st of December 2015 are shown in Figure 35. 

 

 

(a) 
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(b) 
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(e)  

Figure 35: (a) PoA Irradiance, in W/m2, 03/01–31/12/2015; (b) PV ac power output, in Watts, 03/01–

31/12/2015; (c) Monthly PV average ac power output, in kW, 03/01–31/12/2015; (d) Monthly total PV 

energy output, in kWh, 03/01–31/12/2015; (e) Seasonal 24-hour PV average ac output, in kW, 03/01–

31/12/2015 

 

As may be observed, the highest energy levels are gained in the period of March and 

May. On the other hand, October and November are the months with the lowest 

production. As shown in Figure 35(e), the highest production occurs during Spring, as 

the conditions of the high irradiance and low temperatures yield a higher generation. In 

contrast, autumn has the lowest production, due to the increased number of the cloudy 

days. Finally, Winter and Summer share a similar profile. It is worth mentioning that in 

Summer, the generation is not as high as in Spring, due to the increased temperatures 

and soiling, yielding a lower production. Finally, this profile is very similar to a typical 

Cyprus PV generation profile, as one can observe through PVGIS (EU’s official online 

tool) in line with a trusted PV simulation software such as SAM from NREL. 

I.3.2 Load Profile 

The total electrical energy consumption for 2015 was 3839.3 kWh, and the consumption 

profile is shown in Figure 36.  
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(d) 

 
 (e) 

Figure 36: (a) Hourly load, in kWh, 03/01–31/12/2015; (b) Total monthly load, in kWh, 03/01– 

31/12/2015; (c) Annual average 24-hour load, in kWh, 03/01–31/12/2015; (d) Weekdays and Weekends 

annual average 24-hour load, 03/01–31/12/2015; (e) Seasonal average 24-hour Load 03/01–31/12/2015 

 

According to Figure 36(a), the peak load occurred in September; however, the highest 

consumption occurred during July and August, due to the hot summer days, resulting to 

the increased cooling demand, as verified by Figure 36(b). The annual average 24-hour 

load shown in Figure 36(c) indicates that two peaks occur within the day, with the 

highest one taking place at around 6:00 pm, as the residents usually return home from 

work and begin their routine activities such as cooking, water heating, heating/cooling 

and so on. A smaller peak of the day occurs at 6:00 am, as the residents wake up and 
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begin their morning activities, such as using the kettle and so on. Figure 36(d) shows the 

average consumption profile on a 24-hour basis for both Weekdays and Weekends. As it 

may be observed, the Weekday profile is similar to the profile shown in Figure 36(c), 

whereas in weekends the high load is maintained between 9:00 am and 8:00 pm. The 

seasonal load is presented in Figure 36(e), showing that the annual 24-hour average 

load, as shown in Figure 36(c), exhibits similar patterns with the Winter, Spring and 

Autumn loads. On the other hand, Summer load is high during early morning, evening 

and late-night, due to the increased cooling needs, and low during the morning and 

noon. Such a profile may result to grid instability issues, due to the high PV generation 

and the low demand. Finally, peak loads for Winter, Spring and Autumn, occur roughly 

at the same time within the day, but with different magnitudes. The highest mismatch 

between PV generation and load demand is observed in the Spring, where the large 

energy exports to the utility grid, due to the high PV generation for a low demand, can 

lead to instability issues. Hence, the building’s self-consumption via storage dispatch 

can help improve such a situation.  

Finally, it is worth mentioning that the total annual load of ~3839 kWh is much lower 

than the total annual PV production of ~7245 kWh, showing that there is a high 

generation and load mismatch, resulting to the increased grid export energy. Of course, 

the correct sizing of the PV system, which is beyond the scope of this work, can be 

addressed during the design phase, minimizing the levels of such a high surplus energy.  
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I.4 Artificial Neural Networks8 

This section mainly focuses on three pillars, concerning ANNs. At the beginning, the 

basic idea and theory behind ANNs is briefly summarized, followed by a brief 

explanation of the ANN structure in its simplest form, as well as the different types of 

ANNs found in literature. Applications of ANNs in concepts such as RES and energy 

optimization in buildings are presented and discussed along with some related studies 

found in literature. It is worth mentioning that as the basic theory is not covered in 

detail, the reader is encouraged to refer in literature for a better and deeper 

understanding.  

I.4.1 History and Basic Background Theory 

Artificial Intelligence (AI) constitutes a research area of high interest, for both 

practitioners and academics, as it is found very useful for solving complex problems 

that are difficult to solve using known and well developed conventional mathematical 

methods. Particularly, it can handle problems with large and complex data and provide 

meaningful results with a very good accuracy at relatively high computational speeds. 

Simplicity is a valuable feature of AI as it, due to its nature, does not require much 

information a priori, especially in ANNs, to predict the output. 

The main idea of ANNs raised from the prototype Mcculloch and Pitts model first 

published in 1943 [116]. Their study first introduced mathematical models of 

neurological networks, based on threshold functions. As a result, the calculation of any 

logic or arithmetic function was made possible [117]. Soon after, researchers proposed 

different ANN models, each designed for specific applications, resulting to the variety 

of different ANN types. Nevertheless, the common share between the different ANNs is 

the calculation of either an arithmetic or a logic value, based on some criteria (aka 

thresholds).  

In general, ANNs try – at a certain extent – to mimic the human brain, as they can learn 

from real examples. They can handle large and incomplete datasets, which could 

contain random noise, and after a learning process they can generalise well – especially 

in non-linear problems. This means that ANNs can learn from example data and 

 

8 Material from published paper [145]  
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estimate or predict the output from an input never seen before. According to Ding et al. 

[118], ANNs are non-linear systems and can be characterised as self-adapting, self-

organising and real-time learning networks, whose architecture is defined by the 

connections between the neurons and their transfer functions. Moreover, ANNs are 

characterised by their fast convergence and fault tolerance as reported by Kalogirou and 

collaborators [119], [120].  

The main idea of ANN rises from two basic functions of a human brain, as those were 

firstly discovered and identified by William James, an American psychologist, during 

the 20th century. The first function is when the connection between two neurons grows 

or strengthens during their simultaneous activation and the second is the action of the 

neuron itself, which is in turn the sum of its incoming signals that are proportional to the 

connection strength in which each of the signal travels through. These two important 

clues were the main reasons for the beginning of the ANN era [121]. 

ANNs are a branch of AI and are mainly used, but not limited to, for pattern 

recognition, data clustering, function approximation, data classification, optimisation 

and time-series forecasting [119], [121], [122]. An ANN is a set of interconnected 

artificial neurons found in groups (or layers) with the main task to process input data in 

a feed-forward or recurrent manner and exchange the data between them through the 

different interconnections, known as weights.  

Figure 37 represents the mathematical model of an artificial neuron. Here, xi (usually 

real number) represents the i-th input of the input vector x, wi (real number) is the i-th 

weight amount of the connection in which the information travels from other neurons 

connected to this neuron, and θ is constant representing the bias of the neuron, that is 

the minimum threshold point at which the neuron becomes active. The weights are 

optimally adjusted during the training (or learning) process to best describe the 

‘importance’ of each connection path between two neurons and, once trained, they 

remain fixed. The product of each signal along with its weight (i.e. xiwi) is summed for 

all inputs x to account for every contribution of the neurons connected to that neuron. 

Finally, the sum of products is passed to the activation function so as the output 

becomes y = f(z); wherezz = ∑ xiwi
N
i + θ and N is the total number of inputs.  



139 

w1

wj

wi

       y

θ

z

x1

xj

xi

.

.

.

.

.

Activation function

Weights summation or net 

function
 

Figure 37: The basic neuron (modified from [8]) 

 

There are six continuous activation functions f that are commonly used, namely 

Sigmoid, Hyperbolic Tangent, Inverse Tangent, Threshold, Gaussian Radial basis, 

Linear and Step/Binary function; for more details and examples see [121], [123]–[125]. 

Step functions may also be used for problems dealing with binary variables. In such a 

case, the neuron is called perceptron and is mainly used for data classification problems. 

The selection of the right activation function clearly depends on the type and 

complexity of the problem.  
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Figure 38: Single input, single output feed-forward ANN network 
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A simple feed-forward network consisting of one input layer, one hidden layer and one 

output layer is shown in Figure 38. In this case, the data flows from the input layer 

towards the output layer, through the available paths, as shown. One can derive the 

mathematical expression of the example network shown in the figure. 

The main goal is to achieve an output value as close as possible to the targeted (desired) 

one – presented to the network during training – as well as to minimize the error 

function [123]. Shown in equations (100)–(101) are E(k), the difference (error) between 

the output value of the k-th neuron and the targeted one, and E, the mean squared error, 

an assessment of the performance of the network. 

 EE(k) = ∑(tk − y
k
)

2

N

k = 1

 (100) 

 EE =
1

N
∑ E(k)

N

k = 1

 (101) 

where: 

• t is the target value of the k-th element in the target vector 

• y is the output value of the k-th neuron 

• N is the total number of inputs presented in the network 

With already many algorithms existing, ongoing research is highly focused in 

developing evolutionary algorithms for minimising the above function E and, thus, 

improving the overall performance of the network [118], [121]. The minimization of the 

error is usually based on gradient descent algorithms such as back propagation 

algorithm, batch learning, online learning and momentum. The latter is used for 

improving the stability of the learning process, as the weights – during learning – may 

experience unstable oscillations around the optimisation point and take values far from 

the optimum ones [121]. Learning of ANNs is a process where the ANN adjusts its 

weights until the error function E reaches a predefined tolerance. Learning algorithms 

and techniques of ANNs and types of ANNs are not discussed here.  
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I.4.2 ANNs for Energy Management and Prediction in Buildings 

Various applications for Energy Sources Management, using ANNs exist, since they are 

used for optimum dispatch schemes in hybrid systems (RES with non-RES) as well as 

in other non-linear problems of high complexity. Nevertheless, ANNs may also be used 

for Energy Management in buildings for reducing energy demand, increasing user 

comfort level and also simplifying/improving non-linear conventional models used in 

this sector so far. The studies presented in this section, related to the Energy 

Management in buildings, underline the potential of ANNs.  

Liang and Ruxu [126] adopted a direct neural network in their proposed model for 

thermal comfort and temperature control of a building having a HVAC system. One of 

the main targets of the authors was to simplify the process and hence use an ANN 

instead, for controlling the HVAC unit and at the same time keeping both the thermal 

comfort and the temperature at the desired levels. As a result, the learning rate was the 

only parameter to be tuned, instead of the many needed when the non-linear analytical 

model is used. Using a back-propagation algorithm the two-layer network was trained 

and showed good and similar performance compared to the common PI controller.  

Argiriou et al. [127] developed a feed-forward back propagated ANN to control the 

temperature output of a hydronic heating plant. Their model had forecasting capabilities 

such as ambient temperature, solar irradiance prediction, indoor temperature prediction 

and supply temperature predictor, and showed good agreement with the actual readings. 

The proposed model’s main aim was to optimally control the operation of the heating 

system by using the building’s occupancy behaviour, thus avoiding any overheating or 

underheating of the building during occupancy hours. The authors tested the model in 

real office conditions and found that – in comparison to a conventional PID controller – 

the ANN could reduce the energy consumption by an average of 15%, while keeping 

the user comfort level high. The only problem faced with the ANN was its slow 

response to changes of the set point temperature defined by the user. This was solved 

using a trained boost module to overcome the discomfort occurred in the morning hours.  

Matallanas et al. [128] proposed an Active Demand Side Management scheme, in a 

building, with the aid of an intelligent controller using ANNs. The controller was tuned 

and adjusted by a GA. The building itself had integrated PVs and the main objective of 

the study was to maximize the consumption of the local PV energy and to reduce both 
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the energy imported from the grid and the PV energy exported to the grid. At the same 

time, the user’s preferences were respected. The novelty of this system was the 

interaction of the user with the controller. The user was able to provide the controller 

with the favoured operation period of each controlled appliance for the next day and, 

based on the prediction of the PV generation, a decision was made regarding the 

optimum action of the appliances. Finally, the controller was able to maximize the PV 

self-consumption by intelligently operate the appliances within the generation period.  

Tascikaraoglu et al. [129] used solar radiation and wind speed forecasting along with 

DSM in a grid-connected Smart Home, in Turkey, with integrated PVs, a wind turbine 

and a storage system (batteries & electric vehicle). An AI model was developed, 

capable for predicting wind speed and solar radiation. Their AI model combined the 

Empirical Mode Decomposition method along with the Cascade-Forward Neural 

Network. The authors proved that their Home Energy Management System with 

prediction was capable for reducing electricity bills, shifting the operation of the 

appliances to off-peak times and also reducing the total shifting time of the controlled 

appliances for a whole year.  

An Adaptative Neural Network Inference System (ANFIS) was proposed by Cardenas 

et al. [130], mainly for supporting an integrated Energy Management System in 

industrial plants. The model was capable for predicting the electrical energy 

consumption and used in an intelligent BEM System for supporting the decision making 

taken by the BEM system and thus optimizing the energy consumption even further. 

Due to the complex task of designing and configuring an ANFIS, the authors used a 

Multi-Objective Genetic Algorithm (MOGA) for the automatic development of the 

network and the selection and configuration of the various parameters. The authors 

achieved a very good performance with their proposed model.  

Magnier and Haghighat [131] used a GA along with ANN for optimising the energy 

consumption and the thermal comfort within a building. Feed-forward ANN was used 

as a Response Surface Approximation model to evaluate the building’s performance, 

and then Non-dominated-and-crowding Sorting Genetic Algorithm II (NSGA-II) was 

used for finding the optimal solutions, based on the predictions provided by the ANN. 

Variables such as heating and cooling consumption and PMV were continually 

predicted by the ANN. The ANN showed a good and accurate performance, resulting to 



143 

the significant reduction of the energy consumption within the building. Furthermore, 

the ANN dramatically reduced the computational time needed for simulations.  

Ekici and Aksoy [132] used a back-propagation ANN for predicting the heating energy 

of three different dwellings. The ANN used three main input parameters of the building 

in order to predict the heating needs. The average prediction accuracy of the ANN was 

approximately 98%, which is well within the acceptable levels. The authors mentioned 

that their proposed model can easily predict the energy needs of any building in 

different cities. 

Gossard et al. [133] used multi-objective optimisation for obtaining the optimum values 

of thermal conductivity and volumetric specific heat of the external walls. The 

optimisation target was achieved by minimising both the annual energy consumption 

and the summer comfort degree, using NSGA-II and a multi-layered feed-forward 

ANN. The ANN was used for evaluating the cost functions at high speed. A comparison 

between the ANN predicted results with analytical results showed that ANNs are 

superior. Finally, the authors could provide the optimum values of the building’s 

envelope in a very efficient way with fast convergence.   

Ferreira et al. [134] used Radial Basis Function (RBF) ANNs for controlling the 

operation of the HVAC systems at the University of Algarve. One RBF ANN was 

designed for estimating the PMV index and three Model Based Predictive Controllers 

(MBPC) based on the RBF ANNs were constructed for predicting the air temperature, 

humidity and global solar radiation. The selection of the parameters of the MBPC 

networks was based on the MOGA approach. The authors showed that the ANNs were 

able to accurately predict the required parameters, resulting to an efficient HVAC 

control, a reduction of the energy consumed as well as the preservation of the PMV at 

desired levels. A comparison to standard control methods was made showing that 

energy savings could be even higher than 50%. 

Amarasinghe et al. [135] used a feed-forward ANN to control the cooling of a building 

through a Thermal Storage Tank (TES). The ANN controlled the amount of water 

extracted from the TES, which was then cooled down by a chiller and was distributed 

within the building. The inputs provided to the ANN were the building’s predicted load 

of the next time step, the predicted utility load of the next time step, the power 

availability of the TES, the hour of the day, the day of the week, the ambient 
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temperature and the averaged room temperature. Using such inputs, the ANN could 

provide a control signal to the TES resulting to the increase of the energy savings 

compared to a traditional PD controller. 

Ben-Nakhi and Mahmoud [136] used a General Regression ANN (GRNN) to predict the 

time of the end of thermostat setback of the A/C (HVAC) system in a building, so as to 

restore the building’s temperature at the desired levels, just before the working hours of 

the building begin. The authors found that the use of a GRNN was superior in 

comparison to a software using analytical equations for calculating the Equation of 

State, since the software needed more inputs regarding weather information, resulting to 

a dropped efficiency. As stated by the authors, GRNN was much better for this case as it 

was not necessary to know the weather, a priori, for predicting the end of thermostat 

setback.  

Gonzalez and Zamarreno [137] predicted the hourly electrical energy consumption in a 

building using an ANN structure, which used a part of its outputs as feedback, so as to 

improve learning and accuracy. Two parameters were used as inputs to the network, 

namely atmospheric temperature end electrical energy. The authors proved the 

robustness and accurate performance of their proposed model by achieving a Mean Bias 

Error of 0.0033. 

Through the variety of applications reviewed, it is made obvious that ANNs can be 

applied in many energy related building scenarios such as RES generation prediction, 

maximisation of the RES self-consumption, DSM schemes, optimization of building 

design and retrofits, HVAC A/C heating and cooling control and so on, resulting to the 

reduction of the overall energy consumption of the building. It was shown that ANNs 

can easily be applied in such scenarios and thus improve the overall energy efficiency of 

a building leading to a significant reduction in energy consumption and energy bills. 

Compared to other conventional methods, ANNs are superior with regard to speed and 

accuracy. As a result, they are found to be very attractive, especially in scenarios such 

as building energy prediction and management where many factors (e.g. user’s 

behaviour, building type, building location, climate and so on) affect the prediction 

accuracy, making it difficult for conventional multivariate models to forecast accurately. 

Furthermore, ANNs – compared to other conventional models – help reduce the energy 

consumption due to their robustness, generalisation to scenarios never seen before and 
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fault tolerance. Finally, ANNs are found useful in building energy applications and 

applying them in nZEBs remains one of the core ideas of the current research. 

I.4.3 A Preliminary Design for PV forecasting and a Base Study 

Results using ANNs9 

In Engineering applications, especially in control and prediction, ANNs are mostly 

favoured due to their fault tolerance, robustness to data errors and noise. Furthermore, 

such networks converge fast and require less amount of computational effort [119].  

A core application of ANNs is forecasting and various attempts have been made from 

different researchers. Mellit and Alessandro [138] used a multilayer perceptron ANN 

model to predict the solar radiation on a 24-hour basis. Inputs such as day of month, 

mean daily solar radiation and mean daily ambient temperature were used. The output 

layer of the network gave the 24-h forecast of solar radiation. A Cross validation 

technique was used for designing the optimal model for this case. The authors tested 

their model on a building having PVs and achieved a Mean Absolute Error of 3–4% 

approximately. Leva et al. [139] used a feed-forward ANN architecture to predict both 

the output of a PV plant as well as the solar radiation, using only given weather 

forecasting data as inputs to the network. The main focus of their study was to analyze 

and evaluate the effect of an accurate input dataset into the network. Using different 

error analysis techniques, the authors showed that the output of the network was 

significantly dependent on the input dataset accuracy as well as on whether the day was 

either sunny or cloudy. Finally, a real application was carried out and satisfactory 

results were obtained. Almonacid et al. [140] proposed a nonlinear autoregressive ANN 

for predicting the output of a PV generator on an hourly basis. Current values of both 

the global solar radiation and the air temperature were used as inputs to the network. 

Two separate ANN structures were used for predicting the next hour solar radiation and 

the ambient temperature. Once the forecasts of both the solar radiation and the ambient 

temperatures were obtained, another ANN was used to predict the output of the PV 

system. The model was satisfactorily accurate with an error of 3% approximately. Izgi 

et al. [141] used a feedforward ANN to determine the most representative time horizon 

for predicting the PV output of small scale PV systems. They showed that the length of 

 

9 Material from published paper [146] 
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the time horizon to be used as a forecasting period varied from 3 to 40 minutes, 

depending on the season. Messabi et al. [142] developed two dynamic ANNs; a Focused 

Time Delay ANN (FTDNN) and a Distributed Time Delay ANN for predicting the 

output of a PV system, for a short-term forecasting. The inputs to the network were past 

values of the output. The authors showed that for multistep prediction the FTDNN 

model performed better. Capizzi et al. [143] developed a Wavelet Recurrent ANN for 

predicting a two-day ahead solar radiation. The proposed model performed the 

prediction in the wavelet domain and then the output signal was obtained using the 

inverse wavelet transform. With this approach the authors achieved a very accurate 

result with a network being robust in errors appeared within the input data.  

In the sequel of this Chapter, a preliminary ANN model, initially developed, is 

presented demonstrating the method of forecasting the next day 24-hour PV generation, 

in a building, using only historical inputs. 

I.4.3.1 Methodology 

A basic ANN model was initially developed, which is shown in Figure 39.  
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t-1   t-24 ANN

G(t-1   t-24)

Year(t-1   t-24)
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P(t)

 

Figure 39: A preliminary design of a NARX Neural Network 

 

This is a non-linear Autoregressive with exogenous inputs (NARX) ANN, which is 

suitable for time series forecasting. The data available for both training and validation of 
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the model were taken from a dwelling in Cyprus, having a 5 kWp PV system installed. 

Hourly measurements for irradiance (G), wind speed (W), ambient temperature (T) and 

power output of the PV system (P) are used from 1st of March 2015 – 2nd of March 

2016, with the 2nd of March 2016 not included in the learning process. This allows 

testing the network with unseen data. Excel used for storing the data and MATLAB 

imports it for pre-processing. Specifically, the inputs to the network were the previous 

daily samples of G, T and P as well as the hour (t), the year, the month and the day of 

month. The reason of this input dataset selection will be explained in the next sub-

section. The targeted outputs were the measured PV power output at the current time t. 

Thus, the prediction matrix gives the PV power output for the next 24 hours. For 

instance, when the 2nd of March needs to be predicted, then at time t, the data of the 1st 

of March will be presented to the network, and so on.   

During this preliminary design phase, the main aim was to identify from the given 

dataset which inputs make the network perform best. For this reason, the default 

network topology of MATLAB’s ANN toolbox was used. Cross-correlation and 

autocorrelation analysis were performed on the input variables to find which of them 

correlate with the output and how many previous days from each input variable should 

be provided to the model.  

The data is normalized in the range of [0, 1] and during the learning process, the 

network receives an input matrix of 7 rows and 8808 columns (367 days x 24 hours) 

with each row representing an input variable and each column representing the hour of 

the day. From this data 70% was used for training, 15% for validation and 15% for 

testing, which is the default of MATLAB’s ANN toolbox. An ANN with 1 input layer 

consisting of total 7 inputs, a hidden layer consisting of 18 neurons having a sigmoid 

activation function and an output layer with 1 neuron having a linear activation function 

is used. The training uses the Levenberg-Marquardt back-propagation algorithm and 

takes less than a minute for the learning process to finish on an Intel i7-7700HQ 2.8 Hz 

PC with 16 GB of RAM PC. 

Before building the input matrix, a cross-correlation analysis along with autocorrelation 

analysis were performed on the given dataset. This allowed, at a certain extent, to 

determine the statistically relevant inputs and discard any irrelevant inputs that may 

worsen the performance of the network. Nevertheless, for the final selection different 
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combinations of the input variables were contacted. The combination giving the 

smallest error was selected as will be shown later in this Chapter.  

I.4.3.2 Base Study Results 

I.4.3.2.1 Cross-Correlation Analysis 

Cross-Correlation is a statistical method defining the mathematical relationship between 

two variables. The more linear the relationship the higher the correlation. MATLAB’s 

built-in function corrcoef was used for this analysis with the analysis used mainly for 

identifying the relationship (correlation) between inputs G, T and W and output P. Since 

only historical input data are fed to the network, the cross-correlation between previous 

days of G and T and current P day was also conducted. 

Figure 40 shows the cross-correlation between each individual input variable T, G, W 

and P. As can be seen, P has the highest correlation with G and the lowest correlation 

with W. The relationship between G and P is (nearly) linear since the correlation 

between these two variables is 99.05%. On the other hand, T and W have lower 

correlations and a further error analysis using the trial and error approach was 

conducted, as it will be shown in a later sub-section of this Chapter. 

 

 

Figure 40: Correlation of P with T, G and W 

 

Finally, the cross-correlation between the historical values of each input variable (e.g. 

G(t – n)) with the current values of PV power output (i.e., P(t)) was conducted, so as to 

0,6593

0,9905

0,3629

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

T G W

Input Variable



149 

see how the current P values are correlated with historical values of the input variables 

but also with itself. Again, this was also cross-validated with the aid of the trial and 

error approach as it is shown later using the Autocorrelation Analysis. The correlation 

between the historical values for each input variable and P is illustrated in Figure 41. 

Note that wind speed (W) is not included as its correlation with the PV output is very 

low (36.29%). As can be seen in the figure, for the three cases of P, T and G the 

correlation slightly drops with the number of historical days increasing. That is, even if 

we include the last 10 days within the input matrix (e.g. P(t – 1) … P(t – 240)), there 

will be no significant change in the ANN output, as the correlation between historical 

days and the present day slightly drops.   

 

 

Figure 41: Correlation vs Historical Days 

 

I.4.3.2.2 Autocorrelation Analysis 

Autocorrelation analysis is another statistical method able to determine the correlation 

of a variable with its previous values when this variable changes in time. This analysis 

is similar to the approach shown in Figure 41 and is commonly used in time-series 

analysis. MATLAB’s built-in function autocorr was used for this analysis. Applying 

autocorrelation in this case, allows the determination of the number of historical days to 

be included in the ANN input matrix.  
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(a)  

 

(b) 

 

Figure 42 shows the sample autocorrelations for P, T and G, respectively. Each lag, 

except lag 0, corresponds to a previous value – i.e., a historical day. Obviously, the 

highest correlation is obtained at Lag = 0, as this is the correlation between the 1st entry 

and the 1st entry – i.e., the present day with itself. As the number of Lag increases the 

correlation decreases. For instance, at Lag = 1 (i.e., the previous day) the second highest 

correlation occurs, meaning Lag 1 is highly correlated to Lag 0. After Lag 1 the 

correlation dumps, in an oscillatory manner, to the value of 0. This indicates that, for the 

three variables, there is no need to use more historical days than the previous day. This 

was also confirmed with Figure 41 in the Cross-Correlation Analysis.  
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(c) 

Figure 42: (a) PV power output (P) autocorrelation, (b) Temperature (T) autocorrelation, (c) Irradiance 

(G) Autocorrelation 

 

I.4.3.2.3 Trial and Error Approach 

A trial and error approach was conducted for different case scenarios, so as to find 

which combination of the input variables gives the best performance for the ANN. The 

selection criterion used here was based on the Mean Squared error (MSE), which is 

defined as:  

 mE  = 
1

N
 ∑ [P(t)

a
− P(t)

p
]

2
N

t = 1

 (102) 

where: 

• N is the number of hours 

• t is the current hour 

• Pa is the actual (measured) PV power output at time t and Pp is the predicted PV 

power output at time t.  

The actual data used in this case was the 24 different measured values of the PV power 

output for the 2nd March 2016. As a first approach, 7 past days were included in the 

input matrix with 9 different scenarios been attempted, as shown in Table 11. This table 
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shows how the most appropriate inputs were selected, based on the performance of an 

ANN with 1 input neuron, 10 hidden neurons and 1 output neuron. 

 

Table 11: Different scenarios attempted for selecting input variables 

Case 
Historical 

Days 

Inputs Number 

Of Neurons 
E 

P T G W Year Month Day Hour 

1 7 ✓    ✓    10 0.0468 

2 7 ✓    
✓    10 0.2000 

3 7 ✓    
✓ ✓   10 0.0366 

4 7 ✓    
✓ ✓ ✓  10 0.0375 

5 7 ✓    
✓ ✓ ✓ ✓ 10 0.0417 

6 7 ✓    
✓ ✓ ✓ ✓ 10 0.0416 

7 7 ✓    
✓ ✓ ✓ ✓ 10 0.0383 

8 7 ✓  
✓  

✓ ✓ ✓ ✓ 10 0.0337 

9 7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 10 0.0455 

 

 

Figure 43: Error minimization based on input variable selection (7 days used as historical data for P, G 

and T) 

 

The error reduction can be seen in Figure 43. The most appropriate inputs were selected 

based on the combination with the lowest error value obtained from the table and figure 
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above. Obviously, it is scenario 8 that should be selected, with the input variables to the 

network being P, G, Year, Month, Day and Hour (t). It should be noted that the results 

are indicative as for each training process the numbers are different, due to the different 

network behaviour. Nevertheless, the error reduces in a similar manner, if the same trial 

and error approach is followed. 

Similarly, a second approach was attempted for selecting the number of the previous 

days that give the lowest error and which will be included in the input matrix. Ten 

different scenarios with the same ANN as in the previous approach were used – 1 input 

neuron, 10 hidden neurons and 1 output neuron. The results are shown in Figure 44. As 

can be seen, Scenario 1 gives the best performance, meaning that only the previous day 

of P and G should be included in the input matrix.  

 

 

Figure 44: Error minimization based on number of previous days (P, G, Year, Month, Day and Hour as 

inputs) 

 

A third and final approach, similar to the two shown before, was attempted for selecting 

the most appropriate number of neurons, giving the best performance. It was found that 

the error is minimized with the increase in the number of hidden neurons. However, 

from a certain number and above the error increases again. The minimal error was 

achieved with 18 neurons with the results shown in Figure 45.  
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Figure 45: Error minimization based on number of neurons (1 day used as historical data for P and G 

along with Year, Month, Day and Hour as inputs) 

 

Using this methodology, the final input matrix was built, and the most appropriate 

number of hidden neurons was selected. Using these results, the final ANN structure 

(NARX model) can be seen in Figure 39 with 7 input neurons, 18 hidden neurons with a 

sigmoid activation function and 1 output neuron with a linear activation function. The 

overall performance of the network gives a (normalized) MSE of 1.4% approximately. 

for a cloudy day and an overall correlation of 99%. The prediction of the ANN for the 

2nd March of 2016 can be seen in Figure 46.  

 

 

Figure 46: 24-hour forecasting of PV power output on 2nd March 2016 
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As mentioned at the beginning of section I.4.3.1, this preliminary design phase of the 

project had the main target of finding the input variables giving the best network 

performance, so as less complicated datasets can be used. This will result in the use of a 

reduced instrumentation for weather monitoring such us humidity, temperature, wind 

speed measuring, and so on. Using as fewer external input variables as possible allows 

the maximum utilization of a standard and less complicated dataset (e.g. P and G) 

resulting to a reduced computational effort and total cost reduction. Obviously, this 

result can be improved for reducing the MSE and increasing the overall correlation 

between the predicted and actual data.  
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