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Abstract

Since the very first days of the Computer Era, machines provided us the
ability to collect and store vast amount of information. It, soon, became ob-
vious that harvesting information was an entirely different task, much more
complicated and demanding. Many solutions developed to make it possible for
humans to communicate with computers, aiming data mining. Databases, query
languages and search engines were for decades the most prevalent solution. At
first, special skills were required such as query language knowledge or search
engine’s syntax to be able to perform advanced tasks. In order to be adopted
by users, search should be easy and human friendly. Nowadays, search engines
are using simple language syntax and have made significant progress towards
natural language path.

Still, search engines fall sort on combining information from different parts
producing a synthetic answer. Computers are actually computational machines,
therefore are excellent at manipulating syntax and calculating words’ frequency
but are weak in recognizing concepts behind the words. A traditional search
engine, is not able to draw conclusions or realize the context of a dialogue.

Machine Learning has been proven strong in dealing with such concepts.
One of the most challenging fields of machine learning is the Natural Language
Processing (NLP), especially its component Natural Language Understanding
(NLU). The crest of NLP are the question-answering and summarization tasks,
in sense that strong cognitive ability is required in order the conceptual context
to be extracted. Supervised learning of deep neural networks, is currently the
best available tool for these tasks. Despite the rapid advances in the field of
Machine Learning, their performance remains poor when dealing with hard NLU
and NLP tasks, such as abstractive summarisation and question answering.

This dissertation aims to offer substantive and measurable progress in both
these areas, by ameliorating a key problem of modern machine learning tech-
niques: The need for dense and large data corpora for effective model training.
This is an especially hard task in the context of such applications. To this end,
we leverage arguments from the field of Bayesian inference. This allows for bet-
ter dealing with the modelling uncertainty, which is the direct outcome of data
sparsity, and results in poor modelling/generalisation performance. Our ap-
proaches are founded upon solid and elaborate statistical inference arguments,
and are evaluated using challenging popular benchmarks. As we show, they
offer tangible performance advantages over the state-of-the-art.

Keywords: Deep Learning, Machine Learning, Bayesian Inference, Varia-
tional Bayes, Natural Language Processing
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1 SUPERVISED MACHINE LEARNING
Supervised learning is the machine learning task of inferring a function from a
training dataset. The dataset includes examples, each of which is a pair of an
input object and a desired output value (label). The training starts by initial-
izing the network’s weights. Subsequently, the efficiency of a neural network,
for a set of examples, is evaluated through a loss function. The derivative
of the loss function is computed by the backpropagation method and it is
used by an optimization (learning) algorithm to minimize loss of the inferred
function, hence acquire knowledge. The function has to able to generalize,
meaning that it should be able to produce the expected output for unseen in-
put data. Deep learning allows computational models that are composed of
multiple processing layers to learn representations of data with multiple levels
of abstraction [3].

1.1 Loss functions
The core concept in machine learning is the derivation of a function that would
be a good estimator for a problem, given some known data. The most popular
principle for this function evaluation is theMaximum likelihood. Considering
an unknown, data generating, distribution pdata(x), a set of m examples X =
{x(i), x(2), ..., x(m)} that are drawn independently from this distribution, and a
parametric family of probability distributions pdata(x; θ) over the same space
indexed by θ, then the maximum likelihood estimator for θ is:

θML = argmax
θ

pmodel(X; θ) = argmax
θ

m∏
i=1

pmodel(x
(i); θ)

The existence of the product
∏

introduces possible underflow issues, for
this reason the logarithmic expression of maximum likelihood, also known as
maximum log likelihood, is most commonly used:

θML = argmax
θ

m∑
i=1

log pmodel(x
(i); θ),

which can also be expressed as an expectation with respect to the empirical
distribution pdata

θML = arg max
θ

Ex∼p̂data
log pmodel(x ; θ)

Maximum likelihood estimation can be thought of the minimum dissimilar-
ity between the empirical distribution and the model distribution.

This property is exploited by the loss function. The loss or cost function
is an important part of supervised learning. It is used to measure the difference
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between ground-truth y and the predicted value ŷ. Its value is always non neg-
ative and as it approaches to zero, the accuracy of the model is improved.

Cross-entropy is one of the most commonly used loss functions in artificial
neural networks. It is based on Shannon entropy which expresses the amount
of the uncertainty in a probability distribution P (x):

H(x) = Ex∼P [I(x)] = −Ex∼P [logP (x)],

where I(x) is defined as the self-information of an event x = x.

In case of two individual probability distributions over the same variable x,
the amount of their dissimilarity can be measured by the Kullback–Leibler (KL)
divergence:

DKL(P ||Q) = Ex∼P [log
P (x)

Q(x)
] = Ex∼P [logP (x)− logQ(x)]

Cross-entropy, H(P,Q) is similar to KL divergence, expressing the difference
between the two probabilities, but rather simpler. Their difference lies on the
Entropy, term Ex∼P [logP (x)], that is missing in cross-entropy.

The goal of supervised learning is the minimization of the divergence be-
tween the two probability distributions with respect to the inferred distribution
Q(x). The Entropy (Ex∼P [logP (x)]) is not depended on Qx, hence its omission
does not affect the optimization.

The cross-entropy is defined as:

H(P,Q) = −Ex∼P logQ(x)

Other well known loss functions are the Mean Squared Error [4], Mean
Squared Logarithmic Error, L2, Mean Absolute Error, Mean Absolute Percent-
age Error, Negative Logarithmic Likelihood, Poisson, Cosine Proximity, Hinge
and Squared Hinge.

Considering the above, maximum likelihood is equivalent to the minimiza-
tion of the negative log likelihood or the loss function. For this reason, in
supervised training, the goal is to minimize the loss function by altering the
network parameters, in order to model a probability distribution function (em-
pirical) that better describes the actual distribution dictated by the training
data.
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1.2 Optimization algorithms
Gradient descent [5] is one of the most popular optimization algorithms of
deep neural networks. As described in the previous section, in supervised learn-
ing, training is equivalent to optimizing a function f(θ) by altering θ. Training
aims to minimize the loss function f(θ), which expresses the difference between
the predicted ŷ and the real values y (labels).

In most cases the model defines a distribution p(y|x; θ) and the cross-
entropy is used as the loss function in pursuit of maximum log likelihood.
Given that f(θ) is differentiable and f(θ) = y , the derivative of the loss function,
f ′(θ) = dy

dθ , defines the slope of f(θ) at the point θ. In a sense, the derivative
suggests the direction of θ values that leads to smaller values of f(θ).

So, gradient descent, as an optimization algorithm, is used to minimize a
function by iteratively moving in the direction of steepest descent as defined by
the negative of the gradient. More precisely, gradient descent is an indicator
that shows the path to the minimum of the objective function J(θ), where J(θ)
is parameterized by a model’s parameters θ [6]. Minimum loss can be reached
by updating the parameters in the opposite direction of the gradient of the ob-
jective function ∇θJ(θ) with regards to the parameters. The size of steps taken
towards minimum are defined by the learning rate η.

Gradient descent algorithms can be distinguished into three main categories,
based on the amount of data used to compute the gradient of the objective
function. As the amount of data used grows, the algorithm gets more precise,
meaning that the accuracy of the parameter update increases, but the time
required to perform an update is increases as well. The first variant, the batch
gradient descent, uses the entire dataset to compute the gradient of the cost
function w.r.t. the parameters.

θ = θ − η∇θJ(θ)

This approach may become very slow because it needs to read the entire
dataset for each update. At the same time, it may suffer from memory issues,
since the entire dataset needs to be stored in memory. Furthermore, it cannot
be trained on-the-fly with new data. When new training examples appear, the
training must be started from the beginning.

The stochastic gradient descent (SGD), is designed to perform a pa-
rameter update for each individual training example of the dataset. It is called
stochastic because each example gives a noisy estimate of the average gradient
over all examples. Considering the input of the example as x(i) and the output
(label) as the y(i), the parameter update is

θ = θ − η∇θJ(θ;x(i); y(i))
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SGD is dealing better with data redundancy, since it computes the update
for each example and therefore is much faster than batch gradient descent.

Additionally, this feature (single example update) allows the online training
of the model. A potential drawback of SGD is that the convergence around min-
imum can be very complex, but experience has shown that it can be addressed
by decreasing the learning rate η.

The last variant is coinedmini-batch gradient descent and combines and
combines concepts of the two previous variants. In many cases the amount of
dataset examples is huge and the time to complete a single step of gradient
calculation may be prohibitively long. The gradient can be thought as an ex-
pectation that can be approximated by a small set of samples. On every step
a mini batch of examples is drawn from the dataset. So, an update for every
mini-batch of n training examples is performed as

θ = θ − η∇θJ(θ;x(i:i+n); y(i:i+n))

In this way, stability of the algorithm, in respect to convergence, is attained,
since the variance of the parameter update decreases. Due to its performance
and stability, the mini-batch gradient descent has became one of the standard
algorithms used in deep supervised learning.
The learning process through gradient descent algorithm is presented in Fig. 1.

Figure 1: Gradient descent optimization process
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During the last years, several extensions of SGD have been proposed in
order to increase the accuracy and speed of convergence, such Nesterov accel-
erated gradient (NAG) [7], Adagrad [8], Adadelta [9], Adam [10], AdaMax [10]
and Nadam [11], to name a few.

Adagrad is a gradient descent algorithm suitable for dealing with sparse
data, exploiting the fact that its learning rate η can adapt to the parameters. It
is thus able to perform large updates for infrequent parameters, while smaller
updates are being effected for frequent ones. As mentioned Adagrad uses a
different learning rate η for every parameter θi at every time step t. Let gt,i be
the gradient of the objective function w.r.t. the parameter θi at time step t:

gt,i = ∇θtJ(θ(t,i))

Conventionally, the update for each parameter, at each time step t becomes:

θt+1,i = θt,i − η · gt,i

Under Adagrad, at each time step t, the learning rate η for every parameter
θi is updated by taking the past gradients of θi into account:

θt+1,i = θt,i −
η√

Gt,ii + ε
· gt,i

where Gt is a diagonal matrix, in which the i, i element is the sum of squares
of the gradients w.r.t. θi, up to time step t and ε is a constant (smoothing term)
that prevents division by zero. Finally the update becomes:

θt+1 = θt −
η√

Gt + ε
� gt

where � is the element-wise multiplication.

Apart from the ability to deal with sparse data, Adagrad, takes care of the
learning rate, making its tuning, less human demanding. On the other hand,
the learning rate tends to shrink, and in some cases may become infinitesimally
small, causing the model to cease acquiring any further knowledge.

1.3 Backpropagation
In forward propagation, a feed-forward neural network is fed with information
x, which is then forwarded through the hidden units of each layer, until a pre-
diction ŷ is produced. Backpropagation [12] is a technique that computes the
error introduced by every individual unit of the network.

At this point, it is essential to be clarified that the backpropagation is ex-
clusively used to compute the gradient of the function, while the optimization
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(learning) algorithm is responsible for converting gradient to knowledge, through
loss minimization. Information about the error (cost), meaning the difference
between the ground-truth and the predicted value, is propagated backwards
through the network units in order the gradient to be computed. Following,
the gradient is used by the optimization algorithm to adjust the weights of the
network in such a way that minimizes the loss. The backpropagation process
in a deep neural network is illustrated in Fig. 2 (the forward computation is
shown with gray arrows).

Figure 2: Backpropagation in a deep neural network

Backpropagation takes advantage of the Chain Rule of Calculus [13]
(L’Hôpital , 1696), which states that the derivative of a function formed by
composing other functions, can be computed using the derivatives of these func-
tions, which (derivatives) are known. In that way the derivative computation
becomes feasible and efficient (fast). Suppose that χεRm, yεRn, g maps from
Rm to Rn and f maps from Rnto R, then if y = g(x) and z = f(x) the derivative
of z with respect to xi is defined as:

∂z

∂xi
=
∑
j

∂z

∂yj

∂yj
∂xi

1.4 Parameter initialization
In order for the training process to commence, an initialization of the network’s
weights should be effected. In many cases of simple neural networks (single lay-
ered), assignment of very low values to the weights is enough. On the contrary,
in deep networks, as the network layers increase, this initialization approach is
not very efficient.
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X. Glorot & Y. Bengio (2010) [14] suggested that the initialization of the
weights is crucial to the stability of the network, by observing the effect of the
random initialization of deep neural networks. They found out that gradient
descent from random initialization is very poor on deep neural networks, espe-
cially those with non linear activation functions (e.g. sigmoid or RELU), and
devised a new method coined Glorot.

The main idea is that each weight is initialized with a low Gaussian value
with zero mean and variance based on the hidden nodes connected to that
weight. More specifically,

Wi∼j = U [− 1√
n
,

1√
n

],

where U [−a, a] is the uniform distribution in the interval [−a, a] and n the size
of the previous layer. They also noticed that this approach causes the variance
of the back-propagated gradient to be dependent on the layer, so they proposed
the addition of a normalization factor, which resulted in the normalized ini-
tialization, that is considered to be the standard initialization method in deep
learning.

Wi∼j = U [−
√

6
√
nj + nj+1

,

√
6

√
nj + nj+1

]

1.5 Regularization
An important feature of a neural network is generalization, meaning the ability
of the model to perform “as expected” on new unseen input data. Minimizing
the loss function through training does not guarantee that the model will have
the same behaviour under test examples. Underfitting is the case where the
model performs poorly on training data and cannot generalize on new data,
while overfitting is the case where it performs well under training data but
cannot generalize its performance with new data. The latter happens usually
when the model, during training, learns the data “too” well, so it ends up mod-
elling the noise along with “core concepts” found in the training data.

The methods used to reduce the test errors of a model can be grouped under
the term “regularization”. One of the first methods was the Parameter Norm
Penalties, in which a penalty term Ω(θ) is added to the objective function J .
The new regularized objective function J̃ is defined as:

J̃(θ; X, y) = J(θ; X, y) + αΩ(θ),

where α is a non negative real number that controls the extend of regulariza-
tion via the penalty norm Ω. Several penalty norms have been proposed such
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as the L1and the L2, also known as weight decay.

Another regularization strategy is data augmentation. It is a very effec-
tive strategy but it is really difficult to be implemented. It requires the creation
of a vast amount of training data which in many cases is not feasible.

In some cases, noise injection is being employed, forming a sort of data
augmentation [15]. The injection of random noise to the input or the hidden
units of a model, during training, is able to increase its robustness [16]. Fur-
thermore, noise can be injected to the weights as proposed by Jim et al. (1996)
[17] and Graves et. al (2011)[18]. Under a Bayesian view the weights of a model
are considered uncertain and representable via a probability distribution that
reflects this uncertainty. So, the noise injection to the weights can be thought
as a practical, stochastic way to reflect this uncertainty. The output units could
also be injected with noise in a process called label smoothing [19].

Dropout is another popular regularization technique, where non-output
units are randomly removed during training time. This way, we reduce the ef-
fective number of parameters trained on each iteration of stochastic gradient
descent, yet we eventually train all the postulated model parameters.
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2 NEURAL NETWORKS FOR NLP

2.1 Sequence to sequence models
Many NLP tasks require processing of long sequences, such as sentences or
phrases, in order for another output sequence to be produced. A typical exam-
ple of such task is the Q&A, where facts and questions in the form of sentences
(sequence of words) are fed to the input of a neural network, while the answer is
expected in the output, in the form of a word or sentence. A second case is the
Summarization task in which a text in the form of a set of sentences is analyzed
by the model in order to extract a shorter comprehensive version of the given
text, again in the form of a sequence of words.

Since 1986, a special family of neural networks have been developed for deal-
ing with sequences. Recurrent neural networks or RNNs [12] were explicitly
designed to handle sequence-to-sequence tasks. Input data in traditional neural
networks are considered to be independent from each other. This approach is
not well suited for sequences where each information is highly dependent on its
predecessors. So, the network should employ a kind of “memory” to remember
information already passed to the model. The idea that revolutionized the neu-
ral network world and lies behind the success of RNNs is parameters sharing.
It actually functions as a short-memory enabling the network to take advantage
of prior knowledge, by sharing the same weights across several time steps.

Figure 3: A recurrent neural network and the unfolding in time of the compu-
tation involved in its forward computation

An RNN is equivalent to a traditional neural network unfolded in time as
depicted in Fig. 3. Given a sequence of k number of items (words), then the
RNN would be unrolled into a k−layer neural network. The xt is the input and
the st is the hidden state, in time step t. As shown in eq. 1, st is computed
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based on the current input and the state at the previous time step.

st = f(Uxi +Wt−1) (1)

It is worthwhile to mention that the network shares parameters W,U and V .
In practice st functions as the “memory” of the sequence, since st−1 was com-
puted taking into account st−2 and consequently all previous inputs and states.
Typically the function f is non-linear (sigmoid, RELU etc.) and the output
ot is a soft selection from a probabilities distribution vector over the available
dictionary:

ot = softmax(V st) (2)

The RNN’s training processes is gradient descent based, similarly to the tra-
ditional neural networks. The gradient calculation is made by using a special
kind of backpropagation, the Back Propagation Through Time (BPTT)
and cross-entropy as the loss function. The cost error is calculated for the entire
sequence as the sum of errors at each time step.

Unfortunately, the standard RNN is not suitable for capturing long-term de-
pendencies due to either the exploding or the vanishing gradient problem
[20, 21, 22].

The exploding gradient problem was introduced in Bengio et al. (1994)[22].
It refers to the large increase in the norm of the gradient during training time.
This situation can be caused by the exponential growth of long-term compo-
nents of the network. The rescaling of the norms has been proposed to address
this issue [23].

On the other hand, there are situations where the long-term components are
heading exponentially fast to norm zero, preventing the model to understand
relations between distant events in time [23]. The introduction of a regular-
ization term that prefers parameters, the gradients of which neither explode
or vanish was suggested to ameliorate the problem. Further remedies for the
vanishing gradient are considered to be the proper weights initialization and the
use of RELU as the non-linear activation function instead of sigmoid. The most
popular solution though was provided by the invention of the Long Sort-Term
Memory networks, typically referred to as LSTM [24, 25].

The main difference of the RNN and the LSTM is that the latter has a
method to control the network’s state, thus providing the ability to decide what
information is useful to remember and what to forget. This feature is realized
through three gates included in an LSTM block, the forget, the input and
the update gate.
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Figure 4: LSTM architecture

The forget gate is fed with the input xt and the previous output ht−1 and
through a non-linear (sigmoid) function produces (eq. 3) a number between
zero and one. This number is the “percentage” of the previous state to keep
while discarding the rest.

ft = σ · (Wf · [ht−1, xt]) + bf (3)

Further, the cell has to decide about what new information should be stored
in memory. This is a two-step process. First the model determines which
’memories’ (memory blocks) should be replaced (eq. 4) and then decides what
information should take their place (eq. 5).

it = σ · (Wi · [ht−1, xt]) + bi (4)

C̃t = tanh ·(WC [ht−1, xt]) + bC (5)

The cell state then is updated (eq. 6), discarding information based on the
forget gate and keeping information according to the input gate.

Ct = ft ∗ Ct−1 + it ∗ C̃t (6)

Finally, the output (eq. 7) is based on a filtered version of the computed cell
state

ht = σ · (Wo[ht−1, xt] + bo) ∗ tanh(Ct) (7)
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TheGated Recurrent Unit (GRU) [26, 27, 28, 29, 30] is a simpler version
of LSTM, in which, basically the input and the forget gate have been incorpo-
rated into one single “update” gate and the cell state has been integrated with
the hidden state. Note, that both the LSTM and GRU belong to the family of
gated RNNs.

2.2 Encoder - Decoder architecture
In 2014, the idea of using recurrent networks to map sequences to other se-
quences emerged by two independent scientific research teams [26, 31]. The
encoder-decoder or sequence-to-sequence architecture was initially used in ma-
chine translation where sequences of variable length needed to be mapped to
other sequences, also of variable length. Its foundation lies in the ability of
RNNs to model sequential dependencies. The main principle is the based on
the idea of an intermediate context vector C which is “shared” among the
two RNN modules of the model. The encoder converts the input sequence to
context and the decoder based on the context produces the output sequence.
The Encoder-Decoder architecture is depicted in Fig. 5.

The main advantage of this approach is that the input and output sequence
length can be of different size. The main drawback of this paradigm is that, for
computational reasons, the size of the context vector C must be rather limited
[32]. As such, it does not possess the capacity to encode dependencies over long
temporal horizons, which is critical for the success of a multitude of NLP tasks.

Figure 5: Encoder - Decoder architecture
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2.3 Memory augmented networks
Memory is one of the main key components of NLP (Natural Language Pro-
cessing) neural networks. As mentioned in the previous section, RNNs are not
suitable for modelling long sequences. Although recurrent neural networks are
endowed with memory, encoded by hidden states and weights, they suffer from
two main issues; capacity and structure. Traditional neural networks, even more
sophisticated ones, have limited size memory the structure of which, in some
cases, tends to be unified, meaning that there is a lack of compartmentalization.
These facts adversely affect their performance in tasks where long-term depen-
dencies are important, such as NLP (Natural Language Processing).

In an effort to provide read and write memory functionality. several neural
memory models have been developed since the early 1990s. The neural net-
work pushdown automaton (Das et al., 1992) [33] provided memory push
and pop actions, using a neural network state controller connected to a contin-
uous external stack memory trained by gradient descent. Schmidhuber (1992)
[34] proposed another gradient-based system dealing with temporal sequences,
consisted by two feed-forward networks; one for producing, context dependent,
weights changes and the second for storing these changes. The latter acted as
a kind of a parameterized memory, able to quickly perform read and write op-
erations.

Associative memory networks (Haykin, 1994) [35, 36] provided content-
addressable memory, operation of which was driven from the transformation
of a key vector to a value vector along with its references. The memory was
unified, storing the weights of the model in the same location. In contrast, in
memory-based learning models such as nearest neighbor, data were structured
and stored into memory slots.

Memory Neural Networks (Weston et. al., 2014) [37], also referred as
MemNN, combine long-term memory with inference modules achieving extrac-
tion of the most salient information given a context. The use of large memory
implies expensive, time consuming computations. The search is accelerated by
tricks such as hashing words or clustering word embeddings. In more detail,
when hashing words is applied, memory is divided into slots, as many as the
size of the dictionary. Then the input sentence is hashed into memory slots.
A slot in the memory is taken into account during the search process only if it
shares at least one word with the sentence. Alternatively, when clustering-based
word embeddings are inferred, initialization is performed via k-means. In this
case search queries only the buckets that share at least an exact word with the
input sentence, along with its synonyms. The basic limitation of MemNN was
the need of strong supervision during training, where along with the labeled
data, supporting facts were also required. Even though MemNN scored very
promising results in the experiments, it was very difficult to be used with real
world data, due to this demerit.
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Similar to MemNN, Neural Turing Machine (Graves et. al., 2014) [38],
uses large, addressable memory with read and write functionality. It contains
a neural network component (LSTM controller, sequential Input and delayed
Output) and a differentiable memory bank. ΝΤΜ is equipped with “atten-
tion” which allows the model to selectively search only a small portion of mem-
ory, based on contextual relevance. Attention has two complementary address-
ing mechanisms for producing network weights. The content-based mechanism
which is based on content similarity; and the location-based mechanism where
variables are addressed by location. The main focus of the model is on sorting,
copying and recall of memory data. In this way, similar to a Turing Machine,
NTM emulates a generic computation model that is able to learn any algorithm,
by the data. In contrast to MemNN which has only a read head, NTM employs
both read and write heads. Also, the addressing mechanism is trained in an
unsupervised fashion, making it easier to be used with real world data. On the
other hand, this unsupervised learning may become very complex and difficult,
so NTM was largely used for relatively easy tasks. A strong point of NTM is
that, since it can be trained to learn the algorithm behind the data, it is not
application-specific, in contrast to the MemNN which was developed exclusively
for Question and Answering tasks.

The RNNSearch, uses another kind of memory, also able to cope with
long sequence representations. It was developed by Bahdanau et al. (2014) [32]
and uses a model that automatically (soft-)searches words of the input sentence
that are important for the prediction. It uses soft-alignment, meaning that the
alignment mechanism is able to identify and build non-trivial, non-monotonic
alignment between words, allowing the model to jump over words in memory in
order to improve performance especially on long sentences.

The work of Grefenstette et. al. (2015) [39], coined Neural DeQue ex-
tended NTM, creating a new restricted class of models especially focused on
language transduction tasks. It consists of a recurrent neural network (LSTM)
enhanced by an unbounded differentiable memory. The memory incorporates a
Neural Stack, Neural Queue and Neural DeQue that are used to produce the
next state and output from input and previous state, with the help of a Con-
troller.

At the same time, Sukhbaatar et. al. (2015) [40, 41] developed the End-
to-End Memory Network, an extension of MemNN and RNNSearch, that
is able to learn Q&A tasks with weak supervision and demonstrates the effects
of a long-term memory integrated into neural network models for training end-
to-end systems. The model is an encoder – decoder network enhanced with an
external memory and an attention mechanism. It uses a feed forward network
(RNN) as the Controller, and has a differentiable soft-attention Input, and De-
layed Output as Interfaces. Even though the model is focused on Q&A tasks,
its memory mechanism, which is content based, is rather generic and can be
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used for any long-term dependencies modelling task. Memory has multiple lay-
ers (hops), so the model is able to handle multiple searches through time. It is
implemented by an embedding function that captures similarities, enabling the
model to be trained with weak supervision. Additionally, the lookup operation
incorporates specific time features in order to maintain temporal order.

A multiple stacks memory was also used in Stacked RNN, published by A.
Joulin & T. Mikolov (2015) [42] in an effort to overcome some of Deep Learning
limitations by utilizing a model with a more complex structure. They showed
that recurrent neural network’s performance can be enhanced in difficult al-
gorithm recognition tasks (Counting, Memorization and Binary Addition) by
the increase of memory stacks in a structured way. The model consists of a
Controller (RNN), and three interfaces, the sequential input, the differentiable
memory stack and the sequential output.

Another extension of NTM was introduced in Reinforcement Learning Neu-
ral Turing Machine – Revised (W. Zaremba et. al., 2016) [43] where the model
learns to interact with a discrete interface, such as database or search engine,
instead of memory which is continuous and differentiable. Discrete interfaces
cannot be trained through back-propagation, so Reinforcement Learning algo-
rithm was used instead. The model has a Controller (LSTM) and three inter-
faces called Input Tape, the Memory Tape, and the Output Tape.

A new machine learning model called a Differentiable Neural Computer
(DNC) was introduced by Graves et. al. (2016) [44]. DNC consists of a neural
network equipped with an external memory. It has an LSTM as the Controller,
and a Sequential Input, a differentiable Memory Queue, and the Sequential Out-
put as Interfaces. It can perform read and write actions to the external memory
matrix, which is used for handling complex data such as graphs, while the neu-
ral network (controller) learns how to do so. It is analogous to a conventional
computer but instead of being programmed for each task, it can be trained. In-
formation in memory contains the data as well as its associative temporal links.
Both of these are used in memory search, in a bidirectional fashion, in order to
recall the appropriate information. The Controller outputs are used to parame-
terize the distribution (weights) over the locations in memory. An introspective
attention model is used for focusing on selective memory locations which consist
of three separate attention mechanisms based on content, memory and temporal
order. The Controller interpolates through these mechanisms using scalar gates.

Training of neural networks demands vast amount of examples, in contrast
to humans who are able to rapidly adapt to new stimulations. Previously men-
tioned memory networks, such as NTM [38] or MemNN [40, 41], require large
datasets in order to be able to model a credible output distribution function.
Furthermore, their ability to adapt to new information is rather limited, hence
increasing the need for iterative learning. Santoro et.al. (2016) [45, 46] sug-
gested Memory-Augmented Neural Networks (MANN) to address these
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issues, especially for cases where instant inference is required based on limited
data that rapidly change. As the name implies, MANN consists of a neural
network augmented with external memory. As opposed to the other networks,
it is equipped with an additional controller coined Least Recently Used Access
(LRUA). This is a special controller module designed to access memory and is
focused on encoding relevant information. Specifically, it is designed to focus
on memory content instead of memory locations. Depending on the relevance
between input data and information stored in memory, LRUA functions as a
memory writer which, depending on content, decides where to store incoming
data. Irrelevant data are stored to rarely used locations, in contrast to relevant
data, which are placed to the last used location, as a kind of memory update
[45, 46].

2.4 Memory networks with attention mechanism
The invention of the notion of neural attention, along with the development of
external differentiable memory modules, could be considered as major break-
throughs in Deep Learning. As already mentioned in the previous section, many
state-of-the-art NLP models were implemented using this kind of scheme (exter-
nal memory with attention). Likewise that many memory variations have been
developed to serve specific applications, there are several attention mechanisms
proposed in the past few years.

The idea of an attention mechanism has been originally studied in Neuro-
science and Computational Neuroscience [47, 48]. The fact that humans, as
well as animals, can focus on specific parts of their sight, as well as to specific
types of past stored memories, helped scientists to realize that there must be
a visual attention mechanism in the process. This idea then was inherited to
neural networks, because it was the right fit to the memory extension. The ex-
ternal memory is very large, compared to the neural network internal memory,
and contains lots of information, only a part of which is relevant to the neu-
ral response at a given time point. The attention mechanism is able to select
the most salient information from the memory, making the network significantly
more efficient. Attention-based neural networks have excelled in neural machine
translation [32, 49], image captioning [50], speech recognition [51, 52], question
answering [41, 40, 53], and algorithm-learning [37, 54].

Attention is implemented as a hidden layer which computes a distribution
to make a selection over source elements, as depicted in Fig. 6.
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Figure 6: Soft Attention mechanism

Given that an attention mechanism takes a set of facts and the context as
input, the output (of the attention) is a shorter representation of the input,
containing only important information. This mechanism consists of three lay-
ers. The first layer employs a non linear function, usually tanh or dot product,
which combines each individual element of the input with the context. The
second layer is a softmax layer. The obtained softmax values are probabilities
proportionate to the relevance of each fact to the context. Finally, the output
is the weighted mean of the values, where weights represent importance. This
is a deterministic process and since all layers are differentiable, the mechanism
can be directly connected to any neural network that affords gradient-based
training. This type of Attention, which is one of the most popular, is known
as Soft Attention [50]. In the same work, a Hard Attention mechanism is
also proposed. Therein, the softmax layer is replaced by “hard max” that selects
only one memory position, as opposed to producing probabilities of the model
attending to each one of the available memory positions.
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Vectors h1 ,h2 , ...,ht represent hidden states through time. These are passed to a function
α(ht ) to derive the probability vector α. The output vector c is the weighted average of ht ,
where weights express how relevant each h is to α.

Figure 7: Feed-forward attention mechanism.

Let us consider the feed-forward attention network, depicted in Fig. 7.
Therein, the vectors h1 ,h2 , ...,ht represent the hidden states obtained through
time by an RNN encoder module that is presented with the input data. These
are passed to a function α(ht) to derive the probability vector α. The output
vector c is the weighted average of ht , where weights express how relevant each
h is to α. At each time step a “context” vector is computed as the weighted
mean of the state sequence, providing a closer correlation between model hid-
den states through time (context). The attention mechanism reduces the need
for remembering the entire input sequence and allows the decoder to focus on
different parts of the input at different time steps. Inspired by Bahdanau et
al. (2014) [32], feed-forward attention [55, 56] was developed as a simplifica-
tion to the attention mechanism. A single context vector is produced for the
entire sequence instead of the multiple vectors, one for each individual time step.

In [49] (Luong et. al., 2015) attention mechanisms are classified into two
major categories, distinguished by the portion of the source that is being used.
Global Attention mechanisms infer the weight vector based on the current
state and the entire set of source states. Then, the model computes the con-
text vector (global) as a weighted average over all source states. The fact that
all states of the sequence are fed to the attention mechanism, requires expen-
sive computations for longer sequences, hence introducing scalability issues. In
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contrast, Local attention mechanisms limit computation of the attention
vectors to a limited subset of source states (window), around a selected (pre-
dicted) position. Since only a part of the entire context is taken into account,
it is clear that the computation expensiveness is diminished. Additionally, the
subset of the source states is also differentiable; this makes it easy to be directly
attached to a gradient-based network, in contrast to hard attention [50].

W. Wang et. al. (2017) [57, 58] experimented with a Gated Attention,
a novel attention mechanism enhanced by an additional gate. In a question
answering model, a non-linear (sigmoid) gate is added to the input of an RNN,
responsible for identifying the most important set of facts (passage parts) ac-
cording to the question. Contrary to LSTM and GRU, this gate is based on
current word (of the examined fact) and the attention vector, which is able to
focus on the most pertinent parts of the question and the current word. Even
though knowledge of the context is of paramount importance, only a small por-
tion is being used. To address this issue, authors proposed the Self-Matching
Attention, that directly matches the representation of passage-question pair
against itself. This way, the gate is presented with the representation of the
context derived based on the current word, and the question is able to focus on
the most important information, even over very long sequences.

Structured Attention Networks [59] offer a new perspective especially in
cases of complex synthetic tasks where serious structural dependencies may ex-
ist. They have been introduced as a generalization of categorical soft attention
mechanisms. Soft attention layers are not designed to model structural proper-
ties. In this case structure has to be learned through heavy training, where the
size of the dataset plays a key role. The importance of modelling structural de-
pendencies was demonstrated in many publications [60, 61, 62, 63, 64, 65, 66, 67].
In a sense, the idea of structured attention is analogous to the work of Bahd-
nau et. al., (2014) [32]. In the same way that the network learns how to align
words in a translation task, structured attention is able to learn how to segment
sentences or parse a tree from the input. It is specified as a graphical model
over multiple latent variables, the edges of which hold information about the
structure of the data. Attention is computed by inferring the expectation of
the context vector over a set of structures. The whole process is differentiable,
making able to train the model in an end-to-end fashion, through gradient-based
algorithms.

Another model that exploits the merits of graphs was proposed by Tan et.
al. (2017) [68] as an alternative for summarization tasks. Graph-Based At-
tention mechanism is explicitly designed for tasks where mapping the input to
output is conceptually difficult. A Graph is constructed for sentence ranking,
where the Vertices of the Graph are the sentences and Edges represent the re-
lationship (similarity) between them. The saliency score is calculated based on
the relation of the current sentence hidden state against the hidden state of all
the other sentences. The attention model, additionally, incorporates a distrac-
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tion mechanism initially presented by Chen et. al. (2016) [69], which penalizes
sentences that have already attracted focus. Attention is finally determined
based on the saliency scores of the sentences and expresses the most globally
salient sentences which are in the same time important during decoding the
specific hidden state. The graph-based attention function is fully differentiable.

Similar to Graph-Based Attention, Hierarchical Attention mechanisms
have also been designed as extensions of attention for traditional summariza-
tion models. In a Hierarchical Document model, a document is regarded as a
composition of words, sentences, paragraphs and even larger units. Nallapati
et. al. (2016) [70] introduced a hierarchical encoder with hierarchical atten-
tion. The model tries to encode information importance in sentence as well as
in word level. The weight context vector is computed in a two-step process.
Initially, the word-level attention is calculated and then it is re-scaled based on
the sentence-level attention probabilities. Alternatively, in [71], during the ex-
tractive summarization process, each sentence and all the document words are
attended by the decoder through a softmax layer, in each time step, in order for
the model to derive the probability of a word to be found next in the summary.

A. F. Martins and R. F. Astudillo (2016) [72] observed that the traditional
softmax layer is designed to produce dense weight representations, meaning that
each part of the input has a proportionate contribution to the neural response.
In an effort to create an activation layer that would be able to tackle sparse
and dense, they developed a sparsemax transformation. By using Euclidean
projections onto the simplex, this transformation can produce sparse posterior
distributions, in which some of the output variables are assigned with zero val-
ues. Sparsemax can be leveraged to developed a new selective attention mech-
anism, that has showed very promising results in multi-label classification and
natural language inference tasks [72]. Following sparsemax, V. Niculae and M.
Blondel (2017) [73], devised two new attention mechanisms, coined fusedmax
and oscarmax; both address issues emanating from sparse representations, as
well as the need to better model hierarchical structures. Fusedmax, based on
fused LASSO [74], instructs the neural network to focus on contiguous segments
of the input in order to produce the output,. Oscarmax utilizes OSCAR [75]
penalties to enable paying attention to non-contiguous groups of items (words)
of the input.

Lately, in 2018, L. Hou et. al. [76], suggested that a major issue in abstrac-
tive neural summarization is the repetition of phrases or words in the generated
summary. To address this issue, they developed a Joint-Attention mecha-
nism. Specifically, the network postulates an integration of two separate atten-
tion mechanisms, found in the input (encoder) and the output (decoder) of the
network. The first one employs a dynamically changing context vector, which
is able to focus on the most important information of the input according to
each time step. The latter is responsible of reducing the repetition of words or
phrases. In contrast to other attentional functions, the output of which depends
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only on a few of the last decoder steps, this implementation combines previous
decoder outputs with the last decoder state to infer the context by a three-layer
process (non-linear, softmax, aggregation).
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3 QUESTION – ANSWERING
One long-term goal of machine learning research is to produce methods that are
applicable to reasoning and natural language, in particular building an intelli-
gent dialogue agent. This agent has to be able to comprehend natural language
and reason data in order to answer a question. Recent advances in deep learning
have brought to the fore models that can make multiple computational steps
in the service of completing a task; these are capable of describing long-term
dependencies in sequential data. Novel recurrent attention models over possi-
bly large external memory modules constitute the core mechanisms that enable
these capabilities.

The existing theory of MEM-NN, first introduced in [37] is considered to be
the cornerstone for many state-of-the-art models in Q&A tasks. The Memory
Network, as already described, was difficult to be trained via back-propagation
and had a strong need for supervision. This demerit was alleviated in a re-
cent end-to-end-trainable extension of MEM-NN, presented in [41], which can
also be thought as an extension of [32]. That variant enjoys the advantage of
requiring much less supervision during training, which is of major importance
in real-world question-answering scenarios. Additionally, it has the ability to
perform multiple computational steps before responding to queries, enabling it
to better model complex synthetic tasks.

The model input comprises a set of facts, {xi}Ni=1, that are to be stored in
the memory, as well as a query q; given these, the model outputs an answer
a. Each of the facts, xi, as well as the query, q, contain symbols coming from
a dictionary with V words. Specifically, they are represented by vectors that
are computed by concatenating the one-hot representations of the words they
contain. The latter are obtained on the basis of the available dictionary com-
prising V words. The model writes all xi to the memory, up to a fixed buffer
size, and then finds a continuous variable encoding for both the xi and the q.
These continuous representations are then processed via multiple hops, so as to
generate the output a; this essentially constitutes one (selected) symbol from
the available dictionary. This modelling scheme allows for establishing a potent
training procedure, which can perform multiple memory accesses back to the
input.

Specifically, let us consider one layer of the MEM-NN model. It comprises
three main functional components:

Input memory representation: Let us consider an input set of facts, {xi}Ni=1,
to be stored in memory. This entire set is converted into memory vectors,
{mi}Ni=1, mi ∈ Rδ, computed by embedding each xi in a continuous space,
using a linear embedding matrix A; that is, mi = Axi. The query q is also
embedded in the same space; this is performed via a distinct embedding ma-
trix B, and yields an internal state vector u; that is, u = Bq. On this basis,
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MEM-NN proceeds to compute the match between the submitted query, q, and
each one of the available facts, by exploiting the salient information contained in
their inferred embeddings; that is, the state vector, u, and the memory vectors,
{mi}Ni=1, respectively. Specifically, it simply takes their inner product followed
by a softmax:

$i = softmax(uTmi) (8)

where
softmax(ζi) ,

exp(ζi)∑
j exp(ζj)

(9)

In essence, $ = [$i]
N
i=1, is a probability vector over the facts, which shows how

strong their affinity is with the submitted query. This vector is the inferred
attention vector.

Output memory representation: In addition to the inferred memory vec-
tors, MEM-NN also extracts from each fact, xi, a corresponding output vector
embedding, ci, via another embedding matrix C, i.e. ci = Cxi. These output
vector embeddings are considered to encode the salient information included in
the presented facts that can be used for output (answer) generation. To achieve
this goal, we leverage the inferred attention vector$, by using it to weight each
fact (encoded via its inferred output vector embedding) with the corresponding
computed probability value. It holds

o =

N∑
i=1

$ici (10)

Generating the final prediction: MEM-NN output layer is a simple soft-
max layer, which is presented with the computed output vector, o, as well as
the internal state vector, u. It estimates a probability vector over all possible
predictions, â, that is all the entries of the considered dictionary of size V . It
holds

â = softmax(W (o+ u)) (11)

where W is the weights matrix of the output layer of the network, whereby we
postulate

a = arg max(â)

Multiple hops: The model is capable to perform multiple hops in memory by
simply stacking multiple such layers2. In case of k hops, each layer, except for
the first one, takes as input the sum of the output ok and the input uk from
layer k:

2The number of hops performed in memory is a model hyperparameter, that has to be
selected in a heuristic manner. Naturally, there is no point in this number exceeding the
number of facts presented to the model each time.
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uk+1 = uk + ok

The weights matrix W is fed with a combination of the top memory layer
input and output representations

α̂ = softmax (Wuk+1 ) = softmax (W (ok + uk ))

There can be two types of weight tying within the model:
1. Adjacent: The input embedding of each layer is the output embedding of

the previous one (below in memory), meaning that Ak+1 = Ck. Two constraints
are being applied. The answer prediction matrix is constrained to the size of
final output embedding (WT = Ck) and the question embedding is matched to
the input embedding of the first layer (B = A1).

2. Layer-wise: The input and output embeddings are the same across
different layers A1 = A2 = ... = Ak and C1 = C2 = ... = Ck. A graphical
illustration of the considered end–to-end trainable MEM-NN model is provided
in Fig. 8.

(a) A single-layer version of the considered model. (b) A 3-layer version, obtained via stack-
ing.

Figure 8: End-to-End Memory Network

Data encoding: Three types of encoding are proposed. The traditional bag-
of-words representation (BoW), where a sentence embedding is just the
sum of all word embeddings

mi = ΣjAxi,j

ci = ΣjCxi,j

ui = ΣjBqi,j
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Due to the fact that in some tasks the order of words within the sentence
is important, a second method, coined Position Encoding (PE), is proposed.
Under this rationale, the expressions become

mi = Σj lj ·Axi,j
ci = Σj lj·Cxi,j

ui = Σj lj ·Bqi,j
where lj is a column vector

lkj = (1− j

J
)− (

k

d
)(1− 2j

J
)

and · is element-wise multiplication. The amount of words in the sentence
are represented by J , while d is the embedding size. Under PE the embeddings
are affected by the position of each word in a sentence.

In order to give a temporal notion to the embeddings, Temporal Encod-
ing (TE) is introduced. In some tasks, understanding the order of events
(sentences) in a story is mandatory. For this reason, memory and output vector
are altered to

mi = ΣjAxi,j + TA(i)

ci = ΣjCxi,j + TC(i)

where TA, TC are special vectors, that are learned during training and hold
temporal information. In order for the relative distance between the question
and each sentence to be reflected, sentences are indexed in reverse order.

Regularization: The authors suggested a new technique that improved the
performance of the model, referred as Random Noise (RN). It involves the injec-
tion random noise to the input (stories). Specifically, during training time, 10%
of empty memories are added to stories, a fact that regularizes the, previous
described, temporal vector TA.

Training - Evaluation: During training, all three embedding matrices A, B
and C, as well as W are jointly learned by minimizing a standard cross-entropy
loss between the predicted value α̂ and the true label α, using stochastic gra-
dient descent algorithm (SGD) and Glorot initialization.

The model is trained on the bAbI dataset developed by J. Weston et. al. (2015)
[77], which comprises 20 proxy tasks that evaluate reading comprehension via
question answering. Tasks are independent from each other and aim to individ-
ually examine one aspect of intended behaviour. For each task, a training set is
provided that contains the facts, the questions and the right answers as well as
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the supporting facts used to derive the answer. In case of MEM-NN, supporting
facts are ignored, reducing the need for strong supervision. The data represent
common activities between actors and objects that move and interact between
each other. The answers are limited to one word or a specific list of words, so
evaluation is clear and easy. A separate training set is provided along with a
test set for each different task.

In Task 1 (Single Supporting Fact), the answer can be simply inferred
by locating the correct fact from the input data (set of facts), in contrast to
Task 2 (Two Supporting Facts) and Task 3 (Three Supporting Facts)
where multiple facts must be chained, two and three respectively, in order for
the question to be answered. Task 4 (Two Argument Relations) and Task
5 (Three Argument Relations) were designed to evaluate the model’s abil-
ity to distinguish objects from subjects. Task 4 includes cases where the answer
is determined by the word’s order while stories in Task 5 contain interaction
between actors and objects.

Task 6 (Yes/No) constitutes the simplest form of true/false questions.
The counting ability is tested via Task 7 (Counting), where the model needs
to count the multitude of an object held by an actor, disregarding irrelevant
information. In a similar way, in Task 8 (Lists/Sets) the answer contains
a list of different items held by an actor. A more complex natural language
construct is explored in Task 9 (Simple Negation), where some facts have
negative meaning, hence challenging the model to understand that the statement
is false. Another complex task is examined in Task 10 (Indefinite Knowl-
edge) in which the answer cannot be defined by the facts that, in many cases,
are phrases connected by a disjunctive “or”. A sample of statements and ques-
tions from Tasks 1 to 10 are depicted in Fig. 9.
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Figure 9: Sample statements and questions from Tasks 1 to 10

As the name implies, Task 11 (Basic Coreference) tests the ability to
locate the latest reference of an actor in order to pinpoint her current location.
Task 12 (Conjunction) is very similar to the previous task, and differentiates
only on the fact that many actors are included in the same sentence. Task 13
(Compound Coreference) also tests the coreference, but ii this case a pro-
noun can refer to multiple actors. The time comprehension is evaluated through
Task 14 (Time Reasoning), where facts contain time expressions, in contrast
to all previous tasks that time sequence was corresponding to the order of sen-
tences.

Deduction and induction are tested in Task 15 (Basic Deduction) and
Task 16 (Basic Induction), respectively, through inheritance of properties.
Spatial reasoning is examined in Task 17 (Positional Reasoning), where the
relative position of a colored block is being asked. The ability of the model to
understand relations between object sizes is examined in Task 18 (Size Rea-
soning), where it is asked to determine whether an object can fit in another,
based on the provided facts. Task 19 (Path Finding), challenges the model
to find the directions in order to move from one location to another, given a
description of the relation between locations. Finally, the Task 20 (Agent’s
Motivation), examines the ability of the model to learn the reason behind the
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actions of an actor. A sample of statements and questions from Tasks 11 to 20
are depicted in Fig. 10.

Figure 10: Sample statements and questions from Tasks 11 to 20

The experimental evaluation of the model showed that some tasks (1, 12, 20)
are relatively easy to be learned, while some others (17, 19) are much harder.
Furthermore, on some tasks (e.g. 15) a large variance of the performance was
detected, pointing that the model was highly depending on the initialization.
Finally, there are considerations about the model’s behaviour in large and sparse
data as those found in real-data applications.
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4 TEXT SUMMARIZATION
The revolution brought by Internet and World Wide Web enabled humans to
access, in a daily basis, an enormous amount of information, of any kind. It
is in fact impossible to make use of all these information, given the fact that
reading, extracting the most interesting parts and understanding the concept
hidden behind the data, is a very demanding and time consuming process. Over
the years, it became clear that some kind of a summarization tool would be nec-
essary to serve these needs. Summarization is the process of creating a shorter
version of the original text, preserving the most salient information, without
altering the basic concepts.

Due to the fact that the amount of information is vast, the data are most
likely unstructured and the diversity of natural language is large, the required
cognitive load for reading and understanding documents is colossal. For this
reason, AI text summarization is an open field, still posing several challenges.

There are two approaches to text summarization; the extractive, in which
sentences or words found in the original text are used to construct the summary
and the abstractive, which includes the generation of new sentences or novel
words during the summarization process. Initially, researchers were attracted
[78, 79, 80, 81] by the extractive method, since it was much easier. With the in-
troduction of the sequence-to-sequence architecture [31] the abstractive method
was made more feasible and attractive. Currently, state-of-art abstractive mod-
els [82, 83, 84, 85, 86] are performing equally well to extractive ones [87], and
alongside are able to produce more human-like results.

The encoder-decoder scheme, with the use of recurrent neural networks
(RNNs), enabled models to read and generate text, through word alignment. It
was initially used for machine translation [32, 49] and then the idea was inher-
ited to text summarization. Although the performance of the earlier abstractive
models [82, 83, 84, 85] was very promising, they showed difficulty in rendering
facts, they had problem dealing with out-of-vocabulary words (OOV) and suf-
fered from word or phrase repetition.

In 2017, Manning et. al. [86] developed a hybrid point-generator model
in an effort to address these issues and achieved state-of-the-art performance.
It is a hybrid network employing a pointer-generation model along with a
coverage mechanism. The point-generation model is a sophisticated amal-
gam of a sequence-to-sequence attentional model and a pointer network.

Sequence-to-sequence model is based on the work of Nallapati et. al. (2016)
[88] and comprises an encoder, which is a single-layer bidirectional LSTM, a
decoder, which is a single-layer unidirectional LSTM and an attention mecha-
nism adopted by Bahdanau et. al. (2014) [32]. The main intuition behind the
function of this module, is that the model initially focuses on the most salient
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words of the source according to the input word, the previous word and the
encoder-decoder states. Then, the context vector, that holds information about
what has been already read by the network, is computed based on the attention
information (distribution) and the encoder state. Finally the context vector
along with the decoder state is used to compute the probability distribution
over all the words of the vocabulary, which is the final distribution, from which,
words are predicted.

More specifically, at each time step t, the encoder produces the hidden state
hi according to the input words of sentence wi, that are fed sequentially to
it. The decoder has state st and takes as input the embedding of the previous
word. These are used by the attention mechanism to compute the attention
distribution.

eit = vT tanh(Whhi +Wsst + battn) (12)

at = softmax(et) (13)

where v, Wh , Ws and battn are the weights and bias of the model.

Following the context vector h∗ is calculated based on the encoder state and
the attention distribution

h∗ =
∑

athi (14)

The context vector combined with the decoder state are taken into account
to produce the vocabulary distribution Pvocab

Pvocab = softmax(V
′
(V [st, h

∗
t ] + b) + b

′
) (15)

where V , V
′
, b and b

′
are learnable parameters.

P (w) = Pvocab(w) (16)

The pointer network was originally developed by Vinyals et. al. (2015)
[54]. A problem observed by the authors was that traditional sequence-to-
sequence models require the size of the output dictionary to be fixed and pre-
defined. They proposed a new variation of the attention mechanism [32] that
is purposed to create pointers to input items, so to handle problems where the
output dictionary was dependent on the input sequence length.

Given a training pair, (P,CP ), the encoder hidden states (e1, ..., en) and the
decoder hidden states (d1, ..., dm(P )) the pointer network computes the condi-
tional probability p(CP |P ; θ) using the attention vector, that is essentially a
pointer to input elements.
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uij = vT tanh(W1ej +W2di), jε(1, ..., n)

p(Ci, ..., Ci−1, P ) = softfmax(ui)

where ui is the output distribution over the dictionary of inputs and v,W1,W2

are learnable parameters of the output. As mentioned the point-generator is a
combination of the sequence-to-sequence attentional model and the pointer-
network. The generation of words is made by either copying from the input
using pointers as in pointer-network or by selecting from a fixed dictionary,
as in encoder-decoder architecture. Additionally to the attention distribution
atand the context vector h∗, the generation probability is computed.

pgen = σ(wTh∗h
∗
t + wTs st + wTx xt + bptr)

where xt is the decoder input, st the decoder state bptr, wh, ws and wx are
trainable parameters. The generation probability Pgen functions as a alternator
that select between copying and generating words.

Figure 11: Pointer generator model

More specifically, when the model selects to copy a word from the input
sequence, it samples the attention distribution at while in order to generate a
new word found in the global vocabulary it samples the global vocabulary dis-
tribution Pvocab. The global vocabulary is the concatenation of the vocabulary
with all the words of the current input.

P (w) = pgenPvocab(w) + (1−pgen)Σi:wi=w
at (17)
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Additionally, the eq. 17 can be thought as a trick to deal with out of vocab-
ulary (OOV) words. When an OOV word appears, the model selects to copy a
word from the input, since Pvocab(w) = 0.

Training: The SGD algorithm with Glorot initialization is used for model’s
training. The loss function at each timestep and the overall loss during training
are defined, respectively:

losst = −logP (w∗t )

loss =
1

T

T∑
t=0

losst

In order to reduce word repetition, another trick was utilized. A coverage
mechanism was adopted from the work of Tu et. al. (2016) [89] to penalize
words that have already taken attention. A coverage vector that acts as global
attention memory was added to the network. In details, the coverage vector ct
is an aggregation of all passed attention distributions and is defined as:

ct =

t−1∑
t′=0

at
′

Accordingly, the encoder state was altered to take into account the coverage
vector (attention memory)

eit = vT tanh(Whhi +Wsst + wcc
t
i + battn) (18)

Experimentation showed that another term would be useful for further elim-
inating repetitive words. The loss changed to include a penalization of overlap-
ping between attention distributions and the global attention memory

losst = −logP (w∗t ) + λ
∑
i

min(ati, c
t
i) (19)

where λ is a hyperparameter and
∑
imin(ati, c

t
i) is the coverage loss.

Summary generation: Beam search is employed for realizing the sum-
mary generation. Finding the (most likely) output sequence involves searching
through all the possible output sequences based on their likelihood, as defined
by P (w). The size of the vocabulary consists of thousands or even millions of
words. Given the fact that search complexity is exponential to the length of the
output sequence, the calculation can be easily become intractable. Therefore,
an approximation method as the beam search is necessary.

It is a heuristic, path-based, search method [90] that instead of calculating
only the next step, it expands all k next steps, where k is the beam size, and
keeps the k most probable candidates for each step, while rejecting and pruning
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all other values. Subsequently, the next k steps are calculated, but only for the k
candidate values from the previous step. The process is iterated until the special
“EOS” (End Of Sentence) token is selected, or the maximum sequence length is
reached. The beam size can be thought as the number of parallel searches in
the sequences of probabilities, where useful information is exchanged between
these parallel searches.

Experiments - evaluation: The model was tested using the CNN/Daily
Mail dataset [91]. The dataset is a collection of about 300k articles and their
summaries from the CNN (April 2007 - April 2015) and the Daily Mail (June
2010 - April 2015) web site. The average length of articles and summaries is
781 and 56 tokens respectively. Detailed corpus statistics are displayed in Fig.
12.

Figure 12: CNN - Daily Mail corpus statistics

The results were evaluated using two different metrics; theROUGE (ROUGE-
1, ROUGE-2 and ROUGE-L) [92] and METEOR (exact match and full mode)
[93]. Based on the former metric, the Pointer Generator with Coverage outper-
forms all the state-of-the-art abstractive model [88] while performing equally
to the top performing extractive model [87]. Considering the latter metric,
the model also presents the best performance among abstractive models, but
lacks in accuracy comparing to the extractive model (about 3 METEOR points).

A sample summary is illustrated in Fig. 13. It can been observed that the
Point-Gen model is able to accurately copy factual data from the original text
and produce a comprehensive summary. Furthermore, the model shows excel-
lent behaviour when dealing with OOV words. Nevertheless, it suffers from
repetitions, fact that is ameliorated in Point-Gen with Coverage. Still, both
models couldn’t produce many novel words, following the safe path of copying.
Hence, this approach can be considered to be in between of abstractive and
extractive method.
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Figure 13: Pointer generator and Pointer generator with coverage sample sum-
mary
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5 BAYESIAN INFERENCE

5.1 Frequentist vs Bayesian
In the previous chapters the state-of-the-art DNNs (Deep Neural Networks) for
Natural Language Processing (NLP) tasks, especially for Q&A tasks and Text
Summarization, were studied. These solutions, as described, aim to predict
point-estimates, based on the maximum likelihood paradigm, for the parame-
ters θ of the model. Then all predictions are made based on this single value of
θ. In essence, the true parameter value θ is treated as fixed but unknown and
the point estimate θ̂ as a random variable that is a function of the dataset. This
also known as the frequentist approach.

The key concept behind this school of thought is that only repeatable ran-
dom events have probabilities, which (probabilities) are connected with the fre-
quency of occurrence of an event observed via sampling. It should be pointed
that probabilities are depended on the amount of data that needs to be large
and, additionally, should include repetitive events. It is impossible to predict
the probability of an event occurring when this event hasn’t been observed be-
fore. Furthermore, there is no provision for the incorporation of prior knowledge
to the prediction.

These characteristics are major drawbacks of this approach, that make it un-
suitable for problems where predictions have to made based on limited amount
of data or in cases that prior belief may exist. Furthermore, it is not possible
to assign probabilities to an event that hasn’t been occurred before. All the
aforementioned are common cases in supervised learning.

According to the Bayesian approach, probabilities represent uncertainty or
the degree of belief about a given event. Probabilities reflect knowledge and
experience, so it is possible to assign probabilities to any event, even to unseen,
rare or non repetitive ones. Additionally, belief can be updated at any time
making the prediction process more accurate and flexible. Opposite to the fre-
quentist approach, the Bayesian approach predicts a full probability distribution
instead of point-estimates for the postulated model parameters.

5.2 Bayes essentials
In 1763, Reverend T. Bayes in his essay [94] provided the mathematical foun-
dation for updating belief based on new evidences. He defined that

P (A|B) =
P (B|A) · P (A)

P (B)
(20)

where A and B are events and P (B) 6= 0
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Unlike to frequentist paradigm, the Bayesian inference approach considers
that the dataset is not random, since it can be directly observed. On the other
hand, the true parameter θ is unknown or uncertain, hence θ is a random vari-
able.

Bayesian inference refers to the process in which prior evidence and obser-
vations are used to infer the posterior probability p(θ|x) of the random variables
θ given the observations x. The prior knowledge about parameter θ is repre-
sented by the prior probabilities distribution, known as prior p(θ). It is usually
a high entropy distribution reflecting the uncertainty before observing the data.

After observing a set of m data samples, belief about θ can be updated to
p(θ|{x(1), x(2), ..., x(m)}) based on the eq. 20

p(θ|{x(1), x(2), ..., x(m)}) =
p({x(1), x(2), ..., x(m)}|θ) · p(θ)

p({x(1), x(2), ..., x(m)})
(21)

This is the posterior probability distribution, that expresses the additional
knowledge (probabilities) acquired by the observed data sample. The term
p({x(1), x(2), ..., x(m)}|θ) renders the probability of data given θ, also known as
likelihood function.

It can be observed that Bayesian makes predictions based on the probability
distribution over parameter θ, in contrast to frequentist that make predictions
based on a fixed value of θ.

After observing the next data sample x(m+1) the distribution over x(m+1) is
rendered as

p(x(m+1)|{x(1), x(2), ..., x(m)}) =

ˆ
p(x(m+1)|θ) · p(θ|{x(1), x(2), ..., x(m)}d(θ)

(22)

The term p({x(1), x(2), ..., x(m)} is the marginal likelihood, representing
the evidence as observed by the data

p({x(1), x(2), ..., x(m)}) =

ˆ
p({x(1), x(2), ..., x(m)}|θ) · p(θ)d(θ) (23)

In order to be able to model complex data we need to introduce additional data
dependencies on some unobserved latent variablez. So the marginal likelihood
can be redefined conditionally to the hidden or latent variables z. Based on eq.
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23, the marginal likelihood can be expressed as

p({x(1), x(2), ..., x(m)}) =

ˆ
p({x(1), x(2), ..., x(m)}, z, θ)dzdθ =

=

ˆ
p({x(1), x(2), ..., x(m)}|z, θ)p(z)p(θ)dzdθ (24)

Then, once a prior over the latent variables is defined as p(x|z), the posterior
can be computed

p(z, θ|{x(1), x(2), ..., x(m)}) =
p({x(1), x(2), ..., x(m)}|z, θ) · p(z, θ)´

p({x(1), x(2), ..., x(m)}|z, θ)p(z)p(θ)dzdθ
(25)

As eq. 25 dictates, in order to derive the posterior distribution we should
be able to compute the marginal likelihood, which is the denominator. Even
though it may seem a simple task, in most cases the calculation of the integral
is either difficult or intractable. Variational Bayes is focused on providing
methods to approximate the posterior probability distribution.

5.3 Variational Bayes
The approximation of the posterior, according to variational Bayes, is a two step
process. First, the posterior is being approximated with a simpler family of dis-
tributions and then the fittest distribution, amongst this family, is selected. The
selection is made based on the maximization of the Evidence Lower Bound
(ELBO), also known as variational free energy.

Given that x observations have been made, z are the latent variables, and
q(z) is a distribution to approximate the true posterior distribution p(z|x), then
the log-probability of the observations, using the Jensen’s inequality f(E[x]) ≤
E[f(x)], becomes

log p(x) = log

ˆ

z

p(x, z) = log

ˆ

z

p(x, z)
q(z)

q(z)
=

= log (Eq[
p(x, z)

q(z)
]) = log Eq[log

p(x, z)

q(z)
] ≥

≥ Eq[log
p(x, z)

q(z)
] = Eq[log p(x, z)] +H[z]

= Eq[log p(x|z)] + Eq[log p(z)] +H[z]

(26)

where H[z] is the Shannon Entropy

Hz = −Eq[log q(z)]
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On this basis, and by utilizing the definition of the Kullback-Leibler (KL) di-
vergence:

KL[q(z)||p(z)] = −(Eq[log p(z)] +H[z]) (27)

it is straightforward to obtain that:

log p(x) ≥ Eq[log p(x|z)]−KL[q(z)||p(z|x)] (28)

Hence, we have obtained a lower-bound to the log-evidence of the model,
log p(x), which is expressed as a functional of the sought approximate (varia-
tional) posterior, q(z). Thus, maximization of this functional over q(z) allows
for approximating infinitely well the actual posterior p(z|x), with the approxi-
mation improving the more tighter this bound becomes.

5.4 Variational Bayes in Deep Learning
The main idea of applying variational Bayesian inference to deep learning mod-
els consists in calculating a posterior distribution over the network weights given
the training data. The benefit of such a learning algorithm setup is that the so-
obtained posterior distribution answers predictive queries about unseen data by
taking expectations: Prediction is made by averaging the resulting predictions
for each possible configuration of the weights, weighted according to their poste-
rior distribution. This allows for accounting for uncertainty, which is prevalent
in tasks dealing with sparse training datasets.

Specifically, let us consider a training dataset D. A deep network essentially
postulates and fits to the training data a (conditional) likelihood function of the
form p(D|w), where w is the vector of network weights. In the case of Bayesian
treatments of neural networks, an appropriate prior distribution, p(w), is im-
posed over w, and the corresponding posterior is inferred from the data [95].
This consists in introducing an approximate posterior distribution over the net-
work weights, q(w;φ), and optimizing it w.r.t. a lower bound to the network
log-marginal likelihood log p(D;φ), commonly referred to as the evidence lower
bound (ELBO), L(φ) [96]; it holds

log p(D;φ) ≥ L(φ) =Eq(w;φ)[log p(D|w)

+ log p(w)− log q(w;φ)]
(29)

where Eq(w;φ)[·] is the expectation of a function w.r.t. the random vari-
able w, drawn from q(w;φ). This is equivalent to minimizing a KL divergence
measure between the inferred approximate variational density and the actual
underlying distribution.

Turning to the selection of the imposed prior p(w), one may opt for a fixed-
form isotropic Gaussian:
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p(w) = N (w|0, σ2
0I) (30)

where I is the identity matrix, and N (·|µ,Σ) is a multivariate Gaussian with
mean µ and covariance matrix Σ. On the other hand, the sought variational
posterior q(w;φ) is for simplicity and efficiency purposes selected as a diagonal
Gaussian of the form:

q(w;φ) = N (w|µ,diag(σ2)) (31)

where φ = {µ,σ2}, and diag(σ2) is a diagonal matrix with the vector σ2

on its main diagonal.

An issue with the above formulation is that the entailed posterior expectation
Eq(w;φ)[log p(D|w)] is analytically intractable; this is due to the non-conjugate
nature of deep networks, stemming from the employed nonlinear activation func-
tions. This prohibits taking derivatives of L(φ) to effect derivation of the sought
posterior q(w;φ). In addition, approximating this expectation by simply draw-
ing Monte-Carlo (MC) samples from the weights posterior is not an option, due
to the prohibitively high variance of the resulting estimator.

To address this issue, one can resort to a simple reparameterization trick:
We consider that the MC samples w(s) used to approximate the expectation
Eq(w;φ)[log p(D|w)] are functions of their posterior mean and variance, as well
as a random noise vector, ε, sampled from a standard Gaussian distribution
[97, 98, 99]. This can be effected by introducing the transform:

w = µ+ σ � ε (32)

where � denotes the elementwise product of two vectors, and the ε are dis-
tributed as ε ∼ N (0, I). By substituting this transform into the derived ELBO
expression, the entailed posterior expectation is expressed as an average over a
standard Gaussian density, p(ε). This yields an MC estimator with low vari-
ance, under some mild conditions [99].

Under this rationale, inference is performed by drawing a number of MC
samples from the inferred posteriors over the model parameters, q(·;φ), and
obtaining the average predictive value of the model that corresponds to these
drawn parameter values (samples). As a result, in variational inference, the
uncertainty in the data is taken into account, which is a significant issue when
dealing with sparse datasets, which are prevalent in real-world.
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6 t-Exponential Memory Networks for Q&A Ma-
chines

Recent advances in deep learning have brought to the fore models that can make
multiple computational steps in the service of completing a task; these are ca-
pable of describing long-term dependencies in sequential data. Novel recurrent
attention models over possibly large external memory modules constitute the
core mechanisms that enable these capabilities. Our work addresses learning
subtler and more complex underlying temporal dynamics in language model-
ing tasks that deal with sparse sequential data. To this end, we improve upon
these recent advances, by adopting concepts from the field of Bayesian statistics,
namely variational inference. Our proposed approach consists in treating the
network parameters as latent variables with a prior distribution imposed over
them. Our statistical assumptions go beyond the standard practice of postulat-
ing Gaussian priors. Indeed, to allow for handling outliers, which are prevalent
in long observed sequences of multivariate data, multivariate t-exponential dis-
tributions are imposed. On this basis, we proceed to infer corresponding poste-
riors; these can be used for inference and prediction at test time, in a way that
accounts for the uncertainty in the available sparse training data. Specifically, to
allow for our approach to best exploit the merits of the t-exponential family, our
method considers a new t-divergence measure, which generalizes the concept of
the Kullback-Leibler divergence. We performed an extensive experimental eval-
uation of our approach, using challenging language modeling benchmarks, and
illustrate its superiority over existing state-of-the-art techniques.

6.1 Introduction
Recent developments in machine learning have managed to achieve breakthrough
improvements in modeling long-term dependencies in sequential data. Specif-
ically, the machine learning community has recently witnessed a resurgence
in models of computation that use explicit storage and a notion of attention
[100, 101, 102, 103]. As it has been extensively shown, the capability of ef-
fectively manipulating such storage mechanisms offers a very potent solution
to the problem of modeling long temporal dependencies. Its advantages have
been particularly profound in the context of question-answering bots. In such
applications, it is required that the trained models be capable of taking multi-
ple computational steps in the service of answering a question or completing a
related task.

This work builds upon these developments, seeking novel treatments of Mem-
ory Networks (MEM-NNs) [101, 102] to allow for more flexible and effective
learning from sparse sequential data with heavy-tailed underlying densities. In-
deed, both sparsity and heavy tails are salient characteristics in a large variety
of real-world language modeling tasks. Specifically, the earliest solid empirical
evidence that any sufficiently large corpus of natural language utterances en-
tails heavy-tailed distributions with power-law nature dates back to 1935 [104].
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Hence, we posit that the capability of better addressing these data properties
might allow for advancing the state-of-the-art in the field. Our inspiration is
drawn from recent developments in approximate Bayesian inference for deep
learning models [105, 106, 107, 108, 109]. Bayesian inference in the context of
deep learning models can be performed by considering that the network param-
eters are stochastic latent variables with some prior distribution imposed over
them. This inferential framework allows for the developed network to account
for the uncertainty in the available (sparse) training data. Thus, it is expected
to yield improved predictive and inferential performance outcomes compared to
the alternatives.

Existing Bayesian inference formulations of deep networks postulate Gaus-
sian assumptions regarding the form of the imposed priors and correspond-
ing (inferred) posterior distributions. Then, inference can be performed in an
approximate, computationally efficient way, by resorting to variational Bayes
[110]. This consists in searching for a proxy in an analytically solvable distri-
bution family that approximates the true underlying distribution. To measure
the closeness between the true and the approximate distribution, the relative
entropy between these two distributions is used. Specifically, under the afore-
mentioned Gaussian assumption, one can use the Shannon-Boltzmann-Gibbs
(SBG) entropy, whereby the relative entropy yields the well known Kullback-
Leibler (KL) divergence [111].

Despite these advances, in problems dealing with long sequential data com-
prising multivariate observations, such assumptions of normality are expected
to be far from the actual underlying densities. Indeed, it is well-known that
real-world multivariate sequential observations tend to entail a great deal of
outliers (heavy-tailed nature). This fact gives rise to significant difficulties in
data modeling, the immensity of which increases with the dimensionality of the
data [112]. Hence, replacing the typical Gaussian assumption with alternatives
has been recently proposed as a solution towards the amelioration of these issues
[113].

Our work focuses on the t-exponential family3, which was first proposed by
Tsallis and co-workers [114, 115, 116], and constitutes a special case of the more
general φ-exponential family [117, 118, 119]. Of specific practical interest to us
is the Students’-t density, which has been extensively examined in the litera-
ture of generative models, such as hidden Markov models [120, 121, 122]. The
Student’s-t distribution is a bell-shaped distribution with heavier tails and one
more parameter (degrees of freedom - DOF) compared to the normal distribu-
tion, and tends to a normal distribution for large DOF values [123]. Hence, it
provides a much more robust approach to the fitting of models with Gaussian
assumptions. On top of these merits, the t-exponential family also gives rise to a
new t-divergence measure; this can be used for performing variational inference
in a fashion that better accommodates heavy-tailed data (compared to standard
KL-based solutions) [124].

Under this rationale, our proposed approach is founded upon the funda-
3Also referred to as the q-exponential family or the Tsallis distribution.
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mental assumption that the imposed priors over the postulated MEM-NN pa-
rameters are Student’s-t densities. On this basis, we proceed to infer their
corresponding Student’s-t posteriors, using the available training data. To best
exploit the merits of the t-exponential family, we effect variational inference
by resorting to a novel algorithm formulation; this consists in minimizing the
t-divergence measure [124] over the sought family of approximate posteriors.

The contribution of this work can be summarized as follows:

1. The proposed approach, dubbed t-exponential Memory Network (t−MEM-
NN), is the first ever attempt to derive a Bayesian inference treatment
of MEM-NN models for question-answering. Our approach imposes a
prior distribution over model parameters, and obtains a corresponding
posterior; this is in contrast to existing approaches, which train simple
point-estimates of the model parameters. By obtaining a full posterior
density, as opposed to a single point-estimate of the model parameters,
our approach is capable of coping with uncertainty in the trained model
parameters.

2. We consider imposition of Student’s-t priors, which are more appropri-
ate for applications dealing with modeling heavy-tailed phenomena, as is
the case with large natural language corpora [104]. This is the first time
that explicit heavy-tailed distribution modeling is considered in the liter-
ature of MEM-NNs. Eventually, by making use of the trained posteriors,
one can perform inference by drawing multiple alternative samples of the
model parameters, and averaging the predictive outcomes pertaining to
each sample. Thus, our predictions do not rely on the “correctness” of
just a single model estimate; this way, the effects of model uncertainty are
considerably ameliorated.

3. Model training is performed by maximizing a t-divergence-based objective
functional, as opposed to the commonly used objectives that are based on
the KL divergence. This allows for making the most out of the heavy
tails of the obtained Student’s-t distributions. Our work is the first one
that performs approximate inference for deep latent variable models on
the grounds of a t-divergence-based objective functional.

6.2 Methodological Background
6.2.1 End-to-end Memory Networks

Our proposed approach extends upon the existing theory of MEM-NNs, first in-
troduced in [101]. Specifically, we are interested in a recent end-to-end-trainable
extension of MEM-NNs, presented in [102]. That variant enjoys the advantage
of requiring much less supervision during training, which is of major importance
in real-world question-answering scenarios. The model input comprises a set of
facts, {xi}Ni=1, that are to be stored in the memory, as well as a query q; given
these, the model outputs an answer a. Each of the facts, xi, as well as the
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query, q, contain symbols coming from a dictionary with V words. Specifically,
they are represented by vectors that are computed by concatenating the one-hot
representations of the words they contain. The latter are obtained on the basis
of the available dictionary comprising V words. The model writes all xi to the
memory, up to a fixed buffer size, and then finds a continuous variable encoding
for both the xi and the q. These continuous representations are then processed
via multiple hops, so as to generate the output a; this essentially constitutes
one (selected) symbol from the available dictionary. This modeling scheme al-
lows for establishing a potent training procedure, which can perform multiple
memory accesses back to the input.

Specifically, let us consider one layer of the MEM-NN model. This is capable
of performing a single memory hop operation; multiple hops in memory can be
performed by simply stacking multiple such layers4. It comprises three main
functional components:
Input memory representation: Let us consider an input set of facts, {xi}Ni=1,
to be stored in memory. This entire set is converted into memory vectors,
{mi}Ni=1, mi ∈ Rδ, computed by embedding each xi in a continuous space,
using a position embedding procedure [102] with embedding matrix A. The
query q is also embedded in the same space; this is performed via a position
embedding procedure with embedding matrix B, and yields an internal state
vector u. On this basis, MEM-NN proceeds to compute the match between the
submitted query, q, and each one of the available facts, by exploiting the salient
information contained in their inferred embeddings; that is, the state vector,
u, and the memory vectors, {mi}Ni=1, respectively. Specifically, it simply takes
their inner product followed by a softmax:

$i = softmax(uTmi) (33)

where
softmax(ζi) ,

exp(ζi)∑
j exp(ζj)

(34)

In essence, $ = [$i]
N
i=1, is a probability vector over the facts, which shows how

strong their affinity is with the submitted query. We will be referring to this
vector as the inferred attention vector.
Output memory representation: In addition to the inferred memory vec-
tors, MEM-NN also extracts from each fact, xi, a corresponding output vector
embedding, ci, via another position embedding procedure [102] with embedding
matrix C. These output vector embeddings are considered to encode the salient
information included in the presented facts that can be used for output (answer)
generation. To achieve this goal, we leverage the inferred attention vector$, by
using it to weight each fact (encoded via its inferred output vector embedding)

4The number of hops performed in memory is a model hyperparameter, that has to be
selected in a heuristic manner. Naturally, there is no point in this number exceeding the
number of facts presented to the model each time.
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(a) A single-layer version of the considered model. (b) A 3-layer version, obtained via stacking
(adopted from [102]).

Figure 14: MEM-NN model

with the corresponding computed probability value. It holds

o =

N∑
i=1

$ici (35)

Generating the final prediction: MEM-NN output layer is a simple soft-
max layer, which is presented with the computed output vector, o, as well as
the internal state vector, u. It estimates a probability vector over all possible
predictions, â, that is all the entries of the considered dictionary of size V . It
holds

â = softmax(W (o+ u)) (36)

where W is the weights matrix of the output layer of the network, whereby we
postulate

a = arg max(â)

A graphical illustration of the considered end–to-end trainable MEM-NN
model, that we build upon in this work, is provided in Fig. 14. Our exhibition
includes both single-layer models, capable of performing single memory hop op-
erations, as well as multi-layer ones, obtained by stacking multiple singe layers,
which can perform multiple hops in memory. Note that, to save parameters, and
reduce the model’s overfitting tendency, as well as its memory footprint, we tie
the corresponding embedding matrices across all MEM-NN layers, as suggested
in [102].

6.2.2 Variational Bayes in Deep Learning

The main idea of applying variational Bayesian inference to deep learning mod-
els consists in calculating a posterior distribution over the network weights given
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the training data. The benefit of such a learning algorithm setup is that the so-
obtained posterior distribution answers predictive queries about unseen data by
taking expectations: Prediction is made by averaging the resulting predictions
for each possible configuration of the weights, weighted according to their poste-
rior distribution. This allows for accounting for uncertainty, which is prevalent
in tasks dealing with sparse training datasets.

Specifically, let us consider a training dataset D. A deep network essentially
postulates and fits to the training data a (conditional) likelihood function of the
form p(D|w), where w is the vector of network weights. In the case of Bayesian
treatments of neural networks, an appropriate prior distribution, p(w), is im-
posed over w, and the corresponding posterior is inferred from the data [109].
This consists in introducing an approximate posterior distribution over the net-
work weights, q(w;φ), and optimizing it w.r.t. a lower bound to the network
log-marginal likelihood log p(D;φ), commonly referred to as the evidence lower
bound (ELBO), L(φ) [125]; it holds

log p(D;φ) ≥ L(φ) =Eq(w;φ)[log p(D|w)

+ log p(w)− log q(w;φ)]
(37)

where Eq(w;φ)[·] is the expectation of a function w.r.t. the random variable w,
drawn from q(w;φ). This is equivalent to minimizing a KL divergence measure
between the inferred approximate variational density and the actual underlying
distribution.

Turning to the selection of the imposed prior p(w), one may opt for a fixed-
form isotropic Gaussian:

p(w) = N (w|0, σ2
0I) (38)

where I is the identity matrix, and N (·|µ,Σ) is a multivariate Gaussian with
mean µ and covariance matrix Σ. On the other hand, the sought variational
posterior q(w;φ) is for simplicity and efficiency purposes selected as a diagonal
Gaussian of the form:

q(w;φ) = N (w|µ,diag(σ2)) (39)

where φ = {µ,σ2}, and diag(σ2) is a diagonal matrix with the vector σ2 on its
main diagonal.

An issue with the above formulation is that the entailed posterior expectation
Eq(w;φ)[log p(D|w)] is analytically intractable; this is due to the non-conjugate
nature of deep networks, stemming from the employed nonlinear activation func-
tions. This prohibits taking derivatives of L(φ) to effect derivation of the sought
posterior q(w;φ). In addition, approximating this expectation by simply draw-
ing Monte-Carlo (MC) samples from the weights posterior is not an option, due
to the prohibitively high variance of the resulting estimator.

To address this issue, one can resort to a simple reparameterization trick:
We consider that the MC samples w(s) used to approximate the expectation
Eq(w;φ)[log p(D|w)] are functions of their posterior mean and variance, as well
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as a random noise vector, ε, sampled from a standard Gaussian distribution
[108, 107, 105]. This can be effected by introducing the transform:

w = µ+ σ � ε (40)

where � denotes the elementwise product of two vectors, and the ε are dis-
tributed as ε ∼ N (0, I). By substituting this transform into the derived ELBO
expression, the entailed posterior expectation is expressed as an average over a
standard Gaussian density, p(ε). This yields an MC estimator with low variance,
under some mild conditions [105].

6.2.3 The Student’s-t Distribution

The adoption of the multivariate Student’s-t distribution provides a way to
broaden the Gaussian distribution for potential outliers [123]. The probability
density function (pdf) of a Student’s-t distribution with mean vector µ, covari-
ance matrix Σ, and ν > 0 degrees of freedom is [126]

t(yt;µ,Σ, ν) =
Γ
(
ν+δ
2

)
|Σ|−1/2(πν)−δ/2

Γ(ν/2){1 + d(yt,µ; Σ)/ν}(ν+δ)/2
(41)

where δ is the dimensionality of the observations yt, d(yt,µ; Σ) is the squared
Mahalanobis distance between yt,µ with covariance matrix Σ

d(yt,µ; Σ) = (yt − µ)TΣ−1(yt − µ) (42)

and Γ(s) is the Gamma function, Γ(s) =
´∞
0
e−tzs−1dz.

It can be shown (see, e.g., [126]) that, in essence, the Student’s-t distribution
corresponds to a Gaussian scale model [127] where the precision scalar is a
Gamma distributed latent variable, depending on the degrees of freedom of the
Student’s-t density. That is, given

yt ∼ t(µ,Σ, ν) (43)

it equivalently holds that [126]

yt|ξt ∼ N (µ,Σ/ξt) (44)

where the precision scalar, ξt, is distributed as

ξt ∼ G
(ν

2
,
ν

2

)
(45)

and G(α, β) is the Gamma distribution.
A graphical illustration of the univariate Student’s-t distribution, with µ,

Σ fixed, and for various values of the degrees of freedom ν, is provided in Fig.
15. As we observe, as ν →∞, the Student’s-t distribution tends to a Gaussian
with the same µ and Σ. On the contrary, as ν tends to zero, the tails of the
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Figure 15: Univariate Student’s-t distribution t(yt;µ,Σ, ν), with µ, Σ fixed,
for various values of ν [2].

distribution become longer, thus allowing for a better handling of potential out-
liers, without affecting the mean or the covariance of the distribution. Thus, by
exploiting the heavier tails of the Student’s-t distribution, a probabilistic gener-
ative model becomes capable of handling, in a considerably enhanced manner,
outliers residing in the fitting datasets. That is, if the modeled phenomenon
is actually heavy-tailed, the inferred Student’s-t model will be capable to cope,
by yielding a value for the fitted degrees of freedom parameter, ν, e.g., close to
1. On the other hand, if no such heavy-tailed nature does actually characterize
the data, the fitted degrees of freedom parameter, ν, will yield a value close to
infinity (practically, above 100). In the latter case, the model essentially reduces
to a simpler Gaussian density [123].

6.2.4 The t-Divergence

As discussed in Section 6.2.2, conventional variational inference is equivalent to
minimization of a KL divergence measure, which is also known as the relative
SBG-entropy. Motivated from these facts, and in order to allow for making the
most out of the merits (heavy tails) of the t-exponential family, the t-divergence
was introduced in [124] as follows:
Definition 1. The t-divergence between two distributions, q(h) and p(h), is
defined as

Dt(q||p) =

ˆ
q̃(h)logtq(h)dh− q̃(h)logtp(h)dh (46)

where q̃(h) is called the escort distribution of q(h), and is given by

q̃(h) =
q(h)t´
q(h)tdh

, t ∈ R (47)
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Importantly, the divergence Dt(q||p) preserves the following two properties:

• Dt(q||p) ≥ 0, ∀q, p. The equality holds only for q = p.

• Dt(q||p) 6= Dt(p||q).

In the seminal work of [124], it has been shown that by leveraging the above
definition of the t-divergence, Dt(q||p), one can establish an advanced variational
inference framework, much more appropriate for modeling data with heavy tails.
We exploit these benefits in developing the training and inference algorithms of
the proposed t-MEM-NN model, as explained in the following Section.

6.3 Proposed Approach
6.3.1 Model Formulation

t-MEM-NN extends upon the model design principles discussed previously, by
building on the solid theory of variational inference based on the t-divergence.
It does so by introducing a novel formulation that renders MEM-NN amenable
to Bayesian inference.

To effect our modeling goals, we first consider that the postulated embed-
dings matrices are Student’s-t distributed latent variables. Specifically, let us
start by imposing a simple, zero-mean Student’s-t prior distribution over them,
with tied degrees of freedom:

p(A) = t(vec(A)|0, I, ν) (48)

p(B) = t(vec(B)|0, I, ν) (49)

p(C) = t(vec(C)|0, I, ν) (50)

where vec(·) is the matrix vectorization operation, and ν > 0 is the degrees
of freedom hyperparameter of the imposed priors. On this basis, we seek
to devise an efficient means of inferring the corresponding posterior distribu-
tions, given the available training data. We postulate that the sought posterior
q(A,B,C;φ) factorizes over A, B, and C (mean-field approximation [118]);
the factors are considered to approximately take the form of Student’s-t densi-
ties with means, diagonal covariance matrices, and degrees of freedom inferred
from the data. Hence, we have:

q(A;φ) = t(vec(A)|µA,diag(σ2
A), νA) (51)

q(B;φ) = t(vec(B)|µB,diag(σ2
B), νB) (52)

q(C;φ) = t(vec(C)|µC ,diag(σ2
C), νC) (53)

where φ = {µi,σ2
i , νi}i∈{A,B,C}, and νi > 0,∀i.

On this basis, to perform model training in a way the best exploits the heavy
tails of the developed model, we minimize the t-divergence between the sought
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variational posterior and the postulated joint density over the observed data
and the model latent variables. Thus, the proposed model training objective
becomes

q(A;φ), q(B;φ), q(C;φ),W

=argmin
q,W

Dt (q(A;φ), q(B;φ), q(C;φ)||p(a;A,B,C,W )) (54)

where p(a;A,B,C,W ) = p(a;W )p(A)p(B)p(C). Then, following the deriva-
tions rationale of [124], and by application of simple algebra, the expression of
the t-divergence in (47) yields

Dt

(
q(A;φ), q(B;φ), q(C;φ)||p(a;A,B,C,W )

)
=

= Dt (q(A;φ)||p(A)) +Dt (q(B;φ)||p(B))

+Dt (q(C;φ)||p(C))− Eq̃(·;φ)[logp(a;W )]

(55)

where q̃(·;φ) is the escort distribution of the sought variational posterior, and
p(a;W ) is a Multinoulli parameterized via the probability vector â, given by
(33).

Following [124], and based on (41)-(46), we obtain that the t-divergence
expressions in (48) can be written in the following form:

Dt (q(Θ;φ)||p(Θ)) =

δV∑
l=1

{
Ψql

1− t

(
1 +

1

νΘ

)
− Ψp

1− t

(
1 +

[σ2
Θ]l + [µΘ]2l

ν

)} (56)

where Θ ∈ {A,B,C}, [ξ]l is the lth element of a vector ξ, we denote

Ψql ,

(
Γ(νΘ+1

2 )

Γ(νΘ2 )(πνΘ)1/2[σΘ]l

)− 2
νΘ+1

(57)

Ψp ,

(
Γ(ν+1

2 )

Γ(ν2 )(πν)1/2

)− 2
ν+1

(58)

δ is the dimensionality of the embeddings, V is the vocabulary size, ν is the
degrees of freedom hyperparameter of the prior, and the free hyperparameter t
is set as [124]

t =
2

1 + νΘ
+ 1 (59)

6.3.2 Training Algorithm Configuration

As we observe from the preceding discussion, the expectation of the conditional
log-likelihood of the model, Eq̃(·;φ)[logp(a;W )], is computed with respect to the
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escort distribution of the sought posterior, q̃(·;φ). Based on (44)-(46), it is easy
to show that this escort distribution yields a factorized form, with [124]

q̃(Θ;φ) = t

(
vec(Θ)|µΘ,

νΘ
νΘ + 2

diag(σ2
Θ), νΘ + 2

)
∀Θ ∈ {A,B,C}

(60)

Despite this convenient escort distribution expression, though, this posterior
expectation cannot be computed analytically; hence, its gradient becomes in-
tractable. This is due to the nonconjugate nature of t-MEM-NN, which stems
from its nonlinear assumptions. Apparently, approximating this expectation
using a set of S MC samples, {Θs}Ss=1, drawn from the escort densities (28),
would result in estimators with unacceptably high variance.

In this work, these issues are resolved by adopting the reparameteriza-
tion trick ideas described in Section 6.2.2, adapted to the t-exponential family.
Specifically, we perform a smart reparameterization of the MC samples from
the Student’s-t escort densities (28) which yields:

Θs = µΘ +

(
νΘ

νΘ + 2

)1/2

σΘεs (61)

where εs is random Student’s-t noise with unitary variance:

εs ∼ t(0, I, νΘ + 2) (62)

Then, the resulting (reparameterized) t-divergence objective (48) can be
minimized by means of any off-the-shelf stochastic optimization algorithm. For
this purpose, in this work we utilize Adagrad; this constitutes a stochastic gra-
dient descent algorithm with adaptive step-size [128], and fast and proven con-
vergence to a local optimum. Adagrad updates the trained posterior hyperpa-
rameter set, φ, as well as the output layer weights,W , by utilizing the gradient
Oφ,WDt (q(A;φ), q(B;φ), q(C;φ)||p(a;A,B,C,W )).

On each Adagrad iteration, this gradient is computed using only a small
subset (minibatch) of the available training data, as opposed to using the whole
training dataset. This allows for computational tractability, no matter what
the total number of training examples is. To facilitate convergence, on each
algorithm iteration a different minibatch is selected, in a completely random
fashion.

In this context, it is important to appropriately select the number of MC
samples drawn from (55) during training. In our work, we opt for the computa-
tionally efficient solution of drawing just one MC sample during training. One
could argue that using only one MC sample is doomed to result in an approx-
imation of limited quality. However, it has been empirically well-established
that drawing just one MC sample is sufficient when Adagrad is executed with a
small minibatch size compared to the size of the used training dataset [109, 113].
Indeed, this is the case with our experimental evaluations in Section 6.4. In
all cases, network initialization is performed by means of the Glorot uniform
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Table 1: Considered benchmark dataset: Indicative training data samples from
three of the entailed types of tasks.

Sam walks into the kitchen. Brian is a lion. Sandra got the milk.
Sam picks up an apple. Julius is a lion. Sandra journeyed to the garden.
Sam walks into the bedroom. Julius is white. Sandra went back to the bathroom.
Sam drops the apple. Bernhard is green. Sandra put down the milk.
Q: Where is the apple? Q: What color is Brian? Q: Where was the milk before the bathroom?
A: Bedroom A: White A: Garden

Figure 16: Test error per epoch: Task type #11.

scheme, except for the degrees of freedom hyperparameters; these are initial-
ized at high values (ν = 100), which essentially reduce the initial Student’s-t
densities of our model to simpler Gaussian ones (as discussed in Section II.C)
[129].

6.3.3 Inference Procedure

Having obtained a training algorithm for our proposed t-MEM-NN model, we
can now proceed to elaborate on how inference is performed using our method.
As briefly hinted in Section 6.2.2, this consists in drawing a number of MC
samples from the inferred posteriors over the model parameters, q(·;φ), and
obtaining the average predictive value of the model that corresponds to these
drawn parameter values (samples). According to the related deep learning liter-
ature, drawing a set of S = 10 samples should be enough for inference purposes
[109, 113]. We investigate the impact of the number of drawn MC samples to
the eventually obtained performance of the inference algorithm of our model in
our experiments that follow.
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Table 2: Quantitative assessment: Accuracy results in the test set.
Test Accuracy (%)

Baseline t-MEM-NN
Task type MemN2N 1 sample 10 samples
1: 1 supporting fact 100 100 100
2: 2 supporting facts 84 77 84
3: 3 supporting facts 55 55 57
4: 2 argument relations 96 94 96
5: 3 argument relations 88 87 88
6: yes/no questions 92 93 97
7: counting 83 81 85
8: lists/sets 87 87 90
9: simple negation 90 88 92
10: indefinite knowledge 78 81 84
11: basic coreference 85 98 98
12: conjunction 100 100 100
13: compound coreference 89 93 95
14: time reasoning 92 92 96
15: basic deduction 100 100 100
16: basic induction 45 45 46
17: positional reasoning 51 51 53
18: size reasoning 87 89 91
19: path finding 12 12 14
20: agent’s motivation 100 100 100

Table 3: Attention in task type #1 - story #202.
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Table 4: Attention in task type #11 - story #3.

Table 5: Attention in task type #14 - story #22.
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6.4 Synthetic Question&Answering Tasks
In this Section, we perform a thorough experimental evaluation of our proposed
t-MEM-NN model. We provide a quantitative assessment of the efficacy, the
effectiveness, and the computational efficiency of our approach, combined with
deep qualitative insights into few of its key performance characteristics. To
this end, we utilize a publicly available benchmark, which is popular in the
recent literature, namely the set of synthetic question-answering (QA) tasks
defined in [130] (bAbI). Specifically, we consider the English-Language tasks
of the bAbI dataset that comprise 1K training examples (en-1K tasks). This
dataset, as described in Chapter 3, comprises 20 different types of tasks, which
are characterized by different qualitative properties. Some of them are harder
to be learned, while some others are much easier.

The idea of all the types of tasks entailed in this dataset is rather simple.
Each task consists of a set of statements (facts), a question, and an answer. The
answer comprises only one word from the available vocabulary. Given the facts,
a question is asked and an answer is expected. Then, model performance can be
evaluated on the basis of the percentage of generated answers that match the
available groundtruth. To allow for a better feeling of what our dataset looks
like, we provide indicative samples from three of the entailed types of tasks in
Table 1. Note that the available dataset also provides additional supporting
facts that may be made use of by the trained models.

To provide some comparative results, we evaluate two variants of our method,
namely one where inference is performed using only a single MC sample (drawn
from the model posteriors), and another one where 10 MC samples are used. In
all cases, training is performed by drawing just one MC sample. In addition,
we compare to the state-of-the-art alternative that is the closest related to our
approach, namely the MemN2N method of [102]. Our source codes have been
developed in Python, using the TensorFlow library [1], as well as open-source
software published by Dominique Luna5. Our experiments are run on an Intel
Xeon server with 64GB RAM and an NVIDIA Tesla K40 GPU.

6.4.1 Experimental Setup

Model training is performed by utilizing the training dataset provided in the
used en-1K bAbI benchmark. This comprises 1000 examples from each type of
task; from these, we randomly select 900 samples to perform training, and retain
the remainder 100 for validation purposes. Each training example comprises the
full set of data pertaining to the task, including the correct answer (which we
expect the system to generate), apart from the corresponding question and
available statements (facts). On this basis, a trained model is evaluated by
presenting it with the facts and the questions pertaining to each example in the
test set, and running its inference algorithm to obtain a predicted answer. The
available test set comprises 1000 cases from each task type, which are completely
unknown to the trained models.

5https://github.com/domluna/memn2n
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Since the used benchmark comprises a multitude of task types, we train
a different model (of each evaluated method) for each task type. An obvious
advantage of such a modeling setup consists in the fact that it allows for the
trained models to be finely-tuned to data with very specific patterns. On the
other hand, the imposed weight tying across model layers is a strong safeguard
against possible model overfitting.

Turning to the selection of the hyperparameters of the training algorithms,
we emphasize that we adopt exactly the same configuration for both our model
and the baseline. Specifically, we perform training for 100 epochs, as also sug-
gested in [102]. Adagrad is carried out by splitting our training data into 32
minibatches. The learning rate is initialized at η = 0.01, and is annealed every
25 epochs by η/2, until the maximum number of epochs is reached (similar to
[102]). Glorot initialization for all trained models is performed via a Gaussian
distribution with zero mean and σ = 0.1. The postulated models employ an
external memory size of 50 sentences. Nil words are padded with zero embed-
ding (zero one-hot encodings). The embedding space size, δ, is set to 20; this is
shown in [102] to work best for the MemN2N model. In order to calculate the
output (predicted answer) for each problem, 3 computational steps (hops) are
performed, similar to the suggestions of [102].

6.4.2 Quantitative Assessment

In this Section, the accuracy of the model-generated predictions is measured and
reported. In order for a trained model to be considered successful in some type
of task, we stipulate that a 95% accuracy must be reached, similar to [102]. The
test-set accuracy results obtained under our prescribed experimental setup are
provided in Table 2. Expectably, increasing the number of MC samples drawn
to perform inference improves performance in the most challenging of the task
types, while retaining performance in the rest. As we observe, our approach
manages to pass our set success threshold of 95% accuracy in 9 task types (#
1, 4, 6, 11, 12, 13, 14, 15, 20), thus outperforming the MemN2N baseline which
passes the threshold in only 5 cases (# 1, 4, 12, 15, 20). Another characteristic
finding is that our approach outperforms the baseline in most tasks, and achieves
the same performance in the few rest. In our perception, this finding vouches
for the better capacity of our approach to learn the underlying distributions
in the modeled dataset. Of course, one also observes that our method does
not offer significant improvements on the types of tasks for which the baseline
has low accuracy. However, this apparently constitutes an inherent weakness
of the whole learning paradigm adopted by MEM-NN networks; this cannot be
rectified by introducing better inference mechanisms, as we do in this work.

Further, to show how the test error of the considered approaches converges
over the training algorithm epochs, in Fig. 16 we depict the evolution of the
test error for an indicative task type, in one execution of our experiments. We
observe that both variants of our approach (i.e., using one or ten MC samples
for performing inference) converge gradually and consistently over the training
algorithm epochs. In contrast, the baseline MemN2N approach appears to reach

74



its best performance early-on during training, and subsequently remains almost
stable.

6.4.3 Qualitative Assessment

To provide some qualitative insights into the inferred question-answering ra-
tionale of our approach, and how this compares to the original MemN2N, in
Tables 3 - 5 we illustrate what the inferred attention vectors look like in three
indicative test cases. More specifically, we record which fact each model mostly
focuses its attention on, on every hop; further, we compare this result to the
supporting facts included in the dataset. Our so-obtained results indicate that
the proposed approach manages to better focus on the most salient informa-
tion (sentences), as indicated by the provided supporting facts. This outcome
offers a strong intuitive explanation of the reasons why t-MEM-NN appears to
outperform the baseline, in most of the considered task types.

6.4.4 Computational Times

Apart from inferential accuracy, the computational costs of a devised method
constitute another aspect which affects its efficacy. To allow for objectively
examining this aspect, we have developed all the evaluated algorithms using the
same software platform, and executed them on the same machine (each time
without concurrently running any other user application).6 Then, we recorded
the resulting wall-clock times, for both model training and inference.

As we have observed, baseline MemN2N training requires an average of 146.5
msec per minibatch, while our approach imposes a negligible increase, requiring
an average of 149.8 msec. This is reasonable, since training of our model entails
the same set of computations as baseline MemN2N, with the only exception
being the computation of the t-divergence terms pertaining to the degrees of
freedom parameters, which are of linear complexity. Thus the observed slight
increase in computational times, which is clearly worth it for the improved model
performance.

Turning to the computational costs of the inference algorithm, we observe
that our approach requires computational times comparable to MemN2N in
order to generate one answer. This is clearly reasonable, since both models entail
the same set of feedforward computations. On the other hand, it is significant to
underline that the extra computational costs of t-MEM-NN that arise from an
increase in the number of MC samples drawn to perform inference (from just one
to ten) are completely negligible. Indeed, an average increase of 0.1 msec was
observed. This was well-expected, since the extra matrix multiplications that
arise from the use of multiple drawn MC samples are completely parallelizable
over commercially available, modern GPU hardware.

6Our source codes have been developed in Python, using the TensorFlow library [1]. We
run our experiments on an Intel Xeon server with 64GB RAM and an NVIDIA Tesla K40
GPU.
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Hence, to summarize, our approach only imposes a small increase in the total
training time compared to the baseline MemN2N, which is more than worth it
for the offered increase in modeling accuracy. In addition, using multiple MC
samples to perform inference is clearly auspicious, since it allows for improved
accuracy while imposing negligible increases in computational times.

6.5 Further Insights
6.5.1 Effect of the number of hops

In the previous experimental evaluations, we performed three memory hops,
following the suggestions of [102]. Yet, it is desirable to know how t-MEM-NN
performance may be affected if we change this number. To get a proper answer
to this question, we repeat our experiments considering only one memory hop,
as well as an increased number of five hops. We provide the so-obtained results
in Tables 6 and 7. As we observe, conducting only one hop in memory results
in a significant performance impairment in the vast majority of the considered
task types. This way, our model manages to pass the success threshold in only
two of the considered task types (#1 and 12), as opposed to the eight task
types attained when performing three memory hops. On the other hand, a
further increase of the number of hops from three to five seems to undermine
the obtained performance. Indeed, t-MEM-NN passes the success threshold in
only six task types, namely task types #1, 4, 11, 12, 15, 20. We posit that
these outcomes are due to the structure of the used dataset, as it also becomes
obvious from the number of available supporting facts, which is more than one
in most cases, but it seldom exceeds three.
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Table 6: t-MEM-NN accuracy in the test set, performing just one memory hop.
Test Accuracy (%)

Task type 1 sample 10 samples
1: 1 supporting fact 100 100
2: 2 supporting facts 34 35
3: 3 supporting facts 23 23
4: 2 argument relations 79 80
5: 3 argument relations 87 87
6: yes/no questions 69 69
7: counting 52 56
8: lists/sets 33 35
9: simple negation 77 80
10: indefinite knowledge 44 47
11: basic coreference 25 28
12: conjunction 96 99
13: compound coreference 92 93
14: time reasoning 21 23
15: basic deduction 57 75
16: basic induction 44 46
17: positional reasoning 48 48
18: size reasoning 85 86
19: path finding 9 9
20: agent’s motivation 83 84
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Table 7: t-MEM-NN accuracy in the test set, increasing the number of memory
hops to five.

Test Accuracy (%)
Task type 1 sample 10 samples
1: 1 supporting fact 100 100
2: 2 supporting facts 78 82
3: 3 supporting facts 56 57
4: 2 argument relations 93 96
5: 3 argument relations 87 87
6: yes/no questions 73 78
7: counting 78 81
8: lists/sets 87 89
9: simple negation 83 86
10: indefinite knowledge 82 84
11: basic coreference 96 97
12: conjunction 98 99
13: compound coreference 90 90
14: time reasoning 87 89
15: basic deduction 94 96
16: basic induction 44 46
17: positional reasoning 50 51
18: size reasoning 89 90
19: path finding 11 14
20: agent’s motivation 100 100

6.5.2 Altering the embedding space dimensionality

In addition, it is interesting to examine what the effect of the embedding space
dimensionality is on the performance of our approach. Indeed, it is reasonable
to expect that the larger the embedding space the more potent a postulated
model is. However, the entailed increase in the trainable model parameters
does also come at the cost of considerably higher overfitting tendencies. These
might eventually undermine the obtained accuracy profile of t-MEM-NN.

To examine these aspects, we repeat our experiments considering a smaller
embeddings size than the one suggested in [102], specifically δ = 10, as well
as a much larger one, specifically δ = 50. The outcomes of this investigation
are depicted in Tables 8 and 9, respectively. As we observe, decreasing the
postulated embedding space dimensionality to δ = 10 results in worse model
performance, since the model passes the success threshold in only four task
types (#1, 11, 12, 20). Similarly interesting are the findings pertaining to an
increase of the embedding space size to δ = 50. In this case, average model
performance over all the considered task types remains essentially stable. Thus,
it seems that model performance reaches a plateau as we continue to increase
the size of the embeddings. Note also that postulating either δ = 10 or δ = 50
results in t-MEM-NN passing the success threshold in exactly the same set of
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task types as when we postulate δ = 20.
To summarize, increasing the embedding space size does not appear to be

worth the extra computational costs. Indeed, t-MEM-NN requires an extra 2.2
msec to generate one answer when δ increases from 20 to 50, which represents
an average increase by 62%. On the other hand, predictive accuracy does not
yield any considerable increase.

Table 8: t-MEM-NN accuracy in the test set, reducing the embedding size to
δ = 10.

Test Accuracy (%)
Task type 1 sample 10 samples
1: 1 supporting fact 100 100
2: 2 supporting facts 55 56
3: 3 supporting facts 31 34
4: 2 argument relations 79 81
5: 3 argument relations 83 83
6: yes/no questions 60 61
7: counting 77 77
8: lists/sets 85 85
9: simple negation 70 70
10: indefinite knowledge 71 75
11: basic coreference 96 97
12: conjunction 98 98
13: compound coreference 92 92
14: time reasoning 83 83
15: basic deduction 70 74
16: basic induction 45 45
17: positional reasoning 50 50
18: size reasoning 87 87
19: path finding 10 10
20: agent’s motivation 100 100
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Table 9: t-MEM-NN accuracy in the test set, increasing the embedding size to
δ = 50.

Test Accuracy (%)
Task type 1 sample 10 samples
1: 1 supporting fact 100 100
2: 2 supporting facts 73 78
3: 3 supporting facts 52 55
4: 2 argument relations 90 91
5: 3 argument relations 85 86
6: yes/no questions 72 78
7: counting 79 81
8: lists/sets 86 89
9: simple negation 86 87
10: indefinite knowledge 80 82
11: basic coreference 95 96
12: conjunction 99 99
13: compound coreference 93 95
14: time reasoning 81 84
15: basic deduction 98 100
16: basic induction 44 45
17: positional reasoning 50 52
18: size reasoning 89 91
19: path finding 11 13
20: agent’s motivation 100 100

6.5.3 Joint task modeling

In all the previous experiments, we have trained a distinct model on each one
of the 20 types of QA tasks included in the considered en-1K bAbI bench-
mark. However, one could also consider jointly training one single model on
data from all the included task types. Clearly, one may argue that this alterna-
tive approach might make it more difficult for the trained model to distinguish
between fine patterns. However, it is also the case that, by training a joint
model on all task types, we also allow for a significantly reduced overfitting ten-
dency (by increasing the effective number of training data). Hence, we consider
training a single model on all the task types; we train for 60 epochs, and anneal
the learning rate every 15 epochs.

Our results, obtained by setting the latent space dimensionality equal to
δ = 20, and by employing 3 memory hops, are depicted in Table 10. It is
evident that, similar to the single-task setup, inference using 10 MC samples
yields better average performance than using just one. Considering the set
success threshold of 95% accuracy, we obtain that our method succeeds in 9
task types (# 1, 6, 9, 10, 12, 13, 14, 15, 20); this way, it outperforms baseline
MemN2N by one task. Note also that t-MEM-NN performance is greater than
MemN2N in all these tasks.
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Table 10: Joint-modeling setup: Accuracy results in the test set.
Test Accuracy (%)

Baseline t-MEM-NN
Task type MemN2N 1 sample 10 samples
1: 1 supporting fact 99 100 100
2: 1 supporting facts 86 61 79
3: 3 supporting facts 71 45 60
4: 2 argument relations 85 77 85
5: 3 argument relations 86 82 86
6: yes/no questions 96 99 100
7: counting 84 84 85
8: lists/sets 89 88 89
9: simple negation 96 99 99
10: indefinite knowledge 92 91 95
11: basic coreference 94 90 91
12: conjunction 98 99 100
13: compound coreference 97 93 98
14: time reasoning 88 91 96
15: basic deduction 98 97 100
16: basic induction 46 46 48
17: positional reasoning 55 55 58
18: size reasoning 59 67 71
19: path finding 10 14 17
20: agent’s motivation 100 100 100

6.5.4 Experimental evaluation with the rest of the available tasks

Further, for completeness sake, we examine how the performance of our model
compares to the competition when it comes to considering the rest of the tasks
available in the bAbI dataset. That is, we report results on the 20 QA tasks
that are developed in the Hindi language, that comprise both 1K as well as
10K training examples, or employ random shuffling. These are denoted as en-
10K, hn-1K, hn-10K, shuffle-1K, and shuffle-10K, respectively. Our findings,
obtained by setting the latent space dimensionality equal to δ = 20, and by
employing 3 memory hops, are depicted in Tables 11-15. As we observe, in all
cases our approach exceeds the 95% success threshold in more tasks than the
baseline. This is yet another result that vouches for the validity of our theoretical
claims, and the efficacy of our algorithmic construction and derivations.
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Table 11: Accuracy results in the Hindi/1k test set.
Test Accuracy (%)

Baseline t-MEM-NN
Task type MemN2N 1 sample 10 samples
1: 1 supporting fact 99 100 100
2: 1 supporting facts 85 85 88
3: 3 supporting facts 53 50 55
4: 2 argument relations 97 96 98
5: 3 argument relations 88 85 89
6: yes/no questions 89 89 89
7: counting 83 83 84
8: lists/sets 88 87 90
9: simple negation 89 89 92
10: indefinite knowledge 78 75 82
11: basic coreference 84 90 98
12: conjunction 99 99 99
13: compound coreference 89 93 95
14: time reasoning 93 92 96
15: basic deduction 100 98 100
16: basic induction 45 45 47
17: positional reasoning 49 45 51
18: size reasoning 86 86 93
19: path finding 13 12 13
20: agent’s motivation 100 100 100
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Table 12: Accuracy results in the Shuffled/1k test set.
Test Accuracy (%)

Baseline t-MEM-NN
Task type MemN2N 1 sample 10 samples
1: 1 supporting fact 100 100 100
2: 1 supporting facts 79 75 79
3: 3 supporting facts 49 50 54
4: 2 argument relations 95 93 95
5: 3 argument relations 86 85 86
6: yes/no questions 91 90 94
7: counting 80 80 84
8: lists/sets 87 87 89
9: simple negation 89 89 94
10: indefinite knowledge 79 80 83
11: basic coreference 83 92 100
12: conjunction 99 99 100
13: compound coreference 89 90 95
14: time reasoning 91 91 96
15: basic deduction 100 99 100
16: basic induction 45 45 46
17: positional reasoning 50 49 52
18: size reasoning 86 88 91
19: path finding 12 12 13
20: agent’s motivation 100 100 100
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Table 13: Accuracy results in the en/10k test set.
Test Accuracy (%)

Baseline t-MEM-NN
Task type MemN2N 1 sample 10 samples
1: 1 supporting fact 100 100 100
2: 1 supporting facts 98 97 100
3: 3 supporting facts 83 85 89
4: 2 argument relations 100 98 100
5: 3 argument relations 99 99 99
6: yes/no questions 100 99 100
7: counting 95 95 97
8: lists/sets 97 98 100
9: simple negation 99 98 99
10: indefinite knowledge 96 96 99
11: basic coreference 91 94 100
12: conjunction 100 100 100
13: compound coreference 94 94 98
14: time reasoning 97 95 100
15: basic deduction 100 100 100
16: basic induction 47 47 47
17: positional reasoning 57 57 57
18: size reasoning 89 88 92
19: path finding 33 33 36
20: agent’s motivation 100 100 100
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Table 14: Accuracy results in the Hindi/10k test set.
Test Accuracy (%)

Baseline t-MEM-NN
Task type MemN2N 1 sample 10 samples
1: 1 supporting fact 100 100 100
2: 1 supporting facts 97 97 100
3: 3 supporting facts 83 81 91
4: 2 argument relations 99 99 99
5: 3 argument relations 98 98 99
6: yes/no questions 100 100 100
7: counting 94 93 97
8: lists/sets 97 97 99
9: simple negation 98 98 99
10: indefinite knowledge 93 93 97
11: basic coreference 94 96 100
12: conjunction 100 100 100
13: compound coreference 96 97 100
14: time reasoning 98 98 100
15: basic deduction 100 100 100
16: basic induction 46 43 47
17: positional reasoning 56 56 57
18: size reasoning 91 91 94
19: path finding 31 32 35
20: agent’s motivation 100 100 100
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Table 15: Accuracy results in the Shuffled/10k test set.
Test Accuracy (%)

Baseline t-MEM-NN
Task type MemN2N 1 sample 10 samples
1: 1 supporting fact 100 100 100
2: 1 supporting facts 97 98 100
3: 3 supporting facts 83 83 88
4: 2 argument relations 100 100 100
5: 3 argument relations 99 98 99
6: yes/no questions 100 100 100
7: counting 95 95 97
8: lists/sets 96 96 99
9: simple negation 99 99 100
10: indefinite knowledge 97 97 99
11: basic coreference 92 94 100
12: conjunction 100 100 100
13: compound coreference 96 96 100
14: time reasoning 98 95 100
15: basic deduction 100 100 100
16: basic induction 47 47 48
17: positional reasoning 56 56 57
18: size reasoning 90 90 92
19: path finding 35 35 38
20: agent’s motivation 100 100 100

6.5.5 Do we actually need to infer heavy-tailed posteriors?

As we have already discussed, the central assumption in the formulation of our
model that the imposed posteriors are of multivariate Student’s-t form allows to
account for heavy-tailed underlying densities, with power-law nature. However,
a question that naturally arises is whether this assumption actually addresses an
existing problem. That is, whether the underlying densities are actually heavy-
tailed. To address this question, we can leverage some attractive properties of
the Student’s-t distribution. Specifically, as we have explained in Section 6.2.3,
the degrees of freedom parameter of a Student’s-t density controls how heavy its
tails are. This way, a model employing Student’s-t densities effectively modifies,
through model fitting, how heavy its tails are, to account for the actual needs
of the application at hand.

Therefore, examining the degrees of freedom values of the fitted model pos-
teriors is a natural means of deducing whether the imposition of Student’s-t
densities is actually worthwhile, or a simpler Gaussian assumption would suf-
fice. Our findings can be summarized as follows: In all the experimental cases
reported above, the posteriors over the input embedding matrices A and B,
given in (19) and (20), yield values νA, νB ≤ 5, while for the output embed-
dings C, given by (21), we have νC ≤ 20. These findings imply that all our

86



fitted models end up requiring degrees of freedom parameter values low enough
to account for quite heavy tails. Thus, our empirical experimental findings
vouch for the efficacy of our assumptions.

6.6 Guess the Number
We conclude our experimental investigations by considering a setup that allows
for us to evaluate whether our model is capable of learning latent abstract
concepts by engaging in conversation with a teacher. Specifically, our devised
experimental setup emulates a kid’s game named “Guess the number.” This
well-known game is played by two entities, the teacher and the student; on each
round, the teacher picks an integer number between given boundaries, and the
student tries to guess which number the teacher has originally selected. When
the student guesses a number different than the target, the teacher provides
them a hint whether the guessed number is greater or less than it. On the
sequel, the student has to make another guess, following the limits dictated in
the preceding conversation (i.e., all previous guesses and provided hints). The
game continues until either the student guesses the target number or we reach
the maximum allowed numbers of tries.

Under this experimental rationale, we have constructed datasets that corre-
spond to two different scenarios; in these, the chosen numbers lie between: (a) 0
and 10; and (b) 0 and 100. The maximum number of tries is set to 100 for both
scenarios. In addition, we perform evaluation with a diverse number of training
examples including 100, 1K, and 10K, in order to assess the effect of the train-
ing dataset size. The latent space dimensionality of all the evaluated models is
set equal to δ = 20, while we employ 3 memory hops, similar to Section 6.4.2.
Model evaluation is performed on 100 distinct test games, in all cases. Inference
for t-MEM-NN is run with the number of drawn MC samples set to 1 or 10;
training is performed by drawing just one MC sample.

For the purpose of quantitative performance evaluation of the trained mod-
els, we have defined and use three metrics: (i) accuracy, which describes the
average percentage of correct decisions; a guess is considered correct when the
guessed number is within the limits defined by the conversation’s history; (ii)
success, which describes the average percentage of games where the target num-
ber was correctly guessed within the preset limit of 100 tries; and (iii) rounds,
the average number of guesses made before the target was found. The last
metric obviously concerns only successful games.

Our so-obtained results are depicted in Tables 16 and 17. To allow for the
reader to get an insight into the construction of the considered game, as well as
the generated outputs of MemN2N and our proposed approach, we provide two
characteristic output samples of the evaluated models in Table 18. According
to the outcome of this assessment, it is obvious that our proposed approach
outperforms the baseline model in all metrics for all scenarios.
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Table 16: Guess the number: selected numbers take values between 0 and 10.
100 Training examples
Baseline t-MEM-NN t-MEM-NN

Metric MemN2N 1 sample 10 samples
Accuracy (%) 77 87 91
Success (%) 86 95 98
Rounds 4.3 3.9 3.6

1k Training examples
Baseline t-MEM-NN t-MEM-NN

Metric MemN2N 1 sample 10 samples
Accuracy (%) 99 100 100
Success (%) 100 100 100
Rounds 4.2 3.8 3.6

10k Training examples
Baseline t-MEM-NN t-MEM-NN

Metric MemN2N 1 sample 10 samples
Accuracy (%) 97 99 100
Success (%) 98 100 100
Rounds 4.0 3.8 3.7

Table 17: Guess the number: selected numbers take values between 0 and 100.
100 Training examples
Baseline t-MEM-NN t-MEM-NN

Metric MemN2N 1 sample 10 samples
Accuracy (%) 17 19 21
Success (%) 20 28 31
Rounds 7.7 5.1 3.2

1k Training examples
Baseline t-MEM-NN t-MEM-NN

Metric MemN2N 1 sample 10 samples
Accuracy (%) 30 49 55
Success (%) 45 61 72
Rounds 8.7 8.2 7.7

10k Training examples
Baseline t-MEM-NN t-MEM-NN

Metric MemN2N 1 sample 10 samples
Accuracy (%) 63 78 85
Success (%) 68 89 97
Rounds 12.6 9.1 8.5
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Table 18: t-MEM-NN: Sample output of “Guess the number” game.
-------------------------------
Model: t-MEM-NN

min: 0
max: 100

Train examples: 1000
-------------------------------
-------------------------------

**** TESTING MODEL STARTS ****
-------------------------------

Select a number between 0 and 100
Round: 1
-------------

Selection: 76
Correct: Selection within Bounds!

Accuracy: = 1.0
min_num: -1

max_num: 101
Hint: Target is a smaller number

Round: 2
-------------

Selection: 100
Wrong: Selection Out of Bounds!

Accuracy: = 0.5
min_num: -1
max_num: 76

Hint: Target is a smaller number
Round: 3
-------------

Selection: 1
Correct: Selection within Bounds!

Accuracy: = 0. 66
min_num: -1
max_num: 76

Hint: Target is a larger number
Round: 4
-------------

Selection: 59
Correct: Selection within Bounds!

Accuracy: = 0.75
min_num: 1

max_num: 76
Hint: Target is a smaller number

Round: 5
-------------

Selection: 11
Correct: Selection within Bounds!

Accuracy: = 0.8
min_num: 1

max_num: 59
Hint: Target is a larger number

Round: 6
-------------

Selection: 56
Correct: Selection within Bounds!

Accuracy: = 0.83
min_num: 11
max_num: 59

Hint: Target is a larger number
Round: 7
-------------

Selection: 54
Wrong: Selection Out of Bounds!

Accuracy: = 0.71
min_num: 56
max_num: 59

Hint: Target is a larger number
Round: 8
-------------

Selection: 57
Correct: Selection within Bounds!

Accuracy: = 0.75
min_num: 56
max_num: 59

*************************************************
Congratulations, the target is 57

You found the correct answer after 8 rounds
Accuracy: 0.75
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6.7 Conclusions
In this work, we attacked the problem of modeling long-term dependencies in
sequential data. Specifically, we focused on question-answering bots; these in-
herently require the ability to perform multiple computational steps of analyzing
observed patterns over long temporal horizons, and on multiple time-scales. To
achieve this goal, one may resort to the paradigm of neural attention models
that operate over large external memory modules. This is a recent develop-
ment in the field of machine learning, yielding state-of-the-art performance in
challenging benchmark tasks.

In this context, the core contribution of our work was the provision of a
novel inferential framework for this class of models, which allows to account for
the uncertainty in the modeled data. This is a significant issue when dealing
with sparse datasets, which are prevalent in real-world the considered tasks. In
addition, our method was carefully crafted so as to best accommodate data with
heavy-tailed distributions, which are typical in multivariate sequences.

To achieve these goals, we devised a novel Bayesian inference-driven algorith-
mic formulation of end-to-end-trainable MEM-NNs. Specifically, we considered
a stochastic model formulation, where the trainable parameters (embedding
matrices) of the network are imposed appropriate prior distributions, and cor-
responding posteriors are inferred by means of variational Bayes. To allow
for accommodating heavy-tailed data, we postulated latent variables belonging
to the t-exponential family; specifically, we considered multivariate Student’s-t
densities. In the same vein, and in order to allow for reaping the most out
of the data modeling power of Student’s-t densities, we performed variational
inference for our model under a novel objective function construction. This was
based on a t-divergence criterion, which offers an attractive alternative to the
KL divergence (that is minimized in conventional variational Bayes), tailored to
heavy-tailed data.

We performed an extensive experimental evaluation of our approach using
challenging question-answering benchmarks. We provided thorough insights into
the inferential outcomes of our approach, and how these compare to the com-
petition. We also illustrated that our proposed approach achieves the reported
accuracy improvement without undermining computational efficiency, both in
training time and in prediction generation time.
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7 Amortized Context Vector Inference for Sequence-
to-Sequence Networks

Neural attention (NA) is an effective mechanism for inferring complex struc-
tural data dependencies that span long temporal horizons. As a consequence, it
has become a key component of sequence-to-sequence models that yield state-
of-the-art performance in as hard tasks as abstractive document summarization
(ADS) and video captioning (VC). NA mechanisms perform inference of context
vectors; these constitute weighted sums of deterministic input sequence encod-
ings, adaptively sourced over long temporal horizons. However, recent work
in the field of amortized variational inference (AVI) has shown that it is often
useful to treat representations generated by deep networks as latent random
variables. This allows for the models to better explore the space of possible
representations. Based on this motivation, in this work we introduce a novel
regard towards a popular NA mechanism, namely additive soft-attention (ASA).
Our approach consists in treating the context vectors generated by ASA models
as Gaussian latent variables, the posteriors of which are inferred by employing
AVI. Both the means and the covariance matrices of the inferred posteriors are
parameterized via deep network mechanisms similar to those employed in the
context of standard ASA. To illustrate our method, we implement it in the
context of two state-of-the-art sequence-to-sequence models with attention, one
used for performing ADS, and one used to effect VC. We conduct an extensive
experimental evaluation using challenging ADS and VC benchmarks, and show
how our approach compares to the baselines.

7.1 Introduction
Sequence-to-sequence (seq2seq) or encoder-decoder models [31] constitute a novel
solution to inferring relations between sequences of different lengths. They
are broadly used for addressing tasks including machine translation (MT) [32,
49], abstractive document summarization (ADS), descriptive caption genera-
tion (DCG) [50], and question answering (QA) [41], to name just a few. Seq2seq
models comprise two distinct RNN models: an encoder RNN, and a decoder
RNN. Their main principle of operation is based on the idea of learning to infer
an intermediate context vector representation, c, which is “shared” among the
two RNN modules of the model, i.e., the encoder and the decoder. Specifically,
the encoder converts the source sequence to a context vector (e.g., the final state
of the encoder RNN), while the decoder is presented with the inferred context
vector to produce the target sequence.

Despite these merits, though, baseline seq2seq models cannot learn tempo-
ral dynamics over long horizons. This is due to the fact that a single context
vector c is capable of encoding rather limited temporal information. This ma-
jor limitation has been addressed via the development of neural attention (NA)
mechanisms [32]. NA has been a major breakthrough in Deep Learning, as it en-
ables the decoder modules of seq2seq models to adaptively focus on temporally-
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varying subsets of the source sequence. This capacity, in turn, enables flexibly
capturing long temporal dynamics in a computationally efficient manner. As
such, it is no coincidence that state-of-the-art NLP algorithms, including models
addressing DCG and ADS, are based on seq2seq-type models that are founded
upon NA mechanisms [70, 82, 68, 32, 49].

Among the large collection of recently devised NA variants, the vast majority
build upon the concept of Soft Attention [50]. Under this rationale, the NA
mechanism consists of three layers. The first layer employs a nonlinear function;
this produces a similarity estimate between the encoder outputs (encodings)
pertaining to each individual element of the source sequence, and the current
state vector of the decoder RNN. The second layer is a softmax function that
uses the obtained similarity estimates to assign each source sequence encoding
a weight. These weights are the inferred attention probabilities, which express
the relevance of each encoding to the current state of the decoder. Finally, the
output layer computes a weighted mean of the source sequence encodings, where
the employed weights are the inferred attention probabilities. We eventually
use this weighted mean to update the context vector of the postulated seq2seq
model, and drive generation of the next element in the target sequence.

As we observe from the preceding discussion, at each sequence generation
(decoding) step, NA-obtained context vectors essentially constitute determinis-
tic representations of the dynamics between the source sequence and the decod-
ings obtained thus far. However, recent work in the field of amortized variational
inference (AVI) [97, 99] has shown that it is often useful to treat representa-
tions generated by deep networks as latent random variables. Indeed, it is now
well-understood that, under such an inferential setup, the trained deep learning
models become more effective in exploring the space of possible representations,
instead of getting trapped to poor solutions. Then, model training reduces to in-
ferring posterior distributions over the introduced latent variables; we resort to
variational inference approximations, whereby the sought variational posteriors
are parameterized via appropriate deep networks.

Motivated from these research advances, in this work we consider a novel
formulation of Soft Attention. Specifically, we propose an NA mechanism for-
mulation where the generated context vectors are considered random latent
variables over which AVI is performed. We dub our approach amortized con-
text vector inference (ACVI). To exhibit the efficacy of ACVI, we implement
it in the context of two popular seq2seq model variants. Specifically, we con-
sider: (i) Pointer-Generator Networks [86], which constitute a state-of-the-art
approach for addressing ADS tasks; and (ii) baseline seq2seq models with addi-
tive soft-attention (ASA), applied to the task of VC.

7.2 Methodological Background
7.2.1 Abstractive Document Summarization

Abstractive document summarization consists in not only selecting words or
sentences to copy from an original document, but also learning to generate new
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sentences or novel words during the summarization process. The introduction
of seq2seq models has rendered ADS both feasible and effective [82, 85]. Dealing
with out-of-vocabulary (OOV) words was one of the main difficulties that early
ADS models were confronted with. Word and/or phrase repetition was a second
major issue. The pointer-generator model presented in [86] constitutes one of
the most comprehensive efforts towards ameliorating these issues.

In a nutshell, this model comprises one bidirectional LSTM [24] (BiLSTM)
encoder, and a unidirectional LSTM decoder, which incorporates an ASA mech-
anism [32]. The word embedding of each token, xi, i ∈ {1, . . . , N}, in the source
sequence (document) is presented to the encoder BiLSTM; this obtains a rep-
resentation (encoding) hi = [

−→
h i;
←−
h i], where

−→
h i is the corresponding forward

LSTM state, and
←−
h i is the corresponding backward LSTM state. Then, at

each generation step, t, the decoder LSTM gets as input the (word embedding
of the) previous token in the target sequence. During training, this is the pre-
vious word in the available reference summary; during inference, this is the
previous generated word. On this basis, it updates its internal state, st, which
is then presented to the postulated ASA network. Specifically, the employed
attention mechanism computes the attention distribution, at, as follows:

eit = vT tanh(W hhi +W sst + battn) (63)

at = softmax(et), et = [eit]i (64)

where theW · are trainable weight matrices, battn is a trainable bias vector, and
v is a trainable parameter vector of the same size as battn.

Then, the model updates the obtained context vector, ct, by taking the
weighted average of all the source token encodings; the used weights are the
inferred attention probabilities:

ct =
∑
i

aithi (65)

The context vector is combined with the decoder state to obtain the predictive
distribution of the next generated word:

P vocabt = softmax(V ′tanh(V [st; ct] + b) + b
′
) (66)

where V and V ′ are trainable weight matrices, while b and b′ are trainable bias
vectors.

In parallel, the network also computes an additional probability, pgent , which
expresses whether the next output should be generated by sampling from the
predictive distribution, P vocabt , or the model should simply copy one of the
already available source sequence tokens. This mechanism allows for the model
to cope with OOV words; it is defined via a simple sigmoid layer of the form:

pgent = σ(wT
c ct +wT

s st +wT
xxt + bptr) (67)

where xt is the decoder input, while the w· and bptr are trainable parameter
vectors. The probability of copying the ith source sequence token is considered
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equal to the corresponding attention probability, ait. Eventually, the obtained
probability that the next output word will be β (found either in the vocabulary
or among the source sequence tokens) yields:

Pt(β) = pgent P vocabt (β) + (1−pgent )
∑
i:βi=β

ait (68)

Finally, a coverage mechanism may also be employed [89], as a means of
penalizing words that have already received attention in the past, to prevent
repetition. Coverage acts as a global attention aggregator that is added to the
attention layer (63). Specifically, the coverage vector, kt, is defined as:

kt = [kit]
N
i=1 =

t−1∑
τ=0

aτ (69)

Using the so-obtained coverage vector, expression (63) is modified as follows:

eit = vT tanh(W hhi +W sst +wkk
i
t + battn) (70)

where wk is a trainable parameter vector of size similar to v.
Model training is performed via minimization of the categorical cross-entropy

between the generated predictions and the available groundtruth. A coverage
term is also added to the loss function, to facilitate repetition prevention; it
takes the form

λ
∑
i

∑
t

min(ait, c
i
t) (71)

Here, λ controls the influence of the coverage term; in the remainder of this
work, we set λ = 1.

7.2.2 Video Captioning

Video captioning constitutes one of the first reported applications of seq2seq
models with attention to data stemming from diverse modalities. In this work,
we consider a simple seq2seq model with attention that comprises a BiLSTM
encoder, an LSTM decoder, and an output distribution of the form (4). The
used encoder is presented with visual features obtained from a pretrained convo-
lutional neural network (CNN). Our use of a pretrained CNN serves the purpose
of evaluating ACVI in the context of a model which does not entail any sophis-
ticated assumption apart from plain LSTM encoders and decoders. This allows
for us to better scrutinize the benefits obtained by using ACVI (we elaborate
on the specific model configuration in Section 7.4.2).

7.3 Proposed Approach
To motivate our proposed ACVI scheme, we focus on the definition of the ASA
network described in Section 7.2.1. However, note that it is straightforward
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to extend the rationale of ACVI in the context of SA schemes that employ
alternative score functions, e.g. dot-product or tensor-product ones [49].

We begin by introducing the core assumption that the computed context
vectors, ct, constitute latent random variables. Further, we assume that, at each
time point, t, the corresponding context vector, ct, is drawn from a distribution
associated with one of the available source sequence encodings, {hi}Ni=1. Let
us introduce the set of latent indicator variables, zt ∈ {1, . . . , N}, with zt = i
denoting that the context vector ct is drawn from the ith density, that is the
density associated with the ith encoding, hi. Then, we postulate the following
hierarchical model:

ct|zt = i;D ∼ p(θ(hi)) (72)
zt = i|D ∼ πit(ait) (73)

where D are the source and target sequences, θ denotes the parameters set of
the context vector conditional density, and πit denotes the probability of draw-
ing from the ith conditional at time t. Notably, we assume that the assignment
probabilities πit are functions of the attention probabilities, ait. This is reason-
able, since higher affinity of the decoder state, st, with the ith encoding, hi, at
time t, should result in higher probability that the context vector be drawn from
the corresponding conditional density. Similarly, we consider that the parame-
ters set θ is a function parameterized by the encodings vector it is associated
with, hi.

Having defined the hierarchical model (72)-(73), it is important that we
examine the resulting expression of the posterior density p(ct;D). By marginal-
izing over (72) and (73), we obtain

p(ct;D) =

N∑
i=1

πit(a
i
t) p(θ(hi)) (74)

In other words, we obtain a finite mixture model posterior over the context vec-
tors, with mixture conditional densities associated with the available source
sequence encodings, and mixture weights associated with the corresponding at-
tention vectors. In addition, it is also interesting to compare this expression
to the definition of context vectors under the conventional ASA scheme. From
(65), we observe that conventional ASA is merely a special case of our proposed
model, obtained by introducing two assumptions: (i) that the postulated mix-
ture component assignment probabilities are identity functions of the associated
attention probabilities, i.e.

πit(a
i
t) = ait (75)

and (ii) that the conditional densities of the context vectors have all their mass
concentrated on hi, that is they collapse onto the single point, hi:

p(ct|zt = i;D) = δ(hi) (76)

Indeed, by combining (74) - (76), we yield

p(ct;D) =

N∑
i=1

aitδ(hi) = δ

( N∑
i=1

aithi

)
(77)
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whence we obtain (65) with probability 1.
From the above discussion, it becomes apparent that our approach replaces

the simplistic conditional density expression (76) with a more appropriate family
p(θ(hi)), as in (74). Such a consideration may result in significant advantages
for the postulated seq2seq model. Specifically, it introduces a principled way
of accounting for uncertainty in either our model formulation or the available
training data. This way, our trained model becomes more agile in searching
for effective context representations, as opposed to getting trapped to poor
local solutions. Indeed, recent developments in deep learning research have
provided strong evidence of these advantages in a multitude of deep network
configurations and addressed tasks, e.g. [97, 99, 131].

In the following, we examine conditional densities of Gaussian form. Adopt-
ing the inferential rationale of AVI, we consider that these conditional Gaussians
are parameterized via the postulated BiLSTM encoder. Specifically, we assume

p(ct|zt = i;D) = N
(
ct|µ(hi),diag(σ2(hi))

)
(78)

where
µ(h) = MLPµ(h) (79)

logσ2(h) = MLPσ(h) (80)

MLP(·) are trainable MLPs comprising two layers of size dim(h), and the encod-
ings, hi, are obtained from a BiLSTM encoder, similar to conventional models.

On this basis, and by adopting the assumption (75), we eventually yield the
posterior density:

p(ct;D) =

N∑
i=1

aitN
(
ct|µ(hi),diag(σ2(hi))

)
(81)

Thus, we have arrived at a full statistical treatment of the context vectors,
ct. The corresponding density is defined as a Gaussian mixture model; its
means and log-covariance diagonals are parameterized via the encoder BiLSTM
module of the seq2seq model. This concludes the formulation of the proposed
ACVI mechanism.

7.3.1 Training Algorithm

To perform training of a seq2seq model equipped with the ACVI mechanism,
we resort to maximization of the resulting evidence lower-bound (ELBO) ex-
pression. To this end, we need first to introduce some prior assumption over the
context latent variables, ct. In the following, we consider

p(ct) = N
(
ct|0, I) (82)

This selection both serves the purpose of simplicity and offers a valid way to
effect model regularization.
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On the grounds of these assumptions, it is easy to show that the resulting
ELBO expression becomes

L =
∑
t

{
Ep(ct;D)[−Jt] −KL[p(ct;D)||p(ct)]

}
(83)

where Jt = J(ct) is the error function at decoding time t of the seq2seq model,
and the KL divergence term yields

KL[p(ct;D)||p(ct)] =− 1

2

[
N∑
i=1

aitµ(hi)

]T [ N∑
i=1

aitµ(hi)

]

+
1

2
trace

(
diag

(
1 + log

N∑
i=1

(ait)
2σ2(hi)−

N∑
i=1

(ait)
2σ2(hi)

))
(84)

On the other hand, to approximate the analytically intractable posterior expec-
tation Ep(ct;D)[−Jt], we draw Monte-Carlo (MC) samples from the amortized
posteriors p(ct;D). We ensure that the resulting MC estimators will be of low
variance, by adopting the reparameterization trick. From (81), we directly ob-
tain the reparameterized MC samples [132]:

ct ← E[ct;D] +
√

V[ct;D] ◦ ε (85)

where

E[ct;D] =

N∑
i=1

aitµ(hi) (86)

V[ct;D] =

N∑
i=1

(
ait
)2
σ2(hi) (87)

and ε is white random noise with unitary variance, i.e. ε ∼ N (0, I).
ELBO maximization can be performed by resorting to any modern, off-the-

shelf, stochastic gradient optimizer. In this work, we adopt Adam with its
default settings [133].

7.3.2 Inference Algorithm

To perform target decoding by means of a seq2seq model that employs the ACVI
mechanism, we resort to Beam search [90], as usual in the literature of seq2seq
models. Note, though, that in the case of our proposed approach, the resulting
predictive probability gets averaged over the context vector latent variables, ct.
That is, the predictive distribution expression (4) now becomes

P vocabt =E[softmax(V ′tanh(V [st; ct] + b) + b
′
)]

≈ 1

K

K∑
k=1

softmax(V ′tanh(V [st; c
(k)
t ] + b) + b

′
)

(88)
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where K is the number of MC samples, c(k)t , drawn from the trained amortized
posterior (81). In our experiments, we set K = 10 in all cases; beam width is
set to five.

7.4 Experimental Evaluation7

7.4.1 Abstractive Document Summarization

For transparency and replicability purposes, we perform an extensive quanti-
tative and qualitative assessment, adopting the setup described in [86]. Our
experiments are based on the non-anonymized CNN/Daily Mail dataset, which
comprises 287,226 training pairs of documents and reference summaries, 13,368
validation pairs, and 11,490 test pairs. In this dataset, the average article length
is 781 tokens; the average summary length is 3.75 sentences, with the average
summary being 56 tokens long. In all our experiments, we restrict the used
vocabulary to the 50K most common words in the considered dataset. Note
that this is significantly smaller than typical in the literature [70].

To obtain some comparative results, we experimentally evaluate the perfor-
mance of a pointer-generator network employing both our ACVI mechanism and
the standard ASA mechanism considered in [86]. This allows for directly as-
sessing the benefits of introducing a latent variable regard towards the inferred
context vectors, which is amenable to AVI. Following the suggestions in [86],
and to allow for the maximum possible comparability of the reported outcomes,
we evaluate both our approach and the considered baseline with LSTMs that
comprise 256-dimensional states. These are mapped to 256-dimensional features
via the matrices W h and W s in Eq. (63).

The observations presented to the encoder module of each model consti-
tute 128-dimensional word embeddings of the original 50K-dimensional one-hot-
vectors of the source tokens. Similarly, the observations presented to the decoder
modules are 128-dimensional word embeddings pertaining to the summary to-
kens (reference tokens during training; generated tokens during inference). Both
these embeddings are trained, as part of the overall training procedure of the
evaluated models. We use ROUGE8 (ROUGE-1, ROUGE-2 and ROUGE-L)
[92] and METEOR9 [93] as our performance metrics. METEOR is evaluated
both in exact match mode (rewarding only exact matches between words) as
well as full mode (which additionally rewards matching stems, synonyms and
paraphrases).

To allow for faster convergence of model training, we split it into five distinct
phases. On each phase, we employ a different number of maximum encoding
steps for the evaluated models (i.e., the size of the inferred attention vectors),
as well as for the maximum allowed number of decoding steps. We provide the
related details in Table 1. During these phases, we train the employed models

7We have developed our source codes in Python, using the TensorFlow library [1]. We run
our experiments on a server with 64GB RAM and an NVIDIA Tesla K40 GPU.

8pypi.python.org/pypi/pyrouge/.
9www.cs.cmu.edu/~alavie/METEOR.
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Table 19: Abstractive Document Summarization: Training phases.
Phase Iterations Max encoding steps Max decoding steps

1 0 - 71k 10 10
2 71k - 116k 50 50
3 116k - 184k 100 50
4 184k - 223k 200 50
5 223k - 250k 400 100

with the coverage mechanism being disabled; that is, we set wk = 0. We enable
this mechanism only after these five training phases conclude. Specifically, we
perform a final 3K iterations of model training, during which we train the wk

weights along with the rest of the model parameters. We use gradient clipping
with a maximum gradient norm of 2, but do not use any form of regularization.

We provide some indicative examples of the generated summaries in Ta-
bles 21-24). It is apparent that our model is capable of yielding high quality
outcomes, with satisfactory performance when it comes to OOV words. Our
quantitative evaluation is provided in Table 2. To allow for deeper insights, we
show therein how performance of the evaluated models varies before and after
we introduce the coverage mechanism (trained for 3K iterations, as described
above). For completeness sake, we also cite the performance of alternative
state-of-the-art approaches on the same data. These include ADS and Extrac-
tive Summarization models. The latter simply rely on copying from the source
document, as opposed to learning to generate anew; this may produce lower
quality summaries, but substantially less prone to grammatical or syntactic er-
rors. As we observe, utilization of ACVI outperforms all the alternatives by a
large margin. Finally, it is interesting to examine whether ACVI increases the
propensity of a trained model towards generating novel words, that is words
that are not found in the source document, as well as the capacity to adopt
OOV words. The related results are provided in Table 3. We observe that
ACVI increases the number of generated novel words by 7 times compared to
baseline ASA. In a similar vein, ACVI appears to help the model better cope
with OOV words.

Below, we provide some indicative examples of summaries produced by a
pointer-generator network with coverage, employing the ACVI mechanism. We
also show what the initial document has been, as well as the available reference
summary used for quantitative performance evaluation. In all cases, we annotate
OOV words in italics, we highlight novel words in purple, we show contextual
understanding in bold, while article fragments also included in the generated
summary are highlighted in blue.
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Table 20: Abstractive Document Summarization: ROUGE scores on the test
set

Models and baselines in the top section are abstractive, while those in the bottom section are
extractive. Those marked with * were trained and evaluated on the anonymized CNN/Daily
Mail dataset.

Table 21: Abstractive Document Summarization - Example 223.
0.99|X|
Article

lagos , nigeria -lrb- cnn -rrb- a day after winning nigeria ’s presidency , muhammadu
buhari told cnn ’s christiane amanpour that he plans to aggressively fight corruption
that has long plagued nigeria and go after the root of the nation ’s unrest . buhari
said he ’ll “ rapidly give attention ” to curbing violence in the northeast part of nigeria
, where the terrorist group boko haram operates . by cooperating with neighboring
nations chad , cameroon and niger , he said his administration is confident it will be
able to thwart criminals and others contributing to nigeria ’s instability . for the first
time in nigeria ’s history , the opposition defeated the ruling party in democratic
elections . buhari defeated incumbent goodluck jonathan by about 2 million votes ,
according to nigeria ’s independent national electoral commission . the win comes
after a long history of military rule , coups and botched attempts at democracy in
africa ’s most populous nation . in an exclusive live interview from abuja , buhari
told amanpour he was not concerned about reconciling the nation after a divisive
campaign . he said now that he has been elected he will turn his focus to boko haram
and “ plug holes ” in the “ corruption infrastructure ” in the country . “ a new day
and a new nigeria are upon us , ” buhari said after his win tuesday . “ the victory is
yours , and the glory is that of our nation . ” earlier , jonathan phoned buhari to
concede defeat . the outgoing president also offered a written statement to his nation
. “ i thank all nigerians once again for the great opportunity i was given to lead this
country , and assure you that i will continue to do my best at the helm of national
affairs until the end of my tenure , ” jonathan said . “ i promised the country free and
fair elections . (...)

Reference Summary

muhammadu buhari tells cnn ’s christiane amanpour that he will fight corruption in
nigeria . nigeria is the most populous country in africa and is grappling with violent
boko haram extremists . nigeria is also africa ’s biggest economy , but up to 70 % of
nigerians live on less than a dollar a day .

Generated Summary

muhammadu buhari talks to cnn ’s christiane amanpour about the nation ’s unrest
. for the first time in nigeria , opposition defeated incumbent goodluck jonathan by
about 2 million votes. buhari : ” the victory is yours , and the glory is that of our
nation ”
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Table 22: Abstractive Document Summarization - Example 89.
0.99|X|
Article

lrb- cnn -rrb- eyewitness video showing white north charleston police officer michael
slager shooting to death an unarmed black man has exposed discrepancies in the
reports of the first officers on the scene . slager has been fired and charged with
murder in the death of 50-year-old walter scott . a bystander ’s cell phone video
, which began after an alleged struggle on the ground between slager and scott ,
shows the five-year police veteran shooting at scott eight times as scott runs away .
scott was hit five times . if words were exchanged between the men , they ’re are
not audible on the tape . it ’s unclear what happened before scott ran , or why
he ran . the officer initially said that he used a taser on scott , who , slager said ,
tried to take the weapon . before slager opens fire , the video shows a dark object
falling behind scott and hitting the ground . it ’s unclear whether that is the taser . (...)

Reference Summary

more questions than answers emerge in controversial s. c. police shooting . officer
michael slager , charged with murder , was fired from the north charleston police
department .

Generated Summary

video shows white north charleston police officer michael slager shooting to death .
slager has been charged with murder in the death of 50-year-old walter scott . the
video shows a dark object falling behind scott and hitting the ground .

7.4.2 Video Captioning

Our evaluation of the proposed approach in the context of a VC application
is based on the Youtube2Text video corpus [134]. This corpus is appropriate
for addressing the problem of training and evaluating an automatic video de-
scription generation model. It comprises 1,970 video clips, each associated with
multiple natural language descriptions. This results in a total of approximately
80,000 video / description pairs; the used vocabulary comprises approximately
16,000 unique words. The constituent topics cover a wide range of domains, in-
cluding sports, animals and music. We split the available dataset into a training
set comprising the first 1,200 video clips, a validation set composed of 100 clips,
and a test set comprising the last 600 clips in the dataset.

We preprocess the available descriptions with the wordpunct tokenizer from
the NLTK toolbox10. We do not perform any other type of preprocessing, such
as lowercasing and rare word elimination. After the said preprocessing, the
number of unique words reduces to 15,903. On the other hand, to reduce the
entailed memory requirements, we process only the first 240 frames of each
video. To obtain some initial video frame descriptors, we employ a pretrained
GoogLeNet CNN [135] (implementation provided in Caffe [136]). Specifically,

10http:/s/www.nltk.org/index.html.
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Table 23: Abstractive Document Summarization - Example 1305.
0.99|X|
Article

andy murray came close to giving himself some extra preparation time for his wedding
next week before ensuring that he still has unfinished tennis business to attend to
. the world no 4 is into the semi-finals of the miami open , but not before getting
a scare from 21 year-old austrian dominic thiem , who pushed him to 4-4 in the
second set before going down 3-6 6-4 , 6-1 in an hour and three quarters . murray
was awaiting the winner from the last eight match between tomas berdych and
argentina ’s juan monaco . prior to this tournament thiem lost in the second round of
a challenger event to soon-to-be new brit aljaz bedene . andy murray pumps his first
after defeating dominic thiem to reach the miami open semi finals . muray throws his
sweatband into the crowd after completing a 3-6 , 6-4 , 6-1 victory in florida . murray
shakes hands with thiem who he described as a ‘ strong guy ’ after the game . (...)

Reference Summary

british no 1 defeated dominic thiem in miami open quarter finals . andy murray
celebrated his 500th career win in the previous round . third seed will play the winner
of tomas berdych and juan monaco in the semi finals of the atp masters 1000 event
in key biscayne

Generated Summary

the world no 4 is into the semi-finals of the miami open . murray is still ahead of
his career through the season . andy murray was awaiting the winner from the
last eight match . murray throws his sweatband into the crowd after a 6-4 6-1 victory
in florida .
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Table 24: Abstractive Document Summarization - Example 1710.
0.99|X|
Article

steve clarke afforded himself a few smiles on the touchline and who could blame him ?
this has been a strange old season for reading , who are one win away from an fa cup
semi-final against arsenal but have spent too long being too close to a championship
relegation battle . at least this win will go some way to easing that load . they made
it hard for themselves , but they had an in-form player in jamie mackie who was
able to get the job done . he put reading in front in the first half and then scored a
brilliant winner just moments after chris o’grady had levelled with a penalty -- one of
the only legitimate chances brighton had all night , even if clarke was angry about
the decision . reading frontman jamie mackie fires the royals ahead against brighton
in tuesday ’s championship fixture . mackie -lrb- centre -rrb- is congratulated by
nathaniel chalobah and garath mccleary after netting reading ’s opener . reading
-lrb- 4-1-3-2 -rrb- : federici ; gunter , hector , cooper , chalobah ; akpan ; mcleary
, williams -lrb- keown 92 -rrb- , robson-kanu -lrb- pogrebnyak 76 -rrb- ; blackman
, mackie -lrb- norwood 79 -rrb- . subs not used : cox , yakubu , andersen , taylor
. scorer : mackie , 24 , 56 . booked : mcleary , pogrebnyak . brighton -lrb- 4-3-3
-rrb- : stockdale ; halford , greer , dunk , bennett ; ince -lrb- best 75 -rrb- , kayal
, forster-caskey ; ledesma -lrb- bruno 86 -rrb- , o’grady , lualua . subs not used :
ankergren , calderon , hughes , holla , teixeira . scorer : o’grady -lrb- pen -rrb- , 53
. booked : ince , dunk , bennett , greer . ref : andy haines . attendance : 14,748 .
ratings by riath al-samarrai . (...)

Reference Summary

reading are now 13 points above the championship drop zone . frontman jamie mackie
scored twice to earn royals all three points . chris o’grady scored for chris hughton ’s
brighton from the penalty spot . niall keown - son of sportsmail columnist martin -
made reading debut .

Generated Summary

jamie mackie opened the scoring against brighton in tuesday ’s champi-
onship fixture . chris o’grady and garath mccleary both scored . jamie mackie
and garath mccleary were both involved in the game .
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Table 25: Abstractive Document Summarization: Novel words generation rate
and OOV words adoption rate obtained by using pointer-generator networks
with ASA or ACVI.

ASA ACVI

Rate of Novel Words 0.05 0.38

Rate of OOV Words Adoption 1.16 1.25

Table 26: Video Captioning: Performance of the considered alternatives.
Method ROUGE: Valid. Set ROUGE: Test Set CIDEr: Valid. Set CIDEr: Test Set

ASA 0.5628 0.5701 0.4575 0.421

ACVI 0.5968 0.5766 0.6039 0.4375

we use the features extracted at the pool5/7x7_s1 layer of this pretrained model.
We select 24 equally-spaced frames out of the first 240 from each video, and feed
them into the prescribed CNN to obtain a 1024 dimensional frame-wise feature
vector. These are the visual inputs eventually presented to the trained models.
We set the maximum number of encoding steps to 24, and the maximum number
of decoding steps to 20.

We yield some comparative results by evaluating seq2seq models configured
as described in Section 7.2.2; we use either ACVI or the conventional ASA mech-
anism. All the employed LSTMs comprise 1000-dimensional states. These are
mapped to 100-dimensional features via the matrices W h and W s in Eq. (63).
The postulated decoders are presented with 256-dimensional word embeddings,
obtained in a fashion similar to our ADS experiments. We perform Dropout
regularization of the employed LSTMs, as suggested in [137]; we use a dropout
rate of 0.5.

Our quantitative evaluation is performed on the grounds of the ROUGE-L
and CIDEr [138] scores, on both the validation set and the test set. The ob-
tained results are depicted in Table 25; they show that our method outperforms
the baseline by an important margin. Finally, we provide some indicative ex-
amples of the generated results in Figs. 17-24). These vouch for the capacity
of our approach to detect salient visual semantics, as well as subtle correlations
between related lingual terms (e.g., hamster–>small animal, a car drives –>
several people drive, meat–>pork).

In the following, we provide some characteristic examples of video descrip-
tions generated by a trained seq2seq model employing ACVI, and a rival seq2seq
model using conventional ASA. In the captions of the figures that follow, we an-
notate minor deviations with blue color, e.g. replacing “a man” with “a woman”;
we highlight synonyms with green color, and use red color to indicate major
mistakes which imply wrong perception of the scene.
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Figure 17: Video Captioning Example 1
ACVI: a man is firing a gun
ASA: a man is firing a gun
Reference Description: a man is firing a gun at targets

Figure 18: Video Captioning Example 2
ACVI: a woman is cutting a piece of pork
ASA: a woman is putting butter on a bed
Reference Description: someone is cutting a piece of meat

Figure 19: Video Captioning Example 3
ACVI: a small animal is eating
ASA: a small woman is talking
Reference Description: a hamster is eating

Figure 20: Video Captioning Example 4
ACVI: the lady poured the something into a bowl
ASA: a woman is cracking an egg
Reference Description: someone is pouring something into a bowl
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Figure 21: Video Captioning Example 5
ACVI: a woman is riding a horse
ASA: a woman is riding a horse
Reference Description: a woman is riding a horse

Figure 22: Video Captioning Example 6
ACVI: several people are driving down a street
ASA: a boy trying to jump
Reference Description: a car is driving down the road

Figure 23: Video Captioning Example 7
ACVI: a man is playing the guitar
ASA: a high man is dancing
Reference Description: a boy is playing the guitar

Figure 24: Video Captioning Example 8
ACVI: the man is riding a bicycle
ASA: a man rides a motorcycle
Reference Description: a girl is riding a bicycle
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7.5 Conclusions
In this work, we cast the problem of context vector computation for seq2seq-type
models into amortized variational inference. We made this possible by consid-
ering that the sought context vectors are latent variables following a Gaussian
mixture posterior. Specifically, we assumed that each component density of the
sought posterior is associated with one of the available source sequence encod-
ings. That is, we considered that both the mean and the (diagonal) covariance
matrix of this mixture posterior are parameterized by the postulated model en-
coders. On the same vein, we used the inferred attention probabilities associated
with each encoding as the mixture component weights.

To illustrate our method, we implemented it in: (i) common seq2seq models
with attention, comprising a BiLSTM encoder and a simple LSTM decoder; and
(ii) the pointer-generator network with coverage, proposed in [86]. We evaluated
the former on a VC task, and the latter on an ADS task; we used benchmark
datasets in both cases. As we showed, our approach significantly outperforms
the existing paradigm.

Finally, we underline that our proposed approach induces only negligible
computational overheads compared to conventional ASA. Specifically, the only
extra trainable parameters that our approach postulates are those of the MLPs
employed in Eqs. (72)-(73); these are of extremely limited size compared to the
overall model size, and correspond to merely few extra feedforward computations
at inference time. Hence, it is unequivocal that our approach offers significant
modeling performance benefits without undermining computational efficiency.
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8 Future Endeavors
One research direction that we have not considered concerns the possibility of
imposing nonelliptical or skewed distributions on the postulated latent variables.
Indeed, many researchers in the past have shown that conventional generative
models for sequential data, e.g. hidden Markov models, can yield significant
benefits by considering nonelliptically contoured latent state densities, such as
the multivariate normal inverse Gaussian (MNIG) distribution [139]. On the
other hand, the efficacy and the potential advantages of introducing skewed la-
tent variable assumptions in the context of DL models was empirically demon-
strated in [113]. Nevertheless, such assumptions certainly come at the cost
of increased computational complexity. Hence, we reckon that progressing be-
yond the elliptical class of distributions for formulating the assumptions of our
model is a worthwhile future research direction. It might allow for even higher
modeling performance, but requires novel theoretical developments to ensure
retainment of the method’s computational efficiency. Thus, these opportunities
remain to be explored in our future research.

Another research path we consider is the extention of our work into multi-
modal tasks. Specifically, in the context of the EU funded project dubbed “aiD
- aRTIFICIAL iNTELLIGENCE for the Deaf” (G.A. no 872139) we will have
the opportunity to experiment in developing multimodal Sequence- to-Sequence
models with Attention for text generation from Sign Language video sequences
and speech generation from the obtained text. Specifically, we intend to build
upon and extend the state-of-the-art Transformer [140] architecture in a fash-
ion that allows for: (i) Detecting and processing lips, hands, arms, and face
in video sequence as separate modalities; (ii) Fusing salient temporal dynamics
across modalities in a way that allows for inferring interactions and structure;
(iii) Combining the extracted temporal dynamics to uncover salient patterns
by means of novel neural inference mechanisms using Amortized Variational
Inference[141, 142].

108



References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow:
Large-scale machine learning on heterogeneous systems,” 2015, software
available from tensorflow.org. [Online]. Available: http://tensorflow.org/

[2] M. Svensén and C. M. Bishop, “Robust Bayesian mixture modelling,” Neu-
rocomputing, vol. 64, pp. 235–252, 2005.

[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, p. 436, 2015.

[4] D. A. Harville and D. R. Jeske, “Mean squared error of estimation or pre-
diction under a general linear model,” Journal of the American Statistical
Association, vol. 87, no. 419, pp. 724–731, 1992.

[5] A. Cauchy, “Méthode générale pour la résolution des systemes dâéquations
simultanées,” Comp. Rend. Sci. Paris, vol. 25, no. 1847, pp. 536–538, 1847.

[6] S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv preprint arXiv:1609.04747, 2016.

[7] Y. Nesterov, “A method for unconstrained convex minimization problem
with the rate of convergence o (1/kˆ 2),” in Doklady AN USSR, vol. 269,
1983, pp. 543–547.

[8] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization,” Journal of Machine Learning
Research, vol. 12, no. Jul, pp. 2121–2159, 2011.

[9] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv preprint
arXiv:1212.5701, 2012.

[10] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[11] T. Dozat, “Incorporating nesterov momentum into adam,” 2016.

[12] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning represen-
tations by back-propagating errors,” vol. 323, pp. 533–536, 1986.

[13] G. W. Leibniz, “Memoir using the chain rule,” in cited in tmme 7:2&3 p
321-332, 2010, 1676.

109



[14] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proceedings of the Thirteenth Interna-
tional Conference on Artificial Intelligence and Statistics, 2010, pp. 249–
256.

[15] J. Sietsma and R. J. F. Dow, “Creating artificial neural networks that
generalize,” vol. 4, pp. 67–79, 1991.

[16] B. Poole, J. Sohl-Dickstein, and S. Ganguli, “Analyzing noise in autoen-
coders and deep networks,” arXiv preprint arXiv:1406.1831, 2014.

[17] K.-C. Jim, C. L. Giles, and B. G. Horne, “An analysis of noise in recurrent
neural networks: convergence and generalization,” IEEE Transactions on
Neural Networks, vol. 7, no. 6, pp. 1424–1438, Nov. 1996.

[18] A. Graves, “Practical variational inference for neural networks,” in Ad-
vances in Neural Information Processing Systems, 2011, pp. 2348–2356.

[19] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in International conference
on machine learning, 2015, pp. 448–456.

[20] S. Hochreiter, “Untersuchungen zu dynamischen neuronalen netzen [in ger-
man] diploma thesis,” TU Münich, 1991.

[21] S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber et al., “Gradient
flow in recurrent nets: the difficulty of learning long-term dependen-
cies.(2001),” Cited on, p. 114, 2001.

[22] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE transactions on neural networks,
vol. 5, no. 2, pp. 157–166, 1994.

[23] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks.”

[24] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[25] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Con-
tinual prediction with lstm,” 1999.

[26] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[27] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

110



[28] ——, “Gated feedback recurrent neural networks,” in International Con-
ference on Machine Learning, 2015, pp. 2067–2075.

[29] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration of
recurrent network architectures,” in International Conference on Machine
Learning, 2015, pp. 2342–2350.

[30] G. Chrupała, A. Kádár, and A. Alishahi, “Learning language through
pictures,” arXiv preprint arXiv:1506.03694, 2015.

[31] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with
neural networks,” in Advances in neural information processing systems,
2014, pp. 3104–3112.

[32] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate.”

[33] S. Das, C. L. Giles, and G.-Z. Sun, “Learning context-free grammars:
Capabilities and limitations of a recurrent neural network with an external
stack memory,” in Proceedings of The Fourteenth Annual Conference of
Cognitive Science Society. Indiana University, 1992, p. 14.

[34] J. Schmidhuber, “Learning to control fast-weight memories: An alterna-
tive to dynamic recurrent networks,” Neural Computation, vol. 4, no. 1,
pp. 131–139, 1992.

[35] S. Haykin and R. Lippmann, “Neural networks, a comprehensive founda-
tion,” International journal of neural systems, vol. 5, no. 4, pp. 363–364,
1994.

[36] S. Haykin, “Neural networks: a comprehensive foundation, 1999,” Mc Mil-
lan, New Jersey, 2010.

[37] J. Weston, S. Chopra, and A. Bordes, “Memory networks.”

[38] A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines.”

[39] E. Grefenstette, K. M. Hermann, M. Suleyman, and P. Blunsom, “Learn-
ing to transduce with unbounded memory.”

[40] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus, “Weakly supervised
memory networks,” CoRR, abs/1503.08895, vol. 2, 2015.

[41] S. Sukhbaatar, J. Weston, R. Fergus et al., “End-to-end memory net-
works,” in Advances in neural information processing systems, 2015, pp.
2440–2448.

[42] A. Joulin and T. Mikolov, “Inferring algorithmic patterns with stack-
augmented recurrent nets,” in Advances in neural information processing
systems, 2015, pp. 190–198.

111



[43] W. Zaremba and I. Sutskever, “Reinforcement learning neural turing
machines-revised,” arXiv preprint arXiv:1505.00521, 2015.

[44] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-
Barwińska, S. G. Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou
et al., “Hybrid computing using a neural network with dynamic external
memory,” Nature, vol. 538, no. 7626, p. 471, 2016.

[45] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap,
“Meta-learning with memory-augmented neural networks,” in Interna-
tional conference on machine learning, 2016, pp. 1842–1850.

[46] ——, “One-shot learning with memory-augmented neural networks,”
arXiv preprint arXiv:1605.06065, 2016.

[47] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual atten-
tion for rapid scene analysis,” IEEE Transactions on pattern analysis and
machine intelligence, vol. 20, no. 11, pp. 1254–1259, 1998.

[48] R. Desimone and J. Duncan, “Neural mechanisms of selective visual at-
tention,” Annual review of neuroscience, vol. 18, no. 1, pp. 193–222, 1995.

[49] M.-T. Luong, H. Pham, and C. D. Manning, “Effective ap-
proaches to attention-based neural machine translation,” arXiv preprint
arXiv:1508.04025, 2015.

[50] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel,
and Y. Bengio, “Show, attend and tell: Neural image caption generation
with visual attention.”

[51] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio,
“Attention-based models for speech recognition,” in Advances in Neural
Information Processing Systems 28: Annual Conference on Neural
Information Processing Systems 2015, December 7-12, 2015, Montreal,
Quebec, Canada, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garnett, Eds., 2015, pp. 577–585. [Online]. Available: http://papers.
nips.cc/paper/5847-attention-based-models-for-speech-recognition

[52] W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals, “Listen, attend and spell.”

[53] K. M. Hermann, T. KoÄiskÃœ, E. Grefenstette, L. Espeholt, W. Kay,
M. Suleyman, and P. Blunsom, “Teaching machines to read and compre-
hend.”

[54] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Advances
in Neural Information Processing Systems, 2015, pp. 2692–2700.

[55] S. K. SÃžnderby, C. K. SÃžnderby, H. Nielsen, and O. Winther, “Convo-
lutional lstm networks for subcellular localization of proteins.”

112



[56] C. Raffel and D. P. W. Ellis, “Feed-forward networks with attention can
solve some long-term memory problems.”

[57] S. Wang and J. Jiang, “Machine comprehension using match-lstm and
answer pointer.”

[58] W. Wang, N. Yang, F. Wei, B. Chang, and M. Zhou, “Gated self-matching
networks for reading comprehension and question answering,” 2017.

[59] Y. Kim, C. Denton, L. Hoang, and A. M. Rush, “Structured attention
networks.”

[60] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” vol. 86, pp. 2278–2324, 1998.

[61] J. Peng, L. Bo, and J. Xu, “Conditional neural fields,” in
Advances in Neural Information Processing Systems 22, Y. Bengio,
D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and A. Culotta,
Eds. Curran Associates, Inc., 2009, pp. 1419–1427. [Online]. Available:
http://papers.nips.cc/paper/3869-conditional-neural-fields.pdf

[62] T. Do and T. Artieres, “Neural conditional random fields,” in Proceedings
of the Thirteenth International Conference on Artificial Intelligence and
Statistics, ser. Proceedings of Machine Learning Research, Y. W. Teh
and M. Titterington, Eds., vol. 9. Chia Laguna Resort, Sardinia,
Italy: PMLR, 13–15 May 2010, pp. 177–184. [Online]. Available:
http://proceedings.mlr.press/v9/do10a.html

[63] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch.”

[64] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep struc-
tured output learning for unconstrained text recognition.”

[65] L.-C. Chen, A. Schwing, A. Yuille, and R. Urtasun, “Learning deep struc-
tured models,” in International Conference on Machine Learning, 2015,
pp. 1785–1794.

[66] G. Durrett and D. Klein, “Neural crf parsing.”

[67] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer,
“Neural architectures for named entity recognition.”

[68] J. Tan, X. Wan, and J. Xiao, “Abstractive document summarization with
a graph-based attentional neural model,” in Proc. ACL, 2017.

[69] Q. Chen, X. Zhu, Z. Ling, S. Wei, and H. Jiang, “Distraction-based neural
networks for document summarization.”

113



[70] R. Nallapati, B. Zhou, C. N. dos santos, C. Gulcehre, and B. Xiang,
“Abstractive text summarization using sequence-to-sequence rnns and be-
yond.”

[71] J. Cheng and M. Lapata, “Neural summarization by extracting sentences
and words.”

[72] A. F. T. Martins and R. F. Astudillo, “From softmax to sparsemax: A
sparse model of attention and multi-label classification.”

[73] V. Niculae and M. Blondel, “A regularized framework for sparse and struc-
tured neural attention.”

[74] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, “Sparsity
and smoothness via the fused lasso,” vol. 67, pp. 91–108, 2005.

[75] H. D. Bondell and B. J. Reich, “Simultaneous regression shrinkage, vari-
able selection, and supervised clustering of predictors with oscar,” vol. 64,
pp. 115–123, 2008.

[76] L. Hou, P. Hu, and C. Bei, “Abstractive document summarization via
neural model with joint attention,” in National CCF Conference on Nat-
ural Language Processing and Chinese Computing. Springer, 2017, pp.
329–338.

[77] J. Weston, A. Bordes, S. Chopra, A. M. Rush, B. van MerriÃ«nboer,
A. Joulin, and T. Mikolov, “Towards ai-complete question answering: A
set of prerequisite toy tasks.”

[78] M. Kågebäck, O. Mogren, N. Tahmasebi, and D. Dubhashi, “Extractive
summarization using continuous vector space models,” in Proceedings of
the 2nd Workshop on Continuous Vector Space Models and their Compo-
sitionality (CVSC), 2014, pp. 31–39.

[79] C. Li, X. Qian, and Y. Liu, “Using supervised bigram-based ilp for ex-
tractive summarization,” in Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers),
vol. 1, 2013, pp. 1004–1013.

[80] K. Filippova and Y. Altun, “Overcoming the lack of parallel data in sen-
tence compression,” in Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, 2013, pp. 1481–1491.

[81] H. Saggion and T. Poibeau, “Automatic text summarization: Past, present
and future,” inMulti-source, multilingual information extraction and sum-
marization. Springer, 2013, pp. 3–21.

[82] A. M. Rush, S. Chopra, and J. Weston, “A neural attention model for
abstractive sentence summarization,” arXiv preprint arXiv:1509.00685,
2015.

114



[83] R. Nallapati, B. Xiang, and B. Zhou, “Sequence-to-sequence rnns for text
summarization,” 2016.

[84] S. Chopra, M. Auli, and A. M. Rush, “Abstractive sentence summariza-
tion with attentive recurrent neural networks,” in Proceedings of the 2016
Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, 2016, pp. 93–98.

[85] W. Zeng, W. Luo, S. Fidler, and R. Urtasun, “Efficient summarization
with read-again and copy mechanism,” arXiv preprint arXiv:1611.03382,
2016.

[86] C. Manning, “Get to the point: Summarization with pointer-generator
networks. arxiv preprint,” arXiv preprint arXiv:1704.04368, 2017.

[87] R. Nallapati, F. Zhai, and B. Zhou, “Summarunner: A recurrent neu-
ral network based sequence model for extractive summarization of docu-
ments.” in AAAI, 2017, pp. 3075–3081.

[88] R. Nallapati, B. Zhou, C. Gulcehre, B. Xiang et al., “Abstractive text sum-
marization using sequence-to-sequence rnns and beyond,” arXiv preprint
arXiv:1602.06023, 2016.

[89] Z. Tu, Z. Lu, Y. Liu, X. Liu, and H. Li, “Modeling coverage for neural
machine translation,” arXiv preprint arXiv:1601.04811, 2016.

[90] S. Russel and P. Norvig, “Artificial intelligence: A modern approach,
2003,” EUA: Prentice Hall, vol. 178.

[91] K. M. Hermann, T. Kocisky, E. Grefenstette, L. Espeholt, W. Kay, M. Su-
leyman, and P. Blunsom, “Teaching machines to read and comprehend,” in
Advances in Neural Information Processing Systems, 2015, pp. 1693–1701.

[92] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,”
Text Summarization Branches Out, 2004.

[93] M. Denkowski and A. Lavie, “Meteor universal: Language specific trans-
lation evaluation for any target language,” in Proceedings of the ninth
workshop on statistical machine translation, 2014, pp. 376–380.

[94] M. Bayes, “An essay towards solving a problem in the doctrine of chances.
by the late rev. mr. bayes, frs communicated by mr. price, in a letter
to john canton, amfrs philosophical transactions, 53: 370–418,” URL
http://rstl. royalsocietypublishing. org/content/53/370. short, http://rstl.
royalsocietypublishing. org/content/53/370. full. pdf+ html, 1763.

[95] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural networks,” arXiv preprint arXiv:1505.05424, 2015.

[96] H. Attias, “A variational baysian framework for graphical models,” in Ad-
vances in neural information processing systems, 2000, pp. 209–215.

115



[97] D. Jimenez Rezende and S. Mohamed, “Variational inference with normal-
izing flows,” arXiv preprint arXiv:1505.05770, 2015.

[98] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropaga-
tion and approximate inference in deep generative models,” arXiv preprint
arXiv:1401.4082, 2014.

[99] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[100] A. Graves, G. Wayne, and I. Danihelka, “Neural Turing machines,” in
Proc. NIPS, 2014.

[101] J. Weston, S. Chopra, and A. Bordes, “Memory networks,” in Proc. ICLR,
2015.

[102] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus, “End-to-end memory
networks,” in Proc. NIPS, 2015.

[103] A. Rush, S. Chopra, and J. Weston, “A neural attention model for ab-
stractive sentence summarization,” in Proc. ACL, 2015.

[104] G. K. Zipf, The psychology of language. Houghton-Mifflin, 1935.

[105] D. Kingma and M. Welling, “Auto-encoding variational Bayes,” in Proc.
ICLR’14, 2014.

[106] D. P. Kingma, D. J. Rezende, S. Mohamed, and M. Welling, “Semi-
supervised learning with deep generative models,” in Proc. NIPS’14, 2014.

[107] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropa-
gation and approximate inference in deep generative models,” in Proc.
ICML, 2014.

[108] D. J. Rezende and S. Mohamed, “Variational inference with normalizing
flows,” in Proc. ICML, 2015.

[109] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural networks,” in Proc. ICML, 2015.

[110] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul, “An introduction
to variational methods for graphical models,” in Learning in Graphical
Models, M. Jordan, Ed. Dordrecht: Kluwer, 1998, pp. 105–162.

[111] M. J. Wainwright and M. I. Jordan, “Graphical models, exponential
families, and variational inference,” Foundations and Trends in Machine
Learning, vol. 1, no. 1-2, pp. 1–305, 2008.

[112] A. Kosinski, “A procedure for the detection of multivariate outliers,” Com-
putational Statistics and Data Analysis, vol. 29, pp. 145–161, 1999.

116



[113] H. Partaourides and S. P. Chatzis, “Asymmetric deep generative models,”
Neurocomputing, vol. 241, pp. 90–96, 2017.

[114] C. Tsallis, “Possible generalization of Boltzmann-Gibbs statistics,” J. Stat.
Phys., vol. 52, pp. 479–487, 1998.

[115] A. Sousa and C. Tsallis, “Student’s t- and r-distributions: Unified deriva-
tion from an entropic variational principle,” Physica A, vol. 236, pp. 52–57,
1994.

[116] C. Tsallis, R. S. Mendes, and A. R. Plastino, “The role of constraints
within generalized nonextensive statistics.” Physica A, vol. 261, pp. 534–
554, 1998.

[117] J. Naudts, “Deformed exponentials and logarithms in generalized thermo-
statistics,” Physica A, vol. 316, pp. 323– 334, 2002.

[118] ——, “Generalized thermostatistics and mean-field theory,” Physica A,
vol. 332, pp. 279–300, 2004.

[119] ——, “Estimators, escort proabilities, and φ-exponential families in statis-
tical physics,” Journal of Inequalities in Pure and Applied Mathematics,
vol. 5, no. 4, 2004.

[120] S. P. Chatzis and D. Kosmopoulos, “A Variational Bayesian Methodol-
ogy for Hidden Markov Models utilizing Student’s-t Mixtures,” Pattern
Recognition, vol. 44, no. 2, pp. 295–306, Feb. 2011.

[121] S. Chatzis, D. Kosmopoulos, and T. Varvarigou, “Signal modeling and
classification using a robust latent space model based on t distributions,”
IEEE Trans. Signal Processing, vol. 56, no. 3, March 2008.

[122] ——, “Robust sequential data modeling using an outlier tolerant hidden
Markov model,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 31, no. 9, pp. 1657–1669, 2009.

[123] G. McLachlan and D. Peel, Finite Mixture Models. New York: Wiley
Series in Probability and Statistics, 2000.

[124] N. Ding, S. N. Vishwanathan, and Y. Qi, “t-divergence based approximate
inference,” in Proc. NIPS, 2011.

[125] H. Attias, “A variational Bayesian framework for graphical models,” in
Proc. NIPS’00, 2000.

[126] C. Liu and D. Rubin, “ML estimation of the t distribution using EM and
its extensions, ECM and ECME,” Statistica Sinica, vol. 5, no. 1, pp. 19–39,
1995.

[127] D. Andrews and C. Mallows, “Scale mixtures of normal distributions,” J.
Royal Stat. Soc. B, vol. 36, pp. 99–102, 1974.

117



[128] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization,” JMLR, vol. 12, pp. 2121–
2159, 2010.

[129] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proc. AISTATS, 2010.

[130] J. Weston, A. Bordes, S. Chopra, and T. Mikolov, “Towards AI-complete
question answering: A set of prerequisite toy tasks,” in Proc. ICLR, 2016.

[131] C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby, and O. Winther,
“Ladder variational autoencoders,” in Proc. NIPS, 2016.

[132] G. McLachlan and D. Peel, Finite Mixture Models. New York: Wiley
Series in Probability and Statistics, 2000.

[133] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in
Proc. ICLR, 2015.

[134] L. Yao, A. Torabi, K. Cho, N. Ballas, C. Pal, H. Larochelle, and
A. Courville, “Describing videos by exploiting temporal structure,” in
Proc. ICCV, 2015.

[135] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
Proc. CVPR, 2015.

[136] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv:1408.5093, 2014.

[137] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network
regularization,” in Proc. ICLR, 2015.

[138] R. Vedantam, C. L. Zitnick, and D. Parikh, “Cider: Consensus-based
image description evaluation,” in Proc. CVPR, 2015.

[139] S. Chatzis, “Hidden Markov Models with Nonelliptically Contoured State
Densities,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 32, no. 12, pp. 2297–2304, Dec. 2010.

[140] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need.”

[141] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in Proc.
NIPS, 2013.

[142] D. J. Rezende and S. Mohamed, “Variational inference with normalizing
flows,” in Proc. ICML, 2015.

118


