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ABSTRACT
We describe the first results on weak gravitational lensing from the SuperCLASS survey: the
first survey specifically designed to measure the weak lensing effect in radio-wavelength data,
both alone and in cross-correlation with optical data. We analyse 1.53 deg2 of optical data from
the Subaru telescope and 0.26 deg2 of radio data from the e-MERLIN and VLA telescopes (the
DR1 data set). Using standard methodologies on the optical data only we make a significant
(10σ ) detection of the weak lensing signal (a shear power spectrum) due to the massive
supercluster of galaxies in the targeted region. For the radio data we develop a new method to
measure the shapes of galaxies from the interferometric data, and we construct a simulation
pipeline to validate this method. We then apply this analysis to our radio observations, treating
the e-MERLIN and VLA data independently. We achieve source densities of 0.5 arcmin−2 in
the VLA data and 0.06 arcmin−2 in the e-MERLIN data, numbers which prove too small to
allow a detection of a weak lensing signal in either the radio data alone or in cross-correlation
with the optical data. Finally, we show preliminary results from a visibility-plane combination
of the data from e-MERLIN and VLA which will be used for the forthcoming full SuperCLASS
data release. This approach to data combination is expected to enhance both the number density
of weak lensing sources available, and the fidelity with which their shapes can be measured.

Key words: gravitational lensing: weak – dark matter – large-scale structure of Universe –
cosmology: observations – radio continuum: galaxies.
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1 IN T RO D U C T I O N

Observations of weak gravitational lensing in the optical wavebands
have in the past 20 yr moved from first detections of the signal
(Bacon, Refregier & Ellis 2000; Kaiser, Wilson & Luppino 2000;
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Van Waerbeke et al. 2000; Wittman et al. 2000) to competitive cos-
mological constraints (KiDS-450, Hildebrandt et al. 2017; DES-Y1,
Troxel et al. 2018; HSC first-year, Hikage et al. 2018). The current
generation of experiments has begun to show a consistent picture of
cosmological structure formation at late times, and their final results
will provide useful information on the apparent tensions between
such probes and primary CMB measurements (see e.g. Raveri &
Hu 2018, for an overview). Following this, the next generation of
weak lensing experiments such as LSST (The LSST Dark Energy
Science Collaboration 2018) and the Euclid satellite (Amendola
et al. 2018), will further reduce statistical errors by an order of
magnitude. However, there is concern that systematic errors may
already be overwhelming the statistical error bars. Cosmic shear
surveys rely on compilations of shapes, fluxes, and distances for
between millions and billions of galaxies, meaning even small biases
in analysis pipelines may compound to have significant impact on
inferred cosmological parameters. One potential way to mitigate
these problems is through performing weak lensing observations in
the radio waveband. As opposed to the filled apertures and CCDs
of optical and near-IR telescopes, the relevant radio telescopes
are interferometers. By using the small and intermediate spatial
scales available from interferometer data to measure galaxy shapes,
we expect systematic errors on the measurement of the weak
lensing signal that are caused by the instrument to be uncorrelated
between the radio and the optical. By cross-correlating maps of
the weak lensing signal between the two wavebands, systematics
can be removed (Camera et al. 2017) but statistical constraining
power is conserved (Harrison et al. 2016). Surveys possible with
the first phase Square Kilometre Array (SKA1; Square Kilometre
Array Cosmology Science Working Group et al. 2020), which is
expected to begin observing near the end of the next decade, will be
comparable in weak lensing constraining power to the current op-
tical surveys (Bonaldi et al. 2016), meaning their cross-correlation
combinations will be both statistically precise and systematically
robust.

However, radio surveys have thus far lacked the combination of
sub-arcsec resolution, sub-μJy depth, and wide (> 10 deg2) area
necessary to detect high number densities (> 1 arcmin−2) of star-
forming galaxies at z ∼ 1 and hence make a firm detection of the
weak lensing signal. These two tentative detections to date have both
used observations not designed for weak lensing science. Chang,
Refregier & Helfand (2004) used the wide (∼104 deg2) but shallow
(∼5 × 10−3 gal arcmin−2) FIRST survey at 1.4 GHz to make a
3.6σ detection of aperture mass variance on angular scales of 1–4
degrees, whilst Demetroullas & Brown (2016) combined the FIRST
radio and SDSS optical surveys to measure a shear signal from
cross-correlations of radio and optical shapes at 2.7σ . By correlating
the shapes of FIRST radio galaxies with the positions of SDSS
DR10 objects Demetroullas & Brown (2018) were also able to make
a firm (10σ ) detection of a galaxy–galaxy lensing signal. Studies
of the COSMOS field at both 1.4 GHz (Tunbridge, Harrison &
Brown 2016) and 3 GHz (Hillier et al. 2019) radio frequencies
have also attempted to detect the optical cross-correlation signal,
but have not achieved sufficient number densities to make firm
detections.

The subject of this paper is the SuperCLASS (Super CLuster
Assisted Shear Survey) survey (Battye & The SuperCLASS Col-
laboration 2020, hereafter Paper I), which is a legacy survey using
the e-MERLIN telescope, and is the first survey designed from
the outset for making a detection of the weak lensing signal with
radio observations. In the companion paper (Paper I) we describe
the full multiwavelength data set taken for SuperCLASS, along

with the details of the data reduction and basic science results for
the Data Release 1 (DR1) subset. Manning & The SuperCLASS
Collaboration (2020) (hereafter Paper II) describes the use of these
observations to constrain the photometric redshift distribution of
the optical sources and understand the spectral energy distributions
of matched radio sources. In this paper we use these observations to
attempt to measure a weak lensing signal. Limiting ourselves to the
0.26 deg2 DR1 region of the SuperCLASS field, we demonstrate
what can be achieved using measurements of star-forming galaxy
shapes from the VLA and e-MERLIN radio data and Subaru optical
data. With these measurements we place constraints on the weak
lensing signal as quantified by the radio, optical, and radio-optical-
cross power spectra. We validate our shape measurement methods
for radio galaxies on simulations of the data set with known inputs,
and show that the data which will be available for the full survey
of ∼1 deg2 may be capable of a detection of a radio-optical weak
lensing cross-correlation signal.

For a comprehensive introduction to and review of weak lensing
cosmology we refer the reader to Kilbinger (2015).

In Section 2 we briefly introduce the survey and the radio and
optical observations. Section 3 then details the creation of the optical
shape catalogue, and Section 4 the creation of the radio shape
catalogue from our VLA and e-MERLIN data, whose properties
we describe in Section 4.4. We then present our measurement of
the radio, optical, and radio-optical-cross shear power spectra in
the SuperCLASS DR1 region in Section 5. We present the method
of data combination between VLA and e-MERLIN data sets to be
used for the full SuperCLASS survey in Section 6, and conclude in
Section 7.

2 THE SUPERCLASS SURVEY

For a full description of the observations making up the Super-
CLASS Data Release 1 (DR1) data set, we refer the reader to Paper
I. We will briefly describe the key points here. The full SuperCLASS
field, displayed in Fig. 1, consists of a ∼1.53 deg2 region of the
Northern sky around 10h 15m RA, +68d Declination. This field
contains five candidate Abell galaxy clusters of mass ∼1014 M� at
redshift z = 0.2 – the supercluster referenced in the SuperCLASS
acronym – which we expect to enhance the lensing signal available
to be measured in the region by a factor of ∼2 (Peters et al. 2018).
This region has been covered in a number of different observations
for the SuperCLASS project (see Paper I), but here we focus on
the three data sets used for the weak lensing science analysis: e-
MERLIN and VLA radio data, and Subaru Suprime-Cam (SC) and
Hyper-Suprime-Cam (HSC) optical data. For our primary analysis
(which relies on the available radio data) we also restrict ourselves
to a 0.26 deg2 region indicated in Fig. 1 and referred to as the DR1
region. Though observations are complete for the full SuperCLASS
data set, and optical data are fully reduced, the DR1 region is the
one which currently has radio data which is reduced to a uniform
depth and ready for science analysis.

2.1 Radio observations

2.1.1 VLA observations

The full SuperCLASS field was observed in 24 h of A-configuration
Karl G. Jansky Very Large Array (VLA or JVLA) time in 2015
August. A total of 112 separate telescope pointings were taken.
These pointings were distributed in an interlocking hexagonal
strategy with 5.7 arcmin between each centre. This enabled the
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SuperCLASS – III. Radio-optical weak lensing 1739

Figure 1. Map of the weak lensing sources used in this work. The DR1
region is indicated by the radio sources (black), whilst the full SuperCLASS
field is shown by the extent of the optical sources (blue).

creation of a mosaic image with approximately uniform RMS
noise. The frequency range was 1–2 GHz (L-band), divided in 4000
spectral channels of 250 kHz each, with a 1 s time sampling. Each
pointing was individually imaged using the CASA (McMullin et al.
2007) tclean task, with a 1.4 deg2 field of view of 0.2 arcsec2

pixels. Visibility plane data had Radio Frequency Interference
(RFI) removed and calibrations applied. The restoring beam was
fixed at 1.9 × 1.5 arcsec, with a position angle 80 deg East from
North. During imaging deconvolution the Briggs weighting scheme
was applied to the visibility data to balance the desire for a low
image-plane noise level and low levels of PSF sidelobes, and wide-
field corrections were applied. The tclean algorithm was also
applied in the multiscale cleaning mode, using scales of 0, 4,
and 12 arcsec. Individual pointings were then mosaiced together
using a slant orthographic SIN projection, reducing the image-plane
noise level from 20 to 7μJy beam−1, except for regions around
bright contaminating sources, which were not considered for shape
measurement. In this work, we make use of only the 0.26 deg2 DR1
region.

2.1.2 e-MERLIN observations

Observations covering the DR1 region were also taken by the e-
MERLIN telescope, over the period 2014–2016. 49 pointings were
taken in total, again in a seven point mosaic pattern, with L-band
frequency coverage from 1.204 to 1.717 GHz, split into a total of
4096 frequency channels of 125 kHz each and 1 s time sampling.
As with the VLA data, visibility plane data had RFI removed
and calibrations applied. These pointings were then imaged using
the WSCLEAN (Offringa et al. 2014) package, accounting for w-
projection terms in wide-field imaging and using natural weighting
of the visibility data to maximize sensitivity. These pointings
were again mosaiced together to provide a final image with a
uniform noise region in the central 0.26 deg2 with noise RMS
∼7μJy beam−1. A further 49 pointings have subsequently been

observed in the period 2017–2018, covering the rest of the Northern
∼1 deg2 region of the SuperCLASS field. However, these data have
not yet been reduced to a science-ready state and we do not consider
them here, deferring their analysis to the next data release.

2.2 Optical observations

Optical observations used here were taken using the Subaru 8.4 m
telescope, using the Suprime-Cam (SC) for BVr

′
i
′

bands. Six
pointings were taken to cover the field, with an average seeing of
1.0 to 1.4 arcsec and time divided across filters to achieve a uniform
depth of 25 magnitude in all bands. Data reduction was performed
with the Subaru Suprime-Cam Data Reduction and Optical Imaging
software (SDFRED2; Ouchi et al. 2004). Observations were also taken
for SuperCLASS in the z

′
band but these are not included due to

the uneven coverage, with only four (of six) fields being observed
in total. Photometric redshifts for these sources, in particular the
star-forming galaxies which also appear in the e-MERLIN image,
are described in Paper II.

3 O PTI CAL SHAPE MEASUREMENT

From our optical observations we wish to select high redshift (z
� 0.5) star-forming galaxies and measure their shapes, a process
which we describe here.

3.1 Weak lensing catalogue

For source detection, it is desirable to combine the raw observations
in such a way as to optimize sensitivity. A co-added image was
created consisting of all available and complete bands, BVr

′
i
′
. The

astrometric and photometric calibration was performed using the
ASTROMETRY.NET software package (Lang et al. 2010). Data from
the Second-Generation Guide Star Catalogue (Lasker et al. 2008)
and the Data Release 1 (DR1) of the Panoramic Survey Telescope
And Rapid Response System (PanSTARRS) survey (Chambers et al.
2016) were used to perform this calibration due to the similar band
coverage. The measured magnitudes were then colour-corrected
using stellar templates from the Stellar Flux Library (Pickles 1998),
convolved with the Subaru filters.

The co-added image for source finding is PSF smoothed to
the poorest seeing conditions of exposures included, which was
found to be 1.38 arcsec. This smoothing of the PSF is not ideal
for shape measurement since we are limiting the resolving power
of all exposures to match the worst seeing. This co-added image
was therefore used purely for source finding. A source photometric
catalogue was compiled from the co-added image using the source
extraction software, SEXTRACTOR (Bertin & Arnouts 1996).

The full photometric source catalogue from Paper II consists
of ∼6 × 105 sources, but not all of these will be suitable for
shape measurement. We perform a number of cuts on various source
features to select galaxies on which it is suitable to apply our shape
measurement method, which will then be used for weak lensing
shear estimation. We cut on: source size to ensure morphological
information is available (that the source is resolved); positional
offset (of the model fit centroid from the detection centroid) and
measured signal-to-noise-ratio (SNR) to ensure we are not fitting
spurious detections of noise; and a number of model goodness-of-
fit statistics (as described in Table 1), which removed failures in
fitting due to overly complex source morphology, partially masked
sources, or other failures. These selection criteria are defined in
Table 1.
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Table 1. The source selection criteria used to optimize the
optical shape catalogue for analysis. We make various cuts on
source sizes, position offset (offset in right ascension �α and
in declination �δ) detection significance and fit statistics.

Type Selection criteria

Source size FWHMsource > 1.2 × FWHMPSF

FWHMsource < 6 arcsec

Position �α < 1.0 arcsec
�δ < 1.0 arcsec

Detection 20 < SNR < 105

Goodness-of-fit statistics Ellipticity modulus < 0.95
Model minimum >− 0.05

Iterations < 500
0.5 < χ2

pixel < 2.5

Cluster members are also removed by cutting sources which have
zphot = 0.2 ± 0.08 and i

′
< 22.5 (see Paper II, Section 4.3.2) from

the shape catalogue. The final shape catalogue for further analysis
consists of 111 020 sources, which corresponds to an optical source
density of nO

gal = 19.8 arcmin−2.

3.2 PSF estimation

In order that we may deconvolve their effect on source shapes,
PSF models are constructed from the population of stars visible
across the field. Unlike galaxies, stars are intrinsically point-like
from the point of view of these observations and thus provide
the approximate PSF response on an irregular grid of positions
on the sky. By constructing a stellar catalogue for each exposure,
we can build the required PSF models. In order to extract the best
PSF models possible, we perform PSF estimation (and subsequent
galaxy shape measurement) using the individual exposure images,
rather than the co-added and smoothed images used for source
detection in Section 3.1 above.

The full iterative procedure for identifying the stellar locus for
PSF modelling in the source catalogue is outlined below:

(i) Calibrated single exposures. The single exposures were
prepared and calibrated from the raw data. We perform astrometric
calibration of each CCD exposure independently via a series of
steps. The first involves creating an initial source catalogue per
exposure using the source extraction software, SEXTRACTOR men-
tioned previously in Section 3.1. Astrometric solutions were then
calculated by matching this catalogue to the Second-Generation
Guide Star Catalogue (Lasker et al. 2008) as our astrometric refer-
ence catalogue; the solutions are computed using the observational
calibration software SCAMP (Software for Calibrating AstroMetry
and Photometry). Finally the astrometric solutions are applied to
the single exposure images using the image resampling software
package SWARP (Bertin et al. 2002).

(ii) Initial stellar catalogue. An initial source catalogue is
constructed using SEXTRACTOR on each exposure. We extract
the stellar population in this first iteration by applying a selec-
tion cut to the SEXTRACTOR Neural-Network-based star/galaxy
classifier, class star, which is described in more detail in
Bertin & Arnouts (1996). An initial star selection cut was made
with, class star> 0.9 and signal-to-noise-ratio SNR > 20 to
produce the first iteration stellar catalogue. The reliability of
class star is discussed in Holwerda (2005).

(iii) Improved stellar catalogue. The full surface brightness PSF
models were calculated using the software package PSFEX (PSF
Extractor; Bertin 2011) from the initial stellar catalogue obtained
in step (ii). These models were then fed back into a second run of
SEXTRACTOR to construct a second iteration stellar catalogue. This
time the software incorporates the PSF model into the morphology
estimates and we are able to produce a more reliable star/galaxy clas-
sification. We adapt the pseudo-code detailed in Jarvis et al. (2016)
(section 2.2) for the star source selection which we implement as
follows: where theseeing is estimated in the initial data reduction.

size test = 0.9 <flux radius/seeing <1.3
and mag auto <24.0

star test = class star >0.3

locus test = spread model
+spreaderr model <0.003

faint psf test = mag psf >40.0
and mag auto <26.0
and mag psf <90.0

stars = size test and
[locus test or star test]
and not faint psf test

The locus test procedure identifies the source locations relative
to the stellar locus via the spread model parameter. This is an
additional star/galaxy classifier based on the difference in goodness-
of-fit between the best-fitting PSF model and a model made from
the same PSF convolved with a circular exponential disc model
(see Desai et al. 2012, for a more detailed discussion on the
spread model classifier). Again we only include stars with
SNR > 20 in our final stellar sample. A star is included in the
final stellar catalogue if it has measured SExtractor properties
passing the size test (an initial stellar locus approximation); is
not flagged as junk by the faint psf test, and meets either of
the locus test or star test. Fig. 2 provides an example of
this classification.

(iv) Final PSF models. Finally we again generate PSF models,
this time from the improved stellar sample from step (iii) and using
PSFEX. This provides a PSF model as a function of position on the
sky for each of the individual exposures.

3.3 PSF model diagnostics

To assess the quality of our PSF models constructed in Section 3.2,
we performed a number of systematic checks. In particular we want
to ensure that we have minimized any potential PSF contamination
of the galaxy shapes and any remaining systematic is sufficiently
smaller than our expected signal. These systematic errors may be
introduced through inaccuracies in the PSF modelling process,
for example through an inappropriate stellar sample or errors in
the interpolation. Such errors in the PSF models will be corre-
lated among galaxies and hence become a source of systematic
bias in estimated shapes which will propagate into the shear
estimates.

A useful diagnostic for quantifying the PSF model error was first
introduced by Rowe (2010) and provides a test using the observed
shapes of individual stars reproduced by the PSF model constructed
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SuperCLASS – III. Radio-optical weak lensing 1741

Figure 2. Example of stellar locus identification. The green points show the
successfully identified members of the stellar locus. Saturated stars, which
are removed from the analysis, are also identified.

at that same location by the model interpolation. This diagnostic is
defined as

ρ1(θ ) = 〈
δe∗

PSF(x) δePSF(x + θ )
〉
, (1)

where e∗
PSF is the PSF model ellipticity (defined as in Kilbinger 2015,

equation 25) at a given location and δePSF is the residual between
the true measured stellar ellipticity and the PSF model ellipticity
evaluated at that location. Note 〈a∗ a〉 defines the autocorrelation
function of a given parameter a (for a full description and set of
definitions for angular correlation functions see Kilbinger 2015,
section 3.8).

Following the approach taken in Paulin-Henriksson et al. (2008)
and Kuijken et al. (2015), we also introduce a second statistic
relating to the PSF residual sizes:

ρ2(θ ) = 〈
δR2∗

PSF(x) δR2
PSF(x + θ )

〉
, (2)

where R2
PSF = Q11 + Q22 are the unweighted second-order mo-

ments of the PSF model residual (residual from the PSF model and
observed star size).

For the purposes of this work (detection of the angular power
spectrum, rather than precision cosmological measurements),
anisotropy systematics from PSF model interpolation should be
subdominant to the expected shear lensing signal. To quantify this
we measure the statistics, ρ1 and ρ2, from the data. To obtain
δePSF and δR2

PSF, an estimate of the star population and PSF
model shapes and sizes are required. These are obtained from
the quadrupole moment measured using the FindAdaptiveMom
tool in the GalSim software package (Rowe et al. 2015). This tool
iteratively computes a best-fitting elliptical Gaussian model to find
the equivalent weighted fit to the image quadrupole moments (see
Hirata & Seljak 2003). The star population shapes and associated
PSF shapes at the star positions are obtained directly from the
FindAdaptiveMom task applied to the data image and the
synthetic PSF model cut-outs, respectively.

In Fig. 3 we show the ρ1 and ρ2 statistics as a function of
the associated parameter from the optical data at a separation of
1 arcmin for a selection of exposures in the SCLASS2 sub-field
(one of six). A separation of 1 arcmin was chosen as in Kuijken
et al. (2015), since this is roughly the limiting scale at which the
statistics ρ1 and ρ2 can be reliably computed, given the stellar source

Figure 3. The PSF model interpolation diagnostics are presented for
a selection of SuperCLASS Subaru SC photometric exposures in the
observation band i

′
, from the SCLASS2 sub-field as an example. The top

panel shows the δePSF autocorrelation and the bottom panel shows δR2
PSF

autocorrelation, which relate to the PSF shape and size reproducible from
the input stellar population. The different symbols represent four different
epochs of observations. Each exposure has 10 data points, one for each
of the CCDs. The dashed line shows the average expected signal from
the SuperCLASS-like supercluster simulations with the spread across the
different clusters indicated by shaded region. The unfilled markers indicate
negatives. This shows that PSF residual systematics are constrained to be at
a level below 10 per cent of the expected signal strength.

density. We compare ρ1 and ρ2 with the expected SuperCLASS
shear signal (obtained from the supercluster N-body simulations
discussed in Section 4.2.2). The ρ1 and ρ2 can be seen to be lower
than the expected signal. For the purpose of this analysis, this is
sufficient for detection. We also consider an alternative approach
to setting requirements on the PSF models, in terms of the PSF
leakage (denoted α) into galaxy shapes. This provides a post process
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1742 I. Harrison et al.

systematic check, looking for traces of PSF contamination in the
measured galaxy shapes.

We adopt the parametrization of the galaxy shape ellipticity
contributions first proposed by Heymans et al. (2006),

〈e〉 = (1 + m) γ + α ePSF + c, (3)

where m is the multiplicative error, c is the additive error, and α

defines the PSF leakage upon the galaxy shapes. The PSF leakage
term α is often combined with the additive bias c. However we
follow Jarvis et al. (2016) and keep α decoupled from c since we are
interested in testing the PSF leakage explicitly. The minimization of
these three quantities is the objective of the systematic corrections
applied to weak lensing data sets.

By substituting equation (3) into the shear two-point correlation
functions, an expression for the systematic error on the two
correlation functions is obtained:

δξ±(θ ) 	 2mξ±(θ ) + α2ξ
pp
± (θ ) + ξ cc

± (θ ), (4)

where ξ
pp
± is the autocorrelation function of the PSF shapes, and

ξ cc
± is the autocorrelation function of the additive error, c. Here,

we have assumed that the systematic quantities (m, c, and α) are
uncorrelated.

For the SuperCLASS project, our expectations are the detection
of the shear field and thus our requirements are not as stringent as
other weak lensing studies (e.g. Kuijken et al. 2015; Jarvis et al.
2016). We place requirements on the systematic contributions to
ξ±(θ ), which must be significantly less than the expected signal.
Hence, from equation (4) we can form this requirement in terms
of the bias parameters. For the PSF model analysis we are only
concerned with placing requirements on the PSF leakage term:

|α| <

(
δξ±(θ )

ξ
pp
± (θ )

) 1
2

. (5)

For our detection purposes this provides the condition

α2ξ
pp
± (θ ) < ξ±(θ ). (6)

We compute this PSF leakage in Section 3.4 using the galaxy shapes
measurements presented there, and present the result in Fig. 4.

3.4 Shape measurement

With the image calibration and PSF model construction complete
to suitable requirements the galaxy shapes can now be extracted
from the data. We take advantage of ongoing weak lensing projects
in optical studies. Specifically, we follow closely one of the shape
fitting procedures implemented by Jarvis et al. (2016), applying
a maximum likelihood model-fitting algorithm, IM3SHAPE (Zuntz
et al. 2013), for estimating galaxy ellipticities.

IM3SHAPE was shown to be a good method for galaxy shape
estimation during the GREAT optical weak lensing challenges
(Kacprzak et al. 2012; Kitching et al. 2012; Mandelbaum et al.
2015). Furthermore, IM3SHAPE allows for multi-epoch fitting by a
simultaneous fit to exposures. This is an alternative approach to
multi-exposure fitting by co-addition (or stacking) of exposures.
As already mentioned in Section 3.2, we wish to minimize the
resolution as much as possible to obtain the optimal number of
unbiased shape estimates; co-addition would likely increase the
minimum resolution available for any given source. Instead by the
simultaneous fit to exposures, we are able to keep an individual PSF
model per exposure.

For each source postage stamp, we also check for neighbouring
sources in the cut-out area using SEXTRACTOR to identify source

Figure 4. The |ξ+(θ )| and |ξ−(θ )| correlation functions for the i
′
band shape

analysis as measured by TREECORR are presented in the top and bottom
panels respectively. The green points show the galaxy autocorrelations
(the weak lensing signal, |ξgg

± (θ )|). The blue points show the PSF auto
correlations (pure systematics, |ξpp

± (θ )|) which are fully accounted for
during the extraction of the galaxy shape measurements. The shaded region
and dashed line shows the spread and mean of theoretical signals from
the (SuperCLASS-like) supercluster simulations describe in Section 4.2.2.
We provide the systematic check from equation (8) in red for the |ξ+(θ )|
correlations (top panel). At lower separations the recovered signal is
significantly above the systematic checks. The absolute values for each
are plotted, with unfilled markers indicating negative values.

positions on a stamp-by-stamp basis. Flux from a neighbouring
source can cause a bias in measured galaxy shapes and consequently
on the measured shear. Even when considering an idealized (and
isotropic) distribution of neighbours over an ensemble of galaxies,
work by Samuroff et al. (2018) found a significant multiplicative m
shear bias arose. This showed strong dependence on distance to the
nearest neighbour, and therefore the source density.

For minimizing bias effects from neighbouring sources, we
include the masking of the neighbours in the accompanying postage
stamp weights. Pixels are associated with a given source using
the shape information from a Gaussian elliptical fit measured in
the postage stamp SEXTRACTOR source catalogue. Neighbours are
searched for out to a distance of 1.5 times the source full width
at half-maximum (FWHM) measured by SEXTRACTOR. The pixel
weights are associated with the central source out to twice the
measured FWHM; this ensures the central area remains unaffected
by the neighbouring mask. An example of a masked IM3SHAPE

fit is shown in Fig. 5. In this case the model fit is clearly improved
when the neighbouring sources are masked. This is further indicated
through the measured χ2

pixel which was found to be 38.99 and 1.45
for the un-masked and masked cases, respectively.

MNRAS 495, 1737–1759 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/495/2/1737/5815095 by C
yprus U

niversity of Technology user on 24 N
ovem

ber 2020



SuperCLASS – III. Radio-optical weak lensing 1743

Figure 5. Postage stamps from a single exposure for source ID 467466 in
the photometric catalogue, showing in the left-hand column the unmasked
version and in the right-hand column with masking applied by multiplying
with associated stamp weights. The top row shows the image and the bottom
row the resulting IM3SHAPE fit for each case.

For each galaxy position from the catalogue created in Sec-
tion 3.1, 10 arcsec × 10 arcsec image cut-outs from the present ex-
posures and the appropriate PSF model images are constructed. We
also run through the fitting procedure twice for each galaxy, since
we found some issues with using the two-component summation of
the bulge and disc fits. In many cases one of the components would
be fit to a large negative amplitude which we wish to avoid. We
instead fit first with a pure bulge (de Vaucouleurs) and then with a
pure disc (exponential) model, fixing the other component to zero
in each case. In the final catalogue we keep the fit with the closest
χ2

pixel to 1 for each galaxy.

3.5 Shear correlation function

In order to assess the quality of the shape measurements discussed
above, we make use of the real-space two-point correlation functions
of galaxy shapes.

We calculate the two-point correlation function, corrected for
sky curvature, from the shape catalogue produced in Section 3.4,
using the freely available code TREECORR1 (Jarvis; Bernstein &
Jain 2004; Jarvis 2015) which has been specifically designed for
use with cosmology and weak lensing studies. The shear two-
point correlation function is parametrized by ξ

gg
+ (θ ) and ξ

gg
− (θ )

(gg: galaxy–galaxy) which are shown in Fig. 4. In each of these
plots we also include the expected signal derived from the N-body
supercluster simulations (see Section 4.2.2). The shear two-point
correlation functions are calculated with TREECORR for the full range
of uncertainty given by the simulation realizations. The measured
signal from the Suprime-Cam data, also displayed for both ξ

gg
+ (θ )

and ξ
gg
− (θ ), lies comfortably in the shaded region (which represents

the spread in correlation functions from the different clusters in

1https://github.com/rmjarvis/TreeCorr

the simulations), signifying that the data agrees with the theoretical
signal expected from the supercluster simulations.

In previous studies a number of tests have been used to assess
the quality of data by searching for signals which would be zero
without the presence of systematic errors in the data. We perform a
direct comparison of the galaxy correlation function ξ

gg
+ (θ ), to the

galaxy-PSF shape cross-correlations ξ
gp
+ :

ξ
gp
+ = 〈e∗(r)〉〈epsf(r + θ )〉, (7)

where epsf(r) is the shape of the PSF surface brightness model at
position r.

This cross-correlation test will expose any PSF leakage on to
the galaxy shapes, potentially a major source of shape bias. We
parametrize this test in terms of the PSF leakage parameter α in
order to relate back to our noted requirements in Section 3.3, where
for our detection purposes, α2ξ

pp
± (θ ) < ξ

gg
± (θ ). We can re-write

equation (3) in terms of ξ
gp
+ , to solve for α,

α = ξ
gp
+ − 〈egal〉∗〈ePSF〉
ξ

pp
+ − |〈ePSF〉|2 , (8)

as shown in Jarvis et al. (2016). We make a comparison of the
detected signal in the correlation function to this statistic in Fig. 4
where we can see that the lensing signal inferred from the ξ

gg
+ is

significantly above the systematic statistic α2ξ
pp
+ , at least up to

scales of ∼10 arcmin. A ‘pure’ systematic signal is shown by the
PSF shape autocorrelations, ξ

pp
+ for comparison. We also show the

ξ
gg
− statistic, which again is consistent with expectations from the

simulated supercluster regions.

3.6 Redshift distributions

For a full description of the initial redshift analysis of the op-
tical data, we refer to Paper II. Redshifts are derived using the
BVr

′
i
′
z

′
Y photometry from Subaru, plus IR data from the Spitzer

telescope, and by using the EAZY (Brammer, van Dokkum &
Coppi 2008) template fitting code. The lack of full coverage of
the field in the z

′
band, and lack of any coverage in the u band,

means there are significant degeneracies between low-redshift z

< 0.5 and high-redshift z > 2 templates, making many of the
redshifts unreliable, particularly in the range 0.2 < z < 0.8.
Therefore, other than isolating the cluster members we do not use
the photometric redshifts for these sources in our weak lensing
analysis, choosing instead to perform a 2D cosmic shear analysis,
without tomographic binning, on the catalogue described above in
Section 3.1.

3.7 Shear maps

In addition to the two-point shear statistics described in Section 3.5
we also create maps of the shear measured from the optical
shapes in 6.67 arcmin pixels, as shown in the upper panel of
Fig. 6, plotted on top of the relative density of galaxies in the
photometric data set which have zphot = 0.2 ± 0.08 and i

′
<

22.5 (see Paper II, Section 4.3.2). Also plotted for reference are
the locations of the Abell clusters forming the supercluster field.
We validate this pipeline by also running it on a simulation.
In the lower panel of Fig. 6 we show the shear signal in a
comparable simulation of the SuperCLASS optical observations.
This simulation has a shear signal calculated as described in
Section 4.2.2 for one of the supercluster regions. The distribu-
tion of foreground sources is given by Poisson sampling the
corresponding convergence map and ensuring number densities
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Figure 6. Maps of relative galaxy density (colour scale) and measured
shear signal (ticks) from the SuperCLASS optical data (upper, with Abell
cluster locations also shown as cyan circles) and a simulated data set with the
same noise properties and a shear signal given by a comparable supercluster
region (lower). Note the different spatial extents and aspect ratios between
the two plots.

match between simulation and data. Shape noise is included
by randomly rotating the shapes of sources in the real optical
catalogue and placing them in a uniform distribution across the
map. We note that the lack of visual correspondence between
the cluster overdensity field and the shear field is likely due to
a number of reasons, including shot noise due to intrinsic galaxy
shapes, residual shear measurement systematics, and foreground
galaxies in the lensing sample. For a rigorous assessment of the
significance with which we detect a shear signal, see Section 5
where we calculate the two-point statistics of the measured shear
field.

4 RADIO SHA P E MEASUREMENT

As discussed in Section 1, SuperCLASS is the first survey to be
designed with the express purpose of measuring a weak lensing
signal in the radio. The most basic building block of a weak lensing
cosmic shear measurement is a catalogue of shapes of distant

galaxies, from which the shear may be inferred. Highly precise
and accurate shape measurement methods have been developed
over a number of years for CCD images (e.g. the compilation of
Mandelbaum et al. 2015), but for radio interferometer data, the
situation is less well developed. A number of approaches have
been proposed (Rivi & Miller 2018; Rivi et al. 2019) but have
only been tested on simulations, and not real data. Conversely
the method used in Chang et al. (2004) was applied directly to
data, but not simulations (still less simulations of the more recent
data sets which are far greater in volume). Here we detail the
identification of sources in our data suitable for weak lensing shape
measurement, and our method for recovering the shapes of sources
in the image plane (which we call SuperCALS and describe below
in Section 4.3).

4.1 Weak lensing catalogue

For a full description of the SuperCLASS catalogue generation, we
refer to Paper I, Section 4. In short, from images produced with
the CLEAN algorithm, we run the PYBDSF (Mohan & Rafferty 2015)
source finding algorithm, which both estimates the noise in the
image and finds sources by fitting multiple Gaussian profiles. The
weak lensing catalogue is a subset of this full catalogue, with the
selection cuts described here. All the sources described are in the
DR1 region defined above.

4.1.1 VLA catalogue

The VLA weak lensing catalogue is created from the VLA DR1
catalogue, whose creation is described in Paper I. From this
catalogue we then select sources which are resolved according to
the PyBDSF output columns:

DC Min > 0

and DC Maj > 0

and Maj > BMAJ,

where DC Min and DC Maj are the PyBDSF deconvolved major
and minor axes, Maj is the PyBDSF convolved major axis and
BMAJ is the restoring beam major axis, used in the creation of the
deconvolved image. We also impose a cut to ensure the sources have
high signal-to-noise ratio:

Total flux > 50μJy,

where Total flux is again measured by PyBDSF, corresponding
to a typical SNR cut of SNR > 7.

We also make a cut to keep only sources which are visually
consistent with having ‘simple morphology’ – which we use as a
proxy for removing contaminating Active Galactic Nuclei (AGNs)
sources. AGNs are expected to be the source of a significant
fraction of the emission in the radio sky at L-band frequencies, and
themselves have a rich taxonomy of spectral and morphological
sub-classes. Weak lensing shape measurement using simple models
with elliptical isophotes, as used here, relies on there being a small
‘model bias’ between such models and the true galaxy flux (see
e.g. Voigt & Bridle 2010), but this bias will be large when fitting
a simple model to a complex AGN, meaning we choose to discard
them for shape measurement.

Here we assume that all sources are heavily dominated by
either (i) synchrotron emission from star-forming regions, or (ii)
emission from jets and hot spots associated with AGN. Sources in
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the class (i) are identified by having visually simple morphology,
whilst sources in class (ii) are expected to have more complex
morphologies consisting of multiple components and flux peaks.
This classification was performed visually by multiple members of
the SuperCLASS collaboration, using tools from the Zooniverse
(e.g. Fortson et al. 2012, and Paper I Section 4.4), with postage
stamp images of each source to be classified from e-MERLIN,
VLA, and Subaru data presented next to each other. Users are asked
to classify the sources as simple or complex morphology. Sources
are then included in the weak lensing catalogue when a majority
of users classify the source as having simple morphology. More
sophisticated ways of classifying radio sources between AGN and
star-forming galaxy categories exist (such as those making use of
radio-infrared correlations), but here we use this simple criterion
with the goal of maximizing the number of sources available for
shape measurement rather than losing information due to e.g. lack
of infrared detections.

Some of these sources may in fact have emission dominated by a
Radio Quiet AGN (RQ-AGN) component (see e.g. Padovani et al.
2015; Prandoni et al. 2018). Cleanly separating these populations
is usually done by combining L-band radio data with 24μm and
X-ray data, which we do not have available for this field. However,
when plotting the joint distribution of best-fitting Sérsic index and
radius for the sources, we do not see any excess of sources which
have a high Sérsic index and small radius, as may be expected for
contaminating RQ-AGN.

When these cuts are applied and the SuperCALS shape measure-
ment method is applied (as in Section 4.3) we are able to measure
440 shapes in the DR1 region, corresponding to a radio weak lensing
source number density of nR

gal ≈ 0.47 arcmin−2.

4.1.2 e-MERLIN catalogue

The e-MERLIN weak lensing catalogue is created by cross-
matching the e-MERLIN DR1 catalogue (as described in Paper
I) with the VLA DR1 weak lensing catalogue. This leads to a total
of 56 sources available for shape measurement in the ∼0.26 deg2

area, a source density of 0.06 arcmin−2. The e-MERLIN catalogue is
defined in this conservative way in order to avoid spurious detections
in the weak lensing catalogue. The nature of the e-MERLIN PSF
and noise correlations induced by the sparse uv-plane coverage
mean that high fractions of detections from running the PyBDSF
source finding code were identified as false detections – with similar
numbers being found in the negative image (i.e. the map multiplied
by −1, which should contain no real sources with negative flux). We
therefore choose to include e-MERLIN information as additional
shape information, where available, for the VLA catalogue in
separate columns in the weak lensing catalogue which are not used
in the main science analysis in Section 5.

4.2 Simulation pipeline

The process by which radiation falling on to a radio telescope is
turned into estimated measurements of the cosmic shear signal along
a given line of sight is a highly complicated, non-linear process.
Many aspects of this process are potentially capable of introducing
a spurious shear signal into our data which may be mistaken for
the true signal. In order to evaluate and quantify these systematic
error effects we have constructed a simulation pipeline, referred
to as SimuCLASS, which seeks to replicate as far as possible the
full forward model applied to create a shear catalogue from the sky

brightness distribution: performing exactly the same operations on
the simulated data as are applied to the real data. We then inject sky
models with known shear properties into the pipeline and attempt to
recover the signal using our shear measurement method. This allows
us to both calibrate and validate the method. The SimuCLASS
pipeline comprises four main parts, with the simulated visibility
data then being fed into the imaging and source finding pipeline
described in Section 4.1 and Paper I, before analysis with the shape
measurement method described in Section 4.3.

4.2.1 Population model

For our population model we use the Tiered-Radio Extragalactic
Continuum Simulation (T-RECS) of Bonaldi et al. (2019). This
is a new simulation of the radio sky in continuum, which repro-
duces the most recent compilation of data in terms of number
counts, luminosity functions, and redshift distributions over the
150 MHz–20 GHz range. Of the observational parameters modelled
in T-RECS, those relevant for this work are: the position on
the sky, the integrated flux at 1.4 GHz, the source class (either
AGNs or star-forming galaxies, SFGs) and the source size and
shape.

Starting from a dark matter-only N-body simulation of
800 h−1 Mpc3, haloes are found and grouped together down to a
mass of ∼108 h−1 M� and light cones constructed in a 5 × 5 deg
sky area out to a redshift of z = 8. Abundance matching methods are
then used to assign galaxies to haloes, thus giving realistic clustering
properties to the galaxies of each population.

The shape and size of AGNs is modelled in T-RECS in terms
of a largest angular size and distance between the hot spots, in a
way that reproduces the observed correlation with both flat/steep
spectrum and FRI/FRII classifications.

The shape and size of SFGs is modelled as an exponential
intensity profile:

I (r) = I0 exp (−r/r0) , (9)

where I0 is a flux normalization, and r0 is the scale radius. The
sources are given an intrinsic ellipticity |εint| from the distribution
found in radio VLA observations of the COSMOS field as in
Tunbridge et al. (2016):

P (|εint|) = |εint|
[

cos

(
π |εint|

2

)]2

exp

[
−
(

2|εint|
B

)C
]

, (10)

with the best-fitting parameters B = 0.113 ± 0.041 and C =
0.303 ± 0.058, giving a shape noise dispersion of σ int

ε = 0.29
(per ellipticity component).

4.2.2 Shear signals

In order to model the weak lensing shear expected in the Su-
perCLASS field, we make use of a suite of N-body simulations
to model the expected signal. Fully described in Peters et al.
(2018), this simulation consists of 25203 dark matter particles
of 5.43 × 1010 h−1 M� evolved from redshift z = 127 to z =
0. Superclusters are then identified in the simulation which have
similar properties to those expected in the SuperCLASS field –
regions with five cluster members in the z = 0.24 output snapshot
which are linked with a friends-of-friends algorithm with linking
length l = 8 h−1 Mpc. This identifies 61 supercluster regions which
are then re-simulated, along with 60 randomly chosen regions,
at a higher resolution as part of the MACSIS project (Barnes
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et al. 2017; Henson et al. 2017). This involved dark matter only
(particle mass 5.2 × 109 h−1 M�) and full hydrodynamical (initial
gas particle mass 8.0 × 108 h−1 M�) simulations. The supercluster
regions allow us to predict the measurable enhancement of the
matter power spectrum and, using techniques developed as part of
the SUNGLASS pipeline (Kiessling et al. 2011), the enhancement
of the weak lensing shear power spectrum, which may be expected
in the SuperCLASS region over a randomly chosen field. This
enhancement is found to be a factor ∼2 with variations between
1 and 3. The mean measured shear power spectrum from the 61
supercluster regions is used to represent theoretical expectations
for the shear power spectra measured in Section 5.

4.2.3 Sky models

The simulation pipeline creates models of sky emission using the
GalSim galaxy image simulation toolkit (Rowe et al. 2015), a
fast and accurate package for creating simulated galaxy intensity
profiles. We place sources with properties in accordance with
a simulated catalogue from the T-RECS simulation (see Sec-
tion 4.2.1), from which we take the sky position (with respect to the
pointing centre), source type, flux, size, and intrinsic source shape.
Each source is also sheared with the correct amount of cosmic
shear for its sky position according to the shear signal simulation
(Section 4.2.2).

We use the same sky models to model the entire observed radio
bandwidth (i.e. assume flat spectral indices across the sources),
which is not strictly correct. However, spectral imaging is not
performed on the real data, meaning morphological information
available is averaged over the bandwidth into a single image in the
same way, and the shear signal we are looking for is independent of
wavelength.

Sources of extragalactic radio emission at the ∼1 GHz frequen-
cies and μJy fluxes considered here are expected to be a mixture of
SFGs and AGN. Individual SFGs are expected to have (on average)
simple emission profiles with elliptical isophotes, and it is these
objects which we seek to measure the shape of in order to form
an estimator for weak lensing shear. Resolved AGNs are expected
to have significantly more complicated morphologies, meaning we
do not consider them for shape measurement, but they can still be
included in simulations in order to quantify effects from e.g. their
un-deconvolved sidelobe noise.

For the purposes of DR1 we are using shapes only from relatively
high signal-to-noise objects in a relatively small field, meaning
we choose not to include AGN in the simulations used for the
SuperCALS calibration in Section 4.3.

Star-forming galaxies are drawn with the exponential intensity
profile (equation 9) and intrinsic ellipticity (equation 10) included in
the T-RECS catalogue. We draw the values for the galaxy position
angle θ from a uniform distribution. Finally, a shear γ from the
expected (from the N-body simulation described in Section 4.2.2)
weak lensing signal at the sky location of the galaxy is added, and
the flux is added over the correct number of pixels in the full image
out to a maximum radius r995 such that 99.5 per cent of the flux is
placed in the image.

4.2.4 Interferometer model

We then model the observation of these simulated skies by the VLA
and e-MERLIN radio telescopes. Schematically, radio interferome-
ters turn a real, 2D sky brightness distribution I(l, m) into a 3D data

set of complex-valued visibilities (see e.g. Thompson, Moran &
Swenson 2017):

Ṽ (u, v, w) = MFCA I (l, m) + N. (11)

Here, the operators MFCA represent different components of the
forward model. A is the primary beam, giving the response to
the sky of an individual element within the interferometer. C is
the w-term, representing the projection from the 2D sky to the
3D space in which the antennas exist (i.e. due to the Earth’s
curvature). F is the Fourier transform operation, and M is the
masking function, representing the sampling of the full visibility
space by the finite set of observations present in the data. Each
sample represents an integration over a small time and frequency
interval at a spatial scale represented by the baseline between the
pairs of antennas in the array. N is a noise term, typically taken
to be Gaussian distributed and uncorrelated between visibility
points.

Visibilities are an incomplete sampling of a 3D integral trans-
form (Fourier transform plus the w-term) of the sky brightness
distribution. Fig. 7 shows the inverse-noise weighted density of
the Fourier uv plane sampling in one pointing of the VLA and
e-MERLIN observations from SuperCLASS. Transforming this
coverage back into the image plane provides the PSF (usually
referred to as the ‘dirty beam’) which is convolved with the sky.
This beam is set by the time and frequency samplings and the spatial
distribution of antennas in the telescope, all of which are known
to a high degree of precision. However, the missing information
from unsampled parts of the Fourier plane leads to significant
PSF sidelobes which extend across the entire sky. These sidelobes
mix information from multiple sources, making shape measurement
of individual sources highly challenging and potentially requiring
simultaneous shape measurement across many sources as described
in Rivi et al. (2019). The visibilities here are created using the
simulation tools in the CASA radio astronomy package (McMullin
et al. 2007). In order that the dirty beam PSF of our simulations
matches as closely as possible that of the real data, we make use
of the uv coverage available on each pointing centre in the real
data, after losses due to telescope outages and Radio Frequency
Interference (RFI) removal. This means we can create simulated
images which have exactly the same dirty beam PSF as the real
ones.

From the real data pipeline (see Paper I, Section 3) we obtain
single CASA measurement sets corresponding to the full set of
observations for each of the SuperCLASS pointings, separately for
the e-MERLIN and VLA telescopes. The CASA simulator tool is then
used as sm.openfromms and sm.predict in order to project
the simulated sky brightness distribution on to the visibilities. This
prediction consists of the full 3D transform, including the w-term.

Noise is added as uncorrelated Gaussian random variates to each
visibility point, with a variance of 0.4 Jy in order to match the
image-plane noise levels. Here, we assume no calibration errors
(such as residual phase errors) are present in the data, seeking only
to assess the impact of noisy interferometric imaging observation
and imaging reconstruction, but such effects should be included in
future.

4.2.5 Imaging deconvolution

Imaging of each simulation is carried out using the same algorithms
and settings as for the real data, to ensure shape measurement
artefacts are correctly mimicked. Simulated VLA data are imaged
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Figure 7. uv plane coverage of the J28 pointing for (left-hand panel) e-MERLIN and (right-hand panel) VLA on Fourier scales in units of kilo-wavelengths.
Colours show the density of visibility data, with bright regions having higher density, and hence lower noise on the corresponding Fourier scales. The black
areas represent gaps in the uv coverage where no telescope baselines exist to make a measurement.

(as in Section 2.1.1) using the CASA tclean task, with multi-scale
CLEAN and Briggs weighting, while e-MERLIN data are imaged (as
in Section 2.1.2) using WSCLEAN, using natural weighting. As no
sources brighter than 500μJy are included in the sky model, there
is no need to account for the effects of such sources via peeling or
self-calibration, but this means our simulations also do not include
detrimental effects from incompletely removed bright confusing
sources.

4.3 Shape measurement with SuperCALS

Although images recovered from radio interferometer data have
been shown to contain useful morphological information, galaxy
ellipticity measurements from such images are typically highly
biased (Patel et al. 2015). Here, we implement an image-plane
shape measurement method on the images produced from our data
which involves a step to calibrate these biases, referring to this
method as SuperCALS (Super Calibration of All Lensed Sources).
The philosophy of this method originates in the many optical shear
measurement methods which rely on a step in which simulated
sources are injected into the noise environment of the real data (e.g.
MetaCal, Sheldon & Huff 2017). Even if a method produces a shear
measurement which is biased, if we can produce simulations which
are sufficiently representative of the real data (specifically in that
the method has the same bias with respect to the simulations as the
real data) then we may inject data with known shear signals into
the method, recover the biased results, and then use these bias
values to calibrate our shear estimates in the real data images.
This is reliant on the biases created being relatively small, i.e.
still well-modelled by first-order shear transformations of galaxy
profiles with elliptical isophotes. The results in Section 4.3.2 show
that this appears to be the case for the majority of the sources of
interest.

4.3.1 Method

We first make an image from the VLA or e-MERLIN data using
the CLEAN algorithm, as described in Section 4.2.5 (and in Paper I,
Section 3). The CLEAN algorithm creates a model of the original sky
brightness distribution by iteratively deconvolving the dirty beam
PSF. This process is highly non-linear, and has noise properties
which are hard to estimate. The outputs from this process are:

(i) The dirty beam PSF: the image plane representation of the uv
coverage. This is the PSF which is convolved with the sky brightness
distribution in the observation, and is precisely known and highly
deterministic, but has significant sidelobes extending across the
entire field, meaning confusion is a problem for all sources.

(ii) The ‘dirty image’, consisting of the transformation of the
data into the image plane, giving the sky emission convolved with
the dirty beam PSF.

(iii) The ‘model image’, consisting of a set of source models
(typically Dirac δ-functions) of varying brightness and sky location,
representing the deconvolved sky brightness emission as determined
via the CLEAN algorithm.

(iv) The ‘CLEAN image’, consisting of the addition of the flux
from the residual image (see below), plus that from the convolution
of the Dirac δ-function model image with a Gaussian ‘CLEAN beam’
representative of the central lobe of the full dirty beam (i.e. with
no sidelobes). Note that in the CASA CLEAN task used for the VLA
data, both the residual image and the Dirac δ-function model image
is convolved with the CLEAN beam, leading to additional noise
correlations (at least when the restoring beam is manually fixed, as
it is here2).

2See note on restoringbeam argument at https://casa.nrao.edu/docs/tas
kref/tclean-task.html
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(v) The ‘residual image’, consisting of the remaining flux after
the set of Dirac δ-functions in the model image is convolved with
the dirty beam and subtracted from the dirty image.

Rather than measuring shear directly from the CLEAN image, we
rather use the output residual image to model the ‘noise’ on a
shape measurement in our data at a given sky location, both random
(but correlated in the image plane) thermal noise and systematic
noise from un-deconvolved or incorrectly deconvolved sidelobes
from other sources. We then use this model to correct the shear
measurement from the CLEAN image.

We first perform an initial estimate of source shapes by running
the IM3SHAPE code (Zuntz et al. 2013) on the images. As described
in relation to the optical data in Section 3.4, IM3SHAPE performs
a maximum likelihood fit of elliptical Sérsic intensity profiles
convolved with a PSF model to image plane data, and has been
shown to perform at a high level of precision and accuracy when
recovering cosmic shear signals from optical images (Mandelbaum
et al. 2015). For this first run, we use the CLEAN image and CLEAN

beam to estimate the source shapes. IM3SHAPE is run three times
in different modes: once fitting a single Gaussian profile to each
source, once fitting a Sérsic profile with free index, and once fitting
a joint bulge (Sérsic n = 4) plus disc (Sérsic n = 1) profile. The best-
fitting of these three runs is then chosen, with subsequent IM3SHAPE

runs for a given source retaining the fixed combination of number
of components and Sérsic indices for their fitted profiles. We have
found this approach allows a good fit to be found for nearly all of the
weak lensing catalogue sources, with 24 per cent having Gaussian
fits, 67 per cent having free-Sérsic fits, and the remainder having
bulge plus disc fits.

For each source, we then inject model sources with the same size
and flux properties, but known ellipticity, into the residual image.
We then perform a ‘ring test’ to remove the effect of shape noise
(Nakajima & Bernstein 2007) and create a model of the bias on the
IM3SHAPE measured ellipticity at this sky position as a 2D surface.
For each source position on the sky (labelled k) we find the bias
between measured and input ellipticity component e1 as a function
of both input e1 and e2:

bk

(
e

inp
1 , e

inp
2

) = eobs
1 − e

inp
1 . (12)

i.e, bk is a 2D surface with height eobs
1 − e

inp
1 at location (einp

1 , e
inp
2 ).

We construct a similar surface with the heights given by eobs
2 −

e
inp
2 . These surfaces are interpolated between injected simulations

using second-order 2D polynomials. Specifically, we run IM3SHAPE,
fixed to the combination of Sérsic profiles already determined for
this source, on a total of 33 different injected sources,with ei =
{0, ±0.2375, ±0.475, ±7125, ±0.95}. Our estimate of the true
shape for a given source k is then its initial IM3SHAPE estimate
from the CLEAN image, corrected by the bias surface calculated
using the residual image and simulations, evaluated at the measured
uncorrected ellipticity:

eSC
1,k = eobs

1,k − bk

(
eobs

1,k , e
obs
2,k

)
, (13)

and similar for e2. In the weak lensing catalogue, we include both
the uncorrected source ellipticity from IM3SHAPE (eobs

1,k , e
obs
2,k ), and

the ellipticity estimated by the SuperCALS method (eSC
1,k, e

SC
2,k). We

refer to this calibration as source-level calibration.

4.3.2 Performance on simulations

We evaluate the performance of SuperCALS on simulated images
of the VLA and e-MERLIN data created using the SimuCLASS

pipeline described in Section 4.2. We simulated pointings of the
VLA data, injecting only star-forming galaxy sources with total flux
> 50μJy into the sky model, giving ∼400 sources per pointing, a
number density of ∼0.5 arcmin−2. We run the PYBDSF source
finder on these images and for the resultant catalogue run the
SuperCALS pipeline. Given that the Sérsic index is fixed to n = 1 for
the input sources, we only run the IM3SHAPE parts of SuperCALS
in this mode, in contrast to the real data where the Sérsic index
is chosen from the best fitting one across multiple IM3SHAPE

runs.
In Fig. 8 we illustrate the calibration of an individual source

ellipticity by the SuperCALS process. Unfilled blue points show
the measured ellipticities of the sources injected into the CLEAN

residual image. The difference between the injected and recovered
values of ellipticity is used to calculate the calibration surface
using equation (12), with filled circles showing the calibrated
positions of the injected sources after the bias correction is applied
(note that input positions are not perfectly recovered due to the
interpolation). As can be seen in the left-hand panel, the significant
biases represented by the distorted shape of the eight-pointed cross
can be corrected to a high level. We also show in red the uncalibrated
(unfilled) and calibrated (filled) location of the observed source’s
ellipticity.

This procedure works for the vast majority of sources, but a
number of sources with particularly significant image plane noise
artefacts have ‘calibration crosses’ (the data points in Fig. 8) which
are highly distorted, to the point where they no longer form an
obvious cross (i.e. as in the right-hand panel). We find in general
these sources cannot then be successfully calibrated, with crosses
remaining significantly distorted after calibration, and hence we
exclude them from our shape catalogue. This is done by measuring
the total square distance d× between the uncalibrated injection
points in the calibration cross (unfilled blue circles in Fig. 8) and the
input ellipticity values for the injected sources. For sources which
are clear visual failures, with the cross shape not being recovered,
this value is in the range ∼5–50 (with numbers decreasing sharply
as d× increases), and we remove all sources with d× > 5, which
corresponds to a fraction of ≈8 per cent.

We have applied this method to a number of simulations, varying
the input properties of the input T-RECS sky model. For the fiducial
sky model specified by T-RECS, the shape measurement recovery
(the input ellipticities plotted against the calibrated measured
ellipticities) for a single pointing region of the VLA data is presented
in Fig. 9, and for a sky model in which we increase both sizes (by
a factor of three) and fluxes (by a factor of 100) in Fig. 10. For
these sources, the SNR defined as the ratio of the peak recovered
source flux to the RMS noise is 12 < SNRpeak < 580 and for the
SNR defined as the ratio with the total recovered source flux is
80 < SNRtotal < 1200. For the VLA data, which has a relatively
large restoring beam (1.9 × 1.5 arcsec) compared to the typical
size (∼1 arcsec) of T-RECS star-forming galaxies, the shapes of
the fiducial sky model are not recovered well. This is in contrast to
the case of the bright, large source sky model, which demonstrates
the ability of the SuperCALS method to recover unbiased shapes.

We quantify this with the linear ellipticity bias model eobs −
einp = meinp + c for the recovered shapes, and the Pearson correlation
coefficient R between the input and output ellipticities, the measured
values for which are shown in the figure legends. For the fiducial
sky model, the correlation coefficient is low (consistent with zero
for the 59 data points here if they are assumed uncorrelated) and the
SuperCALS method is therefore unable to significantly measure the
input shapes in this case (i.e. there is little morphology information
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SuperCLASS – III. Radio-optical weak lensing 1749

Figure 8. ‘Calibration crosses’ from the SuperCALS method. The unfilled blue circles show the recovered ellipticies of simulated sources injected into the
CLEAN residual image at the location of the real source. The filled blue circles show the calibrated ellipticity measurements for these sources. The red unfilled
and filled points show the ellipticity of the real source, before and after calibration. Left shows a source for which calibration is considered a success, right a
source for which calibration is considered a failure.

Figure 9. Input versus recovered source ellipticity for the simulated J28
pointing of the VLA DR1 data using SuperCALS, with the fiducial T-RECS
sky model. The legend indicates the intercept and slope of the best-fitting
linear relation, and the estimated correlation coefficient between the ein and
eout values.

preserved in the image for it to measure). When reporting measured
shapes from SuperCALS for the radio sources in Section 4.4 we also
apply the linear bias correction derived from Fig. 9 as a population-
level calibration in addition to the source-level calibration part of
SuperCALS and described above.

As an additional shape measurement method to SuperCALS,
we also provide the initial, uncorrected IM3SHAPE-only shape
measurement of the VLA source shapes.

4.4 Radio shape analysis

We apply the SuperCALS shape measurement described above to
our VLA-only weak lensing catalogue, described in Section 4.1.1.
We include in our catalogue both calibrated and uncalibrated

Figure 10. Input versus recovered source ellipticity for the simulated J28
pointing of the VLA DR1 data using SuperCALS, with the fiducial T-RECS
sky model modified so that each source is three times larger and 100 times
brighter, demonstrating the ability of the method to recover unbiased source
morphology. The legend is as in Fig. 9.

measurements of the galaxy ellipticities e1 and e2 (the uncalibrated
measurement corresponds to simply running IM3SHAPE on the
image, the same method as used in Section 3.4 for the optical
data). These shape measurements are plotted in Fig. 11 and
histograms of their ellipticity modulus |e| =

√
e2

1 + e2
2 (for which

we expect a Rayleigh-like distribution) and position angle PA =
0.5tan −1(e2/e1) (for which we expect a flat uniform distribution)
in Fig. 12. Inspection of the uncalibrated shape distributions in
Fig. 12 leads us to doubt that credible conclusions can be drawn
on morphological information from this data set. The histogram of
position angle shows a significant peak at the position angle of the
beam, in spite of the resolution cut imposed in Section 4.1.1. Upon
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1750 I. Harrison et al.

Figure 11. Measured and calibrated ellipticities from the SuperCALS shape
measurement method for the weak lensing radio catalogue from the VLA
data. The dashed lines represent the unit circle in which physical ellipticities
lie, and the points with solid black outlines are the averages for uncalibrated
and calibrated ellipticities.

inspection of the IM3SHAPE measured source sizes, we find many
are consistent with being smaller than the restoring beam used for
the VLA imaging, as shown in Fig. 13, which again demonstrates
the significant peak at the beam position and size. This strongly
indicates that the morphology of many of the shapes in this image
are still dominated by the restoring beam imposed in the imaging
step. To illustrate this further, in Fig. 13 we show a 2D histogram
of the measured PSF-deconvolved source position angle and radius,
this time measured in pixels by IM3SHAPE while performing the
shape fitting. The orange lines represent the shape of the restoring
beam used in the VLA imaging process. As can be seen, even though
these sources pass the resolution cut from PYBDSF measurements
in Section 4.1.1, they do not appear resolved when measured with
IM3SHAPE and are still dominated by the beam shape. For further
discussion of the ability of our data to constrain the size and Sérsic
profile of these sources see Section 5.2 of Paper I. These sources
may be from unresolved sources interacting with noise peaks in
the image, causing their size to be artificially ‘upscattered’, an
effect expected in radio interferometer images (see e.g. Thomson
et al. 2019).

Because of this residual effect of the beam position angle on the
shape, we apply a further correction to the source ellipticities. A
linearly biased galaxy ellipticity measurement can be rotated into
the frame of a PSF with known position angle αPSF:

exp(−i2αPSF)eobs = (1 + m) exp(−i2αPSF)etrue + c, (14)

and, if m and c can be reliably estimated then we can correct for the
known PSF ellipticity:

ecorrected = eobs − exp(i2αPSF)c

1 + m
. (15)

We therefore use the values for m and c derived from our simulations
in Section 4.3.2 along with the known restoring beam position angle
of 80 deg (imposed as part of the VLA imaging process). Shapes
presented (as ‘Calibrated’) in Figs 11 and 12 and in the shape
catalogue used in Section 5 have this correction applied.

For the analysis presented here, weak lensing measurements are
still dominated by shot noise due to the low number density of
sources, dominating over even this significant systematic. In the
next section we proceed to measure the primary weak lensing
observable of the shear power spectrum inferred from these shapes.
For the full data release with higher number density of galaxies and
hence lower shot noise, we expect that improvements in the imaging
procedure may remove this systematic feature. The addition of
smaller spatial scales from the e-MERLIN data will also raise the
level of morphological information in the image.

5 SHEAR POWER SPECTRA

From the galaxy shapes measured in Sections 3 and 4 we measure
the angular shear power spectra, C

γ (i) γ (j )
� . The two-point statistics

of the shear field are sensitive to cosmological parameters through
the underlying matter overdensity power spectrum Pδ(k), which is
a linear function of the Gaussian primordial perturbations on large
scales. For the shear power spectrum observable used here (e.g.
Bartelmann & Schneider 2001):

C
γ (i) γ (j )
� = 9H 4

0 �2
m

4c4

∫ χh

0
dχ

gi(χ ) gj (χ )

a2(χ )
Pδ

(
�

fK (χ )
, χ

)
, (16)

where H0 is the Hubble constant, �m is the total matter density,
c is the speed of light in a vacuum, χ is the comoving distance,
a(χ ) is the scale factor of the Universe, and fK(χ ) is the comoving
distance (fK(χ ) = χ for a flat universe). The kernels, gi, j(χ ) describe
the relative contributions of the two galaxy samples to the lensing
signal, and are given by

gi(χ ) =
∫ χh

χ

dχ ′ni(χ
′)

fK (χ ′ − χ )

fK (χ ′)
, (17)

where ni(χ ) is the distribution of galaxies, as a function of comoving
distance, for galaxy sample i, and the integral extends to the horizon,
χh. Here the sample labels i, j take on values ‘O’ for the optical
sample and ‘R’ for the radio sample, giving the three power spectra
CRR

� , COO
� and CRO

� .
In order to calculate the power spectra we use the publicly

available3 flat-sky maximum likelihood power spectrum estimation
code fully described in Köhlinger et al. (2016, 2017). This code is
a development of the algorithm presented in Hu & White (2001) to
allow for a tomographic analysis between several pairs of redshift
bins. We do not apply a tomographic shear analysis in this work.
Instead, we perform a 2D cosmic shear analysis between two shear
maps, where all background sources reside in a single, very broad,
redshift bin.

When estimating the power spectrum equation (16) from a finite
sample of galaxies the shear, γ is estimated from the ensemble
average of the measured ellipticities of a number of sources N
within a small region or ‘shear pixel’ of the sky:

γ̂ = 1

N

N∑
i

εi . (18)

We pixelate our shear maps with a side length of θpix = 3 arcmin.
The radio and optical shear catalogues have galaxy number densities
of nR

gal ≈ 0.5 arcmin−2 and nO
gal ≈ 19 arcmin−2, leaving each shear

pixel with an average of ≈153 optical sources and ≈4.5 radio
sources.

3https://bitbucket.org/fkoehlin/qe public
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SuperCLASS – III. Radio-optical weak lensing 1751

Figure 12. Ellipticity modulus and position angle histograms from the SuperCALS shape measurement method for the weak lensing radio catalogue from the
VLA data.

Figure 13. IM3SHAPE radii compared to the restoring beam position angle
for the VLA data. The orange lines show the position angle of the restoring
beam and its size (minor axis, major axis, and the geometric mean of these
as the dashed line). This demonstrates that the size and shape of the beam
is still dominating the morphology recovered for these sources.

The estimate of shear from averaging down galaxy shapes with
〈ε〉 = 0 but 〈ε2〉 �= 0 on a given angular scale � then has a shot
noise term, related to the number density of available galaxy shapes,
ni

gal arcmin−2 and the expected covariance of the intrinsic (i.e. before
lensing) galaxy shapes:

N ij = 1

ni
galn

j

gal

〈∑
α∈i

εα

∑
β∈j

εβ

〉

= n
ij

gal

ni
galn

j

gal

cov(εi, εj ), (19)

where n
ij

gal is the number of galaxies common to both samples.
Here we assume negligible overlap between the radio and optical
galaxy samples, meaning the cross-noise power spectrum is also
negligible, N RO = 0 (which will also be a good approximation
on the angular scales considered here, as discussed in Hillier
et al. 2019). However, for the auto power spectra where i = j,
equation (19) gives N OO = σ 2

εO
/nO

gal and N RR = σ 2
εR

/nR
gal, where

σεi
is the dispersion of intrinsic galaxy ellipticites in the ith

sample.

5.1 Band power selection

The nominal multipole ranges for power spectra extraction were
selected following the prescription outlined in Köhlinger et al.
(2017). While the method of extracting multipoles is the same for
both the DR1 and full regions, we present spectra for both because
of the differing areas.

The largest multipole available to be extracted from the shear
maps is set by the shear pixel side length, θpix = 3 arcmin, corre-
sponding to a multipole of �pix = 7200. The smallest multipole
available is determined by the survey areas. The DR1 region
covers an area of 0.26 deg2, so we choose a survey side length
of θDR1

max = √
0.26 deg, corresponding to �DR1

field = 710. We have also
run the power spectrum estimator on simulations, see Section 5.2,
which cover an area of 1 deg2. For these runs, the survey side length

is θ1 deg2

max = 1 deg, corresponding to �
1 deg2

field = 360. To account for
DC offset effects and/or ambiguous modes (modes which cannot
be distinguished into E- and B-modes), we also include ‘junk’
multipole bins at lower multipoles with a lowest multipole of �min =
100. Since this bin contains unreliable band power measurements,
we discard it in any further analysis.

The widths of intermediate multipole bins were set to at least
2�field to minimize correlations between the band powers (Hu &
White 2001). These widths corresponded to 1420 and 720 for the
0.26 deg2 DR1 and 1 deg2 binnings, respectively. The maximum
multipole of the highest-� band power for both binnings was
extended to 2�pix ≈ 14 400, to absorb any effects resulting from the
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1752 I. Harrison et al.

Table 2. Band power intervals used for the power spectra extraction with
the two different binnings corresponding to the 0.26 deg2 DR1 region and
the 1 deg2 simulations. Only bins 2, 3 (and bin 4 for the 1 deg2 binning)
were retained for further analysis, see Section 5.1. The extraction of the
full 1.53 deg2 optical area used the 1 deg2 binning, see Section 5.4. Bands
shown in grey are measured but not used in the analysis.

Band 0.26 deg2 binning 1 deg2 binning
No. �-range θ -range �-range θ -range

(arcmin) (arcmin)

1 100–710 216.0–30.4 100–360 216.0–60.0
2 711–2499 30.4–8.6 361–1099 59.8–19.7
3 2500–4999 8.6–4.3 1100–2499 19.6–8.6
4 5000–7200 4.3–3.0 2500–4499 8.6–4.8
5 7201–14400 3.0–1.5 4500–7200 4.8–3.0
6 – – 7201–14 400 3.0–1.5

highly oscillatory behaviour of the pixel window function on scales
close to and larger than �pix (Köhlinger et al. 2017). This highest-�
band power was also labelled a ‘junk’ bin and was discarded for
further analysis. Moreover, we have also followed Köhlinger et al.
(2017) in discarding the second-to-last bin when interpreting the
results.

Table 2 lists the resulting band power definitions. Only bins 2,
3 (and 4 for the 1 deg2 binning) contain reliable band powers for
the reasons mentioned above. The table also contains approximate
real-space θ -ranges for each bin. These ranges only serve as
an approximation of the real-space scales probed by each band
power, and should not be used to directly compare the power
spectra measurements to real-space correlation function analyses
for reasons that are discussed in Köhlinger et al. (2017).

5.2 Simulations

To estimate the uncertainties in the band power measurements,
we used the simulated 1 deg2 supercluster shear maps introduced
in Section 4.2.2. These simulations were also used to extract the
expectation band powers for a cluster field and to assess the
performance of the power spectrum estimator in the presence of
the masking and spatial distribution of sources found in the real
data.

In total, 61 supercluster sub-volume simulations were used, each
covering an area of 1 deg2 and split into 20 redshift bins ranging
from zmin = 0.1 to zmax = 2.0 in increments of �z = 0.1. The
shear maps were made with a resolution of 0.1 arcmin pixel−1 and
dimensions of 600 × 600 pixels.

We combine each set of 20 redshift slices by weighting them by
redshift according to

γ1,2(z) =
z=2.0∑
z=0.1

wzγ1,2(z), (20)

where the horizontal bar indicates the weighted average shear
for each 0.1 × 0.1 arcmin2 pixel, applied on a component-by-
component basis. The sum is over the redshift range of the
input shear maps and the weights are described by (Lima et al.
2008):

wz = P (z|i ′) = Bz2 exp

{
−
[

z − zd (i ′)
σd (i ′)

]2
}

, (21)

Figure 14. The redshift distribution used to weight the simulated shear
maps, given by equation (21) with values of zd(i) = −0.1219 and σ d(i) =
0.636.

for a given median i
′
-band magnitude, i

′
. The normalization factor,

B is obtained by requiring that

zmax=2.0∑
zmin=0.1

P (z|i ′) = 1. (22)

The constants, zd(i
′
) and σ d(i

′
) were estimated by using a combina-

tion of our measured median i
′
-band magnitude of i

′ = 22.57 and
values given in Lima et al. (2008), which made use of mock DES
catalogues. This gave values of zd(i

′
) = −0.1219 and σ d(i

′
) = 0.636

and the resulting redshift distribution of wz is shown in Fig. 14.
This process created 61 redshift-weighted shear maps, which

were used as the basis for both our optical and radio simulations.
For the 0.26 deg2 DR1 area with overlapping optical and radio
regions, the band power uncertainties were estimated by sampling
the simulated shear fields at the positions of real sources as listed in
the optical and radio shape catalogues. For the 1.53 deg2 full area,
we use random positions scattered over 1 deg2, with the same source
number density as the full optical catalogue of nO

gal = 19 arcmin−2,
and then scale the error bars accordingly. We choose random
positions here since the full 1.53 deg2 optical catalogue does not
contain a continuous square region covering 1 deg2. Details of the
error bar scaling are given in Section 5.4.

Shape noise was added by randomly selecting real measured
ellipticities from the shape catalogues, and adding them to the shear
entries for the galaxies. This naturally replicates the measurement
error contributions from the real catalogues, and in the case where
real data positions are used, the spatial distributions of sources in
the real data are incorporated, including for example the gaps in the
optical data coverage due to masking.

Each set of 2 × 61 mock data maps (optical and radio) was run
through the power spectrum estimator using the same settings as the
data runs, including the two different multipole bin sets described in
Section 5.1. Error bars were extracted from the standard deviation
of the 61 recovered band powers in each multipole bin, where we
assume a symmetrical distribution (not necessarily Gaussian) about
each mean band power.

We also generate expectation band powers, P th
b from the 61

redshift-weighted, noiseless shear maps. Ordinarily, one would
convolve a theoretical cosmic shear signal, CCluster

� with the band
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SuperCLASS – III. Radio-optical weak lensing 1753

power window functions, Wb� (e.g. Knox 1999; Lin et al. 2012):

P th
b =

∑
�

Wb�

�

�(� + 1)

2π
CCluster

� (23)

for each multipole bin, b. This standard approach was demonstrated
in e.g. Hillier et al. (2019), where the theoretical cosmic shear
signal chosen was a well-defined, flat, 6-parameter �CDM model.
However, since the theoretical model for a supercluster field, CCluster

�

cannot be well defined, we use the redshift-weighted shear maps
with no shape noise or masking to obtain the expectation band
powers computationally. Each band power expectation value was
extracted as the mean of those measured from the 61 noiseless shear
maps. This was done for both sets of multipole bin definitions listed
in Table 2, since different binnings produce different band power
window functions.

5.3 Detection significances and signal-to-noise ratios

For each of the power spectrum measurements, we calculate
a detection significance, which quantifies the significance of a
lensing signal being above a null signal, and a signal-to-noise ratio,
accounting for both noise and cosmic variance.

Detection significances were calculated according to

Dφ =
√√√√∑

b

(
P̂

φ
b

σ ′
b

)2

, (24)

where φ ∈ {EE, BB}, the index b runs over the number of bands
included, given in Table 2, P̂ φ

b are the measured E- or B-mode band
powers, and σ ′

b are the uncertainties on the band powers excluding
cosmic variance. These uncertainties were estimated using the
standard deviations of the B-mode band powers4 recovered from
the cluster simulations,

σ ′
b =

√〈(
P BB

b

)2
〉

− 〈P BB
b

〉2
, (25)

where the angled brackets denote an average over the cluster sim-
ulations. Correspondingly, signal-to-noise ratios were calculated
according to

Sφ =
√√√√∑

b

(
P̂

φ
b

σ
φ
b

)2

, (26)

where σ b are now the uncertainties including both measurement
noise and cosmic variance. The σ b values were estimated using the
standard deviations of the φ-mode band powers recovered from the
cluster simulations:

σ
φ
b =

√〈(
P

φ
b

)2
〉

−
〈
P

φ
b

〉2
. (27)

Note that equations (24) and (26) are identical when calculating
B-mode values.

5.4 Optical power spectra for the full SuperCLASS region

For the full 1.53 deg2 SuperCLASS region, we apply a binning
which is appropriate for the 1 deg2 area. This conservative choice

4The cluster simulations contain zero input B-mode signal. Therefore the
run-to-run scatters of the recovered B-mode band power estimates are free
from cosmic variance.

is motivated by the fact that the cluster simulations only cover an
area of 1 deg2, as discussed in Section 5.2. Hence, only theoretical
band powers and error bar estimates for a 1 deg2 binning can be
extracted. This does not mean that we lose any information on the
scales that we do probe, since all the 1.53 deg2 data are used. The
conservative binning only means that we do not probe lower �-

modes, which would extend down to �
1.53deg2

field ≈ 290 for a 1.53 deg2

binning scheme.
The difference in area between the simulations and the data also

mean the error bars should be scaled. To first order, the error bars
of a given survey scale according to (e.g. Kaiser 1992)

�Ĉ� =
√

2

(2� + 1)fsky

(
Ĉ� + σ 2

ε

ngal

)
. (28)

Assuming the cosmological signal, Ĉ� the shape noise variance, σ 2
ε

and the galaxy number density, ngal to be constant between the two
areas, the ratio of error bars can be approximated as

�Ĉ
1.53 deg2

�

�Ĉ
1 deg2

�

≈
√√√√ f

1 deg2

sky

f
1.53 deg2

sky

. (29)

However, equation (29) does not account for the effect of differences
in the masking between two maps. To model this effect, we create
Gaussian random fields with the same 6-parameter, flat, �CDM
input model used in Hillier et al. (2019). These simulations were
created over an area large enough to extract both a 1 deg2 randomly
sampled area and the full 1.53 deg2 masked area. 100 sets of
simulations were produced. The 1 deg2 simulated shape catalogues
were created in exactly the same way as for the cluster simulations:
random positions with randomly sampled real shape noise. The
1.53 deg2 masked area simulations used positions from the real
optical weak lensing catalogue, Fig. 1, and shape noise was included
by randomly sampling shapes across the weak lensing catalogue.
The differences in band power errors between the case where
equation (29) is applied directly and when the simulations are
used to also account for the mask are ∼10 per cent (with errors
decreasing when the masking effect is included).

Each set of 2 × 100 simulations was run separately through
the power spectrum estimator and the standard deviations of the
extracted band powers were measured. The ratios between the
standard deviations of the two sets of band powers for each multipole
bin were used to scale down the cluster simulation measured error
bars.

In Fig. 15 we show the measured E- and B-mode power spectra
for the full 1.53 deg2 region covered by the optical data. The circles
show the measured band powers for each range of �-modes, which
are illustrated by the widths of the shaded regions. The vertical
extents of the shaded regions represent the uncertainty in the
estimated band powers. The band powers and uncertainties here
correspond to a 9.9σ detection of a non-zero weak lensing E-mode
power spectrum. We also measure a significant B-mode lensing
signal at a detection significance of 4.6σ , indicating the presence
of some residual B-modes. However, we note that these B-modes
are measured at a smaller significance than the E-modes. These
statements are quantified in Table 3.

Also displayed in Fig. 15 are the E-mode expectation band powers
for a supercluster region similar to the SuperCLASS field, P th

b ,
computed as described in Section 5.2. For clarity, the expectation
band powers are shown as a dashed line joining the band powers.
The B-mode expectation band powers are zero and are not shown
in the figure.
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1754 I. Harrison et al.

Figure 15. Measured E- (top) and B-mode (bottom) optical-only power
spectra for the full 1.53 deg2 SuperCLASS region. The dashed curve
illustrates the E-mode expectation band powers for a supercluster region.
Note the different vertical axis scales and factors of � for the two panels.
These power spectra measurements are quantified in Table 3.

5.5 Radio-optical and radio–radio power spectra of DR1
region

In Fig. 16 we show the measured shear power spectra for the radio
and optical catalogues in the 0.26 deg2 DR1 region, including the
optical-optical, radio-optical, and radio–radio combinations. The
top row shows the measured E-modes and the lower row the
measured B-modes. As in Fig. 15, the E-mode cluster expectation
band powers are illustrated by the dashed curve, this time for the
0.26 deg2 binning. Note the different vertical scales for each channel
to contain the vertical extents of the error boxes. As one would
expect, for this smaller 0.26 deg2 region the random noise is too
large to make a detection in any of the combinations, as is clear in
Fig. 16 and reported in Table 3.

We note that the band powers in Fig. 16 were measured using a
joint convergence of all three spectra simultaneously. We have also
measured only the optical–optical spectra in the DR1 independently
of the radio data, and find both methods to be consistent, and

consistent with the optical–optical spectra in the full region in
Fig. 15.

5.6 DR2 Forecasts

Table 3 also presents forecasted detection significances and signal-
to-noise ratios for simulated radio and optical weak lensing shape
catalogues covering the DR2 area of 0.755 deg2 – the uniform depth
area of the full VLA data set.

The forecasts assumed source number densities of nO
gal =

19 gal arcmin−2, as already measured and nR
gal = 1 gal arcmin−2,

where the expected increase comes from the improved depth
and resolution from the e-MERLIN + VLA combined image
over the VLA-only one. For the optical sources, shape noise was
sampled from the real data measurements, and for the radio sources,
a Gaussian shape noise distribution was used with a standard
deviation of σ ε = 0.3. Galaxy positions were randomly sampled
within the 0.755 deg2 area and the shear signals added to the shape
catalogues, using the measured shear power from the full optical
data (i.e. the data points in Fig. 15). 61 pairs of simulations were
generated and power spectra were extracted using a 0.755 deg2 �-
binning. As in Section 5.2, the standard deviations of the output
band powers were used as estimates of the error bars around the
mean values for each � bin. The forecasts show that the significance
of the detection of the radio-optical power may be expected to be
low, at 2.2σ .

6 D E M O N S T R AT I O N O F DATA C O M B I NATI O N
FROM DI FFERENT TELESCOPES

As discussed in Section 4.4, the combination of both VLA and e-
MERLIN data will maximize the amount of available morphological
information on the sources in the SuperCLASS survey. We take uv-
plane approach to this data combination, which has the advantage
over image-plane combination of the data (e.g. Muxlow et al. 2005)
that it delivers a well-defined, deterministic PSF for the CLEANed
image, which is crucial for our analysis. Moreover, combination
of data from both telescopes in the uv plane may enable shape
measurements to be made directly in the uv plane, circumventing
possible biases which may arise from the (non-linear) CLEAN

process altogether.
The SuperCLASS observations were designed with this data

combination in mind, as the set of angular scales sampled by the
VLA and e-MERLIN telescopes are highly complementary (see
Paper I Fig. 1 and associated discussion). e-MERLIN has access
to small angular scales (θ ∼ 0.2 arcsec) from widely separated
antennae, but the lack of shorter separations means that much of
the flux from diffuse sources falls on parts of the Fourier plane
not covered by the telescope array and is ‘resolved out’ (hence the
problems with source detection discussed in Section 4.1.2). The
VLA antenna configuration provides a much denser sampling of
small separations (large angular scales), and so more sensitivity
to diffuse structure, but lacks sensitivity to small scales, with
the smallest scale (θ ∼ 1.5 arcsec) sampled being larger than the
∼1 arcsec expected to be a typical size for sources relevant for
shape measurement. These effects can be seen in Fig. 7, where
the e-MERLIN coverage has large gaps at larger scales (small u
and v) and the VLA coverage contains no information at smaller
scales (large u, v). Fig. 17 also shows this information in real space
in the form of the dirty beam PSFs for both VLA (blue, which is
smooth and well behaved but broad) and e-MERLIN (red, which has
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SuperCLASS – III. Radio-optical weak lensing 1755

Table 3. Detection significances, D and signal-to-noise ratios, S for the band power measure-
ments shown in Figs 15 and 16, calculated using equations (24) and (26). Values calculated
using the mean signal recovered from the simulated cluster data sets are also listed. All values
were determined by only using the measurements of bands 2, 3 (and 4 for the full SuperCLASS
region; see Table 2). For the DR1 0.26 deg2 rows, only the values measured using the calibrated
SuperCALS radio shape catalogue are listed. For the DR2 0.755 deg2 Forecasts, the forecasts
correspond to detections of a theory shear power spectrum given by the best-fitting band powers
from the real optical data, see Section 5.6.

Spectrum Area Figure Data Simulations
D S D S

OpOpEE Full 1.53 deg2 15 9.9 4.3 6.4 2.5
OpOpBB – – 4.6 0.1

OpOpEE DR1 0.26 deg2 16 2.5 2.2 1.7 1.1
RadOpEE – – 0.8 0.8 0.5 0.4
RadRadEE – – 1.3 1.4 0.3 0.3
OpOpBB – – 3.6 0.2
RadOpBB – – 1.1 0.2
RadRadBB – – 0.6 0.2

OpOpEE DR2 0.755 deg2 – – 6.0 3.3
RadOpEE Forecasts – – – 2.2 1.6
RadRadEE – – – – 0.4 0.4

Figure 16. Measured E- (top row) and B-mode (bottom row) power spectra for the 0.26 deg2 DR1 region. From left to right, the panels display the optical-
optical, radio-optical, and radio–radio channels. Only the calibrated SuperCALS radio catalogue described in Section 4.4 was used to generate these power
spectra, along with the same optical catalogue used for Fig. 15. As in Fig. 15, the E-mode cluster expectation band powers are illustrated by the dashed curve,
but this time use the 0.26 deg2 �-binning. Note the different vertical scaling between the E- and B-modes, as well as the different vertical ranges in each channel
to cover the full extent of the error bars. Detection significances and signal-to-noise ratios are listed in Table 3.
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1756 I. Harrison et al.

Figure 17. Point spread functions for the various data weighting combinations considered. Individual telescope dirty beam PSFs are shown in blue (VLA)
and red (e-MERLIN). The black lines show the dirty beam PSFs resulting from the different weightings tried, with those which were picked out for further
exploration picked out in cyan. Numbers in the legend refer to the noise level in our simulated data set which was produced by each weighting. For reference
we also show in orange a one arcsecond exponential Sérsic profile.

a small central peak but complicated structure including negative
sidelobes).

For the pointing labelled ‘J28’ in our observation scheme (with
pointing centre at 10:27:04.012, +68:09:27.00) we have performed
a full combined imaging of our data from both VLA and e-MERLIN
telescopes, with this data being at the full single image depth for
both. In order to ensure scales in the image are always dominated by
the array which contains the most signal on that scale, a weighting
scheme is applied to the two data sets before combination, following
a similar strategy to that used for the eMERGE Legacy Survey
(Muxlow et al., in preparation).

Rather than apply a global scaling of VLA or e-MERLIN data
with respect to each other (equivalent to a step function in the
uv plane), our data combination approach allows us to apply a
smooth tapering function throughout the uv plane, smoothing out
any shoulders in the combined-array PSF and enabling the trade-
off between angular resolution and surface brightness sensitivity
(which is inherent in every interferometer dataset) to be explored.
This weighting scheme consists of application of Tukey filters of
differing widths to the visibilities; symmetric tapering functions
which progressively downweight different parts of the outer and
inner regions of the visibility plane. From an initial suite of 243
images made with different weighting functions (with beams shown
by the grey lines in Fig. ing this data combination in the full data17),
we identify three for scientific exploitation. We use the recovered
CLEAN beam major axis size and RMS noise for each image, and
cut the T-RECS (Bonaldi et al. 2019) catalogue to find the total
number of sources which will be resolved (have sizes larger than
the beam major axis) and detected (have fluxes greater than five
times the RMS noise value) by each choice of weighting. From
this procedure we chose the ‘Max Ngal’ weighting as the one which
returns the highest total of detectable, resolvable galaxies, and the
‘Edge of knee’ weighting, which has a lower number of usable

galaxies than Max Ngal but is smaller, sitting at the edge of a drop
off in sensitivity with decreasing beam size. We also chose a third
weighting according to the requirement that the dirty beam PSF is
as small as possible without including negative sidelobes, which
resolve out flux and can lead to problems in the imaging procedure.
One dimensional cuts through the major axis of these beams are
highlighted in purple in Fig. 17, along with a one arcsecond half-
light radius Sérsic exponential profile (shown in orange).

In Fig. 18 we show the results of this data combination on decon-
volved images of an example bright source, of simple morphology,
chosen from our J28 data sets from e-MERLIN and the VLA. As
can be seen, the unresolved emission in the VLA image appears
undetectable in the e-MERLIN image, but is both detected and
resolved in the combination images. We expect this effect will
improve our shape measurements significantly for the full data
release, by coherently including information on small angular scales
from the e-MERLIN long baselines.

7 SU M M A RY A N D C O N C L U S I O N

We have analysed the first stage of data from the SuperCLASS
experiment, consisting of 1.53 deg2 of optical data from the Subaru
telescope and 0.26 deg2 radio data from the VLA and e-MERLIN
telescopes. Previously existing radio surveys have not been designed
with weak lensing in mind and so have not been capable of making
a first detection of the signal. SuperCLASS has been designed as
a survey of a region of sky containing a supercluster at z ∼ 0.2
in the Northern sky with the aim of making the first detection of
a weak lensing signal, both in the radio data alone and by cross-
correlating the radio data with optical data. By making use of data
from both the Karl G. Jansky VLA and e-MERLIN telescope arrays,
SuperCLASS is sensitive to the range of Fourier scales expected
to carry the morphological information about radio star-forming
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SuperCLASS – III. Radio-optical weak lensing 1757

Figure 18. e-MERLIN and VLA combined CLEAN images of a source in the J28 pointing, showing the differences in morphology information available from
the different weightings, which are described in the text. For reference, 1D cut throughs of the dirty beam for each image are shown on the top row.

galaxies necessary to infer the shear signal from weak lensing. Here
we have presented radio data from only the 0.26 deg2 DR1 region,
which contains information from the first 50 per cent (∼400 h) of
the e-MERLIN data, and is the area which is covered by these data
to a uniform noise level of 7μJy beam−1, along with data in this
region from the full VLA data set.

Following Paper I which describes the survey and the creation of
the catalogues, we have further described the weak lensing methods
applied to the data. For the Subaru Suprime-Cam optical data in the
BVr

′
i
′

bands we have used a pipeline consisting of well-proven
methods and measured the two-point function of galaxy shapes,
the non-zero signal in which we interpret as being due to the
cosmic shear signal. As shown in Fig. 15 and Table 3 this allowed
us to measure an E-mode shear power spectrum with a detection
significance of 9.9 and signal-to-noise ratio of 4.3, confirming the
presence of the lensing mass in the supercluster region. We have
additionally constructed other weak lensing observables from this
data, including real space correlation functions (Fig. 4), which
are detected to be significantly larger than systematics signals
estimated by cross-correlating the shapes of weak lensing sources
(i.e. galaxies) with the shape of the deconvolved point spread
function.

Using the radio catalogues described in Paper I we have also
measured the shapes of sources detected in deconvolved radio
images. After performing a by-eye classification of sources, we
identify those with low ∼μJy fluxes and simple morphology
as star-forming galaxies which may have their intensity profiles
well-modelled by a Sérsic profile with elliptical isophotes. In the
deconvolved image from the VLA data we then use a method we
call SuperCALS to measure the best fitting elliptical profile for
each source. SuperCALS works by injecting simulated sources of
known shapes into the residual image available from the CLEAN
imaging process. The shapes measured for these injected sources
are then used to form a model for the bias in shape in the true
noise environment at that location in the image, and the real source
measurements are corrected for this bias. We have constructed a
sophisticated simulation pipeline, called SimuCLASS, consisting
of sky model, simulated interferometer measurement and imaging
reconstruction, which closely match the steps in the real data

pipeline. Using this simulation pipeline, we have found that for
the source population models (in terms of sizes, fluxes and profiles)
expected for our observation, the VLA-only data does not provide
the required resolution to successfully recover source shape mea-
surements, but that the SuperCALS method does work adequately
when the morphological information is available (by artificially
increasing the size of the simulated sources). We have then applied
the SuperCALS method to the real VLA data catalogue and formed
the radio-radio and radio-optical ellipticity power spectra, finding
no significant detection, as expected due to the low number density
of sources leading to the signal being noise dominated – we do
not have enough galaxies to average down the ‘shape noise’ from
intrinsic galaxy ellipticities.

As discussed at length in Section 5 of Paper I the e-MERLIN
data alone ‘resolves out’ much of the flux for the sources we
wish to measure shapes with (much of the flux falls on parts
of the Fourier plane not covered by the e-MERLIN telescope
baselines). For the 56 sources which are detected in both the VLA
and e-MERLIN images, we measure the e-MERLIN shapes with
SuperCALS and provide them in the catalogue, but do not use them
in our science analysis. Inclusion of e-MERLIN data will however
allow improvements in the shape measurement when combined in a
coherent way during the imaging process (i.e. through combination
of data in the visibility plane). As discussed in Section 6 we
have begun this procedure, exploring different relative weighting
schemes for the VLA and e-MERLIN data in the joint imaging
process. The results of this section provide important information
for the design of radio weak lensing surveys in the future: that their
uv-coverage should be designed with extended source sensitivity,
not point source sensitivity, in mind and with a dirty beam PSF
which as closely as possible matches the expected source intensity
profile.

By performing this data combination in the full data set consisting
of all of the VLA data and a further ∼400 h of e-MERLIN data
(which has been taken but not yet fully reduced) we will in the
near future release results on a DR2 area covering a total area of
0.755 deg2. If the data combination enables us, through reducing
the effective noise in the image and improving the ellipticity
measurement, to double the source density of radio sources to
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1 arcmin−2 then a marginal detection of a radio-optical cross power
spectrum may be possible but is not expected, as shown in Table 3,
and a significant detection of a radio-radio power spectrum is
unlikely.

In the future, weak lensing using radio data from the Square
Kilometre Array (SKA) will be capable of cosmological constraints
at the Stage III and Stage IV levels (Harrison et al. 2016; Bonaldi
et al. 2016), and will allow the formation of cross-correlations with
optical surveys which will be highly robust to systematics (Camera
et al. 2017). This work represents a step forward in the sophistication
of radio weak lensing and radio data analysis in general (e.g. through
the use of the simulation pipeline and cross-correlation with optical
data), and provides cutting-edge data on the flux distribution and
morphology of star-forming galaxy radio sources at μJy fluxes. The
lessons learned, in particular on the importance of good telescope
sensitivity across a wide range of angular scales, will be invaluable
for future experiments such as the proposed 5 deg2 VLA Deep
Extragalactic Cosmology Survey (V-DECS) survey with the VLA
and eventual surveys with the SKA.
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Köhlinger F. et al., 2017, MNRAS, 471, 4412
Kuijken K. et al., 2015, MNRAS, 454, 3500
Lang D., Hogg D. W., Mierle K., Blanton M., Roweis S., 2010, AJ, 139,

1782
Lasker B. M. et al., 2008, AJ, 136, 735
Lima M., Cunha C. E., Oyaizu H., Frieman J., Lin H., Sheldon E. S., 2008,

MNRAS, 390, 118
Lin H. et al., 2012, ApJ, 761, 15
Mandelbaum R. et al., 2015, MNRAS, 450, 2963
Manning S. M., The SuperCLASS Collaboration, 2020, preprint (arXiv:

e-print)
McMullin J. P., Waters B., Schiebel D., Young W., Golap K., 2007, in Shaw

R. A., Hill F., Bell D. J., eds, ASP Conf. Ser. Vol. 376, Astronomical Data
Analysis Software and Systems XVI. Astron. Soc. Pac., San Francisco.
p. 127

Mohan N., Rafferty D., 2015, PyBDSF: Python Blob Detection and Source
Finder. Astrophysics Source Code Library, Record ascl:1502.007

Muxlow T. W. B. et al., 2005, MNRAS, 358, 1159
Nakajima R., Bernstein G., 2007, AJ, 133, 1763
Offringa A. R. et al., 2014, MNRAS, 444, 606
Ouchi M. et al., 2004, ApJ, 611, 660
Padovani P., Bonzini M., Kellermann K. I., Miller N., Mainieri V., Tozzi P.,

2015, MNRAS, 452, 1263
Patel P. et al., 2015, Advancing Astrophysics with the Square Kilometre

Array (AASKA14), 1, 30
Paulin-Henriksson S., Amara A., Voigt L., Refregier A., Bridle S. L., 2008,

A&A, 484, 67
Peters A., Brown M. L., Kay S. T., Barnes D. J., 2018, MNRAS, 474, 3173
Pickles A. J., 1998, PASP, 110, 863
Prandoni I., Guglielmino G., Morganti R., Vaccari M., Maini A., Röttgering
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