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Abstract: Plant proteases, the proteolytic enzymes that catalyze protein breakdown and recycling,
play an essential role in a variety of biological processes including stomatal development and
distribution, as well as, systemic stress responses. In this review, we summarize what is known
about the participation of proteases in both stomatal organogenesis and on the stomatal pore aperture
tuning, with particular emphasis on their involvement in numerous signaling pathways triggered
by abiotic and biotic stressors. There is a compelling body of evidence demonstrating that several
proteases are directly or indirectly implicated in the process of stomatal development, affecting
stomatal index, density, spacing, as well as, size. In addition, proteases are reported to be involved
in a transient adjustment of stomatal aperture, thus orchestrating gas exchange. Consequently, the
proteases-mediated regulation of stomatal movements considerably affects plants’ ability to cope
not only with abiotic stressors, but also to perceive and respond to biotic stimuli. Even though
the determining role of proteases on stomatal development and functioning is just beginning to
unfold, our understanding of the underlying processes and cellular mechanisms still remains far from
being completed.

Keywords: pore aperture; stomata; stomatal length; stomatal density; stomatal spacing; transpiration;
water loss

1. Introduction

In all living cells, the breakdown of functional proteins, as well as, the recycling of non-functional,
misfolded or obsolete polypeptides to amino acids, are fundamental regulatory physiological and
developmental processes, involving a diverse array of enzymes. These enzymes either selectively
terminate proteins or generate biologically active peptides via cleavage. It is well known that this
fundamental decomposition of proteins is carried out via either the ubiquitin/proteasome pathway
or by inducing selective irreversible post-translational modifications, which in turn hamper protein
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functionality [1–4]. Proteolytic enzymes also participate in signaling pathways, which mediate diverse
biological functions such as programmed cell death, as well as, plant responses to both biotic and
abiotic stressors [4–7].

Plant genomes encode numerous proteases (also known as peptidases or proteolytic enzymes) that
are structurally diverse enzymes despite having a common substrate-activity; namely they catalyze the
hydrolytic cleavage of peptide bonds between peptide residues. After the initiation of the proteolytic
mechanism, this process is mainly regulated by protease inhibitors [8]. Plant proteases are classified
according to the MEROPS database (http://merops.sanger.ac.uk) in nine groups (the five major groups;
serine, cysteine, aspartic, threonine, metalloproteases, as well as asparagine, glutamic, mixed and
proteases with unknown catalytic type), based on the nature of the functional group of active sites that
performs the (usually) selective hydrolysis of the peptide bonds [8–10].

In higher plants, leaf gas fluxes primarily take place through stomata, which are actively regulated
pores on the leaf surface [11–13]. The starting point of stomatal development is the protodermal stem
cells which are differentiated in succession to Meristemoid Mother cells (MMC), Meristemoids, Guard
Mother Cells (GMCs) and finally to Guard Cells (GC). This process is driven by three closely related
transcription factors (SPEECHLESS (SPCH), MUTE and FAMA). The regulation of the SPCH, MUTE
and FAMA mechanism is achieved with an array of other proteins and transcriptional factors exhibiting
complex interactions allowing for its fine tuning according to the external stimuli. Indeed, hormonal
and environmental signals are proven to affect this process by targeting specific of the plethora of
regulators that affect the SPCH, MUTE and FAMA mechanism [14–16] (Figure 1).

Plants 2020, 9, x FOR PEER REVIEW 2 of 11 

which in turn hamper protein functionality [1–4]. Proteolytic enzymes also participate in signaling 
pathways, which mediate diverse biological functions such as programmed cell death, as well as, 
plant responses to both biotic and abiotic stressors [4–7].  

Plant genomes encode numerous proteases (also known as peptidases or proteolytic enzymes) 
that are structurally diverse enzymes despite having a common substrate-activity; namely they 
catalyze the hydrolytic cleavage of peptide bonds between peptide residues. After the initiation of 
the proteolytic mechanism, this process is mainly regulated by protease inhibitors [8]. Plant proteases 
are classified according to the MEROPS database (http://merops.sanger.ac.uk) in nine groups (the 
five major groups; serine, cysteine, aspartic, threonine, metalloproteases, as well as asparagine, 
glutamic, mixed and proteases with unknown catalytic type), based on the nature of the functional 
group of active sites that performs the (usually) selective hydrolysis of the peptide bonds [8–10].  

In higher plants, leaf gas fluxes primarily take place through stomata, which are actively 
regulated pores on the leaf surface [11–13]. The starting point of stomatal development is the 
protodermal stem cells which are differentiated in succession to Meristemoid Mother cells (MMC), 
Meristemoids, Guard Mother Cells (GMCs) and finally to Guard Cells (GC). This process is driven 
by three closely related transcription factors (SPEECHLESS (SPCH), MUTE and FAMA). The 
regulation of the SPCH, MUTE and FAMA mechanism is achieved with an array of other proteins 
and transcriptional factors exhibiting complex interactions allowing for its fine tuning according to 
the external stimuli. Indeed, hormonal and environmental signals are proven to affect this process by 
targeting specific of the plethora of regulators that affect the SPCH, MUTE and FAMA mechanism 
[14–16] (Figure 1).  

 
Figure 1. The main stomatal developmental pathway. The experimentally confirmed steps are shown 
as solid lines, and the steps that are yet unverified are shown as non-colored dotted lines. An arrow 
indicates a positive regulation, while a ‘T’ indicates negative regulation. Dark blue bubbles indicate 
critical controllers of the stomatal development, light blue bubbles indicate secondary regulators of 
the pathway, yellow bubbles mark the proteases that are involved in the pathway. Additional 
abbreviations: SCRM: Scream, YDA: YODA, MAPK: MAP Kinase, MAPKKK: MAPKK Kinase, SLGC: 
Stomatal lineage ground cell, FLP: Four Lips [16,17]. 

More specifically, a positive regulation towards the development of stomata has been confirmed 
for carbon dioxide, red light spectra, as well as the brassinosteroid signaling pathways. Furthermore, 
atmospheric air humidity and cold stress have also been implicated to control stomatal development 
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Figure 1. The main stomatal developmental pathway. The experimentally confirmed steps are shown
as solid lines, and the steps that are yet unverified are shown as non-colored dotted lines. An arrow
indicates a positive regulation, while a ‘T’ indicates negative regulation. Dark blue bubbles indicate
critical controllers of the stomatal development, light blue bubbles indicate secondary regulators of the
pathway, yellow bubbles mark the proteases that are involved in the pathway. Additional abbreviations:
SCRM: Scream, YDA: YODA, MAPK: MAP Kinase, MAPKKK: MAPKK Kinase, SLGC: Stomatal lineage
ground cell, FLP: Four Lips [16,17].

More specifically, a positive regulation towards the development of stomata has been confirmed
for carbon dioxide, red light spectra, as well as the brassinosteroid signaling pathways. Furthermore,
atmospheric air humidity and cold stress have also been implicated to control stomatal development
and regulation [18].

Stomata play an essential role in the intake of CO2 for photosynthesis, and at the same time regulate
transpirational water loss. A smaller portion of leaf gas fluxes occurs via the cuticle (passive regulation), a
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process that becomes increasingly important upon unfavorable (stress) conditions [19–21]. The stomatal
cross-sectional area, where gas exchange occurs, is set by both stomatal opening (pore aperture) and
stomatal anatomical features (size, density and patterning (spacing)) [22–24]. Consequently, leaf
diffusive conductance involves both long-term processes and short-term dynamics [25,26]. Long-term
processes refer to the establishment of stomatal anatomical features, as well as, the formation of the
cuticle during leaf expansion (weeks); hence cannot be readily reset following this period [22,24,26].
On the other hand, short-term dynamics are resolved by tunings in pore aperture (seconds to hours),
and thus are reversible [27–29]. This review examines the involvement of specific classes of proteases
in the regulatory and signaling pathways that govern stomatal development, as well as, stomatal pore
aperture tuning.

2. Subtilisin-Like Serine Proteases

Subtilisin-like proteases (subtilases) are mostly endopeptidases, containing a group of the
amino acids aspartate (Asp), histidine (His), and serine (Ser) in their active site, and are effectively
folded by forming a β-sheet secondary structure comprising of seven beta strands. Some subtilases
have shown high substrate specificity, participating in phytohormone precursors’ post-translational
modification [30].

Three peptides have been shown to hold a predominant role in stomatal development (Epidermal
Patterning Factor 1 (EPF1), Epidermal Patterning Factor 2 (EPF2), and Epidermal Patterning Factor Like
9 (EPFL9), also referred as STOM) [31,32]. EPF1 and EPF2 negatively regulate stomatal development
by acting as ligands to activate the leucine-rich repeat receptor kinases (ER/LRR-RKs) [33], whereas,
EPFL9 is a positive regulator, competing with EPF1 and EPF2 for LRR-RKs’ binding [33]. EPF1, EPF2,
and EPFL9 are initially translated as pro-peptides, the full activation of which is achieved via protease
cleaving. The proteases activating the EPF1, EPF2, and EPFL9 via posttranslational modification have
not yet been successfully identified. To date, the following two subtilisin-like proteases have been
implicated in the stomatal development: the Stomatal Density and Distribution 1 (SDD1) and the CO2

Response Secreted Protease (CRSP or SBT5.2) [31].
The SDD1 gene encodes a 775–amino acid protein in Arabidopsis thaliana (L.) Heynh., which

exhibits homology with the S8 subtilisin-like serine protease [34]. SDD1 gene expression is spatially and
temporally limited to the stage of stomatal development in stomatal precursor cells. Transcripts were
detected in meristemoids (stomatal initials) and GMCs, but were absent in mature stomata indicating a
developmental rather than a constitutive role of SSD1 in stomatal formation [35]. In agreement to these
results, Morales-Navarro et al. [36] reported increased transcription of the gene in growing tomato
leaves suggesting the involvement of SDD1 in their development. SDD1 is a negative regulator of
stomatal development, since it lessens both the formation of stomatal complexes and the number of
stomata produced per stomatal complex [34]. Stomatal density was found to be higher (two to four-fold)
in sdd1–1 mutant as compared to the wild-type plants [33], whereas it was lower (two to three-fold) in
the overexpressing lines [35]. A decrease in stomatal density, as a result of SDD1 overexpression, has
been generally correlated to enhanced water use efficiency and drought tolerance [37,38]. Moreover,
SDD1 regulates the orientation of spacing divisions in neighboring cells [36]. In sdd1–1 mutants,
the principle of maintaining one epidermal cell spacing between adjacent stomata was violated, as
a result of misoriented spacing divisions, thus forming stomatal clusters (i.e., two or more stomata
touching) [34]. This contact between neighboring stomata has been related to pitfalls, including
reduced carbon assimilation and impaired stomatal responses to external cues [22]. Moreover, similar
functionality of SDD1 has been reported in Arabidopsis and tomato by Morales-Navarro et al. [36].
Although SDD1 strongly influences stomatal development, the proteolysis of EPF members by the
SDD1 remains elusive [31,39].

The CRSP is another subtilisin-like protease involved in the control of stomatal development [40,41].
CRSP negatively regulates stomatal development under high CO2 concentration by processing the
EPF2 precursor [39]. This processing results to blockage of the asymmetric divisions of the MMCs [42].
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Wild-type Arabidopsis thaliana plants and the majority of plant species typically undergo a repression in
stomatal development under elevated CO2 [41]. However, this response is disrupted in crsp mutants,
which exhibit an inverted developmental response, namely producing more stomata at high CO2

levels [40]. EPF2 negatively regulates stomatal development [30]. Although CRSP has been shown
to cleave EPF2, the effect of this cleavage on the interaction between EPF2 and LRR-RK remains
unknown [40,41].

Senescence-Associated Subtilisin Protease (SASP) is another serine protease. It was recently
demonstrated that apart from an elemental role in senescence, SASP is a key component in abscisic acid
(ABA) signaling and drought tolerance. Indeed, SASP disintegrates Open Stomata 1 (OST1), an ABA
signaling regulator, and in this way making stomata insensitive to ABA. Knocking down the SASP
gene resulted to increased drought tolerance, since the stomatal response to stress-induced ABA was
amplified [43,44].

3. Vacuolar Processing Enzymes (Cysteine Proteinases)

According to MEROPS nomenclature, there are 63 subfamilies of cysteine proteinases that are
subdivided into six groups (C, CA, CD, CE, CF and CH), making them one of the largest and
most widely represented plant proteinase classes. Vacuolar processing enzymes (VPEs) are vacuolar
localized cysteine proteinases that have been reported to hold multiple and important attributes in plant
development, most notably regulating the mobilization of storage proteins in seeds. Moreover, VPEs
possess critical roles in plant defense, as they are known to be involved in the process of programmed
cell death under viral infection and hypersensitive responses. Recently, the VPEs’ role in the control of
stomatal pore aperture during both pathogen attack and under abiotic stress (drought, salinity, low or
high temperature) has been deciphered [45–48].

Arabidopsis γ-vpe mutant lines exhibited a drought tolerant phenotype. In this regard, it is
interesting to note that γ-vpe knock-out mutants had a reduced stomatal opening, suggesting that this
type of VPE is implicated in stomatal pore aperture regulation [49]. In rice, it was shown that the
suppression of OsVPE3 enhances salt tolerance by reducing vacuole rupture during programmed cell
death, as well as by decreasing both leaf width and stomatal GC length [50]. Stomatal closure can be
triggered by pathogens, pathogen-associated molecular patterns (PAMPs), and elicitors. VPEs are
possibly involved in the control of the elicitor-induced stomatal closure by regulating NO accumulation
in GCs [51], and thereby playing a key role in plant immunity.

Moreover, the suppression of VPE3 led to reduced stomatal length in rice [50]. This effect was
related to the downregulation of the expression levels of genes related to the stomatal development,
namely: Too Many Mouths (TMM), Speechless (SPCH1) and Mute [50]. Although this study clearly
establishes a role of proteinases on determining stomatal length, the processes underlying this effect
remain to be elucidated.

Similarly, improved drought tolerance, owing to an enhanced control of water loss via stomata
and increased ABA sensitivity, has also been reported following transgenic overexpression of CYS4
(coding for a cysteine proteinase inhibitor) that targets both VPEs and Papain-like cysteine proteases in
Arabidopsis thaliana and Malus domestica Borkh [52].

The direct inhibition of protease activity is expected to underlie these effects. Moreover, stomatal
closure following elicitor inoculation was significantly inhibited by VPE silencing in Nicotiana
benthamiana Domin [53]. The elicitor-triggered NO accumulation in GCs was also suppressed by VPE
deficiency [46]. Taken together available data, suggests that VPE mediates the elicitor-induced stomatal
closure by controlling the NO accumulation in GCs [46,51].

It appears that stomatal closure during the infection with various pathogens is a complicated
cascade regulated by VPEs’ activity, which is influenced by NO signaling and can be triggered by
PAMPs. Thus, it is suggested that VPEs possess a pivotal and multifunctional regulatory role in the
initial defensive physiological reactions against pathogens [6,48,53].
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4. Papain-Like Cysteine Proteases

Papain-like cysteine proteases (PLCPs), featuring a nucleophilic cysteine thiol at the active site,
are coded by a multigene family (with at least 31 members in Arabidopsis). These genes contribute to a
plethora of physiological procedures, such as seed germination, anther development, programmed cell
death, senescence, abiotic stress responses and plant innate immunity system [54]. In the apoplast,
the vast majority of proteases, recognizing different pathogen types and transmitting the respective
messages, belongs to PLCPs. However, different PLCPs enable separate signaling pathways initiating
the appropriate innate immunity response [6].

Further evidence on the role of proteases in stomatal regulation and development comes from
recent work in barley [55]. Knock-down lines with reduced transcription of two Papain-like cysteine
protease genes (PAP-1 and PAP-19), exhibited differential stomatal development and functionality
as compared to wild-type plants. Even though both pap-1 and pap-19 knock-down lines exhibited a
decrease of stomatal pore area, still, only the stomatal pore of pap-19 plants was significantly larger
than the wild-type. According to the same report, pap-1 and pap-19 lines differentially responded
to biotic stimuli. Moreover, the phytohormonic equilibrium (especially jasmonic acid levels) under
drought stress was different between knock-down lines and wild-type plants, thus suggesting that a
delicate crosstalk among phytohormones, proteases and stomatal regulation occurs under stress.

A large number of pathogens uses stomatal pores as an entrance in order to colonize inner
leaf tissues. For instance, several pathogens such as Plasmopara viticola and Puccinia Pers. fungal
species [56–58] specifically internalize leaves only through stomata. In addition, stomatal pores can
also serve as the occasional entrance for many other pathogens, such as the bacteria Xanthomonas
campestris pv armoraciae and Pseudomonas syringae [59]. While ABA appears to be a key regulator in
stomatal closure, both salicylic acid (SA) and hydrogen peroxide, which are produced under several
modes following pathogen attack and stress stimuli, are also involved. Indeed, SA and hydrogen
peroxide have been both shown to halt pathogen penetration inside the plant body [59–61]. Recently,
Ziemann et al. [62] reported that through the activity of a Papain-like cysteine protease, the immune
signaling peptide 1 (ZIP1) is matured from its pro-peptide, and serves as an activator of SA signaling
via transcriptional upregulation.

5. Aspartic Proteases

In Arabidopsis thaliana, an Aspartic protease (Aspartic Protease in Guard Cell 1; ASPG1) with a
preferred localization in the stomatal GCs, has been implicated in ABA sensitivity acting competitively
to the Small ubiquitin-like modifier (SUMO) proteases. The overexpression of ASPG1 gene resulted
in faster stomatal closure under drought stress by enhancing the ABA sensitivity of GCs [63].
Correspondingly, another aspartic protease (APA1) has also been implicated in drought tolerance by
exhibiting a similar activity to ASPG1. The overexpression of APA1 gene resulted to increased drought
tolerance, as plants exhibited reduced stomatal index and thus reduced water loss [64]. Moreover,
Aspartic protease (AP17) has also been demonstrated to positively affect both ABA and antioxidant
responses under stress, while it negatively affected stomatal pore aperture in grape vine [65]. In
addition, the aspartic protease Constitutive Disease Resistance 1 (CDR1) has a fundamental role in
the initiation of SA-related signaling under pathogen attack that stimulates the innate immunity
reactions [66]. While stomatal closure is one of the most characteristic innate immunity reactions, still
the association between CDR1 activity and stomatal functionality is at the side of expectations, though
this hypothesis remains to be experimentally addressed.

6. Ubiquitin-Mediated Proteasomal Protein Degradation and Ubiquitin-Like Modifiers

Ubiquitin-mediated proteasomal protein degradation is an important mechanism to control
protein load in the cells. Ubiquitin, a regulatory protein that consists of 76 amino acids, binds to
lysine residues of proteins, and usually promotes its degradation through the 26S proteasome complex
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(a process known as “ubiquitination”). Abnormal, misfolded proteins, as well as, regulators of many
processes are marked, and then degraded by the ubiquitin-proteasome system. This process allows
cells to regulate the response to cellular level signals and altered environmental conditions [67].
The ubiquitin-mediated proteasomal degradation system has a key role in abiotic stress feedback,
immunity, and hormonal signaling by interfering with key components of these pathways.

SPCH, MUTE, and FAMA transcription factors act in conjunction with several other proteins and
transcription factors, orchestrating stomatal formation and differentiation [68]. This major regulatory
system interacts with other transcription factors, such as the Inducer of CBF Expression (ICE), during
plant development with defined roles under specific environmental conditions [69]. Proteases’ function
also interplays with light spectra. Under dark, in the abaxial (lower) Arabidopsis epidermal cells,
ICE is degraded by an E3 ubiquitin ligase (Constitutive Photomorphogenic 1-COP1), influencing
stomatal development. Also, it was demonstrated that the activity of COP1 was suppressed by
blue, red and far-red light. Moreover, COP1 interacts with phytochrome A, phytochrome B and
cryptochrome 1, indicating that this system is fundamental for plant development in the ever-changing
light environments [67,68]. Moreover, the involvement of another protease (E3 ubiquitin ligase-HOS1)
in photoperiodic flowering and its similar mechanism of action in conjunction with phytochrome B,
suggests that it can also be involved in stomatal development alongside to COP1 [70].

Additionally, the ethylene response transcription factor (ERF) family mediates a large number of
plant developmental or stress-induced responses. It is documented that the NO sensing-induced
stomatal closure, under specific environmental stimuli, is promoted by the degradation of a group
of ERF factors. This degradation is achieved through the 26S proteasome and via the activity of a
specialized E3 ubiquitin ligase [71,72].

The SUMO (small ubiquitin-like modifier) mechanism includes both specific SUMO ligases and
SUMO proteases. Particularly, the SUMO procedure regulates the functionality of specific target
proteins by attaching or cleaving ubiquitin-like polypeptides, and in this way regulates their activity,
localization or integrity. The SUMO-tagging, however, is not employed for the protein proteasome
disintegration, but only for the modification of the protein activity. Sumoylation appears to be a
cornerstone regulatory mechanism for plant development and for the response to environmental
stimuli [73,74].

In Arabidopsis, the silencing of two genes, coding for SUMO proteases (OTS1 and OTS2), resulted
in increased stomatal pore aperture under decreased water potential, while notably leaf transpiration
performance remained relatively unaffected. Moreover, ots1 and ots2 knocked-down lines that
germinated in a medium containing 1 µM ABA resulted in plants having larger stomatal pore size
than wild-types [73]. In rice on the contrary, transgenic seedlings with altered levels of transcription
(knocked-down or over-expressing) OTS1 SUMO protease did not exhibit differences in stomatal
density. Still effects on the stomatal functionality were detected, since OTS1-overexpressing plants lost
more water after a drought incident in comparison to wild-type and ots1-RNAi lines [75].

Recently, Orosa et al. [76] reported that the activity of a specific PAMP bacterial related sensor,
Flagellin Sensing 2 (FLS2), is regulated by a class of SUMO proteases that target the receptor.
FLS2 removes small ubiquitin-like SUMO chains, thus, adjusting the signal strength and consequently
the immune response. Apart from the other immune responses triggered by the receptor, FLS2 also
mediates the PAMP-associated stomatal closure. This is achieved even under high light levels that
favor stomatal opening by inhibiting the influx K+ channels in the stomatal GCs with interrelation of
ABA signaling [77,78]. Finally, it should be noted that several E3 ubiquitin ligases and F-Box proteins
greatly influence stomatal functionality, especially under stress. However, since the activity of these
enzymes differs from proteolysis [79,80], it falls out of the scope of this study.

7. Conclusions and Perspectives

Proteases selectively cleave proteins. Their involvement in controlling stomatal development
and adjusting pore aperture is critically surveyed. Direct or indirect effects of proteases on stomatal
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index, density, spacing and size have been observed suggesting that proteolysis is a critical regulator
of stomatal development. Moreover, several proteases have also been implicated to orchestrate the
stomatal response to various biotic and abiotic stimuli. As stomata can be a critical entrance point for
pathogens, while the precise regulation of stomatal functionality is fundamental for plant physiological
adaptations under abiotic stress conditions, the alteration of stomatal activity exerts a large impact
on plant ability to cope not only with abiotic, but also with biotic stressors. The determining role of
proteases on several aspects of stomatal development and functioning has been established, though the
underlying processes are still not fully deciphered. For example, the link between stomatal defense and
the activity of metalloproteinases, especially of the apoplastic Matrix Metalloproteinases, which are
known to participate in signaling and defense responses under pathogen attack, is to our knowledge yet
undiscovered [81,82]. The emergence and use of powerful mutagenesis techniques, such as Clustered
Regularly Interspaced Short Palindromic Repeats/CRISPR-associated endonuclease 9 (crispr/cas9), can
generate an array of mutants in order to elucidate the mechanisms and the molecules participating
into stomatal organogenesis and function. Moreover, transcriptional regulation of SPCH, MUTE
and FAMA under diverse biotic or abiotic stresses could identify possible crosslinks of unidentified
proteases regulating the development of stomata, and thus approaching a more complete picture of
the underlying processes.
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