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Abstract

Over the last decades, power systems have been through critical changes as a result of the
worldwide efforts to decelerate climate change and global warming. Such changes were
the introduction of new generation and storage technologies, and the rapid increase of the
share of Renewable Energy Sources (RES) in power generation. Although these advances
contributed to technological and economic development, they have introduced numerous
issues that were not previously encountered in traditional power grids. Specifically, the
gradual replacement of the large fossil-fueled plants with a large number of small sparsely-
located RES resulted in the significant decrease of system rotational inertia and the emergence
of serious stability-related problems.

Despite the latest decisive steps in the area of stability analysis and control design,
existing power systems are still in danger due to the continuously increasing challenges they
encounter. An effective way to overcome these problems is the adoption of more accurate
dynamical models for both the network and the power system components within stability
studies. Such accurate modeling will not only assist in the design of more effective control
mechanisms, but it will provide useful insights regarding the stability and the reliability of
the system.

The current thesis aims to address the above problems by introducing a novel approach
for decentralized stability analysis and control design in existing and future power grids
wherein more detailed dynamical models are employed. The proposed approach relies upon
the transformation of both the network and the bus dynamics into the system reference
frame instead of each bus local dq coordinates. In particular, this transformation allows the
formulation of the network equations as an input-output system which we show it is passive
even if the network’s lossy and dynamic nature is taken into account. The passivity property
of the adopted network model along with the local passivity conditions imposed on a broad
class of bus dynamics guarantee the asymptotic stability of the whole power network in a
completely decentralized manner. The use of such a general representation also facilitates
the incorporation of more accurate dynamical models for the power system components
and their control mechanisms, even though their inclusion in such a decentralized analysis
has been difficult. A further detailed discussion regarding the advantages of the presented



x

approach for the reliable and robust operation of the future low-inertia power grids as well
as the design of more effective distributed control mechanisms is provided. The proposed
stability analysis framework is finally verified through realistic applications and simulations
on several testbed systems such as the Two Area Kundur, the IEEE 68 Bus test systems and
the IEEE 37 Node test feeder.

Keywords: power system stability, passivity, system reference frame, decentralized control,
multi-variable dynamical systems.
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Chapter 1

Introduction

The current chapter contains an introduction on the future challenges related to power system
stability analysis and control along with an extensive discussion on how these challenges
motivate the research on the topic. The contributions and the structure of this thesis are then
provided to enhance its readability.

1.1 Motivation

During the last decades, there is an ongoing worldwide effort to decarbonize the energy
sectors of the countries and thus to reduce the greenhouse gas emissions as well as decelerate
climate change and global warming. This effort began in the early 90s and became more
intense in December 2015 during the Conference Of Parties (COP) in Paris. There, 195
countries-participants took several important decisions regarding the future evolution of
the existing power grids [1]. The Paris Agreement which went into effect in November
2016, gave incentives for the gradual shift of the energy production from fossil-fueled power
plants towards Renewable Energy Sources (RES), the deregulation of the existing electricity
markets, the modernization of the existing power systems and the wide use of electric vehicles
[1–8].

Although the latest technological advancements in power engineering have been identified
as a promising tool for electric utilities to meet the above targets, changes of such scale
imposed new, significant challenges that were not previously encountered in traditional power
grids [9]. Existing electric utilities have enabled the energy generation and consumption with
great success for many decades, yet they are still unable to cope with the ongoing radical
operational and structural challenges. Such challenges included the significant reduction of
the system’s rotational inertia, the intermittent nature of power generation and the high load
variability [8]. Their impact on power system stability, reliability and robustness is already
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visible and is expected to increase rapidly shortly. Specifically, current power systems shall
confront much steeper frequency and voltage deviations during disturbances as well as more
severe instability phenomena. The employed frequency and voltage control mechanisms
are not effective enough, as they have now become too slow with respect to the disturbance
dynamics and thus, unable to prevent or even effectively damp the occurring frequency
and voltage deviations. Existing power systems have also been facing serious congestion
problems which in turn result in reduced operational efficiencies, significant electrical losses
as well as serious power quality issues [10–14]. In some cases, congestion problems also led
to disastrous events like the California blackouts in 2000 and 2001 [15–17].

This lack of stability, reliability and robustness coerced power engineers to seek more
flexible frameworks to improve the accuracy of the stability analysis studies and the identifi-
cation of various stability-related issues. The introduction of such frameworks could also
facilitate the design of new, more accurate, fast-acting control mechanisms which could
further assist in mitigating the majority of the previous problems. Even though recent cen-
tralized stability analysis approaches can provide useful results concerning the stability of
a system and the effectiveness of a controller, they can be computationally intractable or
even infeasible. Due to the size and the complexity of the existing interconnected systems,
eigenanalysis - especially when this is performed with full space methods - is computation-
ally and memory intensive [18]. On the contrary, when a network-wide stability analysis is
carried out using local conditions, the complexity of the problem increases significantly while
various simplifications are often necessary. These simplifications include, for example, the
assumption of a lossless network, the independent study of voltage and frequency dynamics,
or the adoption of less accurate dynamics to represent the power system components and
their control policies. Nevertheless, such simplifications could be crucial for the accuracy
of the derived stability results and consequently, the effectiveness of the proposed control
mechanisms.

As both centralized and decentralized techniques are incapable of accurately capturing
the stability of the rapidly changing power grids, a useful tool that could significantly improve
the stability analysis and control design is the structural property of passivity. Passivity has
been one of the cornerstones of nonlinear control theory since it can facilitate the stability
analysis of large-scale interconnected systems and the design of effective and robust control
mechanisms [19]. Its main advantage lies in the fact that every passive system is Lyapunov
stable while passivity-based conditions can be used to determine the stability of large systems
and decentralized subsystems according to the way they interconnect [19–21].

Based on the above, this thesis aims to introduce an alternative passivity-based framework
for decentralized stability analysis and control design in future power grids. In contrast to
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the related literature, where stability analysis is carried out on the local dq coordinates, the
proposed framework relies upon the transformation of both the network and the bus dynamics
into the system reference frame. This change of reference frame does not eliminate natural
passivity properties of the network or requires additional assumptions to maintain them. It
also facilitates the derivation of completely decentralized stability results and provides useful
insights for the design of more effective distributed control mechanisms. One of its main
advantages is the fact that it allows the adoption of more detailed network models which can
ensure the accuracy of the stability analysis and the utilization of a variety of bus dynamics,
such as synchronous generators, smart loads, inverter-based RES and Flexible Alternating
Current Transmission System (FACTS) devices. It additionally assists in the design of
more accurate, decentralized control mechanisms that can provide fast-responding ancillary
services to the grid and assist in overcoming the newly emerging challenges [4, 22–26].

The main aim and the contributions of this thesis are outlined in the following section
along with a brief description of each chapter’s content.

1.2 Contributions and structure of the thesis

The structure of this thesis along with its main contributions in the literature are provided in
the forthcoming paragraphs.

Chapter 2 contains several key concepts of stability and passivity that are later addressed
in this thesis. More specifically, the notation used throughout this manuscript is first presented
along with the necessary mathematical background to improve readability. Then, some basic
information is given regarding the nature of dynamical systems and their solutions. This
information is presented through applicable theorems that guarantee properties such as the
existence, the uniqueness and the continuity with initial conditions. Finally, Chapter 2
discusses the notions of Lyapunov stability and passivity while presenting the most important
characteristics of systems derived through the feedback interconnection of two sub-systems
and several stability and passivity theorems related to this context.

The current situation and the recent developments in the area of power system stability
analysis are reviewed in Chapter 3. Firstly, some useful information is provided to help the
reader understand the notion of power system stability and how this is classified into various
categories based on the physical nature of the occurring disturbances and the resulting
instability. The different stability analysis approaches are then briefly described while
providing insights on their feasibility and the technical constraints of their application.
Finally, Chapter 3 provides some basic preliminaries regarding the modeling used within
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the majority of the power system stability analysis studies and apparently the rest of this
manuscript.

The main technical content of this PhD thesis is extensively described in Chapter 4. In
particular, the network equations are appropriately formulated to form a multi-input/multi-
output system expressed into the system reference frame instead of each bus local reference
frame. It then appears that under such formulation, any power network with arbitrary
topology constitutes a passive system even when its lossy and dynamic nature is taken into
account. This result is used in the sequel for the derivation of the proposed decentralized
approach for power system stability analysis and control design. The opportunities and the
advantages provided by the adoption of this network formulation are extensively discussed
while numerical applications and dynamic simulations are finally employed to verify its
accuracy and effectiveness.

Chapter 5 describes the proposed approach for stability analysis and control design in
power grids. This approach allows power system components to be incorporated into the
analysis using a broad class of bus dynamics that are viewed as multi-variable input/output
systems and fit to the adopted network formulation. This representation facilitates the
incorporation of a variety of bus dynamics such as synchronous generators, loads, FACTS
devices and inverter-based RES while considering their frequency and voltage control policies.
Subsequently, certain local passivity conditions are introduced for bus dynamics. As shown,
imposing these conditions on every grid-connected device guarantees the asymptotic stability
of the interconnected system in a completely decentralized manner.

Several applications of the proposed passivity-based approach for power system stability
analysis and control design are presented in Chapter 6. The first application comprises of a
framework for Static Var Compensator (SVC) employment. This framework describes in
detail a complete methodology for SVC placement, tuning and sizing that aims to enhance
power system stability and robustness while minimizing the cost of SVC installation. The
second section of Chapter 6 examines the applicability and the feasibility of the presented
local passivity conditions on synchronous generators. These conditions are used in the sequel
to improve synchronous generators’ existing excitation system and effectively damp the
occurring power system oscillations. An additional application of the proposed approach
deals with the design of a novel, demand-side, voltage droop controller that can provide
effective voltage and frequency support to the future power grids. Chapter 6 concludes
with the application of the proposed passivity-based framework on RES using grid-forming
inverters.

Finally, Chapter 7 provides an extensive summary of the contributions of this PhD thesis
along with several intuitive comments that allow the accurate interpretation of the main
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results. Various suggestions and ideas on how to possibly extend the presented work are also
provided.

There are various ways in which the main contribution chapters, Chapters 4-6, connect
based on their content, application and methodology. These are summarized below:

1. All contribution chapters deal with distributed approaches for stability analysis and
control design in power grids and provide network independent results.

2. All stability results in Chapters 4, 5 and 6 are derived using techniques from passivity
and Lyapunov analysis.

3. The analysis presented in Chapter 4 concerns power networks with arbitrary topology
while Chapters 5 and 6 deal with the incorporation of various power system components
into the proposed stability analysis and control design framework.

4. The analysis and the results of Chapters 5 and 6 rely on the multi-variable, reference
frame network formulation presented in Chapter 4.

5. Bus dynamics in Chapters 5 and 6 are represented as multi-input/multi-output systems
to fit the proposed multi-variable network formulations and cover both linear and
non-linear dynamic models. Chapter 6 on the contrary, presents several applications
of the proposed stability analysis and control approach using specific power system
components such as synchronous generators, SVCs, loads and inverter-based RES.

The aforementioned connections among the chapters are schematically presented in Figure
1.1.

The work within Chapters 4 - 6 is based upon the following publications which have been
produced during the Ph.D. course [27–36].

Peer Reviewed Journals:

1. C. Spanias, P. Aristidou and M. Michaelides, "A Passivity-Based Framework for
Stability Analysis and Control Including Power Network Dynamics," IEEE Systems
Journal, 2020.

2. C. Spanias and I. Lestas, “A system reference frame approach for stability analysis
and control of power grids,” IEEE Transactions on Power Systems, vol. 34, no. 2, pp.
1105–1115, 2018.

3. A. Kasis, E. Devane, C. Spanias, and I. Lestas, “Primary frequency regulation with
load-side participation Part I: stability and optimality,” IEEE Transactions on Power
Systems, 2016.
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Fig. 1.1 Schematic representation of the connections among Chapters 4-6 based on the main
application topics and analysis tools. The letters represent: A. Power network modeling, B.
Bus dynamics/Power system components modeling, C. Applications, D. Passivity analysis
techniques, E. Lyapunov analysis techniques.

International Conference Proceedings:

1. C. Spanias, P. Aristidou, and M. Michaelides, “A dynamical multi-input/multi-output
network formulation for stability analysis in AC microgrids,” in Innovative Smart Grid
Technologies (ISGT) Europe, pp. 1–5, 2019.

2. C. Spanias, P. Aristidou, and M. Michaelides, “Demand-side Volt/Var/Watt regulation
for effectivevoltage control in distribution grids,” in Innovative Smart Grid Technolo-
gies (ISGT) Europe, pp. 1–5, 2019.

3. J. Watson, Y. Ojo, I. Lestas, and C. Spanias, “Stability of power networks with grid-
forming converters,” in 2019 IEEE Powertech Conference, pp. 1–6, IEEE, 2019.

4. M. Argyrou, C. Spanias, C. Marouchos, S. Kalogirou, and P. Christodoulides, “Energy
management and modeling of a grid-connected BIPV system with battery energy
storage,” in 54th International Universities Power Engineering Conference (UPEC),
pp. 1–6, IEEE, 2019.

5. C. Spanias, P. Aristidou, M. Michaelides, and I. Lestas, “Power system stability
enhancement through the optimal, passivity-based, placement of SVCs,” in 2018
Power Systems Computation Conference (PSCC), IEEE, 2018.

6. C. Spanias, P. Nikolaidis, and I. Lestas, “Techno-economic analysis of the potential
conversion of the outdated moni power plant to a large scale research facility,” in 5th
International Conference on Renewable Energy Sources and Energy Efficiency, pp.
208–220, 2016.
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Book Chapters:

1. E. Devane, A. Kasis, C. Spanias, M. Antoniou, and I. Lestas, “Distributed frequency
control and demand-side management,” in Smarter Energy: From Smart Metering
to the Smart Grid (H. Sun, N. Hatziargyriou, L. Carpanini, H. V. Poor, and M. A. S.
Fornié, eds.), ch. 9, pp. 157–192, IET, 2016.





Chapter 2

Theoretical background to nonlinear
systems analysis

The current PhD thesis presents a detailed framework for stability analysis and control in
power grids whereas the stability of various classes of dynamical systems is studied. Thus,
the current chapter provides the mathematical background required to follow the presented
analysis. Particularly, Section 2.1 contains the notation used throughout this manuscript while
Section 2.2 provides useful information regarding dynamical systems. Several nonlinearities
and nonlinear phenomena that can be met in various dynamical systems such as power
grids are then provided in Section 2.3. Section 2.4 states some fundamental properties
of the solutions of ordinary differential equations, i.e. existence and uniqueness, which
in turn are essential for the representation of a physical system. The notion of stability
of equilibrium points, namely the Lyapunov Stability, is extensively presented in Section
2.5. Finally, Section 2.6 deals with the structural property of passivity and how this can
be utilized to deduce the stability of large scale systems. More detailed information on the
presented analysis and the proofs of the presented theorems and lemmas can be found in
[19, 21, 37, 38].

2.1 Notation

Within the rest of this manuscript, R, Z and C are used to denote the set of real, natural
and complex numbers, respectively. The superscript n is used for the representation of the
n-dimensional vectors of real/natural/complex numbers, that is Rn, Zn and Cn. Rn×m, Zn×m

and Cn×m represent n-by-m matrices of real/natural/complex numbers. Positive real and
natural numbers are denoted by R+, Z+.
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If a and b are real numbers with a ≤ b, [a,b] will denote the closed interval from a to
b i.e. the set of all real numbers x such that a ≤ x ≤ b. [a,b) will denote the right-open
interval from a to b (i.e. a ≤ x < b) etc. No distinctions will be made between vectors and
real numbers in the notation. Both vectors and real numbers will be denoted either by lower
or upper case letters. Matrices will be represented only by upper case letters. Note here that
Aii and Ai j will be used to denote the diagonal entries and the entries corresponding to the
i-th row and the j-th column of a matrix A, respectively.

The norm ||x|| of a vector x ∈ Rn is a real valued function with the following properties:

1. ||x|| ≥ 0 for all x ∈ Rn, with ||x||= 0 if and only if x = 0,

2. ||x+ y|| ≤ ||x||+ ||y||, for all x,y ∈ Rn and

3. ||ax||= |a|||x||, for all a ∈ R, x ∈ Rn.

Consider an n-by-m matrix A. The representation AT and A−1 will be used to denote
its transpose and its inverse matrix, respectively. If the matrix A has the same number of
rows and columns it is called square. When all entries of A below the main diagonal are
zero, A is called an upper triangular matrix. Similarly, when all of its entries above the
main diagonal are zero, A is called a lower triangular matrix. A is a diagonal matrix when
all of its non-diagonal entries are zero. Moreover, the notation In will be used to represent
the identity matrix, i.e. the n-by-n matrix diagonal elements are equal to 1 and all other
elements are equal to 0. A square matrix B that is equal to its transpose, that is, B = BT ,
is called a symmetric matrix. If instead, B is equal to the negative of its transpose, that is,
B =−BT , then B is called a skew-symmetric matrix. In complex analysis, symmetry is often
replaced by the concept of Hermitian matrices, which satisfy B∗ = B, where the star denotes
the conjugate transpose of the matrix, that is, the transpose of the complex conjugate of B.
Finally, let a symmetric matrix D ∈ Rn×n and a non-zero vector x ∈ Rn. This matrix is said
to be:

• positive definite if and only if xT Dx > 0 for all x ∈ Rn −{0}

• positive semidefinite if and only if xT Dx ≥ 0 for all x ∈ Rn −{0}

• negative definite if and only if xT Dx < 0 for all x ∈ Rn −{0}

• and negative semidefinite if and only if xT Dx ≤ 0 for all x ∈ Rn −{0}.

The definiteness of the matrix D can be also deduced by its eigenvalues as follows:

• positive definite if and only if all of its eigenvalues are positive
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• positive semidefinite if and only if all of its eigenvalues are non-negative

• negative definite if and only if all of its eigenvalues are negative

• and negative semidefinite if and only if all of its eigenvalues are non-positive.

The above definitions hold for complex matrices if xT is replaced by x∗.
For a function f , D( f ) and R( f ) are used to denote the domain and the range of f ,

respectively. The derivative of a function f (x) is denoted by d f
dx or f ′. Such function f is

said to be of differentiability class Ck if its k-th derivative f (k) exists and is continuous.
The function f is invertible if there exists a function f−1 defining the inverse function of f .
Moreover, a function f : Rn →R is positive definite on a neighborhood N around the origin if
f (0) = 0 and f (x)> 0 for every non-zero x ∈N. Finally, the derivative of a function g(t) with
respect to time is denoted either by dg

dt or ġ and its Laplace transform by ḡ(s) =
∫

∞

0 e−stg(t)dt.

2.2 Dynamical System Classification

A dynamical system is a concept in mathematics where a fixed rule describes how a point in
a geometrical space depends on time. Certain dynamical systems such as power systems, can
also be influenced by external inputs which may represent either uncontrollable disturbances
or control signals. Some dynamical systems may also have outputs representing either
quantities that can be measured, or quantities that need to be regulated [21, 38].

Based on the type of their state, dynamical systems can be classified into the following
categories:

1. Continuous, if the state takes values in Euclidean space Rn for some n ≥ 1.

2. Discrete, if the state takes values in a finite set {q1,q2, . . .} where variable q denotes
the state of a discrete system.

3. Hybrid, if part of the state takes values in Rn while another part takes values in a finite
set.

Based on the set of times over which the state evolves, dynamical systems can be classified
as:

1. Continuous time, if the set of times is a subset of real numbers. The term t ∈ R will
be used to denote a continuous time system. The evolution of its state is described by
an ordinary differential equation (ODE) of the following form:

ẋ = Ax
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2. Discrete time, if the set of times is a subset of natural numbers. The term k ∈ Z will
be used to denote a discrete time system. The evolution of its state is described by a
difference equation of the following form:

xk+1 = Axk

3. Hybrid time, when the evolution is over continuous time but there are also discrete
time "instants" where something "special" happens.

Continuous state systems can be further classified according to the form of the equations
that describe the evolution of their state as follows:

1. Linear, if the evolution of the state is governed by a linear differential equation
(continuous time) or difference equation (discrete time).

2. Nonlinear, if the evolution of the state is governed by a nonlinear differential equation
(continuous time) or difference equation (discrete time).

This work deals with power system stability and control design and thus, the presented
analysis will focus primarily on nonlinear, continuous state, continuous-time systems.

2.3 Nonlinear Models and Nonlinear Phenomena

Power systems are particularly large-scale, nonlinear dynamical systems that can be repre-
sented by a finite number of coupled first-order ODEs as follows:

ẋ1 = f1(t,x1, . . . ,xn,u1, . . . ,up)

ẋ2 = f2(t,x1, . . . ,xn,u1, . . . ,up)

...

ẋn = fn(t,x1, . . . ,xn,u1, . . . ,up)

where xi denotes the state of the dynamical system, The term ẋi denotes the derivative of
xi with respect to the time variable t and u1,u2, . . . ,up are specified input variables. Such a
dynamical system can be represented in a more compact form using the following vector
notation:

ẋ = f (t,x,u) (2.1)

where ẋ = [ẋ1 ẋ2 . . . ẋn]
T , x = [x1 x2 . . . xn]

T , u = [u1 u2 . . .un]
T and f (t,x,u) = [ f1(t,x,u)

f2(t,x,u) . . . f3(t,x,u)]T . Equation (2.1) is called the state equation and refer to x and u as
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the state and the input of the dynamical system respectively. Sometimes, another equation i.e.

y = h(t,x,u) (2.2)

is associated with (2.1). The variable y is defined as the q-dimensional output vector that
comprises variables of particular interest in the analysis of the dynamical system. Equation
(2.2) is called the output equation and along with the equation (2.1) are denoted as the state-
space model. Although dynamical systems are not always expressed in such a mathematical
form, the above state model form can be derived by carefully choosing the state variables.
This modelling approach will also be used throughout this thesis since the presented work
focuses on the decentralized stability analysis and control of power grids. As will be shown
in the following chapters, stability will be guaranteed using decentralized conditions that are
directly related to certain variables of the system such as the bus voltages, the bus voltage
angles, the network frequency, the line currents and the net-injected currents at each bus of
the grid.

State equation can also take the form

ẋ = f (t,x) (2.3)

which is called unforced state equation since there is no presence of an input u. Working
with an unforced state equation does not necessarily mean that the input to the system is zero.
It could be that the input has been specified as a given function of time, u = γ(t), a given
feedback function of the state, u = γ(x), or both, u = γ(t,x).

A special case of (2.3) arises when the function f does not depend explicitly on t; that is,

ẋ = f (x). (2.4)

In such case the system is said to be autonomous or time invariant. If the system is non
autonomous (depends on t), then it is called nonautonomous or time varying.

An important concept in dealing with the state equation of a dynamical system is the
concept of the equilibrium point. A point x = x̂ is said to be an equilibrium point of (2.3) if
it satisfies the condition that whenever the state of the system starts at x̂, it will remain at x̂
for all the future time. For the case of an autonomous system such as (2.4), the equilibrium
points are the real roots of the equation

f (x̂) = 0
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For linear systems, the state model (2.1) - (2.2) takes the following simpler form:

ẋ = A(t)x+B(t)u (2.5)

y =C(t)x+D(t)u (2.6)

Since the analysis of nonlinear systems is complex, it is usually very helpful to use tools from
linear systems analysis. The first step in analyzing a nonlinear system is usually to linearize
it, if possible, about a nominal operating point and analyze the resulting linear model. Even
though linearization is a powerful tool for analysis, there are two important limitations.
Firstly, since linearization is an approximation in the neighborhood of an operating point,
it can only predict the local behavior of the nonlinear system in the vicinity of that point.
It cannot predict global behavior throughout the state space. Secondly, the dynamics of a
nonlinear system are more complicated and thus, "essentially nonlinear phenomena" take
place only in the presence of nonlinearity [21, 37].

It should be noted here that part of the elaborated work in this PhD thesis relies on the
linearization of nonlinear dynamical models representing several power system components.
In those cases, the stability results derived throughout these works refer to local stability.

2.4 Fundamental Properties

This section presents some fundamental properties of the solutions of ODEs, like the exis-
tence, the uniqueness and the continuous dependence on initial conditions and parameters
[21]. These properties are essential for the mathematical representation of a deterministic
physical system and consequently for the validity of the results that are presented in this
manuscript.

2.4.1 Existence and Uniqueness

The necessary conditions for the existence and uniqueness of the solution of the initial value
problem

ẋ = f (t,x), x(t0) = x0 (2.7)

are briefly presented in the forthcoming paragraphs. By a solution of (2.7) over an interval
[t0, t1], we mean a continuous function x : [t0, t1] → Rn such that ẋ(t) is defined and ẋ =

f (t,x(t)) for all t ∈ [t0, t1].
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Theorem 2.4.1 (Local Existence and Uniqueness) Let f (t,x) be piecewise continuous in t
and satisfy the Lipschitz condition

∥ f (t,x)− f (t,y)∥ ≤ L∥x− y∥

∀x,y ∈ B = {x ∈Rn | ∥x−x0∥ ≤ r}, ∀t ∈ [t0, t1]. Then, there exists some δ > 0 such that the
state equation ẋ = f (t,x) with x(t0) = x0 has a unique solution over [t0, t0 +δ ].

Theorem 2.4.2 (Global Existence and Uniqueness) Suppose that f (t,x) is piecewise con-
tinuous in t and satisfies

∥ f (t,x)− f (t,y)∥ ≤ L∥x− y∥

∀x,y ∈ Rn,∀t ∈ [t0, t1]. Then, the state equation ẋ = f (t,x), with x(t0) = x0, has a unique
solution over [t0, t1].

Theorem 2.4.3 Let f (t,x) be piecewise continuous in t and locally Lipschitz in x for all
t ≥ t0 and all x in a domain D ⊂ Rn. Let W be a compact subset of D, x0 ∈W, and suppose
it is known that every solution of (2.7) lies entirely in W. Then, there is a unique solution
that is defined for all t ≥ t0.

2.4.2 Dependence on initial conditions

A necessary condition for employing the state model (2.7) to represent any physical system
is the continuous dependence of its solutions on initial conditions and parameters, i.e. the
initial state x0, the initial time t0 and the function f (t,x). Continuous dependence on the
initial time t0 can be easily deduced from the following integration

x(t) = x0 +
∫ t

t0
f (s,x(s))ds.

In order to examine the continuous dependence on the initial state x0 and the function f we let
y(t) be a solution of (2.7) that starts at y(t0) = y0 and is defined on the compact time interval
[t0, t1]. The solution of (2.7) depends continuously on y0, that is the initial state x0 and the
function f (t,x), if solutions starting at nearby points are defined on the same time interval
and remain close to each other in that interval. The previous statement can be examined
through the following two theorems [21, 37].

Theorem 2.4.4 Let f (t,x) be piecewise continuous in t and locally Lipschitz in x on [t0, t1] ×
W with a Lipschitz constant L, where W ⊂ Rn is an open connected set. Let y(t) and z(t) be
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solutions of
ẏ = f (t,y), y(t0) = y0

and
ż = f (t,z)+g(t,z), z(t0) = z0

such that y(t), z(t) ∈W for all t ∈ [t0, t1]. Suppose that

||g(t,x)|| ≤ µ, ∀t ∈ [t0, t1] × W

for some µ > 0. Then

||y(t)− z(t)|| ≤ ||y0 − z0||eL(t−t0)+
µ

L

(
eL(t−t0)−1

)
∀t ∈ [t0, t1].

Theorem 2.4.5 Let f (t,x,λ )1 be piecewise continuous in (t,x,λ ) and locally Lipschitz in
x on [t0, t1] × D × {||λ −λ0|| ≤ c}, where D ⊂ Rn is an open connected set. Let y(t,λ0)

be a solution of ẋ = f (t,x,λ0) with y(t0,λ0) = y0 ∈ D. Suppose that y(t0,λ0) is defined and
belongs to D for all t ∈ [t0, t1]. Then, given ε > 0, there is δ > 0 such that if

||z0 − y0||< δ and ||λ −λ0||< δ

then there is a unique solution z(t,λ ) of ẋ = f (t,x,λ ) defined on [t0, t1l, with z(t0,λ ) = z0,
and z(t,λ ) satisfies

||z(t,λ )− y(t,λ0)||< ε ∀t ∈ [t0, t1].

2.5 Lyapunov Stability

The current section deals with the stability analysis of the equilibria of dynamical systems,
namely the Lyapunov Stability. Particularly, Lyapunov stability analysis is described in the
following paragraphs through some of the most important stability definitions and theorems
which can give sufficient conditions for the stability or the asymptotic stability of a system.
It should be highlighted that Lyapunov stability theory is extensively used in power systems
(i.e. for the design of various frequency and voltage regulation schemes) since it constitutes
a powerful tool for alleging whether a system is stable / asymptotically stable or not [21, 37].

1In order to show whether the state equation (2.7) continuously depends on the initial state we adopt the
mathematical representation f (t,x,λ ). The constant parameters λ could represent physical parameters of
the system, and the study of perturbation of these parameters accounts for modeling errors or changes in the
parameter values due to aging.
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2.5.1 Invariant Sets

Consider the autonomous dynamical system described by (2.4) with initial conditions x(0) =
x0 and state x ∈ Rn. f is assumed to be a Lipschitz continuous function while the unique
trajectory of (2.4) is denoted by x(.).

Definition 2.5.1 (Invariant Set) A set of states S ⊆ Rn of (2.4) is called an invariant set of
(2.4) if for all x0 ∈ S and for all t ≥ 0, x(t) ∈ S.

An important class of invariant sets are the equilibrium points of a dynamical system.
Thus, before proceeding with notions and results on stability, it is necessary to define here
what an equilibrium is.

Definition 2.5.2 A state x̂ ∈ Rn is called an equilibrium of (2.4) if f (x̂) = 0.

For the sake of completeness, it should be noted that limit cycles constitute another
important class of invariant sets that may be observed in systems of dimension 2 or higher.
In higher dimensions, even more exotic types of invariant sets can be found, such as the
invariant torus and the chaotic attractor.

2.5.2 Stability Definitions

Stability is the most commonly studied property of invariant sets. An invariant set is called
stable if trajectories starting close to it remain close to it and unstable if they do not. An
invariant set is called asymptotically stable if it is stable and in addition trajectories that they
start close to it converge to it as t → ∞. The main stability definitions of equilibria are stated
in the following paragraphs. Similar definitions can be derived for more general types of
invariant sets.

Definition 2.5.3 (Stable equilibrium) An equilibrium, x̂, of (2.4) is called stable if for all
ε > 0 there exists δ > 0 such that ∥x0 − x̂∥ < δ implies that ∥x(t)− x̂∥ < ε for al t ≥ 0.
Otherwise the equilibrium is said to be unstable.

Definition 2.5.4 (Asymptotically stable equilibrium) An equilibrium, x̂, of (2.4) is called
locally asymptotically stable if it is stable and there exists M > 0 such that ∥x0 − x̂∥ < M
implies that limt→∞ x(t) = x̂. The equilibrium is called globally asymptotically stable if this
holds for all M > 0.
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Another important term that is directly related to the stability analysis of equilibria is
the domain of attraction. The domain of attraction of an asymptotically stable equilibrium
is the set of all x0 for which x(t)→ x̂. By definition, the domain of attraction of a globally
asymptotically stable equilibrium is the entire state space Rn. For more information readers
can refer to [39–41].

2.5.3 Linearization and Lyapunov’s Indirect Method

Useful information regarding the stability of an equilibrium can be deduced through the
linearization of the nonlinear system. This method is widely used in power systems as well
to facilitate the analysis of power grids which are mainly complex, nonlinear systems. The
following paragraphs provide the most important results of this method.

Consider the Taylor series expansion of the vector field f : Rn → Rn about x = x̂.

f (x) = f (x̂)+A(x− x̂)+ higher order terms in (x− x̂)

=A(x− x̂)+ higher order terms in (x− x̂)

where

A =


∂ f1
∂x1

. . . ∂ f1
∂xn

...
...

...
∂ fn
∂x1

. . . ∂ fn
∂xn


Setting δx = x− x̂ and differentiating leads to

δ̇x = Aδx+ higher order terms in δx

Since the analysis is carried out near the equilibrium, the higher order terms can be neglected.
Thus, the behavior of the nonlinear system close to the equilibrium is similar to that of its
linearization

δ̇x = Aδx (2.8)

and it can be deduced through the following theorem.

Theorem 2.5.1 Lyapunov’s indirect method Let x̂ = 0 be the equilibrium of the linear
system (2.8). Then, the origin is

1. asymptotically stable if and only if all eigenvalues of A have negative real parts,

2. unstable if there exists an eigenvalue with positive real part.
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If one or more eigenvalues the matrix A are zero, then the behavior of the nonlinear system
(2.4) is indefinable.

Although linearization constitutes a powerful tool for studying the stability of equilibria
(and other similar interesting local properties of nonlinear dynamical systems), it has several
significant disadvantages. The most important are stated below:

• It is inconclusive when the linearization is stable but not asymptotically stable.

• It provides no information about the domain of attraction.

2.5.4 Lyapunov Functions and the Direct Method

Apart from the Lyapunov’s indirect method, the stability analysis of a nonlinear system’s
equilibria can be carried out using Lyapunov functions as well. This method, namely the
Lyapunov’s direct method, is crucial since it can provide important information regarding the
region of attraction of an equilibrium point when employed along with La Salle’s Invariance
Principle. The presentation of several methods for deriving Lyapunov’s functions is beyond
the scope of this dissertation and, it is, therefore, omitted. For more information on Lyapunov
Stability and the construction of candidate Lyapunov functions, the reader can consult
[21, 37].

Let now the dynamical system
ẋ = f (x)

that has an equilibrium at x̂. Without loss of generality we assume that x̂ = 0, to simplify
notation and provide the following theorems regarding the stability of the system about this
equilibrium.

Theorem 2.5.2 (Lyapunov Stability) Assume there exists a differentiable function V : S →R
defined on some open region S ⊂ Rn containing the origin, such that

1. V (0) = 0

2. V (x)> 0 for all x ∈ S with x ̸= 0

3. V̇ (x)≤ 0 for all x ∈ S

Then x̂ = 0 is a stable equilibrium of ẋ = f (x).
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Here V̇ denotes the derivative of V along the trajectories of the dynamical system, i.e.

V̇ (x) =
n

∑
i=1

∂V
∂xi

(x)ẋi =
n

∑
i=1

∂V
∂xi

(x) fi(x) = ∇V (x) f (x). (2.9)

The equation (2.9) is also called the Lie Derivative of the function V along the vector field f .
A function satisfying the conditions of the above theorem is called a Lyapunov function.

Theorem 2.5.3 (Lyapunov Asymptotic Stability) Assume there exists a differentiable func-
tion V : S → R defined on some open region S ⊂ Rn containing the origin, such that

1. V (0) = 0

2. V (x)> 0 for all x ∈ S with x ̸= 0

3. V̇ (x)< 0 for all x ∈ S with x ̸= 0

Then x̂ = 0 is a locally asymptotically stable equilibrium of ẋ = f (x).

Theorem 2.5.4 (LaSalle’s Invariance Principle) Let S ⊆ Rn be a compact (i.e. closed and
bounded) invariant set. Assume there exists a differentiable function V : S → R such that

V̇ (x)≤ 0, ∀x ∈ S

Let M be the largest invariant set contained in [x ∈ S | V̇ (x) = 0] (the set of x ∈ S for which
V̇ (x) = 0). Then all trajectories starting in S approach M as t → ∞.

It is highlighted here that theorems 2.5.3 and 2.5.4 can be utilized to estimate the regions
of attraction of the equilibria of a nonlinear system. Since the system can never leave sets
of the form {x ∈ Rn | V̇ (x)≤ c} any such set contained in S has to be a part of the domain
of attraction of the equilibrium. Furthermore, the conditions of the theorems are sufficient
but not necessary. If one can find a Lyapunov function that meets the conditions stated
in the above theorems, we know that the equilibrium is stable or asymptotically stable. If
such a function cannot be found, we can not draw an immediate conclusion. Note here
that the region of attraction is a significant term in power systems and small-signal analysis.
Since one has to determine whether a small disturbance occurring in the network can lead to
instability or not, it is necessary to specify a boundary region where the reliable operation of
the system under consideration is ensured.

At this point, some general instructions for finding an appropriate Lyapunov function is
provided. However, it is necessary to mention that the construction of a Lyapunov function is
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more of an art than an exact science. Particularly for physical systems, it is better trying to
guess Lyapunov functions related to the energy of the system. Another popular choice is the
quadratic functions. The simplest choice is

V (x) = ∥x∥2.

More generally, we can also try
V (x) = xT Px (2.10)

where P is a symmetric, positive definite matrix. Quadratic Lyapunov functions always work
for linear systems. For example, consider the following linear autonomous system

ẋ = Ax

and the candidate Lyapunov function (2.10) for some P = PT > 0. Differentiating leads to

V̇ (x) =ẋT Px+ xT Pẋ

=(Ax)T Px+ xT P(Ax)

=xT (AT P+PA)x

Therefore, a suitable Lyapunov function can be found if one can define a matrix P = PT > 0
such that xT (AT P+PA)x < 0 for all x. This is possible if for some Q = QT > 0 the Lyapunov
matrix equation

AT P+PA =−Q (2.11)

has a symmetric, positive definite solution P = PT > 0.

Theorem 2.5.5 (Linear Lyapunov Stability) For any matrix A the following statements are
equivalent

1. All eigenvalues of A have negative real parts.

2. We can find P = PT > 0 that solves (2.11) for some Q = QT > 0.

The method for the construction of an appropriate Lyapunov function for dynamical
systems that contain memoryless nonlinearities is quite similar. More specifically, consider
the memoryless nonlinearity h(.) such that h(0) = 0 and zh(z)> 0 for z ̸= 0. If the input to
such nonlinearity is a state variable, that is xi, then a positive function that could be used is

V (x) =
∫ xi

0
h(z)dz.
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In this case we get
∂V
∂xi

(x) = h(xi).

If the quadratic candidate Lyapunov function does not work and the dynamical system under
consideration has such memoryless nonlinearities, a possible guess would be

V (x) = xT Px+
n

∑
i=1

∫ xi

0
hi(z)dz.

2.6 Passivity

One significant, structural property that can facilitate the stability analysis of large-scale,
nonlinear systems is the notion of passivity. Passivity is an input/output property that can
be easily applied to such systems and determine whether these are stable or not and design
appropriate control mechanisms. It also relates nicely to Lyapunov and L2 stability. Passivity,
whose use in Power Systems Analysis has been continuously expanding, is the key tool
utilized for the presented analysis in the current PhD thesis and thus, a detailed presentation of
its main aspects is provided. Specifically, this section defines first the passivity of memoryless
nonlinearities and dynamical systems represented as state models. The terms of positive
real and strictly positive-real systems are then introduced while explaining how one can
deduce the passivity of a system in the frequency domain. The connection between passivity
and stability is stated last by providing the main passivity theorems for Feedback Systems
[19, 21, 37].

2.6.1 Memoryless Functions

This paragraph presents how passivity of the memoryless function y = h(t,y) is defined,
where h : [0,∞)×Rp → Rp. Considering that this function constitutes a multi-input/multi-
output system with input the vector u ∈ Rn, the following definition is provided.

Definition 2.6.1 The system y = h(t,u) is

• passive if uT y ≥ 0.

• lossless if uT y = 0.

• input-feedforward passive if uT y ≥ uT ϕ(u) for some function ϕ .

• input strictly passive if uT y ≥ uT ϕ(u) and uT ϕ(u)> 0,∀u ̸= 0.
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• output-feedback passive if uT y ≥ yT p(y) for some function p.

• output strictly passive if uT y ≥ yT p(y) and yT p(y)> 0,∀y ̸= 0.

In all cases, the inequality should hold for all (t,u).

As will be shown in Chapter 4, the above definition will be employed to proof the
passivity of the network when the latter is formulated based on the presented approach.

2.6.2 State Models

This paragraph defines passivity for dynamical systems that are described by the state model

ẋ = f (x,u) (2.12)

y =h(x,u) (2.13)

where f : Rn ×Rp → Rn is locally Lipschitz, h : Rn ×Rp → Rp is continuous, f (0,0) = 0,
and h(0,0) = 0. The above system has the same number of inputs and outputs and is passive
if the energy absorbed over any period of time [0, t] is greater than or equal to the increase in
the energy stored in it over the same period; that is,∫ t

0
u(s)y(s)ds ≥V (x(t))−V (x(0)) (2.14)

where V (x) is the energy stored in network. If (2.14) holds with strict inequality, then the
difference between the absorbed energy and the increase in the stored energy must be the
energy dissipated in the system. Since (2.14) must hold for every t ≥ 0, the instantaneous
power inequality

u(t)y(t)≥ V̇ (x(t),u(t)) (2.15)

must hold for all t; that is, the power flow into the network must be greater than or equal to
the rate of change of the energy stored in the system. We can investigate inequality (2.15) by
calculating the derivative of V along the trajectories of the system. The following definition
states the terms of passivity as these derived using the function V of such system.

Definition 2.6.2 The system (2.12)-(2.13) is said to be passive if there exists a continuously
differentiable positive semidefinite function V (x) (called the storage function) such that

uT y ≥ V̇ =
∂V
∂x

f (x,u), ∀(x,u) ∈ Rn ×Rp (2.16)

Moreover, it is said to be
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• lossless if uT y = V̇ .

• input-feedforward passive if uT y ≥ V̇ +uT ϕ(u) for some function ϕ .

• input strictly passive if uT y ≥ V̇ +uT ϕ(u) and uT ϕ(u)> 0,∀u ̸= 0.

• output-feedback passive if uT y ≥ V̇ + yT p(y) for some function p.

• output strictly passive if uT y ≥ V̇ + yT p(y) and yT p(y)> 0,∀y ̸= 0.

• strictly passive if uT y ≥ V̇ +ψ(x) for some positive definite function ψ .

In all cases, the inequality should hold for all (x,u).

The above definition reads almost the same as definition for memoryless functions except for
the presence of a storage function V (x). If the convention that V (x) = 0 for a memoryless
function is adopted, the above definition can be used for both state models and memoryless
functions.

2.6.3 Positive Real Transfer Functions

As mentioned above, the passivity-based stability analysis of dynamical systems is carried
out in the time domain and relies on the explicit construction of the storage function V (x).
Similarly to the case of Lyapunov functions, the task of finding an appropriate storage
function for a nonlinear system is difficult. Although this procedure becomes significantly
easier for linear or systems linearized around an equilibrium, the passivity of such systems
can be easily deduced in the frequency domain via the positive realness of its corresponding
transfer function matrix. More specifically, a linear system represented by a positive real
transfer function is passive as well. Similarly, strict positive realness implies strict passivity.
The previous statements are presented through the following definitions for proper rational
transfer function matrices [19, 21].

Definition 2.6.3 A p× p proper rational transfer function matrix G(s) is called positive real
if

• poles of all elements of G(s) are in Re(s)≤ 0.

• for all real ω for which jω is not a pole of any element of G(s), the matrix G( jω)+

GT (− jω) is positive semidefinite, and

• any pure imaginary pole jω of any element of G(s) is a simple pole and the residue
matrix lims→ jω(s− jω)G(s) is positive semidefinite Hermitian
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The transfer function G(s) is called strictly positive real if G(s− ε) is positive real for some
ε > 0.

When p = 1, the second condition of the above definition reduces to Re[G( jω)] ≥
0,∀ω ∈ R which holds when the Nyquist plot of G( jω) lies entirely in the closed right-half
complex plane. This is a condition that can be satisfied only if the relative degree of the
transfer function is zero or one.

The next lemma gives an equivalent characterization of strictly positive real transfer
functions.

Lemma 2.6.1 Let G(s) be a p× p proper rational transfer function matrix, and suppose
det[G(s)+GT (−s)] is not identically zero. Then G(s) is strictly positive real if and only if

• G(s) is Hurwitz; that is, poles of all elements of G(s) have negative real parts,

• G( jω)+GT ( jω) is positive definite for all ω ∈ R, and

• either G(∞)+GT (∞) is positive definite or it is positive semidefinite and limω→∞

ω2MT [G( jω)+GT (− jω)]M is positive definite for any p× (p−q) full-rank matrix
M such that MT [G(∞)+GT (∞)]M = 0 where q =rank[G(∞)+GT (∞)].

For linear systems expressed in the form (2.5)-(2.6), the passivity property can be deduced
from the positive realness of the transfer function matrix of the system as shown within the
next two lemmas, which are known, respectively, as the positive real lemma and the Kalman
- Yakubovich - Popov lemma. These lemmas provide an algebraic characterization of positive
real and strictly positive real transfer functions.

Lemma 2.6.2 (Positive Real) Let G(s) = C(sI −A)−1B+D be a p× p transfer function
matrix where (A,B) is controllable and (A,C) is observable. Then G(s) is positive real if
and only if there exist matrices P = PT > 0, L, and W such that

PA+AT P =−LT L

PB =CT −LTW

W TW = D+DT

For systems with D = 0 the above condition is reduced to

PA+AT P < 0

PB =CT
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Lemma 2.6.3 (Kalman - Yakubovich - Popov) Let G(s) = C(sI −A)−1B+D be a p× p
transfer function matrix where (A,B) is controllable and (A,C) is observable. Then G(s) is
strictly positive real if and only if there exist matrices P = PT > 0, L, and W, and a positive
constant ε such that

PA+AT P =−LT L− εP

PB =CT −LTW

W TW = D+DT

Lemma 2.6.4 The linear time-invariant minimal realization

ẋ = Ax+Bu

y =Cx+Du

with G(s) =C(sI −A)−1B+D is

• passive if G(s) is positive real;

• strictly passive if G(s) is strictly positive real.

2.6.4 Passivity Theorems for Feedback Systems

Considering that power systems consist of a large number of subsystems, they can be studied
as a large interconnected system where all the power system components, i.e. the synchronous
generators, the loads, the FACTS and the converter interfaced devices are connected to the
power network in a feedback formation. Hence, it is useful to present here the most important
passivity theorems related to feedback systems and provide useful information regarding the
relationship between the structural property of passivity and the stability [19, 21].

Consider the feedback connection of the Figure 2.1 where each of the feedback com-
ponents H1 and H2 is either a time-invariant dynamical system represented by the state
model

ẋi = fi(xi,ei) (2.17)

yi = hi(xi,ei) (2.18)

or a (possibly time-varying) memoryless function represented by

yi = hi(t,ei) (2.19)
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Note here that u1,y1,u2 and y2 could be vectors of the same dimension.

Fig. 2.1 A closed-loop system represented as a feedback interconnection of the systems H1
and H2 [21].

Since the passivity properties of the feedback components H1 and H2 are used to deduce
the stability or the asymptotic stability of the interconnected system, it is required the
feedback connection to have a well-defined state model. When both components H1 and H2

are dynamical systems, the closed-loop state model takes the form of (2.12) - (2.13) where

x =

[
x1

x2

]
, u =

[
u1

u2

]
, and y =

[
y1

y2

]

Assuming that f is locally Lipschitz, h is continuous, f (0,0) = 0 and h(0,0) = 0, it can be
easily verified that the interconnected system will have a well-defined state model if the
equations

e1 = u1 −h2(x2,e2) (2.20)

e2 = u2 +h1(x1,e1) (2.21)

have a unique solution (e1,e2) for every (x1,x2,u1,u2). The properties f (0,0) = 0 and
h(0,0) = 0 follow from fi(0,0) = 0 and hi(0,0) = 0. It is also easy to see that (2.20) and
(2.21) will always have a unique solution if h1 is independent of e1 or h2 is independent of
e2. In this case, the functions f and h of the closed-loop state model inherit the smoothness
properties of the functions fi and hi of the feedback components. In particular, if fi and hi

are locally Lipschitz, so are f and h.
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When one component of the interconnected system, i.e. H1, is a dynamical system, while
the other one is a memoryless function, the closed loop state model takes the form

ẋ = f (t,x,u) (2.22)

y = h(t,x,u) (2.23)

where

x =

[
x1

x2

]
, u =

[
u1

u2

]
, and y =

[
y1

y2

]

Assuming that f is piecewise continuous in t and locally Lipschitz in (x,u), h is piecewise
continuous in t and continuous (x,u), f (t,0,0)= 0 and h(t,0,0)= 0, the feedback connection
will have a well-defined state model if the equations

e1 = u1 −h2(t,e2) (2.24)

e2 = u2 +h1(x1,e1) (2.25)

have a unique solution (e1,e2) for every (x1, t,u1,u2). This will be always the case when
h1 is independent of e1. The case when both components are memoryless functions is less
important and follows trivially as a special case when the state x does not exist. In this case,
the feedback connection is represented by y = h(t,u).

The starting point of the analysis provided in this section is the following fundamental
property.

Theorem 2.6.1 The feedback connection of two passive systems is passive.

By exploiting the stability properties that are satisfied by passive systems, Theorem 2.6.1
can be used to arrive at some straightforward conclusions on the stability of any closed loop
system such as the one presented in Figure 2.1. We therefore quote below the main theorems
connecting the terms of Lyapunov stability and passivity for nonlinear systems.

Theorem 2.6.2 Consider the feedback connection of two time-invariant dynamical systems
of the form (2.17) - (2.18). The origin of the closed-loop system (when u= 0) is asymptotically
stable if

• both feedback components are strictly passive

• both feedback components are output strictly passive and zero-state observable, or
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• one component is strictly passive and the other one is output strictly passive and
zero-state observable.

Furthermore, if the storage function for each component is radially unbounded, the origin is
globally asymptotically stable.

When the feedback connection has a dynamical system as one component and a memory-
less function as the other component, we can resort to Lyapunov analysis using the storage
function of the dynamical system as a Lyapunov function candidate. However, it is important
to distinguish the analysis between time-invariant and time-varying memoryless functions.
In the latter case the closed-loop system will be nonautonomous and therefore the invariance
principle cannot be applied. These two cases are treated separately in the next two theorems.

Theorem 2.6.3 Consider the feedback connection for strictly passive, time-invariant, dy-
namical system of the form (2.17) - (2.18) with a passive (possibly time-varying) memoryless
function of the form (2.19). Then, the origin of the closed-loop system (2.22) (when u = 0)
is uniformly asymptotically stable. Furthermore, if the storage function for the dynamical
system is radially unbounded, the origin will be globally uniformly asymptotically stable.

Theorem 2.6.4 Consider the feedback connection of a time-invariant dynamical system H1

of the form (2.17) - (2.18) with a time-invariant memoryless function H2 of the form (2.19).
Suppose that H1 is zero-state observable and has a positive definite storage function, which
satisfies

eT
1 y1 ≥ V̇1 + yT

1 p1(y1) (2.26)

and that H2 satisfies
eT

2 y2 ≥ eT
2 ϕ2(e2) (2.27)

Then, the origin of closed-loop system (2.22) (when u = 0)is asymptotically stable if

υ
T [p1(υ)+ϕ2(υ)]> 0, ∀υ ̸= 0 (2.28)

Furthermore, if V1 is radially unbounded, the origin will be globally asymptotically stable.





Chapter 3

Related Literature

As discussed in Chapter 1, this thesis introduces a novel decentralized approach for stability
analysis and control design in existing complex power systems. It is, therefore, necessary
to present here some information regarding power system stability and the developments
that have been made lately in the recent literature. In this context, Chapter 3 first provides
a detailed explanation of the notion of power system stability and then describes how it
is classified to effectively address the complex instability phenomena occurring across a
power grid. The current chapter also reviews the existing approaches for power system
stability analysis, including useful insights about their applicability and effectiveness. Finally,
some preliminaries regarding the modeling used within the majority of these studies are also
provided to improve the readability of this manuscript.

3.1 Introduction to power system stability

3.1.1 The notion of power system stability

Power system stability has been widely recognized as one of the most significant open
problems in power systems literature. The importance of power system stability lies in
the fact that it plays a significant role in the secure and reliable system operation [42],
especially during the last decades that power systems have been through radical structural
and operational changes. Its study dates back in the 1920s, where engineers wanted to ensure
the reliable operation of parallel-connected AC generators [43, 44]. Recently, the stability of
power systems has gained increased attention as a result of many major blackouts. These
blackouts were the result of a variety of power system instability phenomena and led to
serious technical and financial problems [45, 46].
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Historically, the dominant stability problem on most systems was caused by various
transient instability phenomena which in turn gained the focus of the industry’s attention
concerning system stability. As power systems have evolved through the continuing growth
in interconnections, the use of new technologies and controls, and the increased operation in
highly stressed conditions, different forms of system instability have emerged. For example,
phenomena related to voltage stability, frequency stability and inter-area oscillations have
now become greater concerns than in the past [47].

Before presenting in detail the above types of instability and how they are interrelated, is
essential to provide an accurate definition of power system stability. Such a definition was
presented in [47] and is provided here unchanged:

’Power system stability is the ability of an electric power system, for a given initial
operating condition, to regain a state of operating equilibrium after being subjected to a
physical disturbance, with most system variables bounded so that practically the entire
system remains intact’.

Considering that the power system is a highly nonlinear system that operates under
constantly changing conditions, the above definition implies that the stability of the system
depends on the initial operating condition as well as the nature of the disturbance. Thus,
power system stability is a property of the system motion around an equilibrium set, i.e., the
initial operating condition.

3.1.2 Time scales of power system dynamic phenomena

Until the early 2010s, power system stability studies primarily dealt with the analysis of
fairly slow, electromechanical phenomena. As rotating machines were the primary source of
generation, the dynamic behavior of power systems was predominantly determined by the
dynamic performance of synchronous generators and their controls as well as the dynamic
performance of the loads. Fast transients related to the network and other fast-response
devices were considered out of scope and thus neglected. Moreover, for the purposes of
stability analysis in the time frame of interest, all fast electromagnetic transients were omitted
as they typically decay rapidly [48]. A key aspect of these simplifications is the assumption
that voltage and current waveforms are dominated by the fundamental frequency component
of the system (50 or 60 Hz). This assumption allowed the modeling of the electrical network
using the steady-state voltage and current phasors, which is also known as a quasi-static
phasor modeling approach [49].

Nevertheless, during the last years, electric power systems have experienced a rapid
integration of converter interfaced technologies. Among these new technologies are wind
and photovoltaic generation, energy storage devices, FACTS devices, HVDC lines and power
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electronic interfaced loads. With such an increasing integration of converter interfaced
technologies, the dynamic response of power systems became faster and arose new serious
stability concerns which need to be appropriately characterized, classified and defined [50].

In this context, it is necessary to present here the various classes of dynamic phenomena
in power systems. As will be discussed in the following paragraphs, this categorization is
very helpful in classifying stability for a system that is subjected to disturbances varying
between a few microseconds and several seconds. In particular, an electric power system may
encounter four types of dynamic phenomena, i.e., the wave phenomena, the electromagnetic
phenomena, the electromechanical phenomena and the thermodynamic phenomena. The
time scales of these phenomena are presented in Figure 3.1. Moreover, Figure 3.2 depicts the
time scales for various classes of events occurring in power systems. As can be observed, the
time scale related to the converter interfaced technologies ranges from a few microseconds
to several milliseconds in contrast to synchronous generators whose dynamic response is
significantly slower. Taking into account the proliferation of converter interfaced devices,
faster dynamics will, therefore, gain more prominence when analyzing the future power grids
and the traditional power system modelling approaches shall be revisited.

Fig. 3.1 Time scales of power system dynamic phenomena [50].

3.1.3 Classification of power system stability

A power grid constitutes a high-order multi-variable system whose dynamic response is influ-
enced by a variety of devices with different characteristics and response rates. As discussed
above, stability is a condition of equilibrium between opposing forces [47, 50]. Depending
on the network topology, system operating condition and the occurring disturbance, these
opposing forces may face a sustained imbalance leading to different forms of instability.
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Fig. 3.2 Power system time scales [50].

Although stability is a single problem, the various forms of instabilities that a power
system may undergo cannot be properly understood and analyzed. Considering the high
dimensionality and complexity of stability problems, several simplifying assumptions are
necessary to analyze specific types of problems using an appropriate degree of detail of
system representation and appropriate analytical techniques. Stability analysis in power
systems is greatly facilitated by the classification of stability into appropriate categories [48].
Classification is also essential for meaningful practical analysis and resolution of power
system stability problems. According to [47, 48], power system stability is classified based
on the following considerations:

• The physical nature of the resulting mode of instability as indicated by the main system
variable in which instability can be observed.

• The size of the disturbance considered, which influences the method of calculation and
prediction of stability.

• The devices, processes, and the time span that must be taken into consideration to
assess stability.

Figure 3.3 gives the overall picture of the power system stability problem which is
distinguished into the following categories:
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1. Resonance stability refers to the ability of the power system to overcome the sub-
synchronous oscillations that often occur across the grid. This sub-synchronous
resonance may be associated with an electromechanical resonance or entirely electrical
resonance and can manifest in two possible forms: (i) due to a resonance between series
compensation and the mechanical torsional frequencies of the generator shaft and (ii)
due to a resonance between series compensation and the electrical characteristics of
the generator [50].

2. Converter-driven stability refers to the ability of the power system to maintain its stable
operation and damp the occurring oscillations when a large amount of converter inter-
faced devices are connected across the grid. As the typical converter interface devices
rely on control loops and algorithms with fast response times, their timescale becomes
wider and in many cases, results in cross-couplings with both the electromechanical
dynamics of the machines and the electromagnetic transients of the network. These in-
teractions may lead to unstable power system oscillations over a wide frequency range.
Consequently, as shown in Figure 3.3, slow and fast interactions are differentiated
based on the frequencies of the observed phenomena [50].

3. Rotor angle stability refers to the ability of synchronous machines of an interconnected
power system to remain synchronized after being subjected to a disturbance. It depends
on the ability to maintain or restore equilibrium between electromagnetic torque and
mechanical torque of each synchronous machine in the system. Instability that may
result occurs in the form of increasing angular swings of some generators which in turn
may lead to their loss of synchronism with other generators. Rotor angle stability is
divided into two sub-categories based on the disturbance that occurs across the network.
Particularly, small-disturbance (or small-signal) rotor angle stability is concerned with
the ability of the power system to maintain synchronism under small disturbances.
The disturbances are considered to be sufficiently small that linearization of system
equations is permissible for purposes of analysis [47, 51]. The time frame of interest
in small-disturbance stability studies is on the order of 10 to 20 seconds following
a disturbance. On the other hand, large-disturbance rotor angle stability or transient
stability, is concerned with the ability of the power system to maintain synchronism
when subjected to a severe disturbance. The resulting system response involves large
excursions of generator rotor angles and is influenced by the nonlinear power-angle
relationship. The time frame of interest in transient stability studies is usually 3 to
5 seconds following the disturbance. It may extend to 10–20 seconds for very large
systems with dominant inter-area swings.
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4. Voltage stability refers to the ability of a power system to maintain steady voltages
at all buses in the system after being subjected to a disturbance from a given initial
operating condition. It depends on the ability to maintain or restore equilibrium
between load demand and load supply. Instability that may result occurs in the form of
a progressive fall or rise of voltages of some buses. Similarly to rotor angle stability,
voltage stability is also divided into two categories based on the disturbance that occurs
across the network. More specifically, the large-disturbance voltage stability refers
to the system’s ability to maintain steady voltages following large disturbances such
as system faults, loss of generation, or circuit contingencies. On the contrary, small-
disturbance voltage stability refers to the system’s ability to maintain steady voltages
when subjected to small perturbations such as incremental changes in system load.
Based on the time frame that is examined voltage stability can be also distinguished
into to short-term or long-term. Short-term voltage stability involves dynamics of fast
acting load components such as induction motors, electronically controlled loads, and
HVDC converters while long-term voltage stability involves slower acting equipment
such as tap-changing transformers, thermostatically controlled loads, and generator
current limiters [47].

5. Frequency stability refers to the ability of a power system to maintain steady frequency
following a severe system upset resulting in a significant imbalance between generation
and load. It depends on the ability to maintain or restore equilibrium between system
generation and load, with minimum unintentional loss of load. Instability that may
result occurs in the form of sustained frequency swings leading to tripping of generating
units and/or loads. As identified in Figure 3.3, frequency stability may be a short-term
phenomenon or a long-term phenomenon based on the time that frequency excursions
evolve [47].

Note that the stability classes ’Converter-driven Stability’ and ’Resonance Stability’ were
recently introduced in [50]. Their addition was motivated by the increased use of converter
interfaced devices and resulted in a significant extension of the time scale of interest (down to
electromagnetic transients) for power system stability. Moreover, all the dynamic phenomena
considered in the original classification presented in [47], are accurately modelled using
the quasi-static approach. Nevertheless, this simplified modeling approach does not apply
to the converter-driven and resonance stability classes, with the possible exception of the
slow-interaction of converter-driven stability [50]. The applicability of this approach is
limited since, in this time frame of interest, the system variables are not dominated by the
fundamental frequency component. Thus, the employed dynamic models are unable to
accurately capture the dynamic response of the system.
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Fig. 3.3 Classification of power system stability [47].

An alternative classification of power system stability studies can be found in [52]. In
particular, stability studies are classified into three types depending on the nature and order
of magnitude of the disturbance. These types are:

1. Steady-state stability

2. Transient stability

3. Dynamic stability

Steady-state stability is considered to be the ability of the power system to maintain or restore
synchronism after encountering slow and small disturbances. It concerns the stability of the
locus of essentially steady-state operating points of the system. Transient stability, on the
other hand, involves major disturbances such as loss of generators, line switching, faults and
sudden load changes. The objective of transient stability studies is to determine whether or
not the system will remain in synchronism following such disturbances. Finally, dynamic
stability is considered to be the ability of the power system to regain synchronism after
encountering small disturbance within a long time frame. It also concerns like steady-state
stability studies, the stability of the locus of the steady-state operating points of the system.

3.2 Overview of power system stability analysis approaches

The current section briefly reviews the stability analysis approaches dealing mostly with
the electromechanical phenomena that occur across the power network. These approaches
are distinguished into two categories, i.e. the centralized and the decentralized approaches.
This classification relies on the information required for their application. More specifically,



38 Related Literature

the application of a centralized approach requires the explicit knowledge of the network
topology and the devices that are online at the time when the stability analysis is performed.
On the other hand, in decentralized approaches, the derived stability results are independent
of the network topology and the operating condition of remote grid-connected devices. The
stability analysis is performed using local conditions that are capable of showing whether
the utilization of the component of interest may lead to instability or improve the system’s
dynamic response.

3.2.1 Centralized approaches

As mentioned above, this thesis deals with the stability of power systems after small dis-
turbances considering dynamics that evolve up to a few seconds following the disturbance.
Thus, the following paragraphs present an overview of two transient stability approaches,
i.e. the small signal stability analysis and the direct stability analysis. Both methods use
elements/tools from Lyapunov’s Stability to draw useful conclusions about the stability of the
power system. In contrast to small signal stability which is an application of Lyapunov’s In-
direct Method, the direct stability approaches rely upon Lyapunov’s Direct Method presented
in Chapter 2. Furthermore, they both employ a state-space representation for the power
system and are considered to be centralized since the deduction of stability guarantees for
the whole system requires the explicit knowledge of the network topology and each device
that is connected to it.

Review of centralized stability approaches

The power system is described by a set of n first order nonlinear ODEs of the following form:

ẋi = fi(x1,x2, . . . ,xn;u1,u2, . . . ,ur; t) i = 1,2, . . .n (3.1)

where n is the order of the system and r is the number of inputs. The above set of ODEs can
be written in the following compact vector-matrix form:

ẋ = f (x,u, t) (3.2)

where xT = [x1,x2, . . . ,xn], uT = [u1,u2, . . . ,ur] and f T = [ f1, f2, . . . , fn]. The column vector
x is referred to as the state vector, and its entries xi as state variables The column vector u
and the variable t denote the vector of the inputs of the system and the time, respectively. As
mentioned in Chapter 2, if the time derivatives of the state variables are not explicit functions
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of time, the system is said to be autonomous and the equation (3.2) simplifies to:

ẋ = f (x,u). (3.3)

In many cases, it could be useful to study certain output variables which can be observed
on the system. These may be expressed in terms of the state and the input variables in the
following form:

ẏ = g(x,u). (3.4)

where yT = [y1,y2, . . . ,ym] and gT = [g1,g2, . . . ,gm]. The column vector y is the vector of
outputs and g is a vector of nonlinear functions relating the states and the inputs to the outputs
of the system.

In a small signal stability analysis, the state-space model of the power system is linearized
about an equilibrium point. The system (3.3)-(3.4) can be therefore written in the following
compact form:

∆ẋ =A∆x+B∆u

∆y =C∆x+D∆u
(3.5)

where:

• A ∈ Rn×n is the state matrix of the system,

• B ∈ Rn×r is the control or input matrix of the system

• C ∈ Rm×n is the output matrix of the system and

• D ∈ Rm×r is the (feedforward) matrix of the system which defines the proportion of
input which appears directly in the output.

The above matrices are derived from equations (3.3)-(3.4) as described in Section 2.5.3.
The system (3.5) is then employed to deduce system-wide stability results considering

that the power system is subjected only to small perturbations about the equilibrium. Note
that small signal stability analysis is not applicable when large disturbances are considered
as the whole analysis is carried out on a linearized system about certain operating conditions.
Following the analysis presented in Chapter 2, the stability of the system can be determined
by the eigenvalues of the state matrix A as follows:

1. A real eigenvalue corresponds to a non-oscillatory mode. A negative eigenvalue
represents a decaying mode. The larger its magnitude, the faster the decay. A positive real
eigenvalue represents aperiodic instability.
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2. Complex eigenvalues occur in conjugate pairs and each pair corresponds to an oscil-
latory mode. The real component of the eigenvalues gives the damping, and the imaginary
component gives the frequency of oscillation. A negative real part represents a damped
oscillation whereas a positive real part represents oscillation of increasing amplitude. Thus,
for a complex pair of eigenvalues:

λ = σ ± jω (3.6)

the frequency of oscillation in Hz is given by

f =
ω

2π
(3.7)

while the damping ratio is given by

ζ =
−σ

(σ2 +ω2)1/2 . (3.8)

The damping ratio ζ determines the rate of decay of the amplitude of the oscillation.
Direct methods can also be used to determine the transient stability of power systems

without explicitly obtaining the solutions of the differential equations governing the dynamic
behavior of the system. In contrast to small signal stability analysis approaches, these
methods do not require any linearization to determine the stability of systems governed by
differential equations (equations (3.3)-(3.4)). On the contrary, based on Lyapunov’s direct
method (Section 2.5.4), it is necessary to derive an appropriate Lyapunov function, namely
the Transient Energy Function (TEF), which is employed in the sequel to determine if the
trajectories of the power system converge to an equilibrium of the system. More specifically,
TEFs shall be differentiable, positive definite functions with V̇ (x)< 0 over an open region
to guarantee the asymptotic stability of the interconnected system. Examples of such TEFs
along with details of their derivation can be found in [42, 53–56]. Direct methods can,
therefore, provide important information about the behavior of the system when the latter is
subjected to larger disturbances. They can also give useful insights for the stability margins
and the robustness of the system.

Evaluation of centralized stability approaches

During the last decades, the analysis of power systems relied mainly on the above centralized
stability analysis approaches as their application could give useful information regarding
the stability and the robustness of the system. However, despite their wide use among the
power engineering community, these approaches have several important disadvantages that
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could be crucial for the analysis of future, fast-growing power grids. The most important are
summarized as follows:

Small Signal Stability Approaches:

• Their stability guarantees are limited to certain operating conditions and are applicable
only when the power system is subjected to small disturbances. Even though they allow
the use of higher-order dynamical models to represent the power system components,
they can provide accurate stability results only when the trajectories of the system are
close to its initial operating point (equilibrium).

• The form of existing power systems (large-scale, interconnected systems) hampers
their use as the linearization process and the eigenanalysis of such systems are time-
consuming and require large computing resources. Although several techniques have
been proposed in recent literature to improve both the time and the resources needed
for their application, they still remain time-consuming procedures [57].

Direct Stability Approaches:

• The derivation of an appropriate TEF (Lyapunov function) constitutes a difficult task,
especially when dealing with large-scale, interconnected systems.

• To simplify the elaborated analysis, engineers often resort to simple dynamical models
that cannot accurately capture the dynamic response of the system. Such simplification
could also lead to very conservative results that can be misleading regarding the
stability, the reliability and the robustness of the system.

3.2.2 Decentralized approaches

The continuous expansion of existing power networks and the introduction of large numbers
of DGs led power engineering community to seek for alternative ways to determine stability.
In particular, their interest focused on techniques and conditions that can guarantee the
stability of a system in a completely decentralized manner without the need for the explicit
knowledge of the system topology and its online devices. In this respect, throughout the
following paragraphs, the most significant methods for decentralized stability analysis are
being introduced. As the technical content of this thesis relies on passivity-based techniques,
an exclusive reference is made on similar passivity-based approaches presented in the recent
literature. The advantages and disadvantages of these decentralized stability analysis methods
are assessed at the end of the section.
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Review of decentralized stability approaches

Decentralized stability approaches rely on the concept of input-output stability where an
input-output model relates the output of the system directly to the input. Such an approach
can be employed without necessarily knowing the internal structure that is represented by the
state equation [21]. The system is viewed as a black box that can be accessed only through
its input and output terminals. The foundation of this input-output approach to nonlinear
systems can be found in the 1960’s work of Sandberg and Zames [58, 59].

In power engineering, the power network and the power system components can be
modeled as input-output dynamical systems that are interconnected in a certain, negative
feedback formation. The way that these sub-systems interact in combination with their
characteristics is further exploited for the deduction of completely decentralized stability
results that ensure the stability of the interconnected system. The elaborated analysis relies on
decentralized conditions that are derived from several features of nonlinear systems analysis
such as Lyapunov stability, L2 stability as well as other optimal and robust control design
techniques [60–62]. Some of the most important recent works where various decentralized
approaches for stability analysis and control design are proposed can be found in [63–73].

Another key structural property that can be employed in a decentralized power system
stability analysis is the notion of passivity. Passivity has been one of the cornerstones of
nonlinear control theory since it can facilitate the stability analysis of large-scale intercon-
nected systems and the design of effective and robust control mechanisms [19]. Its main
advantage lies in the fact that every passive system is Lyapunov stable while passivity-based
conditions can be used to determine the stability of large systems and decentralized sub-
systems according to the way they are interfaced [19–21]. It can also allow the adoption
of more accurate, higher-order dynamics and the deduction of decentralized results when
used appropriately [74]. The application of passivity within power system studies dates
back to the ’80s, where passivity-based techniques were used to study the effect of AVRs on
power systems [75]. More recently, the notion of passivity was widely used in power system
studies via the framework of port-Hamiltonian systems (described in [76]). Examples of this
approach include [77–79] as well as more recent works as in [28, 30, 31, 35, 80–86].

Evaluation of decentralized stability approaches

Similarly to the centralized stability approaches, the decentralized ones have both important
advantages and disadvantages. These advantages and disadvantages which are related to the
reliability, the accuracy and the complexity of these methods, are summarized as follows:
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Advantages:

• Significant stability results for the whole power system can be derived in a decentralized
manner. This could provide to the system operators the necessary "plug and play"
capabilities to confront the continuously increasing introduction of DGs.

• The derived stability guarantees are independent of the system structure and topology.
Such dependency could lead to computationally intractable studies as the current
networks constitute large-scale, interconnected systems that consist of numerous
distributed components.

Disadvantages:

• Decentralized methods for stability analysis of large-scale systems often require the
employment of complex mathematical tools. Apart from the complexity, this could
also lead to the simplification of the analysis through the adoption of simpler dy-
namical models for power system components. Such modeling, however, could add
conservatism to the derived stability results.

• The representation of the power network as a system of arbitrary topology could also
lead to significant simplifications which in turn could affect the effectiveness and
the reliability of the proposed method. Such simplifications are the consideration of
lossless lines [28, 64, 80, 87] or a static representation of the currents flowing across
the grid [82, 86, 88–90].

3.3 Power system modeling in stability analysis studies

The stability analysis approach presented in this thesis relies on the representation of power
systems as an interconnection of dynamical systems in an appropriate frame of reference.
To introduce this framework and help the reader understand the modeling employed in
power system stability studies more generally, it is necessary to present here some basic
preliminaries that are relevant to this context. It should be noted here that the following
paragraphs refer to the quasi-static phasor modeling.

3.3.1 Alternating Current (AC) three phase sources

Power systems are networks consisting of devices that generate, transmit and distribute
electrical energy to consumers. Since the majority of power systems and their components
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rely upon three-phase AC power [91], in this paper we will use the notation

xABC = [xA(t) xB(t) xC(t)]T

to represent three-phase AC signals xABC : R+ → R3. In particular, three-phase voltages and
currents will be denoted as

vABC = [vA(t) vB(t) vC(t)]T and iABC = [iA(t) iB(t) iC(t)]T (3.9)

respectively.

Assumption 3.3.1 The power networks considered throughout this thesis consist of symmet-
ric, balanced, positive-sequence, three-phase AC generation sources.

Since power systems are designed to be symmetric and balanced, the above assumption is
often accurate, especially when analysis is carried out at the transmission level. Assumption
3.3.1 results in three symmetric waveforms which have 120o phase difference between each
other, i.e.

xABC =

xA(t)
xB(t)
xC(t)

=
√

2|x|

 cos(γx(t))
cos(γx(t)− 2π

3 )

cos(γx(t)+ 2π

3 )

 (3.10)

where |x| ∈ R+ is the amplitude and γx ∈ [0,2π) is the phase of the waveform. The fact that
the three phases are balanced results in

xA(t)+ xB(t)+ xC(t) = 0 (3.11)

Furthermore, problems in symmetric and balanced power systems can be dealt with by using
only the phase A and then deduce the results for phases B and C from (3.10).

3.3.2 Phasor representation

To simplify power system analysis, it is usually convenient to use the phasor representation
of voltages and currents rather than their sinusoidal form (3.10). The phasor representation
is defined as follows [92]:

Definition 3.3.1 A phasor is a complex number representing a sinusoidal signal

x(t) = |x|cos(γx(t)) = |x|cos(ωt +φx) (3.12)
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whose amplitude |x|, frequency ω and phase angle φx can be time varying quantities. Using
the quantity X̄ to indicate the phasor, the polar phasor representation of the signal (3.12) is
given by:

X̄ = |x|e jγx(t) = |x|∠γx(t). (3.13)

We can also obtain its rectangular representation by using Euler’s identity as follows:

X̄ = |x|e jγx(t) = |x|
(

cos(γx(t))+ j sin(γx(t))
)
. (3.14)

A simplification often made is the consideration of a constant ω = ωs = 2π fs where fs

denotes the synchronous frequency of a power grid (50 or 60 Hz). Phasors can be therefore
represented by:

X̄ = |x|e jφx = |x|∠φx. (3.15)

Note that φx can be a time varying quantity that models variations in frequency.

3.3.3 (0,d,q) or Clarke-Park transformation

A key tool to facilitate power systems analysis is (0,d,q) or Park’s transformation. The
sinusoidal waveforms (3.10), describing either voltages or currents, introduce significant
complexity in the analysis. Therefore, to simplify these equations, (0,d,q) or Park’s trans-
formation is used to map the system’s components into three axis that rotate at a specific
velocity ω , namely, the 0-axis, the d-axis and the q-axis. Following [48, 91, 93, 94], the
Park’s transformation is defined by:x0

xd

xq

=

√
2
3


1√
2

1√
2

1√
2

cosρ(t) cos(ρ(t)− 2Π

3 ) cos(ρ(t)+ 2Π

3 )

sinρ(t) sin(ρ(t)− 2Π

3 ) sin(ρ(t)+ 2Π

3 )


︸ ︷︷ ︸

P

xA

xB

xC

 (3.16)

where P is the transformation matrix relating the abc and 0dq vectors. The new 0dq variables
are also called Park’s variables. Furthermore, the Park’s transformation is orthogonal, i.e.
P−1 = PT . Under Assumption 3.3.1, which yields the zero sum of both the voltages and
currents of the three phases, the 0-component in (3.16) is equal to zero and is therefore
neglected. Considering that the 0-component can be neglected, we substitute equation (3.10)
into (3.16) to get

xdq =
√

3|x|

[
cos(γx(t)−ρ(t))
sin(γx(t)−ρ(t))

]
(3.17)
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which is essentially a projection of phasors onto axes rotating with frequency ω = ρ̇ . Simi-
larly to the abc components, the dq components can also be expressed as complex numbers
onto these rotating axes, i.e. Xdq = Xq + jXd . This representation will be referred to as the
phasor representation of x in a frame of reference rotating with frequency ρ̇ .

Note also that X̄ in (3.15) is the phasor representation in a frame of reference rotating
with a constant frequency ωs. The latter will be referred to as the system reference frame.

3.3.4 Power Network Structure

A power network with arbitrary topology can be described by a connected and undi-
rected graph (N ,E ), where N = {1,2, . . . |N |} is the set of buses and E ⊂ N ×N =

{1,2, . . . |E |} the set of lines connecting them. The network structure can be represented by
its corresponding incidence matrix E ∈ R|N |×|E |, similarly to [86]. By arbitrarily labeling
the ends of the line l with a + and a −, the matrix E is given by

Eil =


+1 if i is the positive end of l

−1 if i is the negative end of l

0 otherwise.

(3.18)

We also use l = (i, j) to denote the link connecting the network buses i and j through the line
l and l → i to denote that the line l is connected to bus i. For the formulation of a dynamical
model to represent the network, it is now necessary to make the following assumptions
regarding the network lines and the system frequency.

Assumption 3.3.2 Network lines can be accurately represented by symmetric RLC elements
(Π-equivalent).

Assumption 3.3.3 The network frequency ω , is almost constant at synchronous value ωs

(50 or 60 HZ), i.e. ω −ωs ≈ 0.

Assumption 3.3.2 states that any line can be represented by the traditional Π-equivalent
as illustrated in Figure 3.4, similarly to the majority of the related literature [93]. Moreover,
in Assumption 3.3.3, it is considered that the variations of the network frequency are very
small which is also a mild assumption considering that the maximum frequency deviation in
the European Network of Transmission System Operators for Electricity (ENTSO-E) system
is 200mHz (±0.4%) [95].

It is also necessary to introduce here the diagonal matrices R, L and C ∈ R|E |×|E | which
contain the resistance, the inductance and the capacitance of each line across the network.
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Fig. 3.4 Lumped circuit model (π-equivalent) representation of a network line from bus i to
bus j.

We get:

Rml =

{
Rl if m = l

0 otherwise
(3.19)

Lml =

{
Ll if m = l

0 otherwise
(3.20)

and

Cml =

{
Cl if m = l

0 otherwise
(3.21)

where Rl ,Ll and Cl denote the resistance, the inductance and the capacitance of the line l
respectively. Note that Cl could be considered equal to zero when l corresponds to a Low
Voltage (LV) distribution line of the system.

3.3.5 Network Equations

The equations describing the network are derived based on the formulation described in [88].
The following assumption for line dynamics is, therefore, considered.

Assumption 3.3.4 Line dynamics evolve on a much faster timescale than the dynamics of
the generation sources and the loads.

Assumption 3.3.4 states that network lines reach steady state much earlier than the
generators and the loads1. Thus, the power network can be modeled by the static network

1As we are about to show in Chapter 4, Assumption 3.3.4 is valid when the system’s inertia is high. In
low-inertia power grids the response of the network and the bus dynamics is comparable - in terms of time.
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current flows given by the nodal set of equations:

Ī = YnV̄ = (Gn + jBn)V̄ . (3.22)

Yn ∈ C|N |×|N |, and Gn, Bn ∈ R|N |×|N | are the network’s admittance, conductance and
susceptance matrices respectively. Ī ∈ C|N | and V̄ ∈ C|N | denote the net injected current
and the bus voltage vectors of the power grid in their phasor representation. The derivation
of the nodal admittance matrix (3.22) is extensively described in [91] and is based on the fact
that the transmission lines are modeled by their Π-equivalent model according to Assumption
3.3.2.

Remark 3.3.1 Gn and Bn are real, |N |× |N |, sparse symmetric matrices and they do not
include loads or FACTS devices and line compensation components.

The components of net injected current and bus voltage vectors can equivalently be
expressed in either their rectangular or polar complex form. However, it is convenient here to
express these in the same form as the elements of the nodal admittance matrix, that is, the
rectangular form. Considering a steady state network frequency ωs, the net injected currents
and bus voltages can be written using the phasor representation in (3.15) as

Īi = Ii∠φI,i = Ii cosφI,i + jIi sinφI,i = Ia,i + jIb,i (3.23)

and
V̄i =Vi∠φV,i =Vi cosφV,i + jVi sinφV,i =Va,i + jVb,i (3.24)

respectively, for all i ∈ N . We now define the vectors Ia = [Ia,1 Ia,2 ... Ia,|N |], Ib =

[Ib,1 Ib,2 ... Ib,|N |], Va = [Va,1 Va,2 ... Va,|N |] and Vb = [Vb,1 Vb,2 ... Vb,|N |] ∈ R|N |. The
net injected current and the bus voltage vectors can therefore be written as:

Ī = Ia + jIb and V̄ =Va + jVb (3.25)

respectively. By substituting equations (3.25) into (3.22) we get:

Ī = Ia + jIb = (GnVa −BnVb)+ j(BnVa +GnVb). (3.26)

Equation (3.26) is then used to deduce the equations for the net injected current components,
Ia,i and Ib,i, at each bus i = 1,2, . . . , |N |, i.e., we get:

Ia,i =
|N |

∑
j=1

(Gi jVa, j −Bi jVb, j) and Ib,i =
|N |

∑
j=1

(Bi jVa, j +Gi jVb, j). (3.27)
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Note that in the network equations (3.22) - (3.27), the current and voltage phasors Ī,V̄ are
represented in the system reference frame, i.e. a common reference frame rotating at the syn-
chronous frequency ωs. The network admittance matrix in (3.22) is also evaluated at ωs. This
is a common approach in the literature, and as discussed in [88], it is a valid approximation,
under the assumption that line dynamics are much faster than machine dynamics.

It is also important to consider the transition from the system reference frame to the local
(d,q) or the machine reference frame and vice versa. We thus define the angle δi ∈ [0,2π)

denoting the phase difference between the local machine reference frame at bus i, with phase
angle ρi(t), and the system reference frame which rotates at synchronous frequency ωs, i.e.

δi =
∫ t

0
(ρ̇i(τ)−ωs) dτ ⇒ δ̇i = ρ̇i(t)−ωs = ωi −ωs (3.28)

The relative position of the two systems of coordinates is illustrated in Figure 3.5 and the
relationship between them is given by:

Vdq,i = T (δi)V̄i ⇔

[
Vq,i

Vd,i

]
=

[
cosδi sinδi

−sinδi cosδi

][
Va,i

Vb,i

]
(3.29)

where the transformation matrix T (δi) denotes the mapping of the phasor components in
the system reference frame to the dq-components for bus i. The transformation T is also
orthogonal (T−1 = T T ), and its inverse transformation can be written as:

V̄i = T−1(δi)Vdq,i ⇔

[
Va,i

Vb,i

]
=

[
cosδi −sinδi

sinδi cosδi

][
Vq,i

Vd,i

]
. (3.30)

Equivalently, for the net current injection components we get

Idq,i = T (δi)Īi ⇔

[
Iq,i

Id,i

]
=

[
cosδi sinδi

−sinδi cosδi

][
Ia,i

Ib,i

]
(3.31)

Īi = T−1(δi)Idq,i ⇔

[
Ia,i

Ib,i

]
=

[
cosδi −sinδi

sinδi cosδi

][
Iq,i

Id,i

]
(3.32)

Now, the network equations (3.26) are expressed in each generator’s reference frame to
obtain the general network relationships. By substituting (3.30) and (3.32) into (3.27) we
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(a) The geometry of dq-components on the
system’s complex plane.

(b) The decomposition of dq-components in
both the system and the machine reference
frames.

Fig. 3.5 Relative position of the machine reference frame with respect to the system reference
frame [91].

get:

Iq,i =
|N |

∑
j=1

[
Vq, j

(
Gi j cos(ηi j)+Bi j sin(ηi j)

)
+Vd, j

(
Gi j sin(ηi j)−Bi j cos(ηi j)

)]
Id,i =

|N |

∑
j=1

[
Vq, j

(
−Gi j sin(ηi j)+Bi j cos(ηi j)

)
+Vd, j

(
Gi j cos(ηi j)+Bi j sin(ηi j)

)] (3.33)

where, for ease of notation, angle differences are written as ηi j = δi −δ j.



Chapter 4

Multi-variable network formulation

The current chapter contains the main technical content of this thesis. In particular, it
introduces the multi-variable network formulation used within the proposed framework
for decentralized stability analysis and control. As will be discussed in the sequel, when
network equations are formulated as a multi-input/multi-output system expressed in the
system reference frame, the passive nature of the network is revealed. This result is derived
without neglecting the lossy and the dynamic nature of the network lines. The passivity
property of the network will then be used in Chapter 5 for the derivation of useful stability
guarantees for the interconnected system. Furthermore, an extensive discussion is provided
regarding the advantages and the opportunities offered by the proposed network models.
Both representations are finally verified through a numerical application on the Kundur
four-machine two-area test system and several dynamic simulations on a simple four-area
test system [31, 32, 34].

4.1 Static network representation

4.1.1 Multi-input/multi-output formulation

As discussed in Chapter 3, the power network is usually represented by the nodal set of
equations (3.22), which can be also written in the rectangular form (3.26). For the formulation
of the network model that will be used within the proposed stability analysis approach, we
separate the real and the imaginary part of equation (3.26) to form the following (2×|N |)-
input/(2×|N |)-output system[

Ia

Ib

]
=

[
Gn −Bn

Bn Gn

][
Va

Vb

]
= H2n

[
Va

Vb

]
= gN([V T

a V T
b ]) (4.1)
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where H2n denotes the matrix relating vectors [V T
a V T

b ]T with vectors [IT
a IT

b ]
T . The vector

function gN : R2|N | →R2|N | provides an alternative notation to comply with the definitions
that will be used in the forthcoming chapters. A graphical illustration of the multi-input/multi-
output network model (4.1) is provided in Fig. 4.1.

Fig. 4.1 The network equations represented as a (2×|N |)-input/(2×|N |)-output system.

4.1.2 Passivity of the static network model

The passivity properties that are revealed through the aforementioned modeling are examined
in the following paragraphs. Taking into account that Assumption 3.3.4 holds, the following
lemma is provided. This lemma relies upon the fundamental passivity Definition 2.6.1
provided in Chapter 2 [21]. Therefore, the static network model (4.1) is passive if and only if
the inequality within Definition 2.6.1 is satisfied, i.e.

uT y = [V T
a V T

b ]

[
Ia

Ib

]
≥ 0 (4.2)

for all Va, Vb, Ia, Ib ∈ R|N |.

Lemma 4.1.1 The network system defined in (4.1) with inputs the vectors of bus voltage
components [V T

a V T
b ]T and outputs the vectors of net injected current components [IT

a IT
b ]

T is
passive.

Proof of Lemma 4.1.1 By substituting the network equations (4.1) in inequality (4.2) we
get

uT y =[V T
a V T

b ]H2n

[
Va

Vb

]
= [V T

a V T
b ]

[
Gn −Bn

Bn Gn

][
Va

Vb

]
=V T

a GnVa +V T
b GnVb ≥ 0

(4.3)
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for all Va, Vb ∈ R|N |. The inequality (4.3) reveals that the passivity of the network is
ensured when the composite matrix H2n or equivalently its diagonal elements Gn, are positive
semidefinite matrices.

Gn ∈ R|N |×|N | is a square, sparse symmetric matrix with non negative diagonal and
negative off-diagonal elements, i.e., Gii ≥ 0 and Gi j ≤ 0 ∀ i, j = 1,2, . . . , |N |. It is also
diagonally dominant as the following equation holds:

Gii =−
|N |

∑
j ̸=i

Gi j ⇒ |Gii|=
|N |

∑
j ̸=i

|Gi j| (i, j) ∈ E (4.4)

In order to prove the positive semidefiniteness of the matrix Gn, we now define the Gershgorin
discs Di(Gii,Ri), i = 1,2, . . . , |N |. Di is a closed disc centered at (Gii,0), with radius
Ri = ∑i̸= j |Gi j|. As stated above the matrix Gn has positive diagonal elements and is also
diagonally dominant. Subsequently, its Gershgorin discs lie in the right half plane, have
center on the real axis and are tangent to the imaginary axis since Gii −Ri = 0, ∀ i =
1,2, . . . , |N |. According to the Gershgorin circle theorem [96], the eigenvalues of the matrix
Gn lie within its Gershgorin discs, corresponding to its columns (or equivalently to its rows).
Thus, Gn has eigenvalues with non negative real parts which immediately leads to the fact
that it is positive semidefinite [96]. Condition (4.2) is therefore satisfied. �

Remark 4.1.1 As shown within the proof of Lemma 4.1.1, the condition (4.2) always holds
and the passivity of the network system is ensured regardless of its topology. Specifically,
due to the form of the composite matrix H2n, the positive semi-definiteness of the network’s
conductance matrix Gn is sufficient for condition (4.2) to be satisfied. Gn in turn, is always
positive semi-definite since it has positive diagonal elements and is diagonally dominant.

Remark 4.1.2 As will be discussed in the following paragraphs, the majority of the recent
literature dealing with power system stability in general network topologies adopts lossless
networks, i.e. Gn = 0. The main reason for considering such simplification lies in the fact
that when the analysis is carried out in dq-coordinates, the passivity property holds only
for lossless networks. For the proposed approach, under such assumption condition (4.2)
becomes

uT y = [V T
a V T

b ]

[
0 −Bn

Bn 0

][
Va

Vb

]
= 0 (4.5)

Note that the network’s passivity follows here easily from the skew-symmetry of the ma-
trix H2n.
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4.2 Dynamic network representation

4.2.1 Multi-input/multi-output formulation

The previous static network model is now extended to include the dynamic nature of network
lines and thus to improve the fidelity and accuracy of the stability analysis of power systems.
For the derivation of a dynamic, multi-variable network representation, we introduce the
differential equations describing the current components at the series impedances and the
voltage components at the shunt capacitances of each line l ∈ E of the network. These
differential equations are subsequently used along with the network’s incidence matrix to
formulate a dynamical representation for the power network. The proposed network model
depicted in Figure 4.2, constitutes a multi-input/multi-output dynamical system with inputs
the components of the bus voltages and outputs the components of the net injected current
at every bus i ∈ N of the grid. As observed, the proposed network formulation consists of
two subsystems, i.e. the branch and capacitance dynamics, connected in a negative feedback
formation. It should also be noted that all variables/states of the proposed network model
are expressed on a common system reference frame, i.e. two common axes that rotate at a
specific angular velocity ω [93].

Fig. 4.2 The power network represented as an interconnection of input/output systems
associated with the bus and network dynamics, respectively [31].

Firstly, we define the phasors of the current of line l ∈ E and the voltage of bus i ∈ N in
their rectangular form as follows:

Îl = Ia,l + jIb,l and V̂i =Va,i + jVb,i (4.6)

where Ia,l and Ib,l are the current components of line l and Va,i and Vb,i are the voltage
components of bus i. Based on the phasor representation provided in [97], the state equations
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of the line current of line l are given by:

Ll İa,l =−RlIa,l −ωLlIb,l +(Va,i −Va, j) (4.7)

Ll İb,l =−RlIb,l +ωLlIa,l +(Vb,i −Vb, j) (4.8)

where Va,i, Vb,i, Va, j and Vb, j are the voltage components at buses i and j which are connected
through line l. Considering that Assumption 3.3.3 holds (that is ω ≈ ωs), the differential
equations can be further simplified as follows:

Ll İa,l =−RlIa,l −ωsLlIb,l +(Va,i −Va, j) (4.9)

Ll İb,l =−RlIb,l +ωsLlIa,l +(Vb,i −Vb, j). (4.10)

The net injected current components at each bus of the grid are now defined by employing
the incidence matrix E. The net injected current components at bus i are therefore given by
the following set of equations:

In
a,i =

|E |

∑
l=1

EilIa,l and In
b,i =

|E |

∑
l=1

EilIb,l (4.11)

which are the Kirchoff’s Current Law equations at each bus of the grid. By introducing
the vectors Ia = [Ia,1 Ia,2 . . . Ia,|E |]

T , Ib = [Ib,1 Ib,2 . . . Ib,|E |]
T , In

a = [In
a,1 In

a,2 . . . In
a,|N |]

T ,
In
b = [In

b,1 In
b,2 . . . In

b,|N |]
T , Va = [Va,1 Va,2 . . . Va,|N |]

T and Vb = [Vb,1 Vb,2 . . . Vb,|N |]
T , the

branch dynamics can be represented by the following dynamical system with inputs the
vectors of bus voltage components Va and Vb, states the vectors of line current components Ia

and Ib, and outputs the vectors of net injected current components In
a and In

b :[
İa

İb

]
=

[
KA ωsIE

−ωsIE KA

][
Ia

Ib

]
+

[
KB 0
0 KB

][
Va

Vb

]
(4.12)[

In
a

In
b

]
=

[
KC 0
0 KC

][
Ia

Ib

]
(4.13)

The matrices KA ∈R|E |×|E | , KB ∈R|E |×|N | and KC ∈R|N |×|E | can be deduced from the set
of differential equations (4.9)-(4.11) as follows:

KA =−L−1R (4.14)
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KB = L−1ET (4.15)

and
KC = E (4.16)

where IE is the R|E |×|E | identity matrix. As can be seen from the above formulation, branch
dynamics constitute a 2|N |-input×2|N |-output Linear Time Invariant (LTI) system with
state-space representation Σn = {An,Bn,Cn,0n} where:

An =

[
KA ωsIE

−ωsIE KA

]
, Bn =

[
KB 0
0 KB

]
and Cn =

[
KC 0
0 KC

]
. (4.17)

On the other hand, capacitance dynamics are derived using the following state equations
of the voltage components at the shunt capacitance of line l → i:

Cl→i

2
V̇ c

a,i = ωs
Cl→i

2
V c

b,i − Ic
a,i (4.18)

Cl→i

2
V̇ c

b,i =−ωs
Cl→i

2
V c

a,i − Ic
b,i. (4.19)

Ic
a,i and Ic

b,i denote the components of the current absorbed by the shunt capacitance Cl→i

at bus i. Using the differential equations (4.18) - (4.19), capacitance dynamics can now be
expressed in the following compact matrix form:[

V̇ c
a

V̇ c
b

]
=

[
0 ωsIN

−ωsIN 0

][
V c

a

V c
b

]
−

[
C−1 0

0 C−1

][
Ic
a

Ic
b

]
(4.20)

V c
a , V c

b , Ic
a and Ic

b denote the vectors of voltage and absorbed current components at the
shunt capacitances connected to every bus i = 1,2, . . . , |N | of the network, respectively.
Furthermore, the matrix IN ∈ RN ×N is the corresponding identity matrix while C can be
deduced from equations (4.18) - (4.19) as follows:

C =
1
2

ECET IN . (4.21)

It should be highlighted here that similarly to branch dynamics, the capacitance dynamics
are derived based on Assumption 3.3.3 which states that voltages and currents are dominated
by the fundamental frequency component.
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4.2.2 Passivity of the dynamic network model

The passivity properties revealed for the network through the adoption of such a dynamical
multi-variable formulation, are examined in the following paragraphs. We, therefore, provide
the following lemma which relies on the fundamental passivity Definition 2.6.2 [21].

Lemma 4.2.1 The branch dynamics defined in (4.12)-(4.13) with inputs the vectors of bus
voltage components Va and Vb, states the vectors of line current components Ia and Ib,
and outputs the vectors of net injected current components In

a and In
b constitute a passive

2|N |-input×2|N |-output system.

Proof of Lemma 4.2.1 In order to prove that the dynamical system (4.12)-(4.13) is passive,
the following storage function is used:

V N(Ia, Ib) =
1
2

[
IT
a IT

b

][L 0
0 L

][
Ia

Ib

]
. (4.22)

The derivative of the above storage function with respect to time is therefore given by:

V̇ N =
[
IT
a IT

b

][L 0
0 L

][
İa

İb

]

=
[
IT
a IT

b

][ −R ωsL
−ωsL −R

][
Ia

Ib

]
+
[
IT
a IT

b

][ET 0
0 ET

][
Va

Vb

]

=−IT
a RIa − IT

b RIb +
[
In
a

T In
b

T
][Va

Vb

] (4.23)

Since the network’s resistance matrix R is a positive definite matrix, equation (4.23) satisfies
V̇ N ≤ uT y which completes the proof. �

Lemma 4.2.2 The capacitance dynamics defined in (4.20) with inputs the vectors of current
components −Ic

a and −Ic
b and states/outputs the vectors of voltage components V c

a and V c
b

constitute a lossless 2|N |-input×2|N |-output system.

Proof of Lemma 4.2.2 For the proof of the Lemma 4.2.2, we use the following storage
function for the capacitance dynamics (4.20):

V C(V c
a ,V

c
b ) =

1
2

[
V c

a
T V c

b
T
][C 0

0 C

][
V c

a

V c
b

]
. (4.24)
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The time derivative of the storage function (4.24) is therefore given by:

V̇ C =
[
V c

a
T V c

b
T
][C 0

0 C

][
V̇ c

a

V̇ c
b

]

=
[
V c

a
T V c

b
T
][ 0 ωsC

−ωsC 0

][
V c

a

V c
b

]
+
[
V c

a
T V c

b
T
][IN 0

0 IN

][
−Ic

a

−Ic
b

]

=
[
V c

a
T V c

b
T
][−Ic

a

−Ic
b

]
.

(4.25)

From (4.25), we observe that V̇ C = uT y which implies that capacitance dynamics constitute
a lossless system. �

Remark 4.2.1 The passivity of any power network with arbitrary topology can also be
shown through the use of the Positive-real Lemma for LTI systems [19, 21, 98]. Particularly,
the Positive-real lemma which is the representation of Kalman-Yakubovich-Popov (KYP)
condition using a Linear Matrix Inequality (LMI), states that a stable LTI system with
minimal state representation Σ = {A,B,C,D} is passive if and only if there exists a positive
definite matrix P such that the following inequality holds:[

AT P+PA PB−CT

BT P−C −D−DT

]
< 0. (4.26)

The above inequality was verified for branch dynamics which constitute a stable LTI system
as the state matrix of this system is negative definite and thus, its eigenvalues lie in the left
half of the complex plane [32]. This verification was carried out in Section 4.4 through a
numerical application on the Kundur’s Four-Machine Two-Area test system by considering
that matrix Pn = PnT ∈ R2|E |×2|E | is given by:

Pn =

[
L 0
0 L

]
(4.27)

Remark 4.2.2 A similar network representation that takes into account the network’s dy-
namic behavior and leads to identical results as those presented in Lemmas 4.2.1 - 4.2.2, is
provided in [35]. The difference between the two dynamical formulations lies in the fact that
the network system in [35] has inputs the vectors of net injected current components and
outputs the vectors of the bus voltages, i.e. uT = [In

a
T In

b
T ] and yT = [V T

a V T
b ].
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4.3 Discussion

As mentioned before, the main difference between the proposed approach and the recent
literature is that the analysis is carried out in the system reference-frame instead of each
local machine reference-frame. Even though this change of reference frame does not have
an effect in centralized stability approaches, it provides important benefits when stability
is deduced using decentralized conditions. In particular, as will be shown in the following
chapters, a local passivity property at the bus dynamics in this reference frame is sufficient to
deduce stability in a general network, without having to resort to important simplifications on
the network lines. Such simplifications are usually necessary when the analysis is carried out
using the local dq coordinates due to the different bus frequencies and the voltage angles that
are appearing in the network equations [35]. Consequently, both the active and the reactive
power flows across the network are taken into account while the bus voltage magnitudes are
not considered to remain constant when a sudden generation or load disturbances appear
across the power grid.

More specifically, the transformation into the system reference-frame leads to simpler
network equations. By comparing equations (3.27) with equations (3.33), it is easy to discern
the complexity added when the analysis is carried out in the local machine reference-frame
due to the existence of the sinusoids. This was the main reason why several simplifications
were considered in the stability analysis for power networks within the recent literature. Such
an important simplification was the adoption of lossless power networks where equations
(3.33) are reduced to

Iq,i =
|N |

∑
j=1

[
Bi jVq, j sin(ηi j)−Bi jVd, j cos(ηi j)

]
Id,i =

|N |

∑
j=1

[
Bi jVq, j cos(ηi j)+Bi jVd, j sin(ηi j)

]
.

(4.28)

Commonly, the previous equations are further simplified by assuming that Vd,i = 0 ∀ i ∈ N ,
which leads to the following simpler and less accurate form:

Iq,i =
|N |

∑
j=1

[
Bi jVq, j sin(ηi j)

]
and Id,i =

|N |

∑
j=1

[
Bi jVq, j cos(ηi j)

]
. (4.29)

In order to avoid counting in the generator’s transient reactances and thus to facilitate the
analysis, several works such as [64, 66, 86, 99] also considered that the q-axis bus voltage is
equal to the q-axis transient emf, i.e. Vq,i = E ′

q,i (see also Chapter 5).
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Moreover, the proposed dynamic network representation allows us to take into account
the network’s dynamic behaviour. Such a network representation becomes crucial due to
the constantly increasing penetration of converter interfaced devices in existing power grids.
More specifically, as indicated in Chapter 3, the dynamics of the converter interfaced devices
are on similar time scales as the line dynamics while their controls are also significantly
faster [11, 50]. The response of converters, in turn, affects the overall dynamic response of
the system while requiring more accurate modelling to be sufficiently captured.

4.4 Assessment of the proposed network formulations

This section evaluates the applicability and the accuracy of the proposed network formulations
through several numerical applications and dynamic simulations. These applications and
simulations are carried out on the Kundur Four Machine Two Areas test system and a simple
four-area test system, respectively.

4.4.1 Numerical applications

The proposed network formulations are verified through two numerical applications on the
Four Machine Two Areas Kundur test system presented in Figure 4.3 [48]. Note that the
boxed numbers represent buses, while the numbers outside the boxes indicate transmission
lines. The topology of this test system is used for the derivation of both the static and the
dynamic network representations (models (4.1) and (4.12)-(4.13), respectively). It should
also be noted that for the derivation of the dynamic network representation we only consider
the branch dynamics as the shunt capacitances of the test system are omitted.

For the derivation of the static network representation, we calculate its nodal admittance
matrix Yn using the following formula:

Yn = Gn + jBn =


Yii =

n

∑
k=1

yik

Yi j = Yji =−yi j (i, j) ∈ E

Yi j = Yji = 0 otherwise.

(4.30)

The loads at buses 3 and 7 are not included in the calculation of the nodal admittance matrix.
As we can observe from (4.31) and (4.32), the matrices Gn and Bn are positive semidefinite
and negative semidefinite, respectively. This verifies that the network of this test system is
passive as shown in the previous analysis.
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Fig. 4.3 Single line diagram of the Four Machine Two-Areas Kundur test system [48].

Gn =



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.44 −0.44 0 0 0 0 0
0 0 0 0 −0.44 1.54 −1.1 0 0 0 0
0 0 0 0 0 −1.1 1.3 −0.2 0 0 0
0 0 0 0 0 0 −0.2 0.4 −0.2 0 0
0 0 0 0 0 0 0 −0.2 1.3 −1.1 0
0 0 0 0 0 0 0 0 −1.1 1.54 −0.44
0 0 0 0 0 0 0 0 0 −0.44 0.44


pu (4.31)

Bn =



− j6.65 0 0 0 j6.65 0 0 0 0 0 0
0 − j6.65 0 0 0 j6.65 0 0 0 0 0
0 0 − j6.65 0 0 0 0 0 0 0 j6.65
0 0 0 − j6.65 0 0 0 0 0 j6.65 0

j6.65 0 0 0 − j11.05 j4.4 0 0 0 0 0
0 j6.65 0 0 j4.4 j22.02 j11 0 0 0 0
0 0 0 0 0 j11 − j13 j2 0 0 0
0 0 0 0 0 0 j2 − j4 j2 0 0
0 0 0 0 0 0 0 j2 − j13 j11 0
0 0 0 j6.65 0 0 0 0 j11 − j22.05 j4.4
0 0 j6.65 0 0 0 0 0 0 j4.4 − j11.05


pu

(4.32)

Now, we proceed with the verification of the proposed dynamic network model. Since the
shunt capacitances of the lines are neglected the dynamic network representation is derived
using equations (4.12)-(4.16). The matrices KA, KB and KC are therefore given in per unit
system by:

KA =−diag{0,0,0.1,0.1,0.1,0.1,0,0,0.1,0.1,0.1,0.1}
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KB =



59.9 0 0 −59.9 0 0 0 0 0 0 0
0 59.9 0 0 0 0 0 −59.9 0 0 0
0 0 100 0 0 0 0 −100 0 0 0
0 0 9.1 0 0 0 0 0 −9.1 0 0
0 0 9.1 0 0 0 0 0 −9.1 0 0
0 0 0 40 0 0 0 40 0 0 0
0 0 0 0 59.9 0 0 0 0 −59.9 0
0 0 0 0 0 59.9 0 0 0 0 0−59.9
0 0 0 0 0 0 9.1 0 −9.1 0 0
0 0 0 0 0 0 9.1 0 −9.1 0 0
0 0 0 0 0 0 100 0 0 0 −100
0 0 0 0 0 0 0 0 0 40 −40


and

KC =



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0
−1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0
0 −1 −1 0 0 −1 0 0 0 0 0 0
0 0 0 −1 −1 0 0 0 −1 −1 0 0
0 0 0 0 0 0 −1 0 0 0 0 1
0 0 0 0 0 0 0 −1 0 0 −1 −1


respectively.

The matrices (4.14) - (4.17) and (4.27) are now substituted into the inequality (4.26)
in order to verify the passivity of the network when the proposed dynamic formulation is
adopted (Remark 4.3.1). We get: [

AnT P+PAn 0
0 0

]
< 0 (4.33)

which means that the inequality (4.26) is satisfied only when

AnT Pn +PnAn < 0. (4.34)

By further expanding the left side of the inequality (4.34), we get the following inequality:

AnT Pn +PnAn =

[
KT

A L+LKA 0
0 KT

A L+LKA

]

=−2

[
R 0
0 R

]
< 0.

(4.35)

which holds since the network’s resistance matrix R is positive definite. This also verifies the
passivity result shown within the proof Lemma 4.2.1.

4.4.2 Simulations

The evaluation of the presented network models is carried out using the simple four area
test system that is illustrated in Figure 4.4. This test system consists of four areas that are
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connected through a typical 230kV transmission line of various lengths and of the following
characteristics: r = 0.0001pu/km, x= 0.001pu/km and b= 0.00175pu/km (Sb = 100MVA).
For the representation of all areas, we use the classical third-order synchronous generator
model and the ZIP load model [21, 93]. Moreover, generator dynamics include the models
of a simple turbine governor and a simple exciter. As will be discussed in Chapter 5, both the
aforementioned models can be written in an appropriate state-space form and consequently
can be easily incorporated into the stability analysis using the proposed framework.

Fig. 4.4 Single line diagram of a simple four area test system.

To show the effect of such a dynamic network modeling, we consider a sudden increase of
100MW of load at area 2. The simulations are carried out using: (a) a lossless, (b) a static and
(c) the proposed dynamic network representation. Furthermore, it is considered that during
this sudden load change the test system is under the following three operating conditions:
(a) low RES penetration, (b) medium RES penetration and (c) high RES penetration, that is,
RES supply the 5%, 10% and 15% of system load respectively. It should also be noted that
RES penetration was modeled by a constant PQ injection at the four buses which constitutes
an accurate representation of grid-feeding inverters. At the same time, the synchronous
generator output and size are decreased accordingly. Both the aforementioned parameters
yielded in a significant reduction of the system’s inertia.

The results of these simulations are illustrated in Figures 4.5 - 4.10 through the represen-
tation of the voltage and the frequency response at area 2 when either a lossless, a static and
a dynamic network model are adopted for each of the three operating conditions. As one can
observe from the figures, in all cases, the use of a lossless network model results in a less
accurate voltage and frequency deviation since although the line resistance is significantly
smaller than its inductance, it still affects the voltage and the frequency across the grid. On
the other hand, both the static and dynamic network representation result in a quite similar
voltage and frequency deviation. However, while the RES penetration increases, considerable
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low-frequency oscillations are appearing when a dynamic network model is used. As can
be seen in Figures 4.6-4.7 and 4.9-4.10 (steady-state region), these voltage and frequency
oscillations are becoming larger and faster as both the line’s length and the RES penetration
increase. This directly leads to the conclusion that as RES share in power generation in-
creases, power grids could be also subjected to inter-area oscillations of significant amplitude
and thus, more accurate dynamical models are necessary to ensure the reliability and the
robustness of the system.
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Fig. 4.5 Voltage deviation at area 2 after a sudden load increase of 100MW (low RES
penetration conditions).

0 10 20 30 40 50

Time (s)

0.978

0.98

0.982

0.984

V
o

lt
a

g
e

 (
p

u
)

Lossless

Static

Dynamic

0.9785

0.979

0.9795

Fig. 4.6 Voltage deviation at area 2 after a sudden load increase of 100MW (medium RES
penetration conditions).
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Fig. 4.7 Voltage deviation at area 2 after a sudden load increase of 100MW (high RES
penetration conditions).
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penetration conditions).



66 Multi-variable network formulation

0 10 20 30 40 50

Time (s)

49.94

49.96

49.98

50

50.02

50.04

F
re

q
u

e
n

c
y
 (

H
z
)

Lossless

Static

Dynamic

49.966

49.967

49.968

Fig. 4.9 Frequency deviation at area 2 after a sudden load increase of 100MW (medium RES
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Chapter 5

Incorporation of power system
components and system-wide stability
results

Following the previous multi-variable network formulation, the current chapter focuses
on the incorporation of the power system components into the proposed stability analysis
framework and the derivation of system-wide stability results. Firstly, a broad class of
dynamical systems is being introduced in Section 5.1 to facilitate the adoption of a variety
of power system components and control mechanisms. Then, in Section 5.2, several local
passivity conditions are presented for bus dynamics. As will be shown in the sequel, these
conditions in combination with the passivity properties satisfied by the adopted network
models, are sufficient to guarantee the asymptotic stability of the interconnected system in
a completely decentralized manner. The significance and feasibility of these findings are
finally explained through a brief discussion in Section 5.4. It should be noted here that due
to the differences in either bus dynamics and the local passivity conditions, the analysis is
carried out for both the static and the dynamic network representation.

5.1 General multi-input/multi-output formulation of bus
dynamics

5.1.1 Static network representation

To incorporate the bus models and derive stability results for the interconnected system, both
the network and the bus dynamics have to be expressed in the same reference frame, which is
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chosen here as the system reference frame. In contrast to the recent literature, we, therefore,
transform the bus dynamics into the system reference frame instead of each bus local dq-
coordinates and consider that each of the |N | buses forms a 2-input/2-output system to fit
with the network formulation described in the previous chapter. A graphical representation
of the interconnected system is provided in Figure 5.1 where the multi-input/multi-output
network system is connected to the aggregate bus dynamics. The bus models are expressed
in the system reference frame by incorporating the mappings T and T−1 (equations (3.29)-
(3.32)) into the bus dynamics. This approach is novel and allows the consideration of more
relaxed conditions for the network. It also provides the necessary means for decentralized
stability analysis and control.

Fig. 5.1 The power network represented as an interconnection of input/output systems
associated with the bus dynamics and transmission lines, respectively.

A broad class of systems is introduced now to represent the bus models. Considering
that these dynamical systems have inputs the phasor components of the net current injection
(−Ia,i,−Ib,i) ∈ R2, states xi ∈ X ⊆ Rk and outputs the phasor components of the bus voltage
(Va,i,Vb,i) ∈ R2, their state-space representation is given by:

ẋi = fi(xi,ui)

yi =gi(xi,ui) i ∈ N
(5.1)

where ui = [−Ia,i,−Ib,i], yi = [Va,i,Vb,i]. The vector functions fi : Rki ×R2 → Rki
i and gi :

Rki ×R2 → R2 are locally Lipschitz for any i ∈ N. It is also highlighted here that the bus
dynamics (5.1) can be of arbitrary dimension.

5.1.2 Dynamic network representation

The incorporation of bus dynamics into the proposed multi-variable framework can similarly
be implemented as described in the above paragraphs for the static network representation
[31]. More specifically, the bus models are expressed in a common system reference frame
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Fig. 5.2 An overview of the proposed power system configuration.

instead of their local dq-coordinates by incorporating the mappings (3.29) - (3.32) (Park
transformation) into bus dynamics. Additionally, it is considered that each power system
component constitutes a device that either produces or consumes power in normal operating
conditions and can be attached to a single bus (e.g. synchronous machines, motors, wind
turbines, etc.) or two buses (e.g.HVDC lines, AC/DC converters, etc.). Moreover, the power
system components can be modeled by voltage sources that either inject or absorb current in
the network and hereon, they will be referred to as injectors, as presented in [18]. Specifically,
the components connected to a single bus will be denoted as single-bus injectors while for the
components attached to two buses we will use the term double-bus injector. The proposed
configuration can be visualized in Fig. 5.2.

Subsequently, to fit with the network formulation described in the previous chapter, it is
considered that each single-bus injector forms a 2-input×2-output system while double-bus
injectors are modeled by a 4-input×4-output system. Each injector is connected to the
network (branch and capacitance) dynamics as illustrated in Fig. 5.1. For the representation
of either the single-bus or the double-bus injectors, the following broad class of dynamical
systems is now employed:

ẋ = f (x,u)

y =g(x,u).
(5.2)
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As observed, the dynamical model (5.2) is almost identical to (5.1). The vectors u, x and y
denote the inputs, the states and the outputs of the system, respectively. The dimensions of
the vectors u and y depend on the type of the component, that is a single-bus or a double-bus
injector. In particular, a single-bus injector at bus i has inputs the phasor components of the
net injected currents u = (−Ib

a,i, −Ib
b,i) ∈ R2 and outputs the phasor components of the bus

voltages y = (V b
a,i, V b

b,i) ∈ R2. On the other hand, a double-bus injector which is attached
to buses i and j, has inputs the phasor components of the net injected currents at buses i
and j, i.e. u = (−Ib

a,i, −Ib
a, j, −Ib

b,i, −Ib
b, j) ∈ R4 and outputs the phasor components of the

bus voltages at buses i and j, i.e. y = (V b
a,i, V b

a, j, V b
b,i, V b

b, j) ∈ R4. The states x ∈ X ⊂ Rn of
the dynamical system (5.2) are of arbitrary dimension since they are directly related to the
dynamical model that is employed to represent the component.

5.2 Necessary passivity conditions on bus dynamics

5.2.1 Static network representation

The current section presents certain passivity conditions on the bus dynamics, which when
satisfied guarantee the asymptotic stability of the equilibria of the interconnected system
(4.1) and (5.1). It should be noted that these conditions are decentralized since they are
independent of network topology. Before presenting these conditions, it is first necessary to
provide the following definitions for the equilibrium of the interconnected system (4.1) and
(5.1) and the local input-strict passivity [21].

Definition 5.2.1 The constant vector x̂ = [x̂1 x̂2 . . . x̂|N |], x̂i ∈ Rki is an equilibrium of the
interconnected system (4.1) and (5.1), if the time derivative of the states in (5.1) is equal to
zero when1 xi = x̂i, i ∈ N .

Definition 5.2.2 Consider a dynamical system represented by the state space model

ẋi = fi(xi,ui)

yi =gi(xi,ui)
(5.3)

where fi : Rni ×Rpi → Rni and gi : Rni ×Rpi → Rpi are locally Lipschitz. Such system is
said to be locally input strictly passive about the equilibrium (ûi, x̂i), if there exist open
neighborhoods Ui and Xi about ûi, x̂i, respectively, a continuously differentiable function

1Note that the inputs ui are also function of the states x1, . . . ,x|N | as the system is interconnected.
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Vi(xi) (called the storage function), and a function φ(.) such that

(ui − ûi)
T (yi − ŷi)≥ V̇i +(ui − ûi)

T
φi(ui − ûi) (5.4)

for all ui ∈Ui and all xi ∈ Xi, where (ui − ûi)
T φi(ui − ûi)> 0 for ui ̸= ûi.

Remark 5.2.1 For linear systems or systems linearized about equilibrium, the passivity
property can be easily verified by means of computationally efficient methods using the
KYP lemma [20]. Note here that the KYP lemma also allows to explicitly construct the
storage function of the system, which for linear systems is a quadratic function of the form
V (xi)= xT

i Pixi, where matrix Pi ∈Rni×ni is obtained by solving a convex optimization problem
(a semidefinite program). For nonlinear systems, it can be verified either locally or globally
by exploiting structural properties such as feedback interconnections of passive systems, or
via an explicit construction of the storage function (see e.g. [28], [100]). An alternative way
to check the passivity property for linear systems is via the positive realness of their transfer
function G(s). In particular, input strict passivity is implied if G( jω)+GT(− jω) is positive
definite (or equivalently has positive eigenvalues) for all ω ∈ R.

In the assumptions below x̂ is an equilibrium point of the interconnected system, and
(ûi, x̂i) are the corresponding constant inputs and states of the bus dynamics (5.1) at this
point.

Assumption 5.2.1 For each i ∈ N , each of the bus dynamical systems (5.1) satisfy a local
input-strict passivity property about (ûi, x̂i), in the sense described in Definition 5.2.2.

Similarly to the approach presented in [28], [101], it is assumed that the aforementioned
passivity property holds without specifying the precise form of the bus dynamics. This will
allow us to include in the stability analysis a broad class of bus dynamics and a variety of
frequency and/or voltage control mechanisms.

Finally, to guarantee convergence, two additional conditions on the behavior of the
interconnected system (4.1) and (5.1) will be required. These conditions will be used in the
proof of the convergence result in Theorem 5.3.1.

Assumption 5.2.2 Consider the dynamics (5.1) at bus i. When ui(t) = ûi ∀t, then x̂i is
asymptotically stable, i.e. there exists neighbourhood X̃i about x̂i such that for all xi(0) ∈ X̃i,
we have xi(t)→ x̂i as t → ∞.

Remark 5.2.2 Note that this condition is trivially satisfied in many cases as generation
dynamics are usually open loop stable. The condition could also be relaxed to allow for
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integrators at some buses (used in e.g, secondary control), but this is not done here for
simplicity in the presentation.

Assumption 5.2.3 The storage functions Vi in Assumption 5.2.1 have a strict local minimum
at the point x̂i.

Remark 5.2.3 The above assumption is a technical condition often satisfied. More specifi-
cally, it means that the region, whereas the bus dynamics are passive, contains at least one
stable equilibrium of the interconnected system. As extensively discussed in [19], at any
stable equilibrium point, the energy stored in the system remains unchanged, i.e. the time
derivative of the storage function is equal to zero. The previous statement implies that the
system trajectories starting at this particular point, remain at it, as t → ∞. This condition is
satisfied, for example, for any linear system if the latter is observable and controllable.

5.2.2 Dynamic network representation

The natural passivity properties that were revealed for the network along with the proposed
system structure (the power system is represented by the negative feedback interconnection
of multiple subsystems, i.e. the branch, the capacitance and the bus dynamics.) allow
us to deduce significant stability results for the interconnected system by only imposing
several local passivity conditions on bus dynamics. Similarly to the previous section, it
is now necessary to provide here the following definitions regarding the equilibria of an
interconnected system and the property of local strict passivity.

Definition 5.2.3 The constant vector [x̂T ÎT
a ÎT

b V̂ cT
a V̂ cT

b ] ∈R(n+2|E |+2|N |) is an equilibrium
of the interconnected system (5.2), (4.12) - (4.13) and (4.20), if the time derivative of the
states in (5.2), the line currents in (4.12) and the shunt capacitance voltages (4.20) are equal
to zero.

Definition 5.2.4 Let the system (5.2) and its equilibrium (x̂, û) ∈ X ×U, where X ⊂ Rn and
U ⊂Rp. The system (5.2) is locally strictly passive if there exists a continuously differentiable
function V (called the storage function) such that

(u− û)T (y− ŷ)≥ V̇ +ψ(x− x̂), ∀(x,u) ∈ X ×U (5.5)

for some positive definite function ψ(x− x̂). Additionally the above system is:

• locally input strictly passive if (u− û)T (y− ŷ)≥ V̇ +φ(u− û) for some positive definite
φ , ∀u ̸= û
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• locally output strictly passive if (u− û)T (y− ŷ) ≥ V̇ + ρ(y− ŷ) for some positive
definite ρ , ∀y ̸= ŷ.

In both the above cases, the inequalities should hold for all (x,u) ∈ X ×U.

Assumption 5.2.4 For each i, j ∈ N , each of the bus dynamical systems (5.2) satisfies any
of the local passivity properties about [x̂T ÎbT

a ÎbT
b ], in the sense described in Definitions 5.2.3

- 5.2.4.

As in [28] and [31], the above passivity properties hold without specifying the precise
form of the bus dynamics. This assumption allows us to incorporate into the stability
analysis of various power system components such as synchronous generators, inverter-
based RES, loads, FACTS and HVDC lines. Additionally, more accurate, higher-order bus
dynamical models along with their voltage and frequency regulation mechanisms can be
also considered. Finally, to guarantee asymptotic convergence to the equilibria, the technical
condition described in Assumption 5.2.3 will also be required to be satisfied by bus dynamics
(5.2).

5.3 Main stability results

5.3.1 Static network representation

The passivity properties presented for both the network and the bus model are now exploited
to show that the equilibria of the system (4.1) and (5.1) are asymptotically stable. This
result which requires the satisfaction of Assumptions 5.2.1 - 5.2.3 is stated in the following
theorem.

Theorem 5.3.1 Suppose there exists an equilibrium of the interconnected system (5.1), (4.1)
for which the bus dynamics (5.1) satisfy Assumptions 5.2.1 - 5.2.3 for all i ∈ N . Then this
equilibrium is asymptotically stable, i.e. there exists an open neighbourhood S about this
point such that for all initial conditions x(0) ∈ S, the solutions of the system converge to this
point.

Proof of Theorem 5.3.1 The dynamics (5.1) and (4.1) will be used together with Assump-
tions 5.2.1-5.2.3 to prove Theorem 5.3.1. In particular, we will show that the storage functions
that follow from the passivity property can be used to construct a Lyapunov function for the
network, with stability then deduced using Lasalle’s theorem.

Since the passivity conditions for the bus dynamics are considered around the equilibrium
point, we define the deviations from the corresponding equilibrium values Îa, Îb, x̂,V̂a,V̂b as
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Ĩa,i = Ia,i − Îa,i, Ĩb,i = Ib,i − Îb,i, x̃i = xi − x̂i, Ṽa,i = Va,i − V̂a,i, Ṽb,i = Vb,i − V̂b,i for the net
current injection components, the states and the bus voltage components respectively.

We now consider the following candidate Lyapunov function for the closed-loop system
(4.1) and (5.1):

V (x) =
|N |

∑
i=1

Vi(xi) (5.6)

where Vi(xi) is the storage function of the bus dynamics with input ui = [−Ĩa,i,−Ĩb,i] and
output yi = [Ṽa,i,Ṽb,i]. Considering the passivity conditions described in Assumption 5.2.1,
we calculate the derivative of the above Lyapunov function with respect to time. In particular,
we get

V̇ =
|N |

∑
i=1

V̇i ≤
|N |

∑
i=1

(
[−Ĩa,i − Ĩb,i]

[
Ṽa,i

Ṽb,i

]
−φi(−Ĩa,i,−Ĩb,i)

)
=− [Ṽ T

a Ṽ T
b ]H2n

[
Ṽa

Ṽb

]
−

|N |

∑
i=1

φi(−Ĩa,i,−Ĩb,i)

(5.7)

whenever (Ṽa,i,Ṽb,i) ∈ Ui and x̃i ∈ Xi for all i ∈ N . Since the matrix H2n and the scalar
valued functions φi are positive semidefinite and positive definite respectively, the inequality
(5.7) becomes V̇ ≤ 0.

We then make use of LaSalle’s theorem to prove the asymptotic convergence of the system’s
trajectories to the equilibrium point. According to Assumption 5.2.3, the candidate Lyapunov
function V has a strict local minimum at the equilibrium x̂. Therefore, for a sufficiently
small ε > 0 there exists a compact positively invariant set Ξ := {x : V (x)−V (x̂)≤ ε, x̂ ∈
Ξ, Ξ connected} that lies in the neighborhoods stated in the assumptions. LaSalle’s Invari-
ance Principle can now be applied with the function V on the compact positively invariant set
Ξ. This guarantees that all solutions of the interconnected system (5.1) and (4.1) with initial
conditions x(0) ∈ Ξ converge to the largest invariant set within ϒ := Ξ∩{x : V̇ = 0}. From
the positive definiteness of function φ we have that V̇ = 0 which implies that Ĩa,i = Ĩb,i = 0,
i.e. Ia,i = Îa,i, Ib,i = Îb,i. Hence, from Assumption 5.2.2 we have that the only invariant set
in ϒ is the equilibrium point x(t) = x̂. Therefore, for any initial condition x(0) ∈ Ξ we have
convergence to the equilibrium point, which completes the proof. �

Remark 5.3.1 It should be noted that the stability conditions in Theorem 5.3.1 are decen-
tralized as they are conditions on the local bus dynamics and do not require any information
regarding the system and its structure. A distinctive feature of those is that the bus dynamics
are formulated at the system reference frame, thus allowing to consider networks with losses
as discussed in Chapter 4. In Chapter 6, it will be shown that these stability conditions are
not conservative by applying those to real power networks with realistic data.
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5.3.2 Dynamic network representation

This section contains the main stability result when the proposed multi-input/multi-output
stability analysis framework is adopted. This result which is independent of the network
topology can provide decentralized guarantees for the asymptotic stability of any power
system requiring only the local passivity conditions of Assumptions 5.2.3 - 5.2.4 to be
satisfied by bus dynamics. Moreover, it is highlighted that these stability guarantees are
derived without neglecting neither the dynamic nor the lossy nature of the lines.

Theorem 5.3.2 Suppose there exists an equilibrium of the interconnected system (5.2), (4.12)
- (4.13) and (4.20) for which the bus dynamics (5.2) satisfy Assumptions 5.2.3 - 5.2.4 and
at least one of the local conditions presented in Assumption 5.2.4, for all i, j ∈ N . Then,
this equilibrium is asymptotically stable, i.e. there exists an open neighbourhood S about
this point such that for all initial conditions [x̂(0)T Îa(0)T Îb(0)T V̂ c

a (0)
T V̂ c

b (0)
T ] ∈ S, the

solutions of the system converge to this point.

Proof of Theorem 5.3.2 For the proof of Theorem 5.3.2 we employ the storage functions
that follow from the passivity property of the branch, the capacitance and the bus dynamics to
construct a candidate Lyapunov function for the interconnected system (5.2), (4.12) - (4.13)
and (4.20). Stability will be then deduced using LaSalle’s Invariance Principle [21].

We first consider the following candidate Lyapunov function for the interconnected system
(5.2), (4.12)-(4.13) and (4.20):

V S = V N +V C +
|N |

∑
i=1

Vi. (5.8)

Considering that all necessary assumptions hold, we then calculate the derivative of the
above Lyapunov function with respect to time. We get:

V̇ S = V̇ N + V̇ C +
|N |

∑
i=1

V̇i

=−(Ia − Îa)
T R(Ia − Îa)− (Ib − Îb)

T R(Ib − Îb)

−
|N |

∑
i=1

(
ψi(x− x̂)+φi(u− û)+ρi(y− ŷ)

) (5.9)

whenever (Îb
a,i, Îb

b,i)∈Ui and x̂i ∈X. Since the network’s resistance matrix R and the functions
ψi(x− x̂), φi(u− û) and ρi(y− ŷ) are positive definite, the equation (5.9) becomes V̇ S ≤ 0.

Subsequently, we use the LaSalle’s theorem to prove the asymptotic convergence of the
system’s trajectories to the equilibrium point. According to Assumption 5.2.3, the candidate
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Lyapunov function V S(x, Ia, Ib,V c
a ,V

c
b ) has a strict local minimum at the equilibrium of

the interconnected system [x̂T ÎT
a ÎT

b V̂ cT
a V̂ cT

b ]. Thus, for a sufficiently small ε > 0 there
exists a compact positively invariant set Ξ := {V S(x, Ia, Ib,V c

a ,V
c
b )−V S(x̂, Îa, Îb,V̂ c

a ,V̂
c
b )≤

ε, x̂ ∈ Ξ, Ξ connected} that lies in the neighborhoods stated in Assumption 5.2.4. LaSalle’s
Invariance Principle can now be applied with the function V S on the compact positively
invariant set Ξ. This guarantees that all solutions of the interconnected system (5.2), (4.12) -
(4.13) and (4.20) with initial conditions [x(0)T Ia(0)T Ib(0)T V c

a (0)
T V c

b (0)
T ] ∈ Ξ converge

to the largest invariant set within D := Ξ∩{x : V̇ S = 0}. From Assumptions 5.2.3 - 5.2.4, we
get that the only invariant set in D is the equilibrium point [x̂T ÎT

a ÎT
b V̂ cT

a ,V̂ cT
b ]. Therefore,

for any initial condition [x(0)T Ia(0)T Ib(0)T V c
a (0)

T V c
b (0)

T ] ∈ Ξ we have convergence to
the equilibrium point, which completes the proof. �

Remark 5.3.2 The above stability result is completely decentralized and identical to the one
presented in Section 5.3.1. However, in this section, in addition to the dynamic nature of the
network, more general passivity conditions were imposed on bus dynamics to guarantee the
asymptotic convergence to the equilibrium. In particular, apart from an input-strict passivity
condition, it was shown that asymptotic stability could also be deduced through either output-
strict or strict passivity conditions on bus dynamics. Moreover, when the storage function
of a power system component is positive definite, even a simple passivity condition can be
sufficient to show that the interconnected system is local asymptotically stable. The previous
statement will be verified in Section 6.3 through the design of an alternative voltage droop
load controller.

Remark 5.3.3 The passivity conditions in Theorem 5.3.2 are applied around a certain
equilibrium of the system. This means that for inherently passive systems, these conditions are
always satisfied. Nevertheless, for non-passive power system components (e.g. synchronous
generators), these local conditions can only be satisfied when certain control mechanisms
are enabled at the buses or when the power system operates within certain normal operating
limits. For realistic examples illustrating the feasibility and the applicability of these local
conditions on synchronous generators and grid-forming inverters, the reader can refer to
[31, 35].

5.4 Discussion

The multi-variable framework presented in the previous sections relies on the approach
presented in [30, 31, 34] where the analysis was carried out in a common system reference
frame, instead of each bus local dq reference frame. In contrast to the majority of related
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literature, the adoption of the proposed system reference frame approach allowed us to capture
the natural passivity properties of the network which were then used for the derivation of
completely decentralized stability results for the interconnected system. It is mentioned here
that the passivity of the network was revealed without resorting to significant simplifications
such as the consideration of lossless and static lines. These simplifications are usually
necessary when the analysis is carried out using the local dq coordinates due to the different
bus frequencies and the voltage angles that are appearing in the network equations [35].

In addition to the lossy nature of network lines, the network’s dynamic behavior was
also taken into account. Such a network representation becomes crucial since the dynamic
interaction of inverter-based DER with the rest of the system constitutes an important aspect
in the analysis of the future power grids where RES share in power generation will dominate.
Specifically, the dynamics of inverter-based DER are on similar time scales as the line
dynamics while their controls are also significantly faster than traditional frequency and
voltage control mechanisms [11]. As shown in [97], the dynamic coupling between inverter-
based DER and the network is in many cases unstable although the capability of DER
to employ fast-acting control mechanisms may lead to the expectation for more efficient
frequency and voltage support.

Additionally, the flexibility provided regarding the accurate modelling of a variety of
power system components constitutes another significant advantage of the proposed frame-
work. In particular, the use of a broad class of dynamical systems to represent the bus
dynamics allows us to adopt dynamical models of arbitrary complexity as well as a variety
of control mechanisms. Note here that the adoption of higher-order dynamics can be easily
carried out in a centralized stability analysis study in which all information regarding the
power system is available. Such analysis, however, comes at the expense of computational
efficiency as the employed methodologies for small-signal stability require considerable
time to complete [18]. On the other hand, higher-order modelling becomes difficult when
stability is deduced in a completely decentralized manner, using local conditions. In such
cases, the elaborated analysis becomes more complex and often requires even resorting to
simpler models or omitting the employed voltage and frequency control mechanisms. Even
though these simplifications can facilitate stability analysis, they cannot ensure the accuracy
of the derived results.

Finally, the proposed passivity-based framework can also drive the appropriate selec-
tion/tuning of the grid-connected components which are often non-passive. Specifically, the
local passivity conditions presented in the previous paragraphs can assist in the design of
more accurate distributed voltage and frequency control mechanisms or the improvement
of existing controllers. At the same time, the use of such local conditions can significantly
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reduce the complexity of the analysis since they are sufficient for ensuring the overall system
stability and robustness without requiring the explicit knowledge of the network structure.
Examples of the application of such passivity-based techniques can be found in [28, 31, 35]
and Chapter 6.



Chapter 6

Applications

This chapter introduces several applications of the presented stability analysis approach that
were initially introduced in [30, 31, 34, 35]. More specifically, Section 6.1 describes in detail
how the inherent passive nature of the network in combination with the passivity indices
arising across the power grid could be exploited to drive SVC employment. As will be
shown, the proposed methodology for SVC placement, tuning and sizing can significantly
enhance power system stability and robustness without resorting to significant simplifications
or employing computationally intractable optimization techniques. Section 6.2 demonstrates
the applicability and the feasibility of the presented passivity conditions on synchronous
generators using realistic data. The proposed decentralized conditions are further exploited
for the introduction of a modified excitation system that can passivate generator dynamics
and thus, improve system response during generation-load imbalances. Section 6.3 deals
with the design of an effective, demand-side voltage regulation scheme that can provide
significant voltage support and assist in maintaining acceptable voltage levels across the grid.
The proposed control mechanism can be used either in a centralized or decentralized fashion
while its application at several buses of the network can improve the system’s response
even when the presented passivity conditions are not satisfied at all the buses. Finally, a
brief discussion on an additional application of the proposed stability analysis approach on
grid-forming inverters is also provided.
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6.1 Passivity-based employment of SVCs for power system
stability enhancement

6.1.1 Introduction

The undeniable need to overcome the numerous issues that arose across the power grid
coerced system operators to seek for more accurate fast-acting control mechanisms for both
the active and reactive power. FACTS devices have been identified in the recent past as a
promising solution for mitigating such problems since they can improve system operation
and increase their limits [25]. However, due to their relatively high cost, their placement
across the network along with the appropriate sizing and tuning should be carefully selected
[26].

Driven by the need to enhance power system stability and robustness and overcome the
above issues, several works have been proposed for the optimal placement and tuning of
FACTS devices. The majority of these works rely on optimization procedures, or sensitivity
and stability indices [102–114]. Although they were shown to be very effective, their
application remains difficult. Optimization techniques require solving nonlinear, mixed-
integer, problems, which can prove computationally intractable. At the same time, approaches
based on indices coming from the linearization of the system have inherent limitations
concerning stability.

This section introduces a novel, passivity-based framework for Static Var Compensator
(SVC) employment that can enhance the overall power system stability and robustness. In
particular, the main contributions of this study, parts of which were published in [30], are:

• The identification of the most vulnerable -in terms of passivity- buses of the system for
the SVC installation using the Gershgorin Circle Theorem.

• The derivation of a broad passivity-based tuning strategy which provides local stability
guarantees and furthermore can lead to the overall enhancement of the power system
stability.

• The determination of the appropriate size for the installed SVCs through the employ-
ment of the Kernel Density Estimation (KDE) tool for the analysis of the consumption
data at the installation locations. This tool can significantly reduce the operational
range of the installed SVCs and therefore, the cost of SVC installation.

Throughout the section, we also discuss the advantages of the proposed framework, while
verifying its effectiveness through simulations on the IEEE 68-bus test system and a numerical
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application of the proposed sizing methodology. As will be shown, significant improvement
is achieved even when a small number of SVCs is installed across the grid.

6.1.2 Dynamic Models

SVC model

SVC installations comprise of one or more banks of fixed or switched shunt capacitors or
reactors, of which at least one bank is switched by thyristors. These installations are usually
connected to the system through a coupling transformer. In this section, SVCs are represented
by a simple, linearized model which, although it facilitates the analysis, still captures the
necessary dynamic characteristics. This model relies on the Basic Model 1 presented in [115]
and is described by

Bsvc
i (s) =

KR,i · (1+ sT1,i)

(1+ sTR,i)(1+ sT2,i)
(V re f

i −Vi) (6.1)

where the variables Bsvc
i , V re f

i and Vi denote the SVC susceptance, the reference voltage, and
the voltage magnitude at bus i, respectively. KR,i is the regulator gain constant while TR,i, T1,i

and T2,i are the regulator and the compensator lead and lag time constants.

Fig. 6.1 Example of SVC structure

For the derivation of a proper SVC model that fits the adopted multi-input/multi-output
network formulation, the transfer function (6.1) is first expressed in the time domain using
the inverse Laplace transformation [38]. The derived second-order differential equation is
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then written as a set of two first-order ODEs, that is the state-space form. Subsequently, by
incorporating the mappings of the current output of the SVC, i.e.:

Īi = jBsvc
i V̄i → Ia,i =−Bsvc

i Vb,i and Ib,i = Bsvc
i Va,i

and the relations Vi =
√

V 2
a,i +V 2

b,i and Ii =
√

I2
a,i + I2

b,i into the previous set of ODEs, we
create a new nonlinear state-space model with inputs the voltage components Va,i and Vb,i

and outputs the current components Ia,i and Ib,i. By transforming the previous state-space
model back to frequency domain, we finally get the following multi-variable system[

Ia,i

Ib,i

]
=

[
T a

i (s) T b
i (s)+ B̂svc

i

−T b
i (s)− B̂svc

i T a
i (s)

]
︸ ︷︷ ︸

Hsvc
i (s)

[
Va,i

Vb,i

]
. (6.2)

Note that the above system is derived through the linearization of the nonlinear SVC state-
space model around its operating point and that in (6.2), B̂svc

i is the susceptance of the SVC
at this point. Hsvc

i (s) denotes the 2×2 proper transfer function matrix relating the voltage
components Va,i and Vb,i with the current components Ia,i and Ib,i. The transfer functions
T x

i (s) are given by

T x
i (s) =

Kx
I · (1+ sT1)

(1+ sTR)(1+ sT2)
. (6.3)

where x ∈ {a,b}. The gain constants Ka
i and Kb

i are derived through the linearization
procedure and satisfy Ka

i , Kb
i ≥ 0.

Load model

Loads are represented by a constant impedance, dynamic model. Considering that for every
load the following holds

Īi =Ia,i + jIb,i =−Y L
i V̄i =−(GL

i + jBL
i )(Va,i + jVb,i)

=(−GL
i Va,i +BL

i Vb,i)− j(BL
i Va,i +GL

i Vb,i) i ∈ N

the load model can be formulated as[
Ia,i

Ib,i

]
=

1
1+ sTl

[
−GL

i BL
i

−BL
i −GL

i

]
︸ ︷︷ ︸

HL
i (s)

[
Va,i

Vb,i

]
(6.4)
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where HL
i (s) is a 2×2 transfer function matrix describing the dynamic behavior of loads. GL

i

and BL
i denote the conductance and the susceptance of the load connected at bus i while the

term 1
1+sTl

is a delay term representing the dynamic response of the load during a change. In
many cases, the aforementioned delay term is omitted and the model of (6.21) can be further
simplified as follows: [

Ia,i

Ib,i

]
=

[
−GL

i BL
i

−BL
i −GL

i

]
︸ ︷︷ ︸

HL
i

[
Va,i

Vb,i

]
. (6.5)

HL
i ∈ R2×2 is now the matrix relating the voltage components with the net injected current

components in the same manner as HN in the presented network model (4.1). It should also
be noted that the negative sign in the models (6.4) and (6.5) appears due to the fact that Ia,i

and Ib,i denote the components of the net absorbed current rather than the net injected current.

6.1.3 Passivity Indices in Power Grids

As discussed in [31] and Chapters 4 - 5, when stability analysis is carried out in a common
reference frame using the network model (4.1), network lines retain their natural passivity
properties. This finding is very important when stability is deduced in a decentralized manner
since certain local passivity conditions on bus dynamics can improve the robustness or even
guarantee the overall stability of a general power system.

It is now examined how the grid-connected loads affect the passivity of the network
model (4.1) and thus, the overall stability of the system. We, therefore, define the following
aggregate model derived by the parallel interconnection of the network and the aggregate
load dynamics. We get [

Ia

Ib

]
= HAGG

[
Va

Vb

]
=
(

HN +HL
)[Va

Vb

]
(6.6)

where HAGG and HL denote the transfer function matrices of the aggregate network model
and all the grid-connected loads respectively. The aggregate model (6.6) can be further
simplified by omitting the loads delay term as described in the previous paragraphs. We
therefore get: [

Ia

Ib

]
=

[
GN −GL −BN +BL

BN −BL GN −GL

][
Va

Vb

]
. (6.7)

Both the load models (6.4) and (6.5) show that the loads constitute a non-passive system
since the matrices HL

i (s) and HL
i are not positive real and positive semidefinite, respectively
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[20]. Thus, the incorporation of the loads into the analysis results in the violation of the
network’s passivity. Equivalently, we can state that the aggregate network model has a
shortage of passivity or it lacks Input Feed-forward Passivity (IFP) [19].

Remark 6.1.1 It should be mentioned here that the use of constant impedance load models
is a simplification made only for the identification of the most vulnerable buses of the grid.
As will be discussed in the next section, the proposed SVC tuning methodology can be utilized
using more accurate load dynamics.

Remark 6.1.2 Although an overview of the passivity indices within power systems was
provided, it was not discussed how the generators affect the overall passivity of the system.
As explained in [31, 116], synchronous generators usually constitute non-passive dynamical
systems which can often introduce several stability issues to the grid. However, in this study,
it is considered that generators can be passivated with sufficiently high damping to guarantee
the asymptotic stability of the system. Such applications where higher-order synchronous
generator models are involved can be found in [27, 28, 31, 101].

6.1.4 SVC Employment Framework Formulation

The current section presents the formulation of a novel passivity-based framework for the
employment of SVCs. Particularly, the most suitable locations for SVC installation are first
identified by assessing the vulnerability index of each bus across the network. A detailed
methodology is then introduced for the tuning of installed SVCs. As explained, when SVCs
are appropriately tuned can passivate the aggregate network model and subsequently enhance
the power system stability. Finally, the consumption data at the locations of SVC installation
are analyzed using KDE to determine the optimal size of installed SVCs. The proposed
methodology for SVC employment is depicted in Figure 6.2. The stopping criterion of the
proposed methodology can be a "budget" of SVCs, a stability margin, or a more sophisticated
optimization procedure. More details on this will be provided in Section 6.1.5.

Passivity-based placement

For the identification of the network’s vulnerable buses and thus the better locations for SVC
installation, we use the Gershgorin Circle Theorem which was employed for the proof of
Lemma 4.1.1. As can be observed, the passivity of the network model is directly related
to the diagonal dominance of the conductance matrix of the network GN . However, the
incorporation of the grid-connected loads results in the violation of the network’s passivity
since the passivity of the aggregate network model (6.7) depends on the positive definiteness
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Start

All network buses are ranked
based on their vulnerability index

i = 1

Placement of SVC at
ith most vulnerable bus

Tuning of installed SVC

Sizing of installed SVC i = i+1

Stopping
criterion

Stop

Not satisfied

Satisfied

Fig. 6.2 The flowchart representation of the proposed approach for SVC employment.
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of the aggregate conductance matrix GAGG = GN −GL. As the load conductance matrix
−GL constitutes a diagonal matrix with non-positive diagonal elements, the Gershgorin discs
corresponding to the respective columns/rows of GAGG are displaced by GL

i towards the
left half-plane. The graphical representation of the effect of the load incorporation into the
analysis and thus, the violation of the passivity property satisfied by the power network are
presented in Figure 6.3.

Fig. 6.3 Graphical representation of the Geshgorin disks corresponding to the ith column/row
(bus i) of the matrices GN and GAGG.

We now define the Gershgorin discs D′
i(G

AGG
ii ,R′

i) of the aggregate conductance matrix
where the diagonal element GAGG

ii denotes the center and R′
i = ∑i ̸= j |GAGG

i j | the radius of the
disc corresponding to the column/row i = 1, 2, . . . , |N |. Each bus vulnerability index can
be calculated as the percentage of the Gershgorin disk that lies in the left half-plane. The
vulnerability index of bus i is therefore given by

vi = A′
i / Ai ×100 (6.8)

where A′
i and Ai denote the area of the disk lying at the left half plane and the total area of

the Gershgorin disc i, respectively. A significant vulnerability indicates a high probability
for the board to have an eigenvalue in the left half level. At the same time, this means that
the power system is more likely to exhibit increased oscillating behavior without necessarily
being unstable.

Remark 6.1.3 Note here that generator buses are excluded from the vulnerability index
calculation and consequently from SVC installation since the damping of occurring low-
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frequency oscillations is beyond the scope of this work. The suppression of this oscillatory
behavior can be implemented through the coordinated tuning of SVCs and the generators’
Power System Stabilizers (PSS) as in [117].

Passivity-based tuning

A novel passivity-based methodology for SVC tuning is being introduced in the following
paragraphs. The presented approach relies on feed-forward passivation, i.e. the procedure to
render a system that lacks passivity passive via feed-forward (parallel) interconnection [19].
In particular, the proposed tuning methodology is carried out in a completely decentralized
manner considering that the SVCs that are installed at the optimal locations across the grid
passivate the local dynamics and consequently improve the stability and the robustness of the
system.

For the presentation of the proposed methodology, it is considered that a certain number
of SVCs are installed at the most vulnerable locations of the power grid. Thus, the aggregate
network model (6.6) now becomes[

Ia

Ib

]
=
(

HN +HL +HSVC
)

︸ ︷︷ ︸
HAGG′

[
Va

Vb

]
(6.9)

where HAGG′
and Hsvc are the transfer function matrices of the modified aggregate network

and all grid-connected SVCs respectively. Figure 6.4 illustrates the modified aggregate
network model which basically represents the parallel interconnection of the network and the
SVC and the load dynamics. At the same time, the dynamics at the buses where SVCs are
installed, can be represented by the following transfer function matrix which also resulted
from the parallel interconnection of the load and the SVC that are connected to bus i ∈ N :[

Ia,i

Ib,i

]
=
(

HL
i +HSVC

i

)
︸ ︷︷ ︸

HBUS
i

[
Va,i

Vb,i

]
. (6.10)

The tuning of the installed SVCs is now carried out based on the frequency domain
conditions specified within Definition 2.6.3. From the dynamic models (6.2) and (6.21),
it is observed that all the poles of HBUS

i are real and negative, thus, the first and the third
condition in Definition 2.6.3 are satisfied. Using (6.2) and (6.4), we then derive HBUS

i ( jω)+
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HBUS,T
i (− jω) which is given by

HBUS
i ( jω)+HBUS,T

i (− jω) =
−2

1+(ωTL)2

[
GL

i jBL
i

− jBL
i GL

i

]

+
2

(1+(ωTR)2)(1+(ωT2)2)

[
Ka

i K̂i jωKb
i K̄i

− jωKb
i K̄i Ka

i K̂i

]

=

[
hBUS

i,a (ω) hBUS
i,b (ω)

−hBUS
i,b (ω) hBUS

i,a (ω)

] (6.11)

where K̂i = 1+ω2(T1i(TR,i +T2,i)−TR,iT2,i
)

and K̄i = T1,i −T2,i −TR,i −ω2T1,iT2,iTR,i. Con-
sidering that the local bus dynamics shall be passivated, the SVC parameters are appro-
priately selected in order to ensure that (6.11) is positive semidefinite, that is HBUS

i ( jω)+

HBUS,T
i (− jω)≥ 0. This is achieved if the parameters are selected so as hBUS

i,a (ω)> 0 and
|hBUS

i,a (ω)| ≥ |hBUS
i,b (ω)| for all ω ∈ R+ [118].

Fig. 6.4 The aggregate network model HAGG′
as a parallel interconnection of the network,

the SVC and the load dynamics.

Even though the appropriate SVC tuning depends on the explicit knowledge of load
dynamics, some general criteria for the selection of SVC parameters are provided below to
maximize their stabilization impact. The following criteria ensure that the SVC dynamics
constitute a passive system which consequently leads to the enhancement of the power system
stability and robustness:
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• Set the regulator gain constant KR,i > GL
i . Such selection will ensure that the inequal-

ities Ka
i > GL

i and Kb
i > BL

i are satisfied. These inequalities are necessary for the
passivation of local bus dynamics especially at low frequencies.

• Select the values of time constants T1,i, T2,i and TR,i such that T2,i ·TR,i/(T2,i +TR,i)≤
T1,i ≤ 1+T2,i +TR,i. This ensures that SVC dynamics are passive (see Lemma 2 in
[30]) and that even if bus dynamics are not completely passivated, the response of the
system will be significantly improved.

• Select T1,i sufficiently large and T2,i sufficiently small1, in order to provide to the power
grid such damping to reduce the occurring power system oscillations (0.8−10Hz).

Remark 6.1.4 In cases where more advanced modeling of loads is considered the selection
of SVC parameters could be more accurate, having, therefore, a larger impact on power
grid stability and robustness. Particularly, in such cases, SVC tuning can be carried out
graphically by ensuring that the loci of HBUS

i ( jω)+HBUS,T
i (− jω) lies entirely at the upper

half of the complex plane.

Sizing

The operational range of an SVC is usually specified at the high voltage side of its coupling
transformer. However, in order to precisely model the SVC, it is necessary to calculate its
susceptance range at the medium voltage bus. Thus, considering that the reactance of the
coupling transformer in per unit on Sn base is Xt , the maximum (capacitive) and the minimum
(reactive) susceptance of the SVC are given by:

Bmax =
1

| Sn
Qcap |+ |Xt |

(6.12)

Bmin =
1

| Sn
Qind |− |Xt |

. (6.13)

Qcap and Qind denote the maximum capacitive and the maximum inductive reactive power
on the high voltage side of the coupling transformer respectively, and they are derived based
on local measurements of reactive power [115].

Alternatively, throughout this section, Qcap and Qind are specified using KDE, a very
useful statistical tool utilized to analyze the consumption data at the locations of SVC

1Under such selection of time constants, SVCs operate as phase lead compensators and consequently can
improve the response of the system.
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installation [119]. Particularly, it is considered that the local measurements of reactive power
constitute a univariate, independent and identically distributed sample (x1,x2, . . .xn) where
n∈N+. This is then divided into two smaller samples, each containing the positive (inductive)
and the negative (capacitive) values of reactive power respectively, i.e. (xind

1 ,xind
2 , . . .xind

ni
)

and (xcap
1 ,xcap

2 , . . .xcap
nc ) where ni,nc ∈N+ and ni +nc = n. The probability density functions

of the aforementioned samples are then calculated using KDE by

f ind(x) =
1

nih

ni

∑
j=1

K
(x− xind

j

h

)
(6.14)

and

f cap(x) =
1

nch

nc

∑
j=1

K
(x− xcap

j

h

)
(6.15)

respectively. In (6.14) and (6.15), K denotes the selected kernel function while h > 0 is a
smoothing parameter called the bandwidth. It should be mentioned here that although a wide
range of kernel functions can be used, in this section, the historical data of the reactive power
are analyzed using a normal kernel.

The cumulative density functions of the inductive and the capacitive reactive power are
finally estimated as follows:

F ind(x) =
∫ x

−∞

f ind(t)dt (6.16)

Fcap(x) =
∫ x

−∞

f cap(t)dt. (6.17)

Instead of selecting Qind = max(xind) and Qcap = max(xcap), the maximum inductive and
the maximum capacitive reactive power can now be defined according to the operator’s
required robustness, that is the percentage of the consumption data that are required to lie
within the operational range of the installed SVCs. This percentage usually varies between
90 and 100%. For clarity, the proposed sizing procedure is presented through a numerical
application in Section 6.1.6.

6.1.5 Discussion

As described in the previous sections, the proposed passivity-based approach for SVC
employment deals both with SVC placement, tuning and sizing. Despite its broadness,
this approach does not require the employment of computationally expensive techniques
for the identification of the better locations for SVC installation and their tuning. On the
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contrary, it exploits features of passivity-based analysis to first sort all the buses according to
their vulnerability index and then to guide SVC tuning. The proposed sizing methodology
significantly decreases the cost of SVC using the statistical analysis of the reactive power
profile at the buses selected for the installation.

This work also showed that SVCs are more effective when installed near or at large load
centers and at buses where several lines are connected. This statement comes as a result of
the methodology used to assess the vulnerability index of each bus, as its value relies on
the radius of the respective Gershgorin disc, i.e. the sum of the conductances of the lines
that are connected to this bus. This result is also corroborated by various voltage stability
studies and existing SVC installations [120–122]. Additionally, the proposed framework
can be further exploited to incorporate other FACTS devices (either shunt or series), such as
TCSCs, UPFCs and STATCOMs. Apart from improving the robustness of the power system,
these devices can further increase the transmission system transfer capability and reduce the
transmission losses [25].

Finally, it should be mentioned here that the presented methodology for the identification
of the better locations for SVC installation does not provide any information regarding the
required number of SVCs. However, it can effectively prioritize their placement across the
network when a ’budget’ of SVCs is available or, a minimum stability margin shall always
be satisfied. Alternatively, it can be applied to existing implementations for the placement
of FACTS devices. Particularly, the vulnerability index can be either used to initiate the
placement or incorporated into existing optimization problems to improve their convergence
time and effectiveness. Such applications can be found in [107, 111, 113, 123, 124].

6.1.6 Framework Verification

Simulations

The presented framework is verified through several simulations on the IEEE New York /
New England 68-bus interconnection system (Figure 6.5), using the Power System Toolbox
(PST) [125, 126]. The aforementioned system consists of 16 generator and 24 load buses.
The generators and the loads are represented by the sixth-order synchronous generator model
and the ZIP model, respectively [93]. The generators are equipped with turbine governors, a
simple excitation system and PSSs while loads include induction motors as well.

All simulations are carried out considering average loading at the load buses and the
existence or not of PSSs on generators, for the following different cases: (i) no SVCs installed
at the grid, (ii) four SVCs installed at the grid (5% of the system’s buses), (iii) seven SVCs
installed at the grid (10% of the system’s buses), and (iv) ten SVCs installed at the grid
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Fig. 6.5 Single line diagram of the IEEE 68-bus test system (New York / New England)
[125].

(15% of the system’s buses). SVCs are installed across the grid as shown in Table 6.1
based on the passivity-based framework presented in Section 6.1.4. To achieve the greatest
stability improvement possible, the parameters of the installed SVCs were set as follows
since consumption data are not available for this testbed: KR,i = 10 ·GL

i pu, TR = 0.05 s,
T1 = 1.0 s and T2 = 0.1 s.

Installed
SVCs Bus No. min damping

ratio (no PSSs)
min damping

ratio (PSS)
0 - -0.001964 0.04855
1 51 -0.001971 0.04854
2 4 -0.002071 0.04854
3 21 -0.001288 0.0487
4 50 -0.001288 0.0487
5 24 -0.001197 0.04872
6 46 -0.001197 0.04871
7 28 0.01998 0.0529
8 27 0.02025 0.05291
9 15 0.02042 0.05292

10 48 0.02042 0.05279
Table 6.1 The minimum damping ratio variation of the system compared to the population of
the installed SVCs using the proposed passivity-based approach.

As can be seen from Figures 6.6 and 6.7, the application of SVCs using the proposed
framework, damps the calculated modes when either PSSs are applied to the exciters of
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generators or not. More specifically, for the case where no PSSs are applied, the application
of SVCs on the most vulnerable buses stabilizes the system by moving all the eigenvalues
to the left half-plane. Note that the test system was initially small-signal unstable. On the
other hand, although the application of PSSs on the excitation systems of the generators
improves further the small-signal stability of the test system, the SVC installation at the
selected locations results in a more stable response. This improvement can be observed
through the damping ratio2 of both the local and the inter-area modes of the system which is
significantly increased. Table 6.1 provides the variation of the minimum damping ratio of the
system, according to the number of installed SVCs.
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Fig. 6.6 Eigenanalysis of the IEEE 68-bus test system when no PSSs are applied to the
generators.

For the dynamic simulations, a step load change of 100 MW is applied to the load buses
1, 7, 21 and 46 (a total load change of 400 MW). The enhancement of the system’s stability
is illustrated by the voltage and the frequency deviation at bus 24 (Figures 6.8 - 6.11) when
PSSs are applied to generators or not. As observed, the proposed SVC employment approach
results in a significantly improved response and the suppression of the occurring oscillations.
It should be noted here that the SVCs were not designed to provide oscillation damping
or target any specific oscillatory modes. On the contrary, the stability improvement arises
through the passivation of the system. While not considered in this study, the application of a
Power Oscillation Damping controller to the installed SVCs could facilitate the damping of
inter-area oscillations and further enhance system stability.

2The damping ratio of an eigenvalue λ = a+ jβ is defined as ζ =− a√
a2+β 2

.
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Fig. 6.7 Eigenanalysis of the IEEE 68-bus test system when PSSs are applied to the generators.
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Fig. 6.8 Voltage deviation at bus 24 when the (a) 0, (b) 4, (c) 7 and (d) 10 most vulnerable
buses of the network are equipped with appropriately tuned SVCs (no PSSs are applied to
generators).
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Fig. 6.9 Voltage deviation at bus 24 when the (a) 0, (b) 4, (c) 7 and (d) 10 most vulnerable
buses of the network are equipped with appropriately tuned SVCs (PSSs are applied to
generators).
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Fig. 6.10 Frequency deviation at bus 24 when the (a) 0, (b) 4, (c) 7 and (d) 10 most vulnerable
buses of the network are equipped with appropriately tuned SVCs (no PSSs are applied to
generators).
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Fig. 6.11 Frequency deviation at bus 24 when the (a) 0, (b) 4, (c) 7 and (d) 10 most vulnerable
buses of the network are equipped with appropriately tuned SVCs (PSSs are applied to
generators).

Finally, the effectiveness of the proposed methodology is also verified through the profiles
of bus voltages under both normal and heavy (40% above normal) loading conditions for each
of the four cases mentioned above. The average percentage of steady-state voltage deviation3

(PV D) for these operating conditions is provided in Table 6.2. As can be observed from
the aforementioned table, the installation of SVCs across the network using the proposed
framework can significantly improve the steady-state behaviour of the system as well.

Installed SVCs Normal loading Heavy loading
0 2.96% 3.13%
4 2.51% 2.21%
7 2.10% 2.06%

10 1.80% 1.98%
Table 6.2 The average percentage steady state voltage deviation of IEEE 68 bus test system
under normal and heavy loading conditions.

Numerical Application

The applicability of the proposed SVC sizing approach and its capability to reduce SVC
installation cost is presented through the estimation of the appropriate size of an SVC installed
at a certain bus. The proposed sizing methodology is carried out using two different sets of
consumption data that are analyzed as described Section 6.1.4 (Figures 6.12 - 6.14). The

3The average percentage steady-state voltage deviation is calculated by PV D = 100
|N | ∑

|N |
i=1 |1pu−Vi|
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maximum inductive and the maximum capacitive reactive power are selected as the upper
and the lower limits wherein the 95% of the values of reactive power lies, that is

Qind
KDE = {x : F ind(x)≤ 0.95} and Qcap

KDE = {x : Fcap(x)≤ 0.95}.

As can be observed in Figure 6.12, using KDE to analyze the two different reactive power
profiles at this bus provides useful information regarding the structure of the SVC installation.
Specifically, the density of the reactive power profile can be used to select the number of
fixed or mechanically switched capacitors/reactors. For example, for reactive power profile
1, a structure of two mechanically-switched reactors/capacitors and a thyristor-switched
capacitor/reactor seems more proper due to the ’valley’ of the reactive power around 0.5pu.
On the other hand, for reactive power profile 2, a mechanically-switched reactor/capacitor
and a thyristor-switched capacitor/reactor would be more appropriate since the probability
density of reactive power is uniform.
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Fig. 6.12 The probability density functions of two different reactive power profiles (samples).

The use of KDE can also reduce the operational range of the SVC installation and
consequently its cost. Specifically, as can be observed in Figures 6.13 and 6.14, requiring
only the 95% of the values of the reactive power to lie within SVC’s operational range (dotted
line) results in a significant reduction of its capacity. The aforementioned reduction of the
operational range for reactive power profiles 1 and 2 is provided in Table 6.3. Considering
that Sn = 100MVA, the cost of each SVC installation can be estimated as in [113] using the
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Fig. 6.15 The cost of the SVC installation versus the robustness of its selected reactive power
range for the two different reactive power profiles (samples).

following cost model

Cost = 0.0003(Qind −Qcap)2 −0.3051(Qind −Qcap)+127.38 [$US/kVAr].

The total cost for the aforementioned numerical example is therefore: (a) 75.79 million
US$ vs. 25.81 million US$ for sample 1 and (b) 36.50 million US$ vs. 22.88 million US$
for sample 2 when the traditional vs. the proposed approach is adopted. The exponential
dependence between the cost of installation and the required robustness is finally illustrated
in Figure 6.15.

Profile Qind (pu) Qind
KDE (pu) Qcap (pu) Qcap

KDE (pu)
1 5.17 3.13 -3.47 -2.05
2 3.99 2.80 -2.53 -1.70

Table 6.3 The selected values of maximum capacitive and the maximum inductive reactive
power for profiles 1 and 2.

6.1.7 Conclusions

In the new era of low-inertia systems with high degrees of renewable penetration, it is becom-
ing harder to ensure the stability and the resilience of electricity grids through conventional
reinforcement methods. In this context, the current section presented a novel passivity-based
framework for SVC employment to enhance the overall power system stability and robust-
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ness. In particular, by exploiting findings in passivity-based control analysis and design,
the proposed framework provided a detailed methodology for the identification of the most
suitable locations for SVC installation and the proper SVC tuning. The derivation of this
methodology was carried out without utilizing computationally intractable algorithms or
solving complex optimization problems. Throughout this section, useful statistical analysis
techniques were also employed to determine the appropriate size and structure of the in-
stalled SVCs and thus, to reduce their operational range and installation cost. The presented
placement and tuning methodologies were verified through several simulations on the IEEE
68-bus test system, where a significantly improved system response was achieved, even when
a small percentage of buses was equipped with SVCs. A numerical application was finally
provided for the demonstration of the proposed sizing framework.

6.2 Verification of local passivity conditions on synchronous
generators

6.2.1 Introduction

This section demonstrates the feasibility of the presented stability conditions on two testbed
networks using realistic data. More specifically, the local passivity conditions introduced
in Chapter 5, are applied to synchronous generators and as will be shown in the sequel, are
in many cases satisfied despite being strict. These passivity conditions are further exploited
to modify existing excitation systems and thus to improve power system response during
disturbances. The presented results are finally verified through several simulations on the
Two-Area Kundur test system and the IEEE 68-Bus test system.

6.2.2 Generator dynamics

The following paragraphs provide a brief description of the fourth-order generator model,
which is widely considered to be sufficiently accurate to analyze electromechanical phenom-
ena. Then, it is explained in detail how such a dynamic model can be incorporated into the
presented stability analysis approach and assist in deriving useful information regarding the
stability of the system. This model, which will also be used in the simulations presented at
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the end of this section, is described by the following set of differential equations:

Mi∆ω̇i =Pm
i −Pe

i −Di∆ωi

δ̇i =∆ωi

T ′
do,iĖ ′q,i =E f ,i −E ′

q,i + Id,i(Xd,i −X ′
d,i)

T ′
qo,iĖ ′

d,i =−E ′
d,i − Iq,i(Xq,i −X ′

q,i)

(6.18)

where the electrical power Pe
i = E ′

q,iIq,i +E ′
d,iId,i +(X ′

d,i −X ′
q,i) Id,i Iq,i. The synchronous

generator represented by (6.18), is modeled in its local dq-reference frame. It is represented
by the transient emfs E ′

d,i and E ′
q,i behind the transient reactances X ′

d,i and X ′
q,i as defined by

the following equation: [
Vq,i

Vd,i

]
=

[
E ′

q,i

E ′
d,i

]
−

[
Ri −X ′

d,i

X ′
q,i Ri

][
Iq,i

Id,i

]
. (6.19)

As observed, the above synchronous generator model forms a 2-input/2-output system with
inputs the currents −Id,i and Iq,i, and outputs the voltages Vd,i and Vq,i. In order to allow the
coupling with the network model (4.1), the generator dynamics have to be transformed into
the system reference frame. This transformation is carried out through the incorporation of
the mappings (3.29) - (3.32) into the synchronous generator dynamics (6.19). We therefore
get: [

Va,i

Vb,i

]
= T−1

i

[
E ′

q,i

E ′
d,i

]
−T−1

i

[
Ri −X ′

d,i

X ′
q,i Ri

]
Ti

[
Ia,i

Ib,i

]
(6.20)

Table 6.4 Description of the main variables and parameters appearing in the synchronous
generator models

Variables Parameters
∆ω Frequency deviation M Moment of inertia
δ Stator’s phase angle D Damping coefficient
E ′

d d-axis transient EMF Xd d-axis synchronous reactance
E ′

q q-axis transient EMF X ′
d d-axis transient reactance

Id d-axis current T ′
d d-axis open-circuit time constant

Iq q-axis current Xq q-axis synchronous reactance
Vd d-axis bus voltage X ′

q q-axis transient reactance
Vq q-axis bus voltage T ′

q q-axis open-circuit time constant
Pm Mechanical power Ri stator windings resistance
Pe Electrical power

As can now be observed, the above generator model matches the class of bus models (5.1).
The dynamic model of the generator corresponds to the vector function fi while equations
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(6.20) match to the vector functions gi. The presented formulation still holds for the second
and the third-order synchronous generator models, where the transient emfs E ′

d,i and E ′
q,i,

respectively, are assumed to remain constant. Higher-order models, such as the fifth or the
sixth order models can also be incorporated in this framework in an analogous way. In these
models, the synchronous generators are represented by their sub-transient emfs E

′′
d,i and E

′′
q,i

behind the sub-transient reactances X
′′
d,i and X

′′
q,i. More detailed information about generator

modeling can be found in [48, 93, 94].

As discussed earlier, the generator dynamics can be expanded further to introduce the
dynamics of frequency or/and voltage control mechanisms, thus allowing the derivation of
more accurate stability results. Such frequency and voltage control mechanisms include
several types of turbine governors, exciters and power system stabilizers. A graphical
representation of the adaption of a synchronous generator model to the proposed framework
along with the incorporation of frequency and voltage control is provided in Figure 6.16.
It is highlighted here that the passivity conditions which ensure the asymptotic stability
of the equilibria, refer to the bus dynamics and not specifically to the voltage and the
frequency control systems that are applied. This feature allows us to include more advanced
regulation mechanisms which in most cases are not passive (e.g. turbine governors, excitation
systems). This is an important advantage since such dynamics are often omitted in approaches
commonly presented in the related literature, due to the additional complexity they introduce.

Fig. 6.16 A graphical representation of a generator model expressed in system reference
frame.
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6.2.3 Framework verification

The proposed framework and the derived stability results are now verified through applica-
tions on the Two Areas Kundur Test System [48] and the IEEE New York / New England
68-bus interconnection system [125]. These applications focus on generator buses and are
carried out using the Power System Toolbox (PST) [126]. Within the simulations, the genera-
tors are modelled by the fourth-order dynamics (6.18) on which both frequency and voltage
control mechanisms are applied. Specifically, frequency and voltage control are carried out
by turbine governors and exciters respectively, while PSSs are applied to the generator’s
excitation system to effectively damp the occurring oscillations. The adopted models of the
turbine governors and the exciters are described in the Laplace domain by

Pm
i =

(1+ sT3,i)(1+ sT4,i)

(1+ sTs,i)(1+ sTc,i)(1+ sT5,i)
(Pm

re f ,i −KT G
i ∆ωi)

and

E f ,i =
KA

i
(1+ sTA,i)

(
V re f

i +V PSS
i − 1

(1+ sTR,i)
|Eg,i|

)
respectively. For the PSSs we use the conventional PSS model which is also given in Laplace
domain by

V PSS
i = KPSS

i
sTw,i(1+ sT1,i)(1+ sT3,i)

(1+ sTw,i)(1+ sT2,i)(1+ sT4,i)
∆ωi.

In the above transfer functions, the variables defined with the letter T and the letter K denote
the time constants and the gains of the respective control mechanism. Additionally, Pm

re f ,i is

the mechanical power reference input of the turbine governor, V re f
i is the voltage reference

input of the exciter and V PSS
i is the supplementary input injected by the PSS to the exciter.

Finally, |Eg,i| represents the magnitude of the generator’s terminal voltage and is given by

|Eg,i|=
√

E2
q,i +E2

q,i [126].

The dynamics of each generator bus individually are linearized about an equilibrium
to facilitate the verification of the passivity property on the generator buses of the test
systems. The equilibria are identified by solving a Power Flow problem for each test system
respectively4. To verify the passivity of the bus models we use Linear Matrix Inequalities
(LMIs) whose application on passivity verification is extensively described in [100, Section 2].
An alternative way to verify the passivity of bus dynamics with transfer matrix Gi(s), is by
checking the positive definiteness of the matrix Gi(jω)+GT

i (−jω) as indicated in [127].

4It should be noted that the phase difference δi between each local (d,q) and the system reference frame is
obtained from each generator’s q-axis transient emf E ′

q,i, rather than the q-axis bus voltage Vq,i.
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In particular, the positive definiteness is ensured when the eigenvalues of the matrix are
positive5.

We first deal with the Four Machine Two-Areas Kundur Test System which is widely
used for stability studies. The passivity of the four generator buses is verified using LMIs,
for the following four different cases: (i) no turbine governor / no exciter / no PSS, (ii)
turbine governor / no exciter / no PSS, (iii) turbine governor / exciter / no PSS and (iv)
turbine governor / exciter / PSS. All generator buses are not passive when neither of the
available control mechanisms is employed. When turbine governors are added to generators,
bus dynamics are slightly damped but they still remain non-passive. The exciters further
passivate the generator buses making buses 1 and 2 passive. Buses 11 and 12 still remain
non-passive. Finally, the application of PSSs to the generators completely passivates the
dynamics.

The proposed approach is also applied on the generator buses of the IEEE 68 bus test
system. According to the derived results, the generator buses are also non-passive for the
cases (i) and (ii). In both cases, the power system collapses after a sudden change of load
across the network. On the other hand, when the excitation system is applied to the generators,
the generator buses are considerably damped and, although the system presents an oscillatory
behaviour, it remains stable when a generation-load mismatch occurs. To be more specific,
the application of the excitation system on the grid-connected generators makes generator
buses 53, 59, 61 and 64 passive while the rest remain non-passive. Finally, the incorporation
of the PSSs at the generator exciters passivates further the generator buses and results in a
more stable and robust operation. All generator buses are now passive6 except from buses
58, 62, 63 and 65. However, we can achieve to passivate these generator buses by slightly
increasing the transient reactances X ′

d and X ′
q of the respective generators (approximately

15%). These results are illustrated in Figures 6.17 and 6.18 which present the frequency and
the voltage deviation at bus 27 respectively, when a sudden change of 1pu is applied at the
load buses 1, 9 and 18. This change corresponds to a total change of 300 MW (the IEEE
68 bus test system consists of a total load of 18.33 GW). Since the system collapses when
the excitation system is not applied to the generators, the respective figures for the cases (i)
and (ii) are omitted. We should also mention that, although not all the generator buses are
passive, the power system is stable. As extensively discussed in previous chapters, passivity
is a sufficient condition for stability which implies that the power system can be stable even
if not all buses are passive. It should be noted that its essence is that it is a decentralized
condition, and any decentralized stability condition is in general only sufficient as to derive a

5Note that the eigenvalues of Gi(jω)+GT
i (−jω) are always real as the matrix is Hermitian.

6It should be noted that the passivity property was verified for all choices of reference bus for the angles δi.
The choice of reference did not affect the passivity property since the relative values of the angles are close to 0.
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necessary and sufficient stability condition, the explicit knowledge of the dynamics of the
whole power grid is required. From these results, it becomes clear that under a proper design
of the control mechanisms which are applied to the generators, we can achieve to completely
passivate the generator buses of the network, and thus to ensure the asymptotic stability of
the power system.
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Fig. 6.17 Frequency deviation at bus 27 after a sudden change of 1pu at the load buses 1, 9
and 18.

6.2.4 Modification of generator’s excitation system

In order to demonstrate how existing control mechanisms can be designed to satisfy the
passivity property, we consider a generator bus with turbine/governor where the dynamics
are non-passive without excitation control, and also a simple first-order exciter leading to
marginally non-passive dynamics. It is then discussed how modifying the exciter by adding
an additional phase lead compensator can passivate the dynamics. In particular, the model of
the modified exciter is described in the Laplace domain as

E f ,i =
Ka

1+ sTa

1+ sTc

1+ sTb
Eg,i.

The idea is to choose the time constants of the aforementioned lead/lag compensator so
that appropriate phase lead is added in the problematic frequency range where the passivity
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Fig. 6.18 Voltage deviation at bus 27 after a sudden change of 1pu at the load buses 1, 9 and
18.

property is violated, thus leading to bus dynamics that are now passive. This process is
demonstrated in Figure 6.19 where the eigenvalues of the matrix G( jω)+GT(− jω) are
illustrated at different frequencies, where G(s) is the transfer function of the linearized
dynamics (5.1) at generator bus 53. The figure shows the eigenvalues7 in the regime where
the passivity property is violated. In particular, as seen from the figure the passivity property
is violated in the frequency range ω ∈ [0.1,1000] rads/sec (since the eigenvalues are negative)
when no exciter or the simple first-order exciter are used. The figure also shows that the
addition of an appropriately tuned lead/lag compensator passivates the dynamics. It should
be noted that the essence of this design process is that it is decentralized, based on only the
local bus dynamics, without requiring at each bus to be aware of the dynamics of the entire
network as in classical small-signal analysis.

The performance of the system, when the passivity based-design described above is
applied at all buses within the network, is illustrated in Figures 6.20 and 6.21. The afore-
mentioned figures present the frequency and the voltage deviation, respectively, at bus 27,
when a sudden change of 3pu is applied at the load buses 1, 9, 18, 20, 37 and 42. As can
be seen, the introduction of an appropriately tuned lead/lag compensator to the excitation
system of the generator results in a significantly less oscillatory behavior of the system. Note

7Note that G(s) is a 2×2 matrix and for convenience in the presentation only one of the two eigenvalues is
shown where the passivity condition is violated.
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Fig. 6.19 Eigenvalues of G( jω) +GT(− jω), where G(s) is the transfer function of the
linearized dynamics (5.1) at generator bus 53. The figure shows the eigenvalues in the
problematic range where the passivity property is violated.

here that for the dynamic simulation, we considered a total load change of 1800 MW which
corresponds to 10% of the grid-connected load.

The stability enhancement achieved through the modification of the initial simple ex-
citer is also illustrated through the eigenanalysis of the test system. As can be seen from
Figure 6.22, the application of a lead/lag compensator to synchronous generator excitation
system passivates the bus dynamics and significantly damps the calculated modes. More
specifically, when the simple exciter violating the passivity property is employed to the gener-
ators, the system is small-signal unstable since there exists an eigenvalue with a positive real
part. On the other hand, the application of the modified exciter on the generators stabilizes
the system moving all the eigenvalues to the left half-plane. Moreover, the proposed lead/lag
compensator to the excitation system of the generators yields a good damping ratio8 for the
modes of the system.

6.2.5 Conslusions

This section verified the feasibility and the applicability of the presented local passivity
conditions on two testbed power systems. As was shown, these conditions were, in many

8The damping ratio of an eigenvalue λ = a+ jβ is defined as z =− a√
a2+β 2

.
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Fig. 6.20 Frequency deviation at bus 27 after a sudden change of 3pu at the load buses 1, 9,
18, 20, 37 and 42.
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Fig. 6.21 Voltage deviation at bus 27 after a sudden change of 3pu at the load buses 1, 9, 18,
20, 37 and 42.

cases, satisfied despite being strict and conservative. Their satisfaction was directly related
to the existence or not of certain control mechanisms such as the turbine governors, the
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Fig. 6.22 Eigenvalues of the linearized network dynamics of the IEEE 68 bus test system.

excitation systems and the PSSs. Moreover, these local conditions can be utilized to adjust or
modify existing control mechanisms and thus, to improve their performance. This procedure
was demonstrated through the modification of synchronous generators’ excitation system.
The modified exciter rendered bus dynamics passive and thus enhanced power system stability
and robustness during generation-load imbalances.

6.3 Passivity-based design of a load-side voltage control
mechanism

6.3.1 Introduction

As indicated in Chapter 1, during the last years, existing power networks have been through
critical and rapid changes as a result of the continuously increasing penetration of Distributed
Energy Resources (DER) and the unbundling of electricity markets. In particular, a large
share of DER has been recently connected in distribution grids while consumers are now
more active in power system operation through their participation in power generation
and the system’s ancillary services [2]. Although these changes can aid to make existing
power systems "greener" and more efficient, they have introduced serious difficulties to
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Transmission and Distribution System Operators (TSOs & DSOs) since the transmission and
distribution networks are forced to operate close to their limits. The large amount of DER
across the grid in combination with their intermittent nature and the variability of loading in
current competitive electricity market environments resulted in serious congestion problems,
the reduction of the system’s operational efficiencies as well as significant electrical losses.
Moreover, these changes introduced serious power quality issues since maintaining acceptable
voltage levels across the distribution feeders under all loading conditions, constitutes a very
difficult task for DSOs [128].

Various equipment, such as Load Tap Changer (LTC) transformers, line AVRs, and
fixed or switched capacitors are currently utilized to facilitate operators in regulating the
voltage in a decentralized manner using appropriate voltage setpoints or centralized, through
setpoints sent by a Supervisory Control and Data Acquisition Distribution Management
System (SCADA/DMS) [128, 129]. Additionally, a variety of Volt/Var control mechanisms
for LTC transformers, AVRs and DER have been proposed in recent literature to improve
the system’s voltage response further and thus, to overcome the problems caused by the
rapid increase of DER [130–135]. More recently, flexible loads were identified as an
alternative, very promising solution for providing ancillary services to the system through
their participation in electricity markets [136]. Both centralized and decentralized controllers
have been proposed to adjust the demand to contribute in either frequency and/or voltage
regulation [22, 23, 135, 137].

Driven by the interest to incorporate loads in power system operation, this section presents
an effective, demand-side, voltage-droop regulation scheme that can provide significant
voltage support and assist in maintaining acceptable voltage levels across the grid. More
specifically, by considering certain passivity conditions on bus (load) dynamics, we propose
a voltage control mechanism that can regulate the bus voltage through the utilization of
the available controllable loads across the system either in a centralized or a decentralized
manner. Its formulation is carried out taking into account both the lossy and the dynamic
nature of the network, thus providing guarantees for increased performance and robustness.
Finally, the effectiveness of the proposed load-side voltage-droop control mechanism is
verified through several dynamic simulations on the IEEE 68 Bus Test System and the IEEE
37 Node Test Feeder.

6.3.2 Controller design

The proposed, demand-side voltage droop controller was initially introduced in [33, 34] to
provide the necessary voltage support to distribution grids. Its design relies on the fact that
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all loads can be represented by a constant impedance model as follows:[
V b

a,i

V b
b,i

]
=

[
RL

i −XL
i

XL
i RL

i

][
−Il

a,i

−Il
b,i

]
(6.21)

where RL
i and XL

i denote the resistance and the impedance of the load connected at bus i,
respectively. Note that the negative sign in (6.21) appears since Il

a,i and Il
b,i denote here

the components of the net absorbed current rather than the net injected current. It is also
considered that a part of these loads is controllable and thus can participate in system
operation. We thus introduce a negative feedback control mechanism that can regulate
voltage through the control of the current absorbed by these loads. The proposed mechanism
can be illustrated in Fig. 6.23 and is described by the following set of differential equations:[
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Icl
a,i and Icl

b,i, and V re f
a,i and V re f

b,i denote the phasor components of the mechanism’s output
current and the reference voltage at bus i respectively. The matrices Ac

i , Bc
i ∈ R2×2 in (6.22)

are given as follows:
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i =

1
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[
−1 0
0 −1

]
and Bc

i =
1

Tc,i

[
kc

a,i kc
b,i

−kc
b,i kc

a,i

]

where kc
a,i, kc

b,i ≥ 0 are the gain constants and Tc,i is the time constant of the controller.

Fig. 6.23 The load-side voltage controller connected in a negative feedback arrangement to
bus/load dynamics.

Remark 6.3.1 The reference inputs V re f
a,i and V re f

b,i are derived through the Park-Clarke

transformation of a voltage reference setpoint V re f
i using the same angle difference δi.
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6.3.3 Passivity of load dynamics

To guarantee the asymptotic stability of the interconnected system presented in Fig. 5.1, the
controllable load dynamics (6.21) and (6.22) and the rest of the power system components
must satisfy one of the local passivity conditions presented in Definition 5.2.4. We, therefore,
provide the following proposition wherein we show that the controllable load dynamics are
passive and thus can assist in power system operation during disturbances.

Proposition 6.3.1 The controllable load dynamics (6.21) and (6.22) constitute a 2-input ×
2-output passive system.

Proof of Proposition 6.3.1 For the proof of the Proposition 6.3.1 we consider the following
storage function for the load dynamics (6.21) and (6.22):

V L
i =

Tc,i

2(kc
a,i

2 + kc
b,i

2)
[Icl
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b,i]

[
kc

a,i −kc
b,i
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][
Icl
a,i

Icl
b,i

]
. (6.23)

The positive semidefiniteness of the above storage function follows here easily from the
skew-symmetry of the matrix Bc

i and the fact that both the gain constants kc
a,i and kc

b,i are
positive. The controllable load dynamics are therefore passive if the following inequality
holds:

uT
i yi = [−Ib
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for all i ∈N . Considering that ∆Va,i =V b
a,i−V re f

a,i and ∆Vb,i =V b
b,i−V re f

b,i , we then calculate
the derivative of the storage function (6.23) which is given by:
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Since RL
i , kc

a,i, kc
b,i ≥ 0, the equation (6.25) satisfies V̇ L

i ≤ uT
i yi and this completes the proof

�.
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Remark 6.3.2 A significant advantage of this voltage droop controller lies in the fact that
it can be employed in either centralized or decentralized fashion. More specifically, the
voltage setpoints can be defined locally at the loads (e.g. thermal loads controlled by power
electronics) or can be received from a SCADA/DMS during voltage dips or rises.

Remark 6.3.3 As will be shown in the sequel, although it is not required for all power
system components to satisfy any of the previous passivity conditions, the employment of the
presented voltage droop controller on several loads can significantly improve the response of
the system during disturbances. This finding relies on the fact that additional damping is
provided to the grid through the utilization of the proposed control scheme.

6.3.4 Simulations

The effectiveness of the load-side voltage droop controller presented in the previous para-
graphs is verified through several dynamic simulations on the IEEE 68 Bus Test System and
the IEEE 37 Node Test Feeder [125]. These test systems are illustrated in Figs. 6.5 and 6.24,
respectively. All dynamic simulations are implemented using the Power System Toolbox
(PST), assuming that the grid-connected loads are balanced and modeled using the classic
ZIP model. For the simulations on the IEEE 37 Node Test Feeder, it is also considered that
the feeder is connected to an infinite bus representing the rest of the power system.

Firstly, for the simulations on the IEEE 68 Bus Test System, it is considered that a sudden
load change of 100MW occurs at buses 1, 7, 21, 28 and 46 while loads at buses 3, 4, 16, 24,
26, 33, 40, 47, 49 and 50 are equipped with the proposed voltage control mechanism. The
gain and the time constants of the load-side voltage controller are set at all buses as follows:
Ka = 5pu, Kb = 1pu and Tc = 0.1sec.

The effect of the proposed controller is illustrated in Figs. 6.25 - 6.26 by the voltage and
the frequency deviation at bus 32, when PSSs are applied to generators or not. As can be
observed from both figures, the proposed real-time load controller can significantly improve
the response of the system in both cases as it reduces the bus voltage deviation. It should
also be mentioned that this improvement on both the voltage and the frequency was achieved
without requiring all power system components (synchronous generators) to satisfy certain
passivity conditions. Instead, the employment of such voltage droop controller at the loads
provided additional damping to the system and thus increased its reliability and robustness
during disturbances.

On the other hand, for the dynamic simulations IEEE 37 Node Test Feeder, it is considered
that a sudden load change of 500kW occurs at the nodes 724, 728, 735 and 740 (total 2MW),
while loads connected at the nodes 713, 722, 725, 729, 731, 737, 741 and 742 employ
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Fig. 6.24 Single line diagram of IEEE 37 Node Test Feeder [125].
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Fig. 6.25 Voltage deviation at bus 32 after a sudden load change at buses 1, 7, 21, 28 and 46.

the proposed voltage control mechanism. The gain constants Kc
a,i and Kc

b,i were selected
proportionally to the load connected at each node while Tc,i was set 0.1sec for all controllable
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Fig. 6.26 Frequency deviation at bus 32 after a sudden load change at buses 1, 7, 21, 28 and
46.

loads. The effectiveness of the proposed control strategy is represented in Figures 6.27 and
6.28 where we illustrate the voltage and the frequency deviation at the worst impacted node
of the system, that is the node 775, for the following two different cases: (a) No control at
the loads, (b) Voltage control at the loads.

From Figure 6.27, one can observe that the proposed voltage controlllers significantly
reduce the bus voltage deviation across the feeder when a sudden generation-load imbalance
occurs. Furthermore, as shown in Figure 6.28, the control mechanism improves the system’s
frequency response as well since during their operation, controllable loads, apart from their
absorbed reactive power, decrease their absorbed active power as well to contribute in voltage
regulation.

6.3.5 Conclusions

The current section dealt with the presentation of an effective, demand-side voltage regulation
scheme that can provide significant voltage support and assist in maintaining acceptable
voltage levels across the grid. In particular, by considering certain passivity conditions on
bus (load) dynamics, we proposed a voltage control mechanism that can regulate the bus
voltage through the utilization of the available controllable loads across the system either in
a centralized or a decentralized manner. Its formulation was carried out taking into account
both the lossy and the dynamic nature of the network, thus providing guarantees for increased
performance and robustness. Finally, the effectiveness of the proposed control mechanism
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Fig. 6.27 Voltage deviation at the node 775 after a sudden load change of 500kW at the nodes
724, 728, 735 and 740.
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Fig. 6.28 Frequency deviation at the node 775 after a sudden load change of 500kW at the
nodes 724, 728, 735 and 740.

was verified through several dynamic simulations on the IEEE 68 Bus Test System and the
IEEE 37 Node Test Feeder.

6.4 Verification of local passivity conditions on grid-forming
inverters

Finally, the current section briefly discusses an additional application of the stability analysis
and control design approach presented throughout this thesis. This application which was
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introduced in [35], extended the analysis of power system components in a common frame
of reference to grid-forming voltage source converters using an alternative dynamic network
representation than the one given by the differential equations (4.12)-(4.13) and (4.20). It
should also be noted that this application is identical to the application presented in Section
6.2 for synchronous generators since it utilizes the presented decentralized conditions to
provide stability guarantees for power networks with grid-forming converters and thus,
improve the stability and dynamic response of the system.

In particular, in [35], we used the following dynamical model to represent the power
network:

CV̇ b
ab = In

ab +

[
0 ωsC

−ωsC 0

]
V b

ab +

[
E 0
0 E

]
Iab

Lİab =

[
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[
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V b
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with inputs u = In
ab

T = [In
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T In
b

T ] the vectors of the net injected current components, states
x= IT

ab = [IT
a IT

b ] the vectors of the line current components and outputs y=V b
ab

T
= [V b

a
T V b

b
T
]

the vectors of the bus voltage components. The matrices R, L and C ∈ R|N |×|N | are the
diagonal matrices of the line resistances, line inductances and equivalent capacitances,
respectively, and ωs is the constant synchronous frequency. On the other hand, grid-forming
inverter dynamics are LCL-filtered and include the dynamical models of the following
parts/mechanisms:

1. the frequency droop

2. the angle droop, and

3. the matching control.

The above dynamics which are usually expressed in the local dq reference frame, are
extensively described in [97, 138–143]. Similarly to synchronous generator dynamics, grid-
forming inverter dynamics were also transformed into the system reference frame using
Park-Clarke transformation (3.29) - (3.32) to fit the proposed multi-variable stability analysis
approach.

The novelty of this work lies in the fact that we showed the applicability of passivity-
based design in a common reference frame to grid-forming converters through the assessment
of the passivity properties of various existing control schemes. It should be highlighted
here that, even though passivity conditions for grid-connected inverters have been analyzed
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extensively [144], grid-forming converters are in general more difficult to stabilize in a large
scale network due to their mutual interaction.

Moreover, we showed that the passivity of grid-forming converters could be enhanced
using these local conditions through a simple modification of the angle droop controller.
This improvement has been implemented by combining the concept of virtual resistance
with angle droop to form a controller which authors called modified angle droop [145].
Several simulations were also carried out to compare various control schemes and verify the
improved performance when the passivity property is satisfied.



Chapter 7

Conclusions

This chapter concludes this thesis by summarizing its main contributions and providing
suggestions and ideas for further future research.

7.1 Conclusive summary

As described in the previous chapters, the current PhD thesis focused on the decentralized
stability analysis of existing power grids and the design of new, more effective control
mechanisms. For the derivation of the presented results, several tools from non-linear
analysis, Lyapunov theory and passivity analysis were employed.

The main contributions of this PhD are the following:

1. The development of a multi-variable, system reference frame approach that can provide
reliable stability guarantees as the analysis is carried out using more detailed dynamic
models: The proposed approach relied on the transformation of both the network and
bus dynamics into a common system reference frame instead of local dq coordinates.
Based on this transformation, the network equations were formulated as an input-
output system which was shown to be passive even when the network’s lossy and
dynamic nature is considered. As extensively discussed, the adoption of such a network
model and the revelation of the network’s natural passivity properties can significantly
enhance the accuracy and the reliability of the derived stability results.

2. The introduction of local, passivity constraints for bus dynamics: The imposition of
these passivity conditions on bus dynamics in combination with the passivity property
of the employed network model ensured the asymptotic stability of the interconnected
system in a completely decentralized manner. Such decentralized stability guarantees
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could play a significant role in the future development of existing power systems that
are dominated by numerous DG units and sparsely-located energy storage facilities.

3. The derivation of a novel methodology to design effective, fast-acting, distributed
control mechanisms: The proposed decentralized control design which relies on the
above local passivity conditions, could provide significant plug-n-play capabilities
and adaptivity to the continuously evolving power grids. Such a design methodology
could also reduce the complexity of the analysis since it does not require the implicit
knowledge of the system.

The above contributions were further exploited throughout this thesis, for the derivation of ad-
ditional theoretical and technical results. These results include some derivative contributions
and practical applications of the proposed stability analysis and control design approach, and
are summarized below as follows:

1. The use of a broad class of systems to represent bus dynamics: Using such a general
class of dynamics facilitated the incorporation of more accurate, higher-order dynami-
cal models for a variety of power system components and control mechanisms within
the proposed framework. The adoption of this modeling approach could be crucial for
the derivation of more reliable, system-wide stability results.

2. The verification of the proposed approach through applications on several testbeds
using realistic data of synchronous generators and grid-forming RES: Through these
applications, it was shown, that the presented passivity conditions are not conservative
despite being strict. At the same time, they can be utilized for the modification of
the employed control mechanisms and therefore, the improvement of power system’s
dynamic response during disturbances.

3. The introduction of a novel passivity-based framework for SVC employment to enhance
the overall power system stability and robustness: The proposed framework provided
detailed information regarding (a) the identification of the most vulnerable -in terms of
passivity- buses of the system for the SVC installation, (b) the derivation of a broad
passivity-based tuning strategy which can provide local stability guarantees and lead
to the overall enhancement of the power system stability and (c) the determination of
the appropriate size for the installed SVCs.

4. The design of an effective load-side voltage controller: The presented voltage control
mechanism was proven capable of providing significant voltage support and assisting
in maintaining acceptable voltage levels across the grid.
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The above contributions are presented in detail throughout Chapters 4 - 6. These three
main contribution chapters are being summarized below to provide an appropriate interpreta-
tion of the presented analysis and results.

The main technical content of this PhD thesis was presented in Chapter 4. In particular,
the power network equations were formulated as a multi-input/multi-output system expressed
into a common system reference frame instead of each bus local dq coordinates. Through
this reference frame transformation, it was showed that any power network with arbitrary
topology constitutes a passive system even when its lossy and dynamic nature are taken into
account. The two different network representations derived through the presented analysis,
that is the static (equations (4.1)) and the dynamic (equations (4.12)-(4.13) and (4.20) for
branch and capacitance dynamics respectively) network model, can be effectively utilized
for the deduction of significant, system-wide, stability results in a completely decentralized
manner. The feasibility, accuracy and effectiveness of these network models were verified
through several numerical applications and dynamic simulations on the Kundur Four-Machine
Two-Areas and a simple Four-Area test system, respectively. As it has been shown, the use of
a lossless network model could lead to less accurate results while the adoption of a dynamic
network representation could be crucial for the stability analysis and control design of future,
low-inertia power grids.

Chapter 5 dealt with the incorporation of bus dynamics into the proposed multi-variable
framework. As extensively discussed, power system components were modeled by the
broad classes of dynamical systems (5.1) and (5.2), considering that each of the power
system components forms either a 2-input/2-output or 4-input/4-output system to fit with
the proposed network formulation. In contrast to the recent literature, these dynamic models
were expressed into the system reference frame by incorporating the mappings T and T−1

(equations (3.29)-(3.32)) into the bus dynamics. The use of such a broad, system reference
frame representation for bus dynamics allowed the introduction of appropriate local passivity
conditions that when satisfied by bus dynamics can ensure the asymptotic stability of the
interconnected system (see Theorems 5.3.1 and 5.3.2). Finally, this framework was shown to
be capable of facilitating the incorporation of a variety of power system components such
as synchronous generators, loads, FACTS devices and inverter-based RES along with their
frequency and voltage control regimes.

Finally, several applications of the proposed multi-variable approach for power system
stability analysis and control were presented in Chapter 6. More specifically, Section 6.1,
focused on the introduction of a novel passivity-based SVC employment methodology that
can significantly enhance power system stability and robustness. The presented methodology
relied upon the identification of the most vulnerable - in terms of passivity - buses of
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the system and thus the optimal locations for SVC installation. Section 6.2 demonstrated
the applicability and the feasibility of the presented passivity conditions on synchronous
generators using realistic data. The proposed decentralized conditions were further exploited
for the design of a modified excitation system that can passivate generator dynamics and
thus, improve system response during generation-load imbalances. Throughout Section
6.3, the proposed approach was used to design an effective, demand-side voltage regulation
scheme that can provide significant voltage support and assist in maintaining acceptable
voltage levels across the grid. This control mechanism can be used either in a centralized
or decentralized fashion and its application at several buses of the network can improve
the system’s response even when the presented passivity conditions are not satisfied at all
the buses. Finally, a brief discussion on an additional application of the proposed stability
analysis approach on grid-forming inverters was also provided.

7.2 Future work

The stability analysis and control design approach presented in this thesis motivates further
research to address various questions that naturally arise from its study. Below, I would like
to discuss several relevant ideas and suggestions to extend this work and thus to contribute to
the further development of existing power grids.

The proposed multi-variable approach, in combination with the presented passivity con-
ditions, could be utilized for the design of new control mechanisms that can effectively
participate in power system operation. More specifically, as the number of distributed power
system components (e.g. inverter-based RES, inverter-based storage systems, electric vehi-
cles) increases, the introduction of appropriately designed controllers can provide significant
support to existing frequency and voltage regulation regimes. The design of such distributed
controllers requires the multi-variable formulation of the adopted dynamical models and can
be implemented without the explicit knowledge of the network structure.

It would also be interesting to study further the relaxation of the local passivity conditions
presented in Chapter 5 for bus dynamics. As it was extensively discussed in Sections 6.2 and
6.4, these conditions are marginally violated by several generation units such as synchronous
generators and grid-forming inverters. Although this violation does not necessarily imply
instability, it constitutes a significant obstacle for guaranteeing the asymptotic stability of
an interconnected system. The satisfaction of these conditions requires the employment of
appropriately modified control mechanisms. One similar study dealing with the introduction
of less conservative conditions beyond the traditional passivity approaches was also presented
in [101].
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An interesting work would also be the extension of the proposed SVC employment
methodology to include other FACTS devices. In particular, the introduction of several
types of FACTS devices in combination with the derivation of an appropriate passivity-based
approach to identify the optimal FACTS population will further enhance the stability and
the robustness of the system. Such an extension will also provide additional capabilities for
more effective control of active and reactive power flows across the grid.

It would also be of high interest to extend the recent literature by elaborating a quantitative
comparison study of all decentralized stability analysis approaches. Such an analysis would
be very useful for the future development of power system stability and control since it
will provide significant insights for the existing low-inertia power networks and facilitate
the introduction of new, more effective control mechanisms. Nevertheless, the quantitative
comparison of various approaches would require the definition of various performance indices
able to compare stability analysis methods with different levels of modeling approximation,
applicability and complexity. This procedure would be extremely challenging since a
common test system and methodology need to be developed with the different approximations,
all the methods implemented, and their results compared.

Finally, a significant improvement of the proposed stability analysis approach would be
the extension of its timescale through the incorporation of more detailed dynamical models.
As the dynamic phenomena occurring across the existing power grids are becoming much
faster, the capability of considering even more accurate power system dynamics would be of
great interest. These dynamic phenomena could be analyzed in more detail providing at the
same time, the necessary means to overcome such contingencies and thus to enhance power
system robustness.
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