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Abstract. In this paper we propose a novel saliency-based computational model
for visual attention. This model processes both top-down (goal directed) and
bottom-up information. Processing in the top-down channel creates the so called
skin conspicuity map and emulates the visual search for human faces performed
by humans. This is clearly a goal directed task but is generic enough to be context
independent. Processing in the bottom-up information channel follows the prin-
ciples set by Itti et al but it deviates from them by computing the orientation,
intensity and color conspicuity maps within a unified multi-resolution frame-
work based on wavelet subband analysis. In particular, we apply a wavelet based
approach for efficient computation of the topographic feature maps. Given that
wavelets and multiresolution theory are naturally connected the usage of wavelet
decomposition for mimicking the center surround process in humans is an ob-
vious choice. However, our implementation goes further. We utilize the wavelet
decomposition for inline computation of the features (such as orientation angles)
that are used to create the topographic feature maps. The bottom-up topographic
feature maps and the top-down skin conspicuity map are then combined through
a sigmoid function to produce the final saliency map. A prototype of the pro-
posed model was realized through the TMDSDMK642-0E DSP platform as an
embedded system allowing real-time operation. For evaluation purposes, in terms
of perceived visual quality and video compression improvement, a ROI-based
video compression setup was followed. Extended experiments concerning both
MPEG-1 as well as low bit-rate MPEG-4 video encoding were conducted show-
ing significant improvement in video compression efficiency without perceived
deterioration in visual quality.

1 Introduction

A popular approach to reduce the size of compressed video streams is to select a small
number of interesting regions in each frame and to encode them in priority. This is of-
ten referred to as RegionOf-Interest (ROI) coding [24]. The rationale behind ROI-based
video coding relies on the highly non-uniform distribution of photoreceptors on the hu-
man retina, by which only a small region of visual angle (the fovea) around the center
of gaze is captured at high resolution, with logarithmic resolution falloff with eccen-
tricity [31]. Thus, it may not be necessary or useful to encode each video frame with



uniform quality, since human observers will crisply perceive only a very small fraction
of each frame, dependent upon their current point of fixation.
A variety of approaches have been proposed in the literature for ROI estimation [24].
In most of them the definition of ROI is highly subjective; that is, they lack scientific
evidence in supporting their claim that the areas defined as ROIs are indeed regions of
interest for the most of human beings. In this paper we attempt to model ROIs as the
visually attended areas indicated by a saliency map [15] in order to lower as much as
possible the subjectivity in selecting ROIs. Estimation of the saliency map is performed
though a novel model in which both top-down (goal oriented) and bottom-up informa-
tion is utilized. Furthermore, emphasis was put to the minimization of computational
complexity through inline computation of the features used for the computation of the
various topographic maps.
In saliency-based visual attention algorithms efficient computation of the saliency map
is critical for several reasons. First, the algorithm itself should model appropriately the
visual attention process in humans..Visual attention theory has been constructed mainly
by neuroscientists without taking into account computational modelling difficulties. On
the other hand, computational models have been developed mainly by engineers and
computer scientists which in several cases compromise theory in favor of implementa-
tion efficiency. Second, algorithm’s implementation should conform to real life situa-
tions and settings. Perceptual based video coding is one of the areas that visual atten-
tion fits well. However, in applications like video-telephony real-time video encoding is
required. Therefore, if a computational model of visual attention is to be used, then its
implementation should be both fast and effective. Finally, integration of the topographic
feature maps into the overall saliency map should be performed in a reasonable way and
not ad hoc as it happens in most existing models where normalization and additions is
the combination method of preference.
In the proposed model for saliency map estimation, all the above mentioned issues
were taken into account. A computationally efficient way for identifying salient regions
in images, based on bottom-up information, by utilizing wavelets and multiresolution
theory is employed. Furthermore, a top-down channel, emulating the visual search for
human faces performed by humans has been also added. This goal oriented information
is justified by the fact that in several applications like visual-telephony and teleconfer-
encing the existence of, at least, one human face in every video frame is almost guar-
anteed. Therefore, it is anticipated that the first area to receive the human attention is
the face area. However, bottom-up channels remain in process modelling sub-conscious
visual attention attraction. Finally, the overall saliency map estimator is implemented
as an embedded system to allow real-time video encoding.

2 Saliency-based Visual Attention

2.1 Existing computational models

The idea of attention deployment dates back to the pioneering work of James [14],
the father of American psychology. Several theoretical models have been proposed in
the past using the two component attention framework, consisting of a top-down and a



bottom-up component, as proposed by James. Computational modelling of this theoreti-
cal framework has been an important challenge for researchers both with a neuroscience
and engineering background. It is widely accepted that one of the first neurally plau-
sible computational architecture for controlling visual attention was proposed by Koch
& Ullman [15]. The core idea is the existence of a saliency map that combines infor-
mation from several feature maps into a global measure where points corresponding to
one location in each feature map project to single units in the saliency map. Attention
bias is then reduced to drawing attention towards high activity locations of this map.
Influenced by the work of Koch & Ullman several successful computational models
have been built around the notion of a saliency map. The Guided Search model of
Wolfe [33] hypothesizes that attentional selection is the net effect of feature maps
weighted by the task at hand (requires statistical knowledge) and bottom-up activa-
tion based on local feature differences. Hence, local activity of the saliency map is
based both on feature contrast and top-down feature weight. The FeatureGate model of
Cave [1] provides a full neural network implementation of a similar system that com-
bines top-down with bottom-up mechanisms. The more recent work of Torralba [27],
who relates attention to visual context of a scene, is also in a similar vein. One of the
most successful saliency-based models was proposed by Itti et al. [13][12]. It is based
on the principles governing the bottom-up component of the Koch & Ullman’s scheme.
Visual input is first decomposed into a set of topographic feature maps. Different loca-
tions then compete for saliency independently within each map, so that only locations
that locally stand out from their surround persist. This competition is based on center-
surround-differences akin to human visual receptive fields. These center-surround op-
erations are implemented in the model as differences between a fine and coarse scale
for a given feature. Finally, all feature maps are linearly combined to generate the over-
all saliency map. Itti’s model has been widely used in the computer vision community,
since it provides a complete front-end for the analysis of natural color images. Appli-
cations include experimental proof of model’s relation to human eye fixations, target
detection [12]and video compression [11].
Tsotsos et al. [30] proposed a different view of attentional selection. Their selective
tuning model applies attentional selection recursively during a top-down process. This
means that attentional selection does not occur either at the top of the processing hierar-
chy or at several levels during the bottom-up process. First the strongest item is selected
at the top level of the processing hierarchy using a Winner-Take-All (WTA) process (the
equivalent of a saliency map). Second, the hierarchy of a WTA process is activated to
detect and localize the strongest item in each layer of representation, pruning parts of
the pyramid that do not contribute to the most salient item and continuously propa-
gating changes upwards. Overall, saliency is calculated on the basis of feed-forward
activation and possibly additional top-down biasing for certain locations of features. It
is important to note that the saliency map is not the only computational alternative for
the bottom-up guidance of attention. Desimone & Duncan [2], Hamker [7] and several
other researchers argue that salience is not explicitly represented by specific neurons
(saliency map), but instead is implicitly coded in a distributed manner across the var-
ious feature maps. Nevertheless, these models are not directly related to the proposed
method and are not further examined



In the majority of the studies mentioned above the term top-down refers to the way com-
putation of the saliency maps is performed. That is, in contrary to bottom-up approaches
in the top-down ones attention is considered to be directed in a rather large scene area
and then within this area the attentional selections are identified. There is, however, an-
other view of top-down attention selection. In this alternative view, frequently referred
to as ’goal directed attention’, attentional selection is based on the principle that hu-
mans are directing their attention on known specific targets (i.e., searching for green
cars). Unfortunately, it is impossible to model every possible target for every human
and under any context. Therefore, the majority goal directed approaches simply outline
a general framework [4], [5], [20] on how to use goal knowledge for identifying visually
salient areas.

2.2 The proposed Visual Attention Model

The proposed Visual Attention model is illustrated by the architectural diagram of Fig-
ure 1. Saliency map computation is based both on bottom-up and top-down (goal di-
rected) information. The input sequence is supposed to contain regions of interest and
non important distractors or background areas. The role of the top-down component,
depicted on the left, is to bias the attention system towards these regions of interest
that can be statistically modelled using prior knowledge. Any region of interest may be
modelled using statistical methods and inserted to this component. Nevertheless, since
statistical modelling is not the focus of the proposed method, we only use a previously
developed [29] statistical model for human skin representation, used for face detection,
to test the proposed scheme. Faces are probably the only kind of objects in which at-
tention to them is natural to be drawn independently of context. In the proposed model,
another conspicuity map, the skin map, is computed based on the color similarity of
objects with human-skin. The skin map is modulated through multiplication with a tex-
ture map so as to emphasize on structured skin areas which have a high probability to
correspond to human faces. The modulating texture map is created through range filter-
ing [6] of the intensity channel (see also Figure 3).
Interaction between top-down and bottom-up sub-systems is performed through modu-
lation and takes place both within feature integration (feature level) and across feature
integration (result level). The feature level is related to the bias applied to specific fea-
tures in order to enhance regions similar to the prior model. For the sake of clarity there
is an intentional redundancy in Figure 1: skin areas may be enhanced using a combina-
tion of Cb and Cr channels as indicated by the corresponding arrow; nevertheless, we
add an independent skin detection module to show the creation of skin map as well as
the combination across the conspicuity maps at the result level.
Let us consider a video-telephony scenario where the video stream contains one or more
faces. The proposed scheme is, then, activated as follows:

(a) The skin model is selected as the one to bias further analysis and the input sequence
is decomposed into different feature dimensions;

(b) Each of the feature maps is transformed in the wavelet domain and center-surround
differences are independently applied. The center-surround operator is applied be-
tween a coarse and a finer scale and aims at enhancing areas that pop-out from their
surroundings;



(c) the intermediate results (conspicuity maps) are modulated by the top-down gains
computed using the selected prior model (this is not necessary for the intensity
channel, since only a single conspicuity map exists)

(d) all conspicuity maps are again weighted using top-down gains and finally fused to
generate the saliency map.

Fig. 1. The overall architecture of the Wavelet-based VA model for saliency map estimation

2.3 Bottom up Saliency-map computation

Multiscale analysis based on wavelets [16] was adopted for computing the center-
surround structure in the bottom-up conspicuity maps. The center-surround scheme of
Itti et al. [12] includes differences of Gaussian filtered versions of the original image
and is in a way similar to a Laplacian pyramid that is constructed by computing the
difference between a Gaussian pyramid image at a level L and the coarser level L+1
after it has been expanded (interpolated) to the size of level L. The Laplacian pyramid,
therefore, represents differences between consecutive resolution levels of a Gaussian
pyramid, similar to how the wavelet coefficients represent differences. Two main char-
acteristics differentiate Laplacian from wavelet pyramids: (a) A Laplacian pyramid is
overcomplete and has 4/3 as many coefficients as pixels, while a complete wavelet
transform has the same number of coefficients and, (b) the Laplacian pyramid localizes
signals in space, but not in frequency as the wavelet decomposition does.



The YCbCr color space (instead of the RGB used by Itti [13], was selected, first to keep
conformance with the face detection scheme [29], and second to use the decorrelated il-
lumination channel Y for the intensity and orientation conspicuity maps derivation and
the Cb, Cr channels for the color conspicuity map. In this way parallel construction of
the conspicuity maps is allowed and the required transformations of one color model to
another is minimized.
Let’s consider a color image f, transformed into the YCrCb color space. Channel Y
corresponds to the illumination, and can be used for identifying outstanding regions ac-
cording to illumination and orientation, while Cr (Chrominance Red) and Cb (Chromi-
nance Blue) correspond to the chrominance components and can be used to identify
outstanding color regions. In the proposed implementation salient areas based on in-
tensity, orientation, and color are computed in several scales. In this way, outstanding
areas of different sizes are localized. Combining the results of intensity, orientation,
and color feature maps at various scales provide the intensity (CI ), orientation (CO)
and color (CC) conspicuity maps. The motivation for the creation of the separate con-
spicuity maps is the hypothesis that similar features compete strongly for saliency, while
different modalities contribute independently to the saliency map. Hence, intra-feature
competition is followed by competition among the three conspicuity maps to provide
the bottom-up part of the saliency map.
In order for multiscale analysis to be performed a pair of low-pass hφ(·) and high-pass
filter hψ(·) are applied to each one of the image’s color channels Y, Cr, Cb, in both the
horizontal and vertical directions. The filter outputs are then sub-sampled by a factor of
two, generating the high-pass bands H (horizontal detail coefficients), V (vertical detail
coefficients), D (diagonal detail coefficients) and a low-pass subband A (approximation
coefficients). The process is then repeated to the A band to generate the next level of the
decomposition. The following equations describe mathematically the above process for
the illumination channel Y. It is obvious that the same process applies also to Cr and
Cb chromaticity channels:

Y
−(j+1)
A (m,n) = {hφ(−m) ∗ {Y −jA (m,n) ∗ hφ(−n)} ↓2n} ↓2m (1)

Y
−(j+1)
H (m,n) = {hψ(−m) ∗ {Y −jH (m,n) ∗ hφ(−n)} ↓2n} ↓2m (2)

Y
−(j+1)
V (m,n) = {hφ(−m) ∗ {Y −jV (m,n) ∗ hψ(−n)} ↓2n} ↓2m (3)

Y
−(j+1)
D (m,n) = {hψ(−m) ∗ {Y −jD (m,n) ∗ hψ(−n)} ↓2n} ↓2m (4)

where ∗ denotes convolution, Y −jA (m,n) is the approximation of Y channel at j-th level
(note that Y −0

A (m,n) = Y ), and ↓2m and ↓2n denote down-sampling by a factor of two
along rows and columns respectively.

Following the decomposition of each color channel at specific depth we use center-
surround differences to enhance regions that locally stand-out from the surround. Center-
surround operations resemble the preferred stimuli of cells found in some parts of the
visual pathway (lateral geniculate nucleus-LGN) [28]. Center-surround differences are
computed in a particular scale (level j) as the point-by-point substraction of the inter-
polated approximation at the next coarser scale (level j+1) from the approximation at
this scale (level j). The following equations describe the center-surround operations, at



level j, for the various bottom-up feature maps:

I−j = |Y −jA (m,n) − ((Y −(j+1)
A (m,n) ↑2m) ∗ hφ(m)) ↑2n ∗hφ(n)| (5)

C−j = wCrC
−j
r + wCb

C−jb (6)

C−jr = |C−jrA
(m,n) − ((C−(j+1)

rA
(m,n) ↑2m) ∗ hφ(m)) ↑2n ∗hφ(n)| (7)

C−jb = |C−jbA
(m,n) − ((C−(j+1)

bA
(m,n) ↑2m) ∗ hφ(m)) ↑2n ∗hφ(n)| (8)

O−j = wYD
|Y −jD − Ŷ −jD | + wYV

|Y −jV − Ŷ −jV | + wYH
|Y −jH − Ŷ −jH | (9)

Ŷ −jD = ((Y −(j+1)
D (m,n) ↑2m) ∗ hφ(m)) ↑2n ∗hφ(n)| (10)

Ŷ −jV = ((Y −(j+1)
V (m,n) ↑2m) ∗ hφ(m)) ↑2n ∗hφ(n)| (11)

Ŷ −jH = ((Y −(j+1)
H (m,n) ↑2m) ∗ hφ(m)) ↑2n ∗hφ(n)| (12)

In the above equations by I−j , O−j , C−j , we denote the intensity, orientation and
colour feature maps computed at scale (level) j; C−jrA

, C−jbA
, are the approximations of

chromaticity channels Cr and Cb at j-th scale; ↑2m and ↑2n denote up-sampling along
rows and columns respectively, while Ŷ −jA , Ŷ −jD , Ŷ −jH , Ŷ −jV are the upsampled approx-
imations of Y

−(j+1)
A , Y

−(j+1)
D , Y

−(j+1)
V , and Y

−(j+1)
H .

The weights {wCr
, wCb

, wYA
, wYD

, wYV
, wYD

} correspond to the within feature mod-
ulating gains obtained from the top-down subsystem as illustrated in Figure 1. In the
absence of any top-down information, modulating gains can be set to the same value.
However, they must be non-negative and their sum must equals one.
The conspicuity maps for intensity (CI ), orientation (CO) and color (CC) are computed
by combining the features maps at various scales in order to identify both small and
large pop-out regions. Combination of the feature maps at different scales is achieved
by interpolation to the finer scale, point-by-point addition and application of a saturation
(e.g., sigmoid) function to the final result. The following equations describe mathemat-
ically the creation of the intensity conspicuity map. The same process applies also to
orientation and color conspicuity maps:

CI =
2

1 + e−(
∑−1

j=−Jmax
Cj

I )
− 1 (13)

C−jI = I−j(m,n) − ((C−(j+1)
I (m,n) ↑2m) ∗ hφ(m)) ↑2n ∗hφ(n) (14)

C−Jmax

I = I−Jmax (15)

The maximum analysis depth Jmax is computed as follows:

Jmax = b log2N

2
c, N = min(R,C) (16)

where in y = bxc, y is the highest integer value for which x ≥ y, and R,C are the
number of rows and columns of input image respectively.



In Figure 2(a) an image with an object differing from the surround due to orientation
is shown. As expected, the orientation conspicuity map, illustrated in Figure 2(b), cap-
tures this difference accurately. In contrast, the intensity map, shown in Figure 2(c) is
rather noisy because there are no areas that clearly stand-out from their surround due to
intensity.

(a) Original image (b) Orientation map (c) Intensity map

Fig. 2. The importance of the orientation channel. Compare the results shown in (b) and (c)

2.4 Combination of Conspicuity Maps

The overall saliency map is computed once the conspicuity maps per channel have been
computed. Apart from the bottom-up conspicuity maps the top-down map (in the par-
ticular case the skin map) is also used in this stage. As in the previous case a saturation
function is used to combine, the modulated by the across feature gains, conspicuity
maps into a single saliency map. Normalization and summation, which is the simplest
way of combining the conspicuity maps (as followed by Itti [13]), may create inaccurate
results in cases where regions that stand-out from their surround in a single modality
exist. For example in the case of Figure 2(a) it is expected that only the orientation
channel would produce a salient region. Averaging the results of orientation, intensity
and color maps (not to mention skin map) will weaken the importance of the orientation
map in the total (saliency) map. Therefore, the saturate function is applied so as to pre-
serve the independency and added value of the particular conspicuity maps as shown in
eq. 17:

CS =
2

1 + e−(CI+CO+CC+CF )
− 1 (17)

where CI , CO, CC and CF are intensity, orientation, colour and skin conspicuity maps
respectively, while S is the combined saliency map.



Fig. 3. The saliency map estimator as an embedded system



3 The Saliency map estimator as an embedded system

The saliency map estimator described in the previous section has been implemented as
an embedded system with the use of the TMDSDMK642-0E DSP platform [26]. The
main architectural components are shown in Figure 3. The corresponding model was
developed using the SIMULINK model libraries [19] and the Embedded Target for TI
C6000TM blockset [18]. The application code was optimized for speed and deployed
to the TMDSDMK642-0E DSP platform using the Texas Instruments’ Code Composer
StudioTM [10]. A simplified version of the SIMULINK model can be found at [22]. In
this emulated version all hardware requirements have been removed to allow for anyone
who wishes to test it.
In Figure 3 the blocks named ‘TopDown Saliency Map’ and ‘Bottom-up Saliency Map’
indicate the embedded subsystems for the computation of the skin map and bottom-
up conspicuity maps respectively. In the ‘Map Combination’ block the across feature
combination of Maps is implemented. Finally, in the ’Video Encoding’ block the orig-
inal video frames are encoded as ROI-based MPEG video streams using the process
described in the next section.

Fig. 4. Conspicuity Maps of an example image

An example of the application of the proposed visual attention model in a still image is
shown in Figures 4 and 5. In Figure 4 (a)-(d) the intensity, orientation, color, and skin
conspicuity maps are shown respectively. It can be seen that regions that stand out from



Fig. 5. An example of the visually salient areas identified using the proposed algorithm

their surround in each one of the feature channels (intensity, orientation, color, skin) dif-
fer significantly and a linear combination of the corresponding conspicuity maps would
result in a noisy saliency map. The use of the saturation function for map combination
smooths this effect and maintains the individual value of each feature channel as shown
in Figure 5(a). In this Figure the combined saliency map of all feature maps is depicted.
In Figure 5(b) the actual ROI area created by thresholding (using Otsu’s method [23])
the saliency map is illustrated. Finally, in Figures 5(c) and 5(d) the streamline and ROI-
based JPEG encoded images are shown. Non-ROI areas in Figure 5(d) are smoothed,
by using a low pass filter, before passed to the JPEG encoder. The compression ratio
achieved in this particular case, compared to standard (streamline) JPEG, is about 1.2:1.

4 ROI-based Image and Video Encoding using Saliency Maps

The visually attended areas indicated by a saliency map and computed through the pro-
posed model, can be considered as ROIs in video entertainment movies as well as in a
variety of applications such as teleconferencing and video surveillance. In the first case
bottom-up channels are mainly engaged to model sub-conscious visual attention attrac-
tion while in visual-telephony applications the existence of human faces in every video
frame is almost guaranteed, and therefore, it is anticipated that the first area to receive
the human attention is the face area. However, we cannot identify as ROIs only the face
like areas [17], [32] because there is always the possibility, even in a video-telephony



setting, that other objects in the scene attract the human interest in a sub-conscious
manner.
For ROI-based video encoding we consider as ROI an area created by thresholding the
saliency map. The latter is obtained by applying the proposed model to every video
frame. Once ROI areas are identified the non-ROI areas in the video frames or im-
ages are blurred via a smoothing filter. It is well-known that in smooth areas a higher
compression ratio than textural ones can be achieved due to the spatial decorrelation
obtained by applying either the DCT transform (JPEG, MPEG-1) or wavelet decom-
position (JPEG 2000, MPEG-4). The assumption made for smoothing non-ROI areas
is that in the limited time in which a frame is presented to an observer the latter will
concentrate on visually salient areas and will not perceive deterioration in non-visually
important areas. Smoothing non-ROI areas is not optimal in terms of expected encoding
gain. However, it has the advantage of producing compressed streams that are compat-
ible with existing decoders.
The quality of the VA-ROI based encoded videos and images is evaluated through a set
of visual trial tests. These tests were conducted based on ten short video clips, namely:
eye witness, fashion, grandma, justice, lecturer, news cast1, news cast2, night interview,
old man, soldier (see [21]). All video clips were chosen to have a reasonably varied
content, whilst still containing humans and other objects that could be considered to be
more important (visually interesting) than the background. They contain both indoor
and outdoor scenes and can be considered as typical cases of news reports based on 3G
video telephony. However, it should be noted that the selected video clips were chosen
solely to judge the efficacy of VA-ROI coding in MPEG-1 and MPEG-4 and are not ac-
tual video-telephony clips. In the MPEG-1 case variable bit rate (VBR) encoding was
performed with a frame resolution of 288x352 pixels, frame rate of 25 fps, and GOP
structure: IBBPBBPBBPBB. In the MPEG-4 case, VBR encoding was also adopted
but the basic aim was the low bit rate. Therefore, a frame resolution of 144x176 pixels
and a frame rate of 15 fps was chosen so as to conform to the constraints imposed by
3G video telephony. The ImTOO MPEG Encoder plugin [9] was applied to uncom-
pressed avi files, generated by using the avifile function of Matlab(R), to create three
MPEG-1 and three MPEG-4 video-clips for each case. The first one corresponds to the
proposed VA based encoding (named VA-ROI), the second corresponds to VA based
coding proposed by Itti [11] (named IttiROI), and the third corresponds to standard
MPEG (MPEG-1 and MPEG-4) video coding. In both VA methods (the proposed and
Itti’s) non-ROI areas in each frame are smoothed before communicated to the encoder.

5 Visual trial tests and experimental results

The purpose of the visual trial test was to directly compare the subjective visual quality
of VA-ROI based, IttiROI based, and streamline MPEG-1 and MPEG-4 video encod-
ing. ROI s were determined using the proposed embedded saliency map estimator for
the VA-ROI method and the Neuromorphic Vision Toolkit [8] for Itti’s method. In both
cases saliency maps were thresholded using Otsu’s method [23] to create the binary
masks that correspond to ROI areas.
A three alternative forced choice (3AFC) methodology was selected because of its sim-



Fig. 6. VA ROI-based encoding (green), Itti-ROI (red) and standard MPEG-1 encoding
(blue) preferences on the eye witness (1), fashion (2), grandma (3), justice(4), lecturer (5),
news cast1(6), news cast2 (7), night interview (8), old man (9) and soldier (10) video clips.

Table 1. Overall preferences (independent of video clip) - MPEG-1 case

Encoding method Preferences Average Bit Rate (Kbps)
VA-ROI 91 1125
Itti-ROI 16 1081
Standard MPEG-1 93 1527



plicity, i.e., the observer watches the three differently encoded video clips and then
selects the one preferred, and so there are no issues with scaling opinion scores be-
tween different observers [3]. There were ten observers, (five male and five female)
with good, or corrected, vision, all being non-experts in image compression (university
students). The viewing distance was approximately 20 cm (i.e., a normal PDA / mobile
phone viewing distance) for the MPEG-4 videos and 50 cm (typical PC screen viewing
distance) for the MPEG-1 video. The video clip triples were viewed one at a time in a
random order. The observer was free to view the video clip triples multiple times be-
fore making a decision within a time framework of 60 seconds. Each video clip triple
was viewed twice, giving (10x10x2) 200 comparisons. Video-clips were viewed on a
Smartphone (NokiaTM N90) display in the case of the MPEG-4 videos and on a typical
PC monitor in a darkened room (i.e., daylight with drawn curtains) in the case of the
MPEG-1 videos. Prior to the start of the visual trial all observers were given a short
period of training on the experiment and they were told to select the video clip they
preferred. Both the MPEG-1 and the MPEG-4 encoded videos were tested through a
visual trial.
Table 1 shows the overall preferences, i.e., independent of video clip, for the standard
MPEG-1, the Itti-ROI and the proposed VA-ROI-based method. It can be seen that there
is slight preference to standard MPEG-1 which is selected at 46.5% of the time as be-
ing of better quality. The difference in selections, between VA-ROI based (selected at
45.5% of the time as being of better quality) and standard MPEG-1 encoding, is ac-
tually too small to indicate that the VA-ROI based encoding deteriorates significantly
the quality of the produced video stream. At the same time the bit rate gain, which is
about 36% on average (see also Table 3), shows clearly the efficiency of VA-ROI based
encoding. IttiROI encoded videos were selected as few as 8% of the time as being of
better quality. This fact indicates a clear visual deterioration. The slightly increased en-
coding gain (41% - see also Table 3), compared to the VA-ROI method, does not trade
off this lowering in perceived visual quality.
In Figure 6, the selections made per video clip are shown. In one of them (justice)
there is a clear preference to standard MPEG-1, while in news cast2 there is a clear
preference to VA-ROI. The latter is somehow strange because the encoded quality of
individual frames in VA-ROI based encoding is, at best, the same as standard MPEG-1
(in the ROI areas). Therefore, preference to VA-ROI based encoding may be assigned
to denoising, performed on non-ROI areas by the smoothing filter. In the remaining
eight video clips the difference in preferences between VA-ROI and standard MPEG-1
may be assigned to statistical error. On the other hand, it is important to note that Itti’s
ROI-based encoding method is in all cases least preferable than the proposed VA-ROI
method. This may be assigned to the fact that Itti’s saliency map estimation is optimized
for identifying rather large objects that stand out from their surround. In this way small
areas, such as channel logos, are not recognized as ROI’s though they attract human
attention. In order to be fair we should mention, however, that in typical 3G video tele-
phony circumstances the existence of TV channel logos in a scene is rather unusual. On
the other hand, existence of other small but visually salient objects is possible.
Table 2 shows the overall preferences of the visual trial test for the MPEG-4 case. Stan-
dard MPEG-4 and VA-ROI were both selected at 39.5% of the time as being of better



Table 2. Overall preferences (independent of video clip) - MPEG-4 case

Encoding method Preferences Average Bit Rate (Kbps)
VA-ROI 79 197.5
Itti-ROI 42 194.0
Standard MPEG-4 79 224.6

Fig. 7. VA ROI-based encoding (green), Itti-ROI (red) and standard MPEG-4 encoding
(blue) preferences on the eye witness (1), fashion (2), grandma (3), justice(4), lecturer (5),
news cast1(6), news cast2 (7), night interview (8), old man (9) and soldier (10) video clips.



quality. As in the MPEG-1 case there is no indication that VA-ROI based encoding de-
teriorates the visual quality of the MPEG-4 video stream. On the other hand, the bit
rate gain achieved by the VA-ROI method is about 14% on average (see also Table 4),
which is rather high if we take into account that encoding gain is difficult to obtain
for very low bit rates. MPEG-4 encoded videos with ROIs identified based on Itti’s vi-
sual attention scheme were selected 21% of the time indicating a clear deterioration in
subjective visual quality compared to both standard MPEG-4 and VA-ROI. It should
be noted, however, that IttiROI MPEG-4 videos were selected significantly more times
than their IttiROI MPEG-1 counterparts in the MPEG-1 visual trial test. This fact, as
well as the lower encoding gain achieved in the MPEG-4 case for both VA-ROI and
IttiROI videos (13.7% and 15.7% respectively) is due to the reduced frame resolution
selected for the MPEG-4 frames (176x144 pixels compared to 288x352 pixels of the
MPEG-1 frames). Downsampling video frames to 176x144 pixels leads to an overall
frame smoothing which results in lower difference in quality between ROI and non-
ROI areas in both VA-ROI and IttiROI MPEG-4 videos. As a consequence a lower
encoding gain is achieved (remember that, practically, in standard MPEG-4 encoding
the whole frame is considered as ROI). The main conclusion of the previous discus-
sion is that smoothing of non-ROI areas is not the appropriate way to apply ROI-based
encoding. Modifications of the corresponding encoders and their encoding parameters
such as the quality factor for ROI and non-ROI macroblocks may be necessary in or-
der to take advantage of the existence of ROI areas. Another option is to encode the
disconnected ROI areas as video objects keeping their shapes with the aid of the Shape
Adaptive DCT transform [25].
In Figure 7, the selections made per video clip, for the MPEG-4 visual trial, are shown.
In several cases (fashion, justice, news cast1 and soldier) the perceived visual quality
for the three encoding modes is the same. In other cases, such as the old man video clip,
the quality of the IttiROI video is much lower than the corresponding standard MPEG-
4 and VA-ROI videos. In addition to missing some small visually salient objects such
as TV channel logos, Itti’s method fails in some cases to identify foreground human
faces as ROI areas. This is, for example, the case for the old man video clip. One the
other hand in all video clips there is no distinguishable difference in visual quality be-
tween standard MPEG-4 and VA-ROI. Therefore, the lower encoding gain achieved by
VA-ROI compared to IttiROI is exchanged by perceived visual quality.

5.1 Bit rate gain

Table 3 presents the bit-rates achieved by VA-ROI based, IttiROI based and standard
MPEG-1 encoding in each one of ten video clips. It is clear that the bit rate gain ob-
tained by the VA-ROI method is significant, ranging from 15% (grandma video clip) to
64% (soldier video clip). Furthermore, it can be seen from the results obtained in the
soldier and news cast2 video sequences, that increased bit-rate gain does not necessar-
ily mean worse quality of the VA-ROI encoded video. The encoding gain in the IttiROI
encoded videos is, in general, similar to that of VA-ROI. In the four video sequences
(grandma, lecturer, soldier and news cast2) where IttiROI clearly outperforms VA-ROI
in terms of encoding gain this gain is non-gracefully exchanged with visual quality as it
can be seen in Figure 6 (0, 0, 3, and 0 selections respectively in the visual trial test). In



Table 3. Comparison of VA-ROI based, IttiROI based and Standard MPEG-1 encoding in ten
video sequences

Video Clip Encoding method Bit Rate (Kbps) Bit Rate Gain
Eye witness VA-ROI 1610 30.5%

Itti-ROI 1585 32.6%
Standard MPEG-1 2101

fashion VA-ROI 1200 31.1%
Itti-ROI 1188 32.4%

Standard MPEG-1 1573
grandma VA-ROI 1507 15.2%

Itti-ROI 1300 33.6%
Standard MPEG-1 1737

justice VA-ROI 1468 30.5%
Itti-ROI 1606 19.3%

Standard MPEG-1 1916
lecturer VA-ROI 950 57.3%

Itti-ROI 848 76.3%
Standard MPEG-1 1495

news cast1 VA-ROI 991 39.7%
Itti-ROI 999 38.5%

Standard MPEG-1 1384
news cast2 VA-ROI 930 41.9%

Itti-ROI 836 57.8%
Standard MPEG-1 1319

night interview VA-ROI 790 50.8%
Itti-ROI 750 59.0%

Standard MPEG-1 1192
old man VA-ROI 1307 32.9%

Itti-ROI 1085 60.0%
Standard MPEG-1 1737

soldier VA-ROI 500 63.9%
Itti-ROI 614 33.3%

Standard MPEG-1 819
Average VA-ROI 1125 35.7%

Itti-ROI 1081 41.2%
Standard MPEG-1 1527



Table 4. Comparison of VA-ROI based, IttiROI based and Standard MPEG-4 encoding in ten
video sequences

Video Clip Encoding method Bit Rate (Kbps) Bit Rate Gain
Eye witness VA-ROI 392 12.2%

Itti-ROI 381 15.3%
Standard MPEG-4 439

fashion VA-ROI 288 10.4%
Itti-ROI 285 11.7%

Standard MPEG-4 318
grandma VA-ROI 264 11.9%

Itti-ROI 247 19.5%
Standard MPEG-4 296

justice VA-ROI 227 11.5%
Itti-ROI 236 6.9%

Standard MPEG-4 253
lecturer VA-ROI 107 28.3%

Itti-ROI 110 25.3%
Standard MPEG-4 138

news cast1 VA-ROI 164 13.5%
Itti-ROI 170 9.6%

Standard MPEG-4 186
news cast2 VA-ROI 118 14.9%

Itti-ROI 115 17.8%
Standard MPEG-4 136

night interview VA-ROI 127 15.7%
Itti-ROI 128 14.8%

Standard MPEG-4 147
old man VA-ROI 217 13.3%

Itti-ROI 189 30.3%
Standard MPEG-4 246

soldier VA-ROI 71 22.5%
Itti-ROI 79 10.4%

Standard MPEG-4 87
Average VA-ROI 197.5 13.7%

Itti-ROI 194.0 15.7%
Standard MPEG-4 224.6



contrary, in the two cases (soldier, justice) where VA-ROI clearly outperforms IttiROI
in terms of encoding gain, VA-ROI encoded videos also outperform IttiROI videos in
terms of visual quality.
In Table 4 the bit-rates achieved by VA-ROI based, IttiROI based and standard MPEG-4
encoding are also presented. The bit rate gain obtained by the VA-ROI method ranges
from 10.4% (fashion video clip) to 28.3% (lecturer video clip) and is important if we
take into account that improvement in video compression at low bit-rates is more dif-
ficult than improvement in intermediate (MPEG-1) and high (MPEG-2) bit rates. The
encoding gain in the IttiROI encoded videos presents higher variance across the var-
ious video clips since it ranges from 6.9% (fashion) to 30.3% (old man). In general,
however, similar encoding gains are obtained by VA-ROI and IttiROI. In the two video
sequences (grandma and old man) where IttiROI clearly outperforms VA-ROI in terms
of encoding gain the visual quality of the VA-ROI encoded videos is significantly higher
(see also Figure 7). In contrary, in the soldier video clip where VA-ROI clearly outper-
forms IttiROI in terms of encoding gain, it has similar visual quality with the IttiROI
encoded video.

6 Conclusions and future work

In this paper we have presented a detailed implementation of a visual attention model
that can be used to identify regions of interest for ROI-based video coding. The pro-
posed model operates along two separate information channels; a high-level one which
models conscious search for human faces and a low-level one which models sub-conscious
attention attraction. Processing within the low-level information channel is basically
implemented in a bottom-up manner with the aid of wavelet decomposition for mul-
tiscale analysis. The high-level information channel models in a probabilistic manner
the skin color and in combination with a bottom-up created texture map generates a
skin conspicuity map. The latter corresponds to the likelihood of image pixels to be-
long to a human face. Multiresolution analysis was also adopted in the creation of skin
conspicuity map in order to allow both small and large faces to be detected. The skin
conspicuity map and the bottom-up conspicuity maps corresponding to intensity, ori-
entation and color are combined with the aid of a saturation function to create the final
saliency map. Through the saturation function strong stimuli in a particular conspicu-
ity map (intensity, color, orientation or skin) are not smoothed (as it could happen in a
typical linear combination) and they are propagated to the final saliency map. A pro-
totype of the porposed model has been implemented as an embedded system with the
aid of the TMDSDMK642-0E DSP platform while a fully software version is available
online [22].
In order to apply the proposed model for ROI-based video encoding, ROI areas are gen-
erated by thesholding the computed saliency maps using an image-adaptive threshold.
ROI based encoding is then applied by smoothing the non-ROI areas with a low-pass fil-
ter. Coding efficiency was examined based on both visual trial tests and encoding gain.
The results presented indicate that: (a) Significant bit-rate gain, compared to streamline
MPEG-1 and MPEG-4, can be achieved using the VA-ROI based video encoding, (b)
the areas identified as visually important by the proposed VA algorithm are in confor-



mance with the ones identified by the human subjects, as it can be deducted by the
visual trial tests, and (c) VA-ROI outperforms the corresponding method proposed by
Itti [11] in terms of visual quality but achieves slightly lower encoding gains.
Further work includes conducting experiments in an object basis framework where as
objects will be considered the disjoint ROI areas. Furthermore, the effect of incorporat-
ing priority encoding by varying the quality factor of the DCT quantization table across
VA-ROI and non-ROI frame blocks will be examined.
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