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ABSTRACT Conventional RSA algorithm, being a basis for several proposed cryptosystems, has remarkable
security laps with respect to confidentiality and integrity over the internet which can be compromised
by state-of-the-art attacks, especially, for different types of data generation, transmission, and analysis by
IoT applications. This security threat hindrance is considered to be a hard problem to solve on classical
computers. However, bringing quantum mechanics into account, the concept no longer holds true. So, this
calls out for the modification of the conventional pre-quantum RSA algorithm into a secure post-quantum
cryptographic-based RSA technique. In this research, we propose a post-quantum lattice-based RSA
(LB-RSA) for IoT-based cloud applications to secure the shared data and information. The proposed work
is validated by implementing it in 60-dimensions. The key size is about 1.152 x 103-bits and generation
time is 0.8 hours. Furthermore, it has been tested with AVISPA, which confirms security in the presence
of an intruder. Moreover, the proposed LB-RSA technique is compared with the existing state-of-the-art
techniques. The empirical results advocate that the proposed lattice-based variant is not only safe but beats
counterparts in terms of secured data sharing.

INDEX TERMS Lattice-based cryptography, LB-RSA, post-quantum cryptography, IoT application,

Gauss-sieve algorithm.

I. INTRODUCTION

Recent years have witnessed that attentiveness towards
quantum computing is growing expeditiously due to the
extensive need of IoT-based cloud applications for high com-
putation power [1]. The computer experts and professionals
have been devising to develop quantum computers. These
machines employ the quantum principles, that can utilize
quantum mechanical phenomena to solve traditional mathe-
matical problems like ‘integer factorization’ and ‘logarithmic
problem’, that are incommodious and intractable for classi-
cal computers. Also, these devices could power advances in
artificial intelligence or easily overwhelm the encryption that
protects computers vital to national security.
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This alarming security situation poses a serious threat to
public-key cryptography because it cannot adapt quantum
attack by increasing the key-length to outpace the degree of
growth of quantum computing. Such security threats would
compromise two major aspects of cryptography of digital-
communications, especially, when IoT-based cloud applica-
tions are considered: confidentiality and integrity over the
internet and elsewhere. This security threat hindrance is a
great deal of worriment [2], [3].

In 1994, Peter Shor presented the notion of quantum
computing; performing physical properties of matter and
energy-based calculations and being able to break the RSA
cryptosystem within polynomial time whose security relies
on integer factorization. Moreover, the publication of Shor’s
algorithm claims that a powerful quantum computer would
be able enough to conquer all sorts of modern techniques
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of communication security; from key-exchange to digital
authentication of data. So, all the traditional public-key cryp-
tosystems were rendered as impotent [4]. For instance,:

e When quantum computing will become reality,
it will become a signal for the end of traditional
cryptography [5].

o With the construction of the first quantum-factoring
device, the security of the public-key cryptosystem will
become extinct [6].

Post-quantum transition raises many fundamental chal-
lenges for public-key cryptographic system such as RSA,
which need to be addressed to avoid future intimidations.
In 2030, quantum computers will be capable of breaking
2000-bit RSA [7]. Moreover, those cryptosystems which
are offering 80-bits or less security, which were phased
out in 2011 — 2013, are also at risk [8]-[11]. Even though,
the post-quantum RSA’s [12] use-cases rely on the faint
possibility of considerable improvements in attacks against
widespread alternatives and the same criticism is also applied
strenuously as discussed in [13].

Hence, there is a need to design a protocol that shows resis-
tance to quantum computers. Among all computational prob-
lems that believed to be quantum-safe, lattice-based problems
emerged as more economical and quantum-safe encryption
providers due to its strong security proof, simplicity, and effi-
cient implementation [14]. In this paper, we have proposed
the variant of RSA, which is based on lattices rather than
integer factorization problem. In lattice-based cryptography,
key selection is not just strong but also hard to break [15].
The private-key for these schemes is a lattice point while the
public-key is an arbitrary location in space, which can be the
nearest point.

Concluding all, our proposed study has the following
contributions:

o Introduction of RSA problem based on lattices rather
than integer factorization.

« Security enhancement for communication by increasing
key dimensions instead of increasing key-size.

o There are three key facets of our protocol: vector factor-
ization, vector mapping, and finding the shortest vector
within n-dimensional lattice.

« Proposed protocol uses the shortest vector problem and
vector mapping as a security assumption.

o We have performed a comparison with state-of-the-art
algorithms and performed security verification of
lattice-based RSA (LB-RSA) using the AVISPA tool.

Initially, this research work implemented the proposed
protocol for n = 60 dimensions, but to make the protocol
resilience against quantum computers, we realized to work
in higher dimensions i.e., 100 x 100. Owing to this fact,
we have used matrices for calculating higher dimensions.
The proposed scheme motivates researches that rather than
increasing the key-length like in post-quantum RSA [12], use
the lattices concept i.e., increase security by increasing key
dimensions. However, the proposed protocol generates the
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key of 60-dimension for all types of messages; therefore, this
scheme is suitable for long messages.

The rest of the paper is organized as follows. In Section I,
we review existing literature, while Section III includes pre-
liminaries. In Section IV, we define methodology along
with our new proposed algorithms. In Section V, a discus-
sion about the proposed protocol is given. Security Proof is
covered in Section V-B. Section V-C and V-D cover the
security analysis and experimental statics of the proposed
technique, respectively. Section VI uncovers comparison and
contrast with pre-quantum and post-quantum RSA. Finally,
Section VII provides conclusion.

II. LITERATURE REVIEW

In the last 30-years, the most widely deployed asymmetric
algorithm that provides communication security over a net-
work as discussed above is RSA. Its hardness lies in the inte-
ger factorization problem and is considered the most secure
algorithm against classical computers [15].

A plethora of research work exists in this domain.
In [19], [20] RSA-based security systems have been dis-
cussed while in [22], they surveyed three variants designed
to speed up RSA decryption. Conventional RSA is believed
to be hard for a classical computer to solve [23], but it is
not quantum-safe because it cannot adapt quantum attack by
enhancing the length of the key to beat the degree of growth
of quantum computing.

A. QUANTUM CRYPTOGRAPHY

Quantum computers and quantum cryptography have been
extensively discussed in literature [26], [42]. Quantum cryp-
tography devices and methods for communication between
two stations are discussed while delivering quantum keys
in a single photon is discussed in [28]-[30]. Similarly,
David et al. [31] discussed Quantum Key Distribution
(QKD) protocol for a number of users through a switch.
Xu et al. [32] suggested that for secure communication,
quantum-safe encryption can be achieved using Post Quan-
tum Cryptography and Quantum Cryptography. In another
study, [33], the authors have discussed the state-of-the-art
advances in Quantum Cryptography, both theoretically and
experimentally.

Here we are discussing generally, the schemes whose secu-
rity lies in the hardness of lattices and how they become
resilient to quantum attacks. The purpose of discussing such
practical schemes is to bring focus towards the new theories
of post-quantum cryptography.

B. LATTICES BASED CRYPTOGRAPHY

Lattice-based cryptography appeared as a better substitute to
the existing public-key cryptography because of its quantum-
resilience, low key sizes, and versatility. Hamid ez al. [34]
have been well documented the trends in lattice-based cryp-
tography and state-of-the-art applications of lattice adop-
tion in computer security and implementation challenges in
software and hardware in their study.
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1) NTRU

Later in 1995, Joe Silverman devised a scheme called NTRU
which was more efficient than RSA and Diffie-Hellman pro-
tocols. This scheme was based on cyclic lattices which were
generated by vectors that could rotate in any direction and
still land on a lattice point. By 2011, Stehle and Steinfeld pro-
posed (SS — NTRU), which is a variant of NTRU encryption
scheme, it has reduced the problem to ideal lattices which
are closely related to cyclic lattices. These NTRU schemes
outperform classical cryptography in terms of performance;
however, they have larger key sizes.

2) FULLY HOMOMORPHIC ENCRYPTION (FHE)

In 1997, IBM researcher Cynthia Dwork introduced a
first lattice-based scheme, until the worst-case Learning
with error (LWE) instances remain computationally hard
to be solved. The major difference between classical and
present-day encryption scheme is that we don’t transform our
message instead of noise is added to it. LWE security is based
on the hardness of the Shortest Vector Problem (SVP), which
requires an efficient quantum algorithm to find it. To hide our
message with the error and to avoid computational growth of
error, we make our error/message combination small. This
proves to be helpful in decryption in a way that if the norm is
too high one can find a false point in the lattice and can pro-
duce the wrong message. Gentry’s Somewhat Homomorphic
Encryption (SHE) scheme, which has been improved to FHE
scheme through bootstrapping, is based on this concept [35].
However, nowadays, FHE is adopted for various applications,
especially for cloud security as a powerful cryptosystem that
can carry out computation on encrypted data [36]-[38].

3) RING-LWE

Cryptosystem such as Ring learning with error is also
used in practice to boost efficiency however, there exists
efficiency-security trade-off. That is because LWE is much
versatile and secure than NTRU but not efficient enough.
To find the shortest non-zero vector is the core problem in all
lattice problems i.e., SVP and contrary to factorization and
discrete logarithmic problems no such quantum algorithm
exists to solve it. Hence, it is an NP-hard [39].

Motivated by these concepts, in this paper we have pro-
posed a scheme for modifying the conventional integer-based
RSA to a LB-RSA, thus help in coping with the future
standards of quantum computing and provide a quantum-safe
public-key cryptosystem. “Lattice-based RSA” public-key
cryptosystem could be considered as a strong encryption
algorithm replacement of Integer-based RSA.

lIl. PRELIMINARIES

In this section, different terminologies and definitions related
to lattices and prime vectors are discussed. These terminolo-
gies are used in later sections of this paper. This section will
be quite helpful for the reader to understand the proposed
LB-RSA scheme.
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A. VECTOR SPACE

A vector space is a set of vectors for which two operations;
+ and x, are delineated as ‘vector-addition’ and ‘vector-
multiplication’, respectively. In vector-multiplication, the
resultant vector ‘C’ is known as cross-product or vector-
product of the multiplication of two vectors ‘A’ and ‘B’ as:

C=AxB @)
where C is a vector product of two vectors A and B
C = A x Bsinf 2)

The vector-product ‘C’ is the multiplication-result of vectors’
magnitudes time the Sine of included angle as in Equation 2.
Besides this, scalar-product; another multiplication-result of
two vectors, can be determined by taking a vector’s compo-
nent in the direction of other one.

C=AB (3)
where C is a scalar product of two vectors
A.B = ABcos6 “

In the proposed scheme we have taken two primitive vec-
tors Vi and Vy; where Vi = vy and V, = sv. These
vectors are used to construct the product vector N where
N = ng. Since vectors are quantities that are described by
taking both the magnitude and direction. Each vector has a
magnitude and a specific direction. The vectors V1, V, and N
have a magnitude as well as direction. In XY-plane we have
a maximum angle of & = 180°. If V; has angle 6; and the
maximum angle is 6 then the V> has angle 6, and it can be
calculated as:

Max angle = 0
Angle of V1 = 6,
Angle of Vo = 6,

AsO =01+ 6,
= 6, =6 — 0

B. SINGULAR VALUE DECOMPOSITION

As the product of two vectors is either a scalar or a vector.
If we calculate the normed vector, we get a scalar value.
This value is helpful in finding the puby,y, and prig.y key. The
calculated normed value can be used again to find the actual
vector. As a single normed can be mapped to different values;
for instance, lets first calculate norm of a vector. We can
denote the normed vector by ||u||. The norm of a vector for
two dimension can be calculated by:

ull = /ui + u3 ®)

The different normed vectors can be of the same values.
If we have two vectors V| and V,. The components of V|
are [vi1, vi2] and components of V, are [V}, v),]. If the
components of vectors are different, still there is a chance that
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normed of different vectors can lead to the same norm. Let’s
suppose vi] = a, via = B, va1 = a’ and vy = B'. The first
component of V; is equal to the second component of V; that
is:

Vil == V22 Vi2 == V21

The normed of V| and V is:

Vi=y v+
=/ (@0)?+ (B)?
= 3 / ‘}/2

14

where o>+ 82 = 2. Similarly, to calculate the normed of V5:
Va =3+

— 05,2 + IB/Z

i

2

14

Il
<

C. LATTICES

An n-dimensional lattices is the set of all integer combina-
tions of n-linearly independent vectors {b;, ..., b,} € R".
The set of vectors {b;,...,b,} is called a basis for the
lattice. A basis can be represented by the matrix B =

[b1, ..., by] € R™" having the basis vectors as columns. The
lattice generated by B is denoted by £(B). Notice that £L(B) =
{By : x € Z"}, where Bx is the usual matrix-vector

multiplication [49].

n
{inb,-:x,-GZforl <i<n}
i=1

D. SHORTEST VECTOR PROBLEM
An input to SVP is a lattice B, and the goal is to find a lattice
vector of length precisely A(B) [44].

E. PRIMITIVE VECTORS

An n-tuple [x1, ..., x,] € Z" is called primitive iff its coordi-
nates are relatively prime as an n-tuple [45], i.e., [8, 12, 17]is
a primitive-vector in Z>: they are said to be relatively prime
as a triple but not pair-wise relatively prime.

F. ONE-WAY FUNCTION

One-way functions are quite simple to compute but it is hard
to compute their inverse functions. Hence, having data x it is
simple to calculate f (x) while knowing the value of f (x), it is
quite hard to find the value of x.

IV. PROPOSED LB-RSA

The proposed LB-RSA algorithm has four subsystems: key-
generation, encryption, decryption, digital signing and verifi-
cation. However, Table 1 shows the symbols that are used in
the protocol.
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TABLE 1. Symbols and description.

Symbol Description
L(B) Lattice-Basis

SV Shortest-vector
K Random Scalar Value
T Transpose
H Hash-function
d Private-key
e Public-key
1 Identity Matrix
n No. of Dimensions
o Hash Function

A. KEY-GENERATION

The key-generation subsystem uses three distinct primitive
vectors from n-dimensional lattice as input and it gener-
ates the pubyey and prigey as output. Flowchart of LB-RSA
Key-Generation is represented by Fig 1. However, steps
include in Key-generation are given below:

« Firstly, generate n-dimensional £(B)

e Choose, three random primitive vectors from L(B),
assuming vi = (X0, X, - - - Xp—1)s V2 = (0, Y1, - - - Yn—1)
and v3 = (20, 21, - - - Zn—1)-

« Pass these three n-dimensional vectors where n = 60 to
Gauss-Sieve (GS) algorithm, which returns a shortest
vector SV ie., svi = (x',...x/_,) which itself is a
NP-hard problem where GS algorithm can solve SVP
upto 128-dimensions.

o Compute ng by performing vector cross product
of vi and svy.

o Calculate Euclidean norm ||x|| and angle 6 from ng
respectively.

o Compute the totient(¢) y of x [y < x]

« By using angle 6, convert y into vector ¢ <« an

o ¢ having 60 x 60 dimensions, which is our private key d.

« Compute e such that (u)u~! = I, where u = d.x and
k 1is the large random prime scalar value returned by
maxPrime() function and / shows the identity matrix.

o Take a message m and convert the message into
n-dimensional space and take cross product of e x m to
get m’, where m' is the encrypted message.

o In order to decrypt, m = (k - m’) x d.

B. ENCRYPTION & DECRYPTION

To perform encryption, take a message m € Z, and convert
it into m x n matrix to obtain the ciphertext m’ as shown
in Alg 2.

If message length is long, sparse it up and encrypt sepa-
rately. Let e, d, k be the vectors points € Z,, with (e) as the
encryption and (d, «) the decryption key, n = v; X svi.
Where, ng is public, it will not reveal v; and sv;. Since,
the SVP is the basis of security for potentially post-quantum
RSA lattice based cyrptosystem. We offer our lattice based
sequence for creating a challenge that is able enough to assist
determining appropriate sv; as SVP for the scheme. Hence,
to factor ny is NP-hard which assures that d is practically
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=

l

Generate /

[ Compute norm of

x| « ng

IDLB) |

L

k=

pJ

Choose 3 random

F Y

Compute totient
of y < ¢(x)

max_Prime()

vectors from L(B)

Whether
Uy, Vs, Vg

are prime

Compute 51y using
SV_GEN (i-’l,'!-’:, 'lr‘g:]

h 4

Compute

Mg = U * 51y

FIGURE 1. Flowchart of LB-RSA key-generation.

impossible to derive from e. For decryption of C,, use equa-
tion m = (x - m') x d in Alg 3.

C. GAUSS SIEVE ALGORITHM
In the proposed protocol, we have used a parallel Gauss-Sieve

algorithm [24] in order to find the shortest vector. It was
implemented as gsieve library by Voulgaris to find the short-
est vector sv; by passing it sample vector vy, v, and v3.
We used GS as it gives more efficient results as compared
to other approaches [24]. In GS (extension) implementation
they have solved the SVP Challenge over 128-dimensional
lattice, which is currently the highest dimension ever that has
been solved.
The Gauss Sieve algorithm comprises a list L of lattice’s
vectors along with a reduction algorithm giving an output of a
shorter vector from two input vectors. The GS algorithm runs
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Convert ny <y
e — (™
where u = d. k
F
d = [nf]
L J
III.l Kpuj:l = Ee} I,lll
II.l Hprf — (d}k:] II..
{ End

a subroutine, Gauss Reduce, which updates v, L, S. Number

of collisions of the zero vectors (|| @’ || = 0) assist determin-

ing the GS algorithm’s termination condition that appears in

L. The variable K in Alg 4 is the total number of collisions.

When the value of K exceeds the threshold condition « | L |

+8, then the GS algorithm is terminated. In the gsieve library,
o = %, and 8 = 200 are chosen as the threshold values. The
theoretical upper bound of GS algorithm’s complexity has
not been proved yet. Rather, it outperforms its counterparts
in terms of speed.

The key aspect of using this algorithm is that it does not
use perturbation, therefore, its space complexity is reduced,
and allowing with lattice points only. It builds a list of lattice
vectors that are shorter like List Sieve while on an addition
to the list of a new-vector v. The Guass Sieve reduced the
norm of v using the list vectors. Moreover, it also reduces the
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Algorithm 1 Key Generation Algorithm

1:procedure KEYGEN
2: Input: vi,v,v3 from L(B) = {by, ..
3: Output: Ky, Ky

Lbyha,B>0eR

4. Compute sv; using Alg. 4 SV_GEN (vy, va, v3)
5 Compute ng = vy x sv| where n € Z80%60

6: Compute x < || ng ||

7 Compute x” < ¢(x)

8 Convert x’ into 77 |

9: cl <« an

10: then K),,; formed is,

11: d = [c1] column vector having 60 — dimensions
12: Call maxPrime() function to choose «

13: Perform scalar matrix multiplication of « - d
14: Compute e such that ()= =1

15: Kpup < (e)

16: Kpri < (d, x)

17: end procedure

Algorithm 2 Ciphertext Generation Algorithm

1: procedure: CIPHERTEXT_GEN

2: Input: m € Z,

3: Output: C,, € Z50*%0

4: where Z, is set of integers from 1 ton — 1
5: Call Algorithm 1 to obtain e

6: Compute m’ < m x e

7: end procedure

Algorithm 3 Plaintext Generation Algorithm
1: procedure: PLAINTEXT_GEN

2 Input: C,, € Z8°*% from Algorithm 2
3: Output: m € Z
4: Compute m = (x - m') x d

5: end procedure

Algorithm 4 Gauss Sieve Algorithm
1: procedure: SV_GEN

2: Input:Vectors vy,v2,v3 from Algorithm 1
3; Output: SV in L(B)

4. L« {},S<«<{},K<«<0

5: while K <o |L |+ do

6: if S # {}then

7: pop from stack S to v

8: else

9: (v’, L, S) «Gauss-Reduce (v, L, S)
10: if || v/ ||= 0 then

11: K<« K+1

12: else

13: L <~ LU

14: return a shortest vector in L.

15: end procedure

length of those vectors, using vector v that is already in the
list. Hence, if min {|| v £ u ||} < max {|| v |,|| « |} than
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replace v, u having larger length with shorter v + u. Hence,
list L always contain pairwise reduced vectors.

We made a few changes in GS, to use it with our proposed
scheme. However, Alg 4 is a main algorithm of the Gauss
Sieve, and Alg 5 and Alg 6 are its subroutines.

Algorithm 5 Gauss Reduce

1 Input: Vectors py, p2 in Lattice L(B)

2 Output: Vectors pyin lattice L(B) s.t. | % < %
3: If | 2.(p1.p2) |> (p2.p2) then

4: p1L<pi— L@:—Z;;T-Pz

5 return p;

Algorithm 6 Gauss Reduce Algorithm

1: procedure: GAUSS_REDUCE

2: Input: Vector v onL(B), list L, stack S
3: Output: Vector v, list L, stack S, s.t. vU L is pairwise
reduced

4: reduce_flag < true

5: while reduce_flag = true do

6: reduce_flag < false

7 forl e L

8: v/ «Reduce(v, 1)

9: if v’ #v then

10: reduce_flag < true

11: v«

12: while / € L do

13: I’ <Reduce(l, v)

14: if I’ # [ then

15: S« SU{l'},L < L\{l}

16: return (v, L, S)

17: end procedure

D. DIGITAL SIGNING & VERIFICATION
For Digital Signing and Verification, we have taken only
3-dimensions. Due to some limitation of the hash function,
for instance, if the hash function returns 64-bits, in this case,
one needs 264 objects on which that hash function can be
called else it won’t be collision-free. Hence, we are not con-
sidering higher dimension for digital signing. But in future
work, we will extend it. We take a file of arbitrary length
and compress it into a short string. We used a cryptographic
hash function BIAKE2b, optimized for 64-bit platforms, and
generate digests of any size ranging from 1-64 bytes. In such
a way one cannot find n messages that hash to the same value.
So, signing the hash value is as good as signing the original
message-content without limitation of length. While before
generating digest, we pad our message. So that we split it
up into multiples of n where 1 is dependent on our number
of dimensions n in which we are working. For 3-dimensions
our n will be 9. Let Alice is a sender and she performs
following steps to sign the message:

o Generate a message digest using cryptographic hash

function BIAKE2b of the data to be sent.
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o Convert H(m) € Z, between 1 ton — 1 called S.

o She uses her Kpi(d,«) to compute the signature
S =(H(m) X k) x d).

« Sends this signature to the recipient Bob.

Algorithm 7 Digital Signing Algorithm
1: procedure: SIGNING

2: Input: S = H(m)

3: Output: S, € Z"*"

4: where Z, is set of integers from [ ton — 1
5: Call Algorithm 1 to obtain Kj,;

6: Compute S, = (§ X k) x d)

7: end procedure

For signature-verification Bob perform following steps:

o By using Alice K, = (e) he compute, 0 = S, x e

o Compute, independently the message-digest H of the
data that has been signed.

« Computes the expected representative o’ by encoding
the expected message digest H'.

e If 0 = o/, this depicts signature is valid.

Algorithm 8 Verification Algorithm
1: procedure: VERIFICATION

2 Input: S, € Z"" from Algorithm 3
3: Output: 0 = o’
4: Compute H' = (s, x m)

5: end procedure

V. DISCUSSION, SECURITY PROOF AND

SIMULATION RESULTS

This section first presents a detailed discussion about the pro-
posed lattice-based RSA protocol for secure communication
and then it uncovers security proof and security verification
using AVISPA. In the end, we present a simulation setting and
results along with comparative analysis.

A. DISCUSSION ABOUT LB-RSA

We are about to enter the information era, where secure
information transmission over the internet is a major concern.
Cryptographic protocols are used for this purpose. The exist-
ing in-practice cryptographic primitives are either symmetric
or asymmetric.

Symmetric primitives have much smaller key-size than
the message size and achieve reasonable security in prac-
tice but not the perfect security. Besides some symmetric
primitives having key-size as long as the message size for
one-time-usage achieves perfect security. However, the one-
time-usability of such schemes’ long keys, puts a question
over their applicability. Rather the asymmetric cryptographic
primitives have public and private keys.

The public key cryptography primitives are widely
deployed in most of the protocols like SSH, OpenPGP, etc.,
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as they achieve confidentiality as well as digital signing func-
tion. The hardness of these security primitives lies in integer
factorization and logarithmic function etc [53]. Such security
primitives would become impotent with the advent of quan-
tum computing [16]. The quantum computers using Shor’s
and Grover’s algorithm would break these algorithms within
polynomial time [4], [18]. This serious issue has attained the
researchers’ attention to have a protocol; resistant enough to
quantum computers.

Hence, in the proposed cryptographic protocol, we have
used a lattice-based encryption scheme. It is one of the can-
didates that is considered secure against quantum computers
by offering strong security proof, simplicity, and efficient
implementation. In lattice-based cryptography, one of the
presumed hardness of lattice is the shortest vector problem
SVP and in literature various algorithms have been proposed
combating this problem. So, one of the security perspectives
of our proposed protocol is the hardness of SVP as there
is no known polynomial-time algorithm that can be used to
solve the exact SVP within polynomial time. The hardness
of SVP is discussed in Section V-B3.

AVY BV RV, VRV, BVotV, 4V, BV,-V,
° ® ®

® °

o
Vy o ViRV, 2w VY
o o e O o o

V4 v‘ zv‘m
0 Vv, VoV 5

—"'u"'1
o © e O

FIGURE 2. Lattices-position.

® © o

®
®
L J

The given lattice shown in Fig 2 is a linear combination of
basis vectors. The span of basis V7 is the set {2V, 3Vq,....}
and span of V> is the set {2V»,3V,,....}. The rest of the
vector is a linear combination of the basis vectors. Since all
vectors are a linear combination of the rest of the vectors,
so the vector formed from any of the given vectors need to be
decomposed into the same two vectors. All the basis vectors
are mapped to some vector and based on their location, we can
complete its decryption process to the original message.

In the given Fig 2, 3V, is the resultant vector of more
than one pair of vectors. This vector is in the span of the
basis vector and might be a linear combination of the rest
of the vectors. A vector pair [2V3, 3V, — Vi] formed the
resultant vector 3V5; however, this resultant vector may also
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be a linear combination of some other vector pair. If during
the encryption process this resultant vector is formed from
the vector pair [2V5, 3V, — V] then it can only be decrypted
to the original message if and only if this resultant vector is
decomposed into this pair [2V;, 3V, — Vi]. The decomposi-
tion of the resultant vector into some other vector pair leads us
to some garbled value, and decrypting the encrypted message
to the original message is not possible.

B. SECURITY PROOF

More importantly, different vectors lead to the same normed
value. So, the exact components of a vector cannot be cal-
culated. However, in our proposed scheme, we have taken
the vectors from a lattice. Each vector in a lattice holds a
specific location. So, vector V| and V; are different. They
have assigned a different location in a lattice. The normed
of the vector is unique for each specific position. It means
that for each normed there is a unique position and from
this norm, we can divert to a specific location. In the above
two vectors V; and V5, both have the same normed value.
So if we want to find the dimension of the vectors given this
normed value, we cannot find the exact vector. Hence, for the
proposed scheme we use the concept of vector location.

Given the same normed value for different vectors, we can
only locate the exact vector because of the vectors’ location.
For any two vectors Vi and V>, having normed value y,
the decryption of the whole process is only possible when
the normed value locate to the exact vector. If y returns to
V1 (exact location for y) y —> Vj. The decryption process
returns the exact message m. If y returns to some other vector
y —> (Vo,Vh.....V}), then the decryption process will
return some garbled value instead of m.

Givenasetof vectors V =V, Vo, V3, ........ V,, finding
the exact vector in V for the given normed value, is based
on a number of vectors having the same normed value. Let’s
suppose we have two vectors V| and V;, whose normed value
is the same i.e.,

Vi==V, =y

where y is the normed value. The probability (Pb) to find the
exact normed value for a given vector is:

Pb(V)) + Pb(V3) = 1

where 1 is the maximum probability. The probability of each
vector having the same normed value is equal. Since the
maximum probability is 1 and there are only two vectors. The
probability of each vector is 0.5.

Pb(V1) = 0.5 6)
Pb(V2) = 0.5 @)
In the case of two vectors, the probability of each vector for
a given normed value is half. We are not able to locate the
exact vector for given normed value. If we have multiple

vectors having the same normed value, then the probability of
each vector is further reduced to 1/4. As a result, for a given
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normed value, the location of the exact vector depends on a
number of vectors having the same normed value.

1) INVERSE OPERATOR

Not for all operators, the inverse exists. To check whether it
exists or not for an operator, two conditions are need to be
checked.

X — Y is called one-to-one mapping of X into Y if and
onlyif xj,x € Xandx; #x» —> 7(x1) # T(x1) We can
say that that t is one-to-one if inverse of any pointy € Y is
at most a single point of X, i.e.,

T <1 Wyey ®)

X —> Y is called on-to mapping if every element of X is
mapped to at least one element of y, such as:

tX)=Y

If T : X — Y is one-to-one and onto then an inverse exist
for T denoted by 7_1, such as:

tX)yiff t—i{y} = X

2) LINEARITY OF INVERSE OPERATOR
If a linear operation A : X — Y (for vectors X and Y) has
an inverse, then that inverse A~! is also linear. Suppose

AT oD =x1 AG) =
A ) =0 A) =y

then by linearity of A, we have:
A(ax) + x2) = (@Ax) + Axp) = ay1 + 2
therefore, A‘l(anl +Axp) = ax; +xp = aA_lyl +A_1y2.

3) SVP-HARDNESS

There is no known polynomial-time algorithm that is used
to solve the exact SVP, as it is an NP-hard problem [49].
The LLL algorithm is the first available algorithm to solve
the SVP with running time of 2007 To solve the exact SVP
problem one of the latest algorithms is Discrete Gaussian
Sampling that requires 2" time [51].

4) VECTOR LOCATION

Similarly, RSA is one of the public key encryption schemes
and is considered secure against classical computers. Its hard-
ness lies in integer factorization. However, Shor’s algorithm
can break these cryptographic techniques within polynomial
time. Since in our scheme we have discussed the concept
of vector factorization and vector location within lattices.
Factorizing the vector into two same vectors is one of the
difficult problems in lattices as discussed in “Singular Value
Decomposition”. Vector location is used to solve the problem
of vector factorization in lattices. If the same vectors are
generated from the resultant vector, then it can lead to a
possible solution else it will generate a garbled value, and
decryption to the original message is not possible.
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C. SECURITY VERIFICATION OF LB-RSA

PROTOCOL USING AVISPA

The AVISPA (Automated Validation of Internet Security Pro-
tocol and Application) is an extensive tool, that has been
designed and used for security protocols’ automatic falsifi-
cation. The protocol falsification refers to the detection of
security attacks against the testing protocol unlike the proto-
col verification; where the correctness of the protocol is more
concerned. One of the four backends of AVISPA executes that
low-level intermediate code for finding security vulnerabili-
ties in the protocols. Due to its modular approach, AVISPA is
arobust tool. There exists a variety of automated falsification
tools for security protocols, but the problem is; most of them
do not perform well for relatively large-scale security pro-
tocols, unfortunately. Alternatively, AVISPA; having a huge
library of specification-collections for security protocols and
is able enough to specify the large-scale security protocols.

AVISPA provides four back-ends: OFMC, CL-AtSe,
SATMC, and TA4SP. OFMC refers to ‘On-the-Fly Model
Checker’. It takes typed and untyped both protocols models
in its consideration. It also provides on-the-fly falsification of
protocol and bounded verification. The modeling language
used in AVISPA is known as HLPSL. It is used to specify
the security properties of the protocols in AVISPA. It is a
role-based language in which all participants are represented
with some roles.

In our case, we define two roles Alice and Bob. Our
Intruder model is based on two critical aspects that are the
perfect encryption and the network (intruder). For this reason,
we have formulated two Hypothesis. According to the first
claim:

HI1: Perfect encryption guarantees that intruder can
decrypt m with k if it has the opposite of that key.

H2: Intruder has complete control over the communication
channel between participants.

such as, he can modify, block any message passing over
the network. We have checked our LB-RSA protocol against
OFMC model. The protocol and intruder simulation result
shows that our protocol is “SAFE” against active and passive
attacks including replay and man-in-the-middle attacks as
shown in Fig 3 and Fig 4. Due to space limitations, we opted
not to add the detail. But LB-RSA. hlpsl code is available on
demand.

role B role A role B role_A
bob = 3 alice- 4 bob = 6 alice= 7

{alice.bob.nonce-l})l) stepl.

{Blice.bob.nonce-2}_Ko Step2.

{afice.bob.nonce-1.s1}fka Step3.

{afice.bob.nonce-2.s1}jka Steps.

FIGURE 3. LB-RSA protocol simulation using AVISPA.
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Intruder. role_B role_A role B role_A
-0 — bob-3 alice- 4 bob - 6 alice- 7
Stepl.

{alice.bob.ffonce-1} kb

{aljce.bob.nonce-1} kb

{aljce.bob.nonce-1)§ kb

{alice.bob.ffonce-2} kb

{alige.bob.nonce-1.53}_ka

{alice.bob.ngnce-1.51}_ka

{alige.bob.nonce-1.s1} ka

FIGURE 4. Intruder simulation using AVISPA.

D. SIMULATION SETTING
Initially, we have implemented a library based on
60-dimensional lattices. In this approach firstly, we divided
the file into chunks i.e., 60 x 60 matrix. Each chunk is
then encrypted. The above process of encryption and decryp-
tion is run multiple times as per the number of the chunk.
Preliminary results have been drawn for encryption and
digital signing. Our key size is, roughly 115200-bits where
key-generation time is 0.8 hours for (no. of threads = 32).
The computations were carried out on a system run-
ning Ubuntu 18.04.3 LTS, (Intel Core i5—8250U), 8GB
DDR4 RAM, 256GB SSD. We have implemented our
library in Python-3.6 with Komodo Edit 11 IDE and the
code requires fpylll for shortest vector computation. Ide-
ally, it should be setup within a python virtual environ-
ment. So, we install virtualenv and the pre-requisite packages
https://github.com/Iqramustafa293/RSA.

VI. RESULTS AND COMPARISON WITH PRE-QUANTUM
AND POST-QUANTUM RSA
With the advent of smart everything and information era,
the information appeared as an eminent asset for any orga-
nization that needs to be secured through information secu-
rity measures, i.e., encryption. Up till now, data encrypted
under existing schemes were supposed to be secure when
transacted across networks. However, with the advent of the
latest research in the field of quantum computing, several
severe threats have emerged to this supposition. To com-
bat this issue, cryptography researchers toiled to propound
ideas of upgrading from simple integer-based methods to
lattice-based complex mathematics.

Here we discuss our protocol for 60-dimensional space.
Notably, in our proposed scheme, without increasing the
key-size ranging from millions of bytes—terabytes, we are
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able enough to achieve the same level of security that makes
our scheme quantum-safe. The proposed scheme is relatively
simple, efficient, and scalable, also it is provably secure under
worst-case hardness assumption.

« Like pre-quantum RSA, the security of post-quantum
RSA designed by Bernstein et al. [12] based on integer-
factorization, but in lattices-based RSA we have used the
concept of vectors factorization.

« We have generated a lattice basis, and from these,
we pick some random vectors to generate a Ky
and Kp;. So, it is quite impossible for someone to guess
the generated lattice basis.

o In LB-RSA we replace the product of 2-large prime
integers with a cross-product of 2 n-dimensional vec-
tors. Product of 2 numbers is commutative, while
cross-product is non-commutative. It means we can
compute the cross-product of 2-vectors but cannot split
into 2-independent vectors.

o In post-quantum RSA the authors have generated
1 terabyte exponent-3 RSA key consisting of 4096-bit
primes, moreover, the cost of each encryption or decryp-
tion takes 1$ of processor time which one would
not incorporate in lightweight cryptography. While the
key-size of LB-RSA = 14.4 KB. It comes under
lightweight cryptography and is suitable for low-cost
scenarios.

o In our protocol, it is even easy to compute N but
quite impossible to factorize N into 2 independent
n-dimensional vectors. Probability to guess each dimen-
sion of vector is:

Pb(a;) =1/n

(where n depends on number of vectors 7 lie in the
space, as both vectors v and v, are perpendicular to the
resulting 7).

« In vector mapping, we have discussed location at which
angle exactly a vector is mapped on, we will have a track
on its real predefined angle i.e., the encrypted value is
decrypted only when this normed value is factorized into
exact vector dimensions, which is difficult for a system
to break down.

o LB-RSA key transmission rate and cost is less as
compared to post-quantum RSA. A bitter fact about
Post-quantum RSA is its computational, storage, and
communication cost that makes it highly complex in
case of encryption of large contents. Alternatively, our
proposed scheme outperforms in terms of simplicity and
efficiency.

o The matrix factorization is different from integer
factorization, so if one is able enough to break
public-key then he must factorize the matrix to guess
the security parameter x. Shor’s algorithm is used
for integer factorization but does not work for matrix
factorization.

+ LB-RSA function is indeed a one-way function and is
quantum resistive as well with a quadratic attacking cost;

99282

because of high dimensions and Singular Value Decom-
position of vectors I1I-B.

o LB-RSA qualifies as secure under archaic secu-
rity definitions required asymptotic security against
polynomial-time adversaries, but it could only be
achieved when we increased its dimensions i.e., up to n;
where n would represent a larger dimension, providing
ultimate as quantum computing becomes reality. So,
the current scheme opens the direction towards a path
where we don’t need to increase the key-lengths to make
the algorithms quantum-safe. By changing the security
assumptions, we can bring drastic changes in the field of
public-key cryptography.

The newly developed LB-RSA efficiency has been tested
against [21] and [52] for different file-sizes. Notably,
the key-size of LB-RSA is constant for both encryption and
decryption. Fig. 5, 6 shows that the encryption and decryption
speed of LB-RSA is highly optimized as compared to [21].

128 512 1024
File Size (KB)

HLERSA m[21]

FIGURE 5. Encryption time of LB-RSA and [21].

Time (5)

34

50 S A— —

ol g g

. 128 512 1024
File Size (KB)

WLERSA m[21]

FIGURE 6. Decryption time of & LB-RSA and [21].

Whereas, LB-RSA vs NTRU encryption and decryp-
tion time (ms) against different file sizes is illustrated
in Fig 7 and 8. Experimental analysis shows that LB-RSA is
efficient as compared to NTRU.

Proposed LB-RSA key-generation algorithm runs in expo-
nential time 290" and space 2°™ for n-dimensional lattices,
it means the time complexity of LB-RSA increases with the
increase in number of dimensions. However, the constraint of
proposed protocol is the constant key-size i.e., 60-dimensions

VOLUME 8, 2020



I. Mustafa et al.: Lightweight Post-Quantum Lattice-Based RSA for Secure Communications

IEEE Access

Time (ms)

35
30
5
20
15
10
5
o
128 512

File Size [KB)
HLBR3A ENTRU

FIGURE 7. Encryption time of LB-RSA and NTRU.

250

200

150

100

50
128 512

File Size [KB)

Time (ms)

HLB-R5A EWNTRU

FIGURE 8. Decryption time of & LB-RSA and NTRU.

for all type of messages. Therefore, the adaptability of this
scheme is apt for long messages.

VIl. CONCLUSION
In this paper, we have presented a novel approach for secure
communications by introducing the variant of pre-quantum
RSA called lattice-based RSA. The LB-RSA public-key
cryptosystem can be considered as a strong encryption algo-
rithm which is the replacement of pre-quantum RSA for
IoT-based cloud applications. It is one of the candidates that
is considered secure against quantum computers. The reasons
for choosing the lattice-based encryption scheme are; the
provision of strong security proof for IoT data transmission,
simple and efficient implementation for all scenarios, scala-
bility, and efficiency regarding time complexity. Moreover,
several security issues could potentially damage the security
of integer-based RSA, which are now covered by LB-RSA,
such as timing attacks and problems with key distribution.
The comparison of LB-RSA with recent counterparts
based on encryption, decryption, key generation time, and
total execution time shows that LB-RSA outperforms in terms
of operational efficiency and security. Initially, we imple-
mented a library in 60-dimensions for encryption, but for
digital signature, we were confined to 3-dimensions only.
In the future, we will work on cryptanalysis for digital signing
for higher dimensions, e.g., up to 60 x 60.
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