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abstract

This study extends the dynamic conditional correlation model of Engle (2002,
Journal of Business and Economic Statistics 20, 339–350) to allow periodic
(day-specific) conditional correlations of shocks across international stock
markets. The properties of the resulting periodic dynamic conditional corre-
lation (PDCC) model are examined, focusing particularly on stationarity and
the implications for unconditional shock correlations. When applied to the
intraweek interactions between six developed European stock markets and
the United States over 1993–2005, we find very strong evidence of periodic
conditional correlations for the shocks. The highest correlations are generally
observed on Thursdays, with these sometimes being twice those on Monday
or Tuesday. In addition to these PDCC effects, strong day-of-the-week effects
are found in mean returns for the French, Italian, and Spanish stock markets,
while periodic effects are also present in volatility for all stock markets except
Italy. ( JEL: G10, G12, G22)
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An important feature of stock market prices is the presence of so-called calendar
effects, by which predictable patterns associated with the month of the year, the
day of the week, or the hour of the day exist in mean returns and/or their volatility.
Although the existence of such patterns does not necessarily imply that the market
is irrational, nevertheless they provide information about the functioning of the
markets and the nature of the shocks to which they are subject. Indeed, explanations
proposed for the existence of intraweek patterns include settlement procedures
(Gibbons and Hess, 1981; Lakonishok and Levi, 1982), trading volumes (Kiymaz
and Berument, 2003), the timing, origin and source of information (Penman, 1987;
Gau and Hau, 2004; Brusa, Pu, and Schulman, 2005), and dependence on economic
factors and macroeconomic news (Steely, 2001; Arshanapalli et al., 2006).

The study of calendar patterns in stock returns has been almost entirely con-
fined to single markets. However, the existence of intraweek patterns in the uni-
variate distributions of returns, combined with recent research pointing to the
time-variation in cross-market correlations (including Longin and Solnik, 2001;
Kim, Moshirian, and Wu, 2005; Cappiello, Engle, and Sheppard, 2006), suggests
that models of daily returns correlations should consider the possibility that these
exhibit periodic effects associated with the day of the week. To date, it appears
that only Chandra (2006) has examined whether cross-market correlations exhibit
intraweek patterns. Even in this case, however, Chandra (2006) considers only
deterministic shift effects, whereas in the context of volatility equations it has
been shown that day-specific effects also permeate the dynamics (Bollerslev and
Ghysels, 1996; Franses and Paap 2000; Fantazzini and Rossi, 2005; Bubak
and Zikes, 2006). Consequently, the existence and nature of patterns in daily
returns cross-correlations should be examined in the context of a richer
specification.

To this end, the present paper extends the dynamic conditional correlation
(DCC) model of Engle (2002) to allow for day-specific effects. Adopting the usual
terminology that refers to models in which parameters change systematically with
the calendar as being periodic, we refer to our model as a periodic dynamic con-
ditional correlation, or PDCC, specification. Properties of the PDCC model are
examined, before it is applied to daily closing prices for seven developed stock
markets (US, UK, Germany, France, Spain, Italy, and Switzerland). While our re-
sults generally confirm previous studies in finding periodic effects in the mean and
(more especially) the volatility equations, the evidence of day-specific parameter
shifts in the conditional correlations across markets is generally much stronger,
with the shock correlations exhibiting intraweek patterns that are persistent over
time.

The remainder of this paper is structured as follows. Our PDCC model is
described in Section 1, where its properties are also examined. Section 2 then
outlines the methodology we use in our empirical application, while Section 3
presents the data and describes its properties in relation to intraweek patterns.
Empirical results are presented in Section 4, which includes the results of hy-
pothesis tests that examine the nature of periodic effects. Finally, Section 5
concludes.
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1 THE PERIODIC DYNAMIC CONDITIONAL CORRELATION MODEL

After specifying the PDCC model in Section 1.1, its key properties are discussed in
Section 1.2.

1.1 Periodic Conditional Correlations

Consider the multivariate n × 1 stochastic process {εt} such that

εt|�t−1 ∼ (0, �t), (1)

where εt = [ε1t , ε2t , . . . , εnt]′ and �t−1 denotes all information available at time
t − 1, so that εi t is the shock relating to market i for day t. The time-varying matrix
of conditional covariances in Equation (1) can be written as

�t = St Rt St , (2)

where St = diag(
√

h1t ,
√

h2t , . . . ,
√

hnt) is the vector of conditional standard devi-
ations, so that hit = E[ε2

i t|�t−1] and Rt is the conditional correlation matrix.
Generalizing the DCC model of Engle (2002), the PDCC model for daily data

describes the dynamics of the conditional correlations using

Qt =
5∑

s=1

[Cs + Asυt−1υ
′
t−1 As + Bs Qt−1 Bs]Ds,t , (3)

in which υi t = εi t/
√

hit is the standardized innovation for market i at time t and
υt = (υ1t , υ2t , . . . , υnt); Cs is an n × n symmetric matrix of constants, while As and
Bs are n × n diagonal matrices of non-negative constants; the scalar Ds ,t is a
dummy variable for day s, which is unity when t falls on day s (s = 1, 2, 3, 4, 5) and
zero otherwise. The conditional correlation matrix Rt , with unit diagonal elements,
is recovered from Equation (3) using

Rt = (Q∗
t )−1 Qt(Q∗

t )−1 (4)

in which Q∗
t is diagonal with q ∗

i i,t = √
qii,t and lower case letters indicate the

appropriate elements of the corresponding matrices. As in Cappiello, Engle, and
Sheppard (2006), Qt , and hence Rt , is positive-definite with probability 1 if Cs

(s = 1, . . . , 5) is positive-definite.
Although the relationship between Rt and Qt in Equation (4) is nonlinear,

Engle (2002, p. 341) parameterizes the nonperiodic DCC model to ensure that the
unconditional means of these matrices are equal, that is, E(Rt ) = E(Qt ). In the
PDCC case, however, the cross-market unconditional shock correlation is day-
specific. To capture this, we follow the usual convention of periodic models by
working in vector notation (see Tiao and Grupe, 1980; or Osborn, 1991) and define
the 5 × 1 vector of shocks1 for market i in week w (w = 1, 2, . . . , T/5 for a sample

1For simplicity of notation, we assume that the first sample observation relates to the first day of the week
(Monday). Also for notational simplicity, T/5 is assumed to be an integer.
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t = 1, 2, . . . , T) as Vi
w = (υ i

1w, υ i
2w, υ i

3w, υ i
4w, υ i

5w)′, where υ i
sw = υi t for t = 5(w − 1)

+ s and s = 1, 2, 3, 4, 5. Then the corresponding vector of day-specific periodic
unconditional correlations between markets i and j is

Pi j = [
E

(
υ i

1wυ
j

1w

)
, E

(
υ i

2wυ
j

2w

)
, E

(
υ i

3wυ
j

3w

)
, E

(
υ i

4wυ
j

4w

)
, E

(
υ i

5wυ
j

5w

)]′
. (5)

Using the same approach, the vector Qij
w contains the elements qi j,t for week

w and, generalizing the restriction of Engle (2002), we impose E(Qij
w) = Pij.

It should be noted that our approach in Equations (1) to (4) is of a multivariate
GARCH type, which assumes that �t in Equation (1) is measurable with respect
to the information set �t−1. We prefer this to a multivariate stochastic volatility
form, because parameter estimation is more difficult to achieve in the latter case
(see Asai, McAleer, and Yu, 2006). This is an especially important consideration in
our case due to increased parameterization arising from the periodic specification.

1.2 Properties of the PDCC Model

Using the periodic vector notation, and noting that the coefficient matrices As ,
Bs are diagonal, the PDCC model of Equation (3) for the conditional correlation
between markets i and j can be written as

Bij
0 Qij

w = Cij + Bij
1 Qij

w−1 + Aij
0

(
Vi

w ◦ V j
w

) + Aij
1

(
Vi

w−1 ◦ V j
w−1

)
, (6)

where Cij = (cij ,1, cij ,2, cij ,3, cij ,4, cij ,5)′ is a 5 × 1 vector of constants and cij ,s is
the i,jth element of Cs , ◦ denotes the Hadamand product obtained by element-by-
element multiplication, and

Bij
0 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
−bii,2b j j,2 1 0 0 0

0 −bii,3b j j,3 1 0 0
0 0 −bii,4b j j,4 1 0
0 0 0 −bii,5b j j,5 1

⎞
⎟⎟⎟⎟⎠

,

Aij
0 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
aii,2a j j,2 0 0 0 0

0 aii,3a j j,3 0 0 0
0 0 aii,4a j j,4 0 0
0 0 0 aii,5a j j,5 0

⎞
⎟⎟⎟⎟⎠

,

while the 5 × 5 matrices Bij
1 , Aij

1 have all elements zero, except for the (1,5) ele-

ment, which is given by bii,1,b j j,1 and aii,5a j j,5, respectively. Further defining Nij
w =

(Vi
w ◦ V j

w) − Qij
w, Equation (6) can also be written in the vector ARMA form

(
Bij

0 − Aij
0

)(
Vi

w ◦ V j
w

) = Cij + (
Bij

1 + Aij
1

)(
Vi

w−1 ◦ V j
w−1

) + Bij
0 Nij

w − Bij
1 Nij

w−1, (7)

where it should be noted that E(Qij
w) = Pij implies E(Nij

w) = 0.
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From this representation, it is clear that the existence of the stationary vector
Pi j = E(Vi

w ◦ V j
w) requires the roots of the characteristic equation of (7) to lie outside

the unit circle, namely that

5∏
s=1

(aii a j j,s + bii,sb j j,s) < 1. (8)

Clearly, the existence of stationary E(Vi
w ◦ V j

w) for all market pairs requires
Equation (8) to be satisfied for all i, j = 1, . . . , n.

Assuming that this stationarity condition is satisfied, taking expectations in
Equation (6) yields

Cij = (
Bij

0 − Aij
0 − Bij

1 − Aij
1

)
Pi j . (9)

From the definitions of Bij
k , Aij

k (k = 0, 1), Equation (9) can be written in the
notation of Equation (3) as

Cs = R̄s − As R̄s−1 As − Bs R̄s−1 Bs , (10)

where the (i, j)th element of the n × n matrix R̄s is the sth element of Pij . Therefore,
Equation (10) provides the link between the unconditional correlations and the
parameters of Equation (3).

2 EMPIRICAL METHODOLOGY

This outline of our empirical methodology discusses the mean and volatility equa-
tions we employ, followed by issues related to hypothesis testing and estimation
of the PDCC model.

2.1 Mean and Volatility Equations

To ensure unmodeled periodic mean and volatility effects do not distort inferences
relating to the PDCC specification, a periodic autoregressive (PAR) specification
allows the responses of returns to vary with the day of the week, while a periodic
EGARCH (PEGARCH) specification does the same for the volatility. Denoting an
individual stock index at time t by Pt , the PAR(p)–PEGARCH(1,1) model for the
continuously compounded stock returns yt = 100∗[ln(Pt) − ln(Pt−1)], is given by

yt =
5∑

s=1

[
βs +

∑p

i=1
φis yt−i

]
Ds,t + εt (11)

εt = υt

√
ht , υt ∼ i id(0, 1) (12)

ht =
5∑

s=1

[exp{ωs + γsυt−1 + θs(|υt−1| − E |υt−1|) + δs ln ht−1}]Ds,t . (13)
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Note that all parameters in Equations (11) and (13), namely βs , φis , ωs , γ s , θs ,
and δs , are allowed to be day-specific.2 In practice, a PAR(1) is sufficient in Equa-
tion (11).3 The stationarity conditions and unconditional mean vectors for PAR
processes are discussed by, among others, Tiao and Grupe (1980), Osborn (1991),
Franses and Paap (2000), and Ghysels and Osborn (2001, pp. 144–147).

The EGARCH volatility specification of Nelson (1991) is adopted to ensure
that all implied volatilities are positive while also allowing the possibility of asym-
metry. First-order dynamics in Equation (13) are sufficient to adequately capture
dynamics, with day-specific volatility persistence measured by δs and the magni-
tude effect captured by θs , while volatility asymmetry typically implies negative
γs . Our specification differs from previous studies that employ periodic GARCH
models (including Bollerslev and Ghysels, 1996; Franses and Paap, 2000; Fantazzini
and Rossi, 2005) in that we allow δ to vary over the days of the week and employ
an EGARCH specification to ensure positive implied variances.

Employing the vector approach in order to generalize the nonperiodic analysis
of Nelson (1991), the PEGARCH model of Equation (13) can be written as

�0 Hw = ω + �1 Hw−1 + Uw, (14)

where Hw = [ln(h5(w−1)+1), ln(h5(w−1)+2), . . . , ln(h5(w−1)+5)] is the vector of log con-
ditional volatility for week w, ω = (ω1, ω2, . . . , ω5)′, the 5 × 5 matrices �0 and �1 are
defined analogously to Bij

0 , Bij
1 above with δs replacing bii,sbjj,s, and the sth element

of the 5 × 1 vector Uw is given by γsυ5(w−1)+s−1 + θs(|υ5(w−1)+s−1| − E |υ5(w−1)+s−1|).
From Equation (14) it is clear that the PEGARCH process has a constant mean if
|δ1δ2δ3δ4δ5| < 1 and is integrated if this product is unity.4 With |δ1δ2δ3δ4δ5| < 1,
taking expectations in Equation (14) yields

E[Hw] = (�0 − �1)−1ω, (15)

where the day-specific log volatility in Equation (15) arises through periodic vari-
ation in the intercepts ωs and/or the persistence coefficients δs of Equation (13).

2.2 Hypotheses of Interest

Previous literature finds evidence of periodic effects in daily stock market returns
and their volatility (Keim and Stambaug, 1984; Bessembinde and Herzel, 1993;
Bollerslev and Ghysels, 1996; Franses and Paap, 2000; Tsiakis, 2006, among oth-
ers). To investigate whether these apply in our case, the following hypotheses are

2In principle, the model of Equation (11) could include cross-market lagged periodic effects in the returns.
However, we found this to be infeasible for the present application, due to problems of dimensionality
and convergence in estimation.

3Models with AR lags 1 and 5 were also investigated to capture any systematic weekly patterns in the
data. However, the fifth-order lag coefficients were insignificant, with AR(1) models also preferred by
both AIC and SIC.

4The properties of unconditional volatility are complex in an EGARCH model; see, for example, the
expressions of Karanasos and Kim (2003) for the moments of ε2

t in a nonperiodic EGARCH specification.
Since our focus is the PDCC model, we do not explore the properties of unconditional volatility.
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examined for the parameters of Equations (11)–(13):

H1 : φis = φi i = 1, . . . , p; s = 1, 2, 3, 4, 5

H2 : φis = φi , βs = β i = 1, . . . , p; s = 1, 2, 3, 4, 5

H3 : δs = δ s = 1, 2, 3, 4, 5

H4 : ωs = ω, θs = θ , γs = γ , δs = δ s = 1, 2, 3, 4, 5.

In addition to the general tests H2 and H4, these hypotheses are designed to shed
light on the nature of any periodic variation.

For our principal interest, namely the PDCC model, we employ four hypoth-
esis tests, namely

H5 : As = A s = 1, 2, 3, 4, 5

H6 : Bs = B s = 1, 2, 3, 4, 5

H7 : As = A, Bs = B s = 1, 2, 3, 4, 5

H8 : a j j,s = as , b j j,s = bs j = 1, . . . , n; s = 1, 2, 3, 4, 5.

Thus, in addition to the overall test of H7, H5 and H6 examine whether any period-
icity is confined to the parameters capturing short-term or long-term persistency,
respectively. Finally, H8 examines whether the PDCC coefficients vary over coun-
tries, or whether common day-specific effects apply.

2.3 Estimation and Inference

Engle and Sheppard (2001) show that the log-likelihood function for a DCC model
can be written as the sum of a returns/volatility part and a correlation part. Denot-
ing the parameters of Equations (11) and (13) by the vector ξ and the parameters
of the PDCC model by ζ , this implies for our case that

L(ξ , ζ ) = Lv(ξ ) + Lc(ξ , ζ ) (16)

with

Lv(ξ ) = −1
2

T∑
t=1

(n log(2π ) + 2 log |St| + ε′
t S−1

t S−1
t εt , (17)

Lc(ξ , ζ ) = −1
2

T∑
t=1

(−υ ′
tυt + log |Rt| + υ ′

t R−1
t υt

)
. (18)

Following Engle (2002), consistent parameter estimates are obtained by first max-
imizing the volatility likelihood (17) separately for each market, which involves
simultaneous estimation of the parameters of Equations (11)–(13) for each observed
returns series, to find ξ̂ = arg max{Lv(ξ )}. The standardized residuals from this
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first-stage estimation are then used to estimate the DCC parameters ζ of Equa-
tion (3) as ζ̂ = arg max{Lc(ξ̂ , ζ )}. This second-stage estimation is conducted jointly
across all market pairs, with the standard errors calculated using the method de-
scribed by Engle and Sheppard (2001) to take account of the first-step estimation.5

In this second stage, in an analogous way to the nonperiodic approach of
Engle (2002), the constant matrix Cs of Equation (3) is replaced by Equation (10)
with unknown R̄s estimated from the corresponding day-specific sample corre-
lation matrix of the standardized residuals. It was noted in Section 1 above that
the conditional correlation matrix Rt of Equation (3)/(4) is positive-definite, with
probability 1, provided Cs is positive-definite. Although Equation (10) does not
apparently guarantee positive-definite Cs , this is checked after estimation and no
violation of positive-definiteness occurs.

Inference related to periodic effects in the PAR–PEGARCH model, captured
through H1 to H4, is conducted via Wald tests applied in Equations (11)–(13), while
the PDCC tests of H5 to H8 are conducted using likelihood ratio statistics.6 All test
statistics are compared to the asymptotic χ2 distribution, with degrees of freedom
given by the number of restrictions.

3 DATA

Our stock market data consist of the closing daily prices of S&P500 (USA), DAX-
30 (Germany), FTSE-100 (UK), CAC-40 (France), IBEX-35 (Spain), and the total
indices of the Italian and Swiss markets.7, 8 These account for more than 80% of the
total stock market capitalization in Europe, and four of the countries (Germany,
France, Italy, and Spain) have adopted the common euro currency. The US, UK,
and German stock markets are the leading world markets, while Switzerland
attracts international investment due to its political and economic stability and
the traditionally high quality of services provided. The sample period is from
January 1, 1993 to April 30, 2005.9

5Cappiello, Engle, and Sheppard (2006) point out that this approach assumes that the univariate first-stage
models are correctly specified. However, many univariate models imply similar volatility patterns, and
hence standardized residuals with similar characteristics. Therefore, it is anticipated that the correlation
patterns are not unduly dependent on the specific univariate model employed.

6Estimation of the PDCC model is computationally burdensome, and likelihood ratio tests are used for
these joint hypotheses due to their computational convenience.

7Closing prices are nonsynchronous across countries (especially between US and European stock markets),
which may lead to underestimation of correlations (see Martens and Poon, 2001). Although the results
reported are based on closing data, as we believe these best represent daily returns and volatilities for
each market, models were also estimated using synchronous data (pseudo closing prices, recorded at
16:00 London time), with qualitatively similar results.

8DAX-30 is a price-weighted index of the 30 most heavily traded stocks in the German market, while
FTSE-100 consists of the largest 100 UK companies by full market value. CAC-40 is calculated on the basis
of 40 largest French stocks based on market capitalization on the Paris Bourse. IBEX-35 is composed of
the 35 securities quoted on the Joint Stock Exchange System of the four Spanish Stock Exchanges, while
S&P500 is a value-weighted index representing approximately 75% of the total US market capitalization.

9Since the data come from different countries, different holidays apply across markets. To ensure complete
samples for all countries, a missing value is replaced by the closing price on the day before the holiday.
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Descriptive information on the patterns of cross-market correlations of returns
is provided by the sample correlations shown in Table 1 for all days and separately
for each day of the week. These indicate that all markets tend to be most strongly
correlated with the United States toward the end of the week and least corre-
lated around mid-week. Indeed, the US/UK correlation on Wednesday (0.26) is
half the corresponding correlation for Friday (0.51). However, although correla-
tions across European markets are generally higher than those with the United
States, systematic intraweek correlation patterns are less evident across European
pairs. Nevertheless, this descriptive information cannot indicate the source(s) and
significance of differences across days, which is the focus of the estimated models.

4 EMPIRICAL RESULTS

Empirical results for the mean and volatility discussed in the first subsection,
followed by the PDCC results in Section 4.2.

4.1 Mean and Volatility Equations

Panel A of Table 2 presents estimated values of the parameters of Equations (11)–
(13) and Panel B gives results relating to the hypotheses H1 to H4 outlined in Section
2.2. Before considering detailed results, it should be noted that the diagnostic statis-
tics indicate that these models adequately describe the variation in the conditional
mean and variance of stock returns.10

Table 2 (Panel B) shows strong evidence (at 1% significance for H1 or H2, or
both) of periodic effects in the mean equations for Italy, Spain, and France, and the
corresponding estimates in Panel A are characterized by positive AR coefficients on
Mondays and Fridays that are statistically significant at 5%, and smaller coefficients
for other days that are typically insignificant and sometimes negative. The UK also
displays some evidence of a PAR mean equation. Although, overall, a nonperiodic
specification is adequate for the remaining markets, all Monday AR coefficients
are positive (and significant at 10%), which is compatible with findings of Franses
and Paap (2000), Herwartz (2000), and Bubak and Zikes (2006).

However, the general tests present stronger evidence of periodic effects in
volatility than in the mean, with all countries except Italy rejecting the overall
hypothesis of nonperiodic volatility (H4) at 10% or less, with this periodic volatil-
ity confirming results of Bollerslev and Ghysels (1996), Franses and Paap (2000),
Fantazzini and Rossi (2005), and Bubak and Zikes (2006). Although the relatively
weak evidence in Table 2 of periodic volatility for the United States differs from
the findings of Franses and Paap (2000) and Bollerslev and Ghysels (1996), these
studies use a GARCH form and hence do not account for the asymmetry evident in
the estimated γs for the United States in Table 2. Nevertheless, the general finding
of stronger periodic effects in voatility than in returns themselves accords with
results of Tsiakis (2006), who adopts a periodic stochastic volatility model for the
United States.

10These results are available upon request.
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Table 1 Unconditional correlations for daily returns.

UK Germany France Italy Spain Switzerland USA

Overall
UK 1
Germany 0.691 1
France 0.782 0.765 1
Italy 0.505 0.560 0.551 1
Spain 0.686 0.691 0.775 0.538 1
Switzerland 0.715 0.710 0.735 0.519 0.679 1
USA 0.410 0.466 0.429 0.242 0.386 0.378 1

Monday
UK 1
Germany 0.747 1
France 0.779 0.821 1
Italy 0.554 0.594 0.579 1
Spain 0.696 0.750 0.784 0.591 1
Switzerland 0.756 0.788 0.781 0.579 0.726 1
USA 0.435 0.510 0.463 0.305 0.434 0.425 1

Tuesday
UK 1
Germany 0.713 1
France 0.800 0.784 1
Italy 0.491 0.560 0.531 1
Spain 0.674 0.667 0.772 0.482 1
Switzerland 0.704 0.733 0.762 0.503 0.677 1
USA 0.382 0.353 0.399 0.175 0.320 0.275 1

Wednesday
UK 1
Germany 0.688 1
France 0.765 0.760 1
Italy 0.449 0.533 0.532 1
Spain 0.687 0.686 0.776 0.514 1
Switzerland 0.675 0.692 0.709 0.473 0.674 1
USA 0.257 0.402 0.296 0.134 0.280 0.280 1

Thursday
UK 1
Germany 0.649 1
France 0.816 0.747 1
Italy 0.531 0.576 0.588 1
Spain 0.716 0.699 0.805 0.572 1
Switzerland 0.737 0.671 0.726 0.542 0.687 1
USA 0.453 0.551 0.484 0.336 0.441 0.462 1
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Table 1 (continued)

UK Germany France Italy Spain Switzerland USA

Friday
UK 1
Germany 0.651 1
France 0.746 0.705 1
Italy 0.491 0.528 0.523 1
Spain 0.655 0.645 0.731 0.525 1
Switzerland 0.693 0.650 0.684 0.483 0.626 1
USA 0.513 0.511 0.498 0.254 0.454 0.438 1

Note that the rejection of H3 (at the 10% level) for all countries implies that
the nonperiodic persistence term used in previous studies is inappropriate. For the
major international markets of the US, UK, Germany, and France, δ̂s is largest on
Thursday, so that volatility effects are transferred more strongly from Wednesday
to Thursday than between other days. Also note that, although some individual
δ̂s in Table 2 exceed unity, our analysis above shows that the periodic integration
hypothesis depends on the product of these coefficients. The estimated model
clearly satisfies the condition |δ1δ2δ3δ4δ5| < 1 and, although the detailed results
are not shown to conserve space, the integration EGARCH hypothesis is strongly
rejected for all markets.

4.2 Conditional Correlations

Turning to the PDCC results of Table 311, notice first, that the marginal significance
level for H5 in Panel B is around 5%, so that short-run persistency, measured by the
matrix coefficients As in Equation (3), does not have strong periodic variation. In
contrast, hypotheses relating to nonperiodicity of the overall conditional correla-
tion model and the long-run persistency coefficients (H7 and H6, respectively) are
rejected at less than 0.1% significance. This not only emphasizes the inadequacy of
a nonperiodic DCC model, but also emphasizes the persistency over time in the
periodic effects. Further, the strong rejection of common PDCC coefficients across
markets (H8) indicates that the nature of this periodicity depends on the origin of
the shock. However, it should be noted that the estimates satisfy the stationarity
condition of Equation (8), with the null hypothesis of an integrated PDCC model
decisively rejected for all market pairs.12

The estimated PDCC coefficients in Table 3 exhibit some clear patterns. For
instance, European markets have their highest long-run persistence coefficients
at the end of the week (Friday in all cases, except for Thursday in Germany),

11In addition, we also estimated scalar versions of the PDCC model, in which the coefficients ajj ,s and bjj ,s

are restricted to be nonperiodic and constant across countries (ajj ,s = a, bjj ,s = b, j = 1, . . . , 7, s = 1, . . . , 5).
However, these restrictions are always rejected at a low marginal significance level and hence the results
are not reported.

12The results of these integration tests are available on request.
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Figure 1 Daily conditional correlation plots.

whereas the United States has its smallest b̂ j j,s on Friday and largest on Tuesday.
However, detailed interpretation is difficult from these coefficients, and hence
Figure 1 provides indicative plots of the patterns found in the day-specific effects
for the dynamic conditional correlations across markets.

Throughout the sample period, panel (a) shows that the highest conditional
correlations between the US and UK markets occur on Thursdays and the lowest
on Tuesdays, with the former correlation being, on average, around double the
latter, with other days being intermediate between these extremes. The US/France
plot, panel (b), shows a broadly similar pattern, as do other plots (not shown) for
European markets with the United States. Indeed, with the single exception of
Italy, the highest conditional correlations of all European markets with the United
States occur on Thursdays, with the lowest being at the beginning of the week
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(Monday or Tuesday).13 The repetition of this daily pattern of correlations across
European markets with the United States points to the important role of the latter
and implies a systematic source for the high Thursday correlations. Also note
that these substantial relative differences in correlations with the United States
across the days of the week are largely unchanged from the unconditional returns
correlations shown in Table 1.

Interrelationships between stock markets in Europe are of considerable interest
in the context of the introduction of the euro currency, and conditional correlations
for the important euro area stock markets of Germany and France are shown in
panel (c) of Figure 1. While the highest correlations tend to occur on Tuesday in
the earlier part of the sample, with lowest correlations on Thursdays, the relative
positions alter from around late 1998 and the highest correlations are on Friday
toward the end of the sample period. Another notable feature here is that the
shock correlations increase to 0.8 or more in the post-euro period, which supports
previous studies examining the impact of the euro (see Kim, Moshirian, and Wu,
2005; Savva, Osborn, and Gill, 2005; Cappiello, Engle, and Sheppard, 2006; Bartram,
Taylor, and Wang, 2007, among others).

Similar patterns to these apply to other euro area stock market pairs. In par-
ticular, these correlations increase in the late 1990s, with the highest correlations
subsequently applying at the end of the week (Thursdays or Fridays). Historically
high correlations also apply at the end of the sample period. A further illustration
of these patterns is given by the Germany/Spain conditional correlations in panel
(d), where a relatively low Monday correlations from the late 1990s is particularly
evident.

Panels (e) and (f) of Figure 1, relating to UK/Italy and Germany/Switzerland,
illustrate the temporal patterns in the conditional correlations between European
markets for non-euro with euro area members. Once again, the highest correlations
occur at the end of the week in the later part of the sample period. However, in
some cases, the periodic pattern remains relatively constant over time, whereas in
others it changes, as illustrated by panels (f) and (e), respectively.

To complement the bivariate analyses of Figure 1, Figure 2 shows the determi-
nant of the periodic conditional correlation matrix Rt obtained using the parameter
estimates of Table 2.14 Since perfect correlations between markets will imply a zero
determinant, the computed values give a measure of how far the seven markets are
from being completely integrated. According to this measure, the markets are clos-
est to being integrated on Wednesdays in the early part of the sample and furthest
from integrated on Thursdays, with the latter reflecting the relatively low correla-
tions between European markets on this day in Figure 1. However, the dominant
implication of this figure is that the determinant is of a much smaller magnitude
in the later part of the sample, reflecting the increase in conditional correlations,
especially within Europe, from around 1998.

13The highest Italy/US conditional correlations apply on Wednesdays, with the second highest on Thurs-
days.

14We are grateful to a referee for suggesting the inclusion of a multivariate measure of this type.
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Figure 2 Day-specific determinant of the conditional correlation matrix.

5 CONCLUSIONS

This paper argues that day-of-the-week effects may apply for the conditional cor-
relations of shocks across international stock markets and develops a periodic dy-
namic conditional correlation model to capture these. The properties of this model
are investigated, including the appropriate stationarity condition. Empirically, our
analysis applies a periodic DCC model to daily returns data for six European stock
markets and the United States from January 1993 to April 2005.

Although we find periodic effects in the mean equations for most stock mar-
kets, evidence of periodic variation in the coefficients of the volatility equation is
generally stronger. Despite allowing for these effects, we find clear evidence of
day-of-the-week patterns in the conditional correlations between markets. For the
recent past, such correlations between European markets are highest at the end of
the week (Thursdays and Fridays), while correlations of these markets with the
United States are often highest on Thursday and lowest at the beginning of the
week.

Our hypothesis is that the pattern in conditional correlations through the week
may be related to news announcements for important US and European macroe-
conomic variables. For instance, US employment reports are released on Fridays,
producer price index on Thursdays (until 2004) or Fridays (from 2005), while both
euro area monetary policy decisions (since 1999) and Bank of England (since 1997)
monetary policy decisions are announced on Thursdays.15 It is also notable that
day-of-the-week patterns sometimes change, which may be associated with tim-
ings of announcements relevant to the euro area differing from announcements re-
lated to individual countries for the earlier subsample. This suggests an important

15More details are available on the webpage of the US Bureau of Labor Statistics (http://stats.bls.gov),
European Central Bank (www.ecb.int), and Bank of England (www.bankofengland.co.uk).
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direction for future research, but it is beyond the scope of the present study to
explore these issues in detail.

Received April 24, 2007; revised February 18, 2008; accepted February 27, 2008.
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