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Abstract: The present work is concerned with the effect of soil spatial variability on estimating the
ultimate soil resistance of floating axially loaded piles from point measurements of soil properties along
the pile. The ultimate limit state is considered. In particular, closed form formulae for (i) determining
the optimal sampling depth for minimizing statistical uncertainty and (ii) the optimal—minimum
required—safety factor for a desired failure probability level are derived. A dimensionless parameter,
the cohesion-to-friction parameter Λ, is introduced which quantifies the weight of soil’s cohesion
contribution relative to that of soil’s friction in the linear trend of the ultimate soil strength. The analysis
shows that the probability of failure profile with the sampling depth attains a minimum, designating
the optimal sampling point. This depends on the scaled spatial correlation length of the soil Θ (i.e.,
the spatial correlation length of soil over the length of the pile) and the parameter Λ, but not on the
coefficient of variance of the ultimate soil strength (covu) or the safety factor. Furthermore, it was
found that the optimal depth is always at the lower half of the pile, approaching the mid-point or
the bottom end of the pile for Λ>>1 or Λ<<1, respectively. In addition, it was found that for large
Θ, the optimal depth tends to be closer to the mid-point of the pile, while for small Θ, the optimal
sampling depth arises closer to the bottom end. The practical usefulness of the results is related to a
suitable choice of the safety factor. Inverting the probability of failure formula at its minimum value,
an optimal safety factor is obtained as a function of the desired (acceptable) probability of failure, and
the parameters Θ, Λ and covu. The optimal safety factor is the minimum value required for a desired
level of the probability of failure.

Keywords: random fields; stochastic analysis; axially loaded piles; ultimate limit state; soil sampling;
analytical solution

1. Introduction

While reliability of geotechnical engineering structures is a long-standing problem and a topic of
research of major importance, only recently has the research interest focused on statistical uncertainty,
i.e., on the effect of targeted field investigation on the reliability of structures. These studies [1–20]
aim at finding the sampling location that minimizes statistical error; this location is called “optimal
sampling location”. In one of their previous works, the authors [6] studied numerically the effect of
targeted field investigation on the reliability of axially loaded piles, aiming at an optimal Serviceability
Limit State and Ultimate Limit State design (SLS and ULS, respectively; terms used in Eurocode 7 [21]).
Working with the Random Finite Element Method (RFEM) [22] and properly considering sampling
in the analysis, they carried out an extensive parametric analysis, considering 5383 different cases.
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Two sampling strategies were considered: sampling from a single point and sampling from a domain,
concluding that statistical uncertainty is greatly affected by both the sampling depth and horizontal
distance from the pile and indicating the optimal sampling strategies (the latter are defined by the
number and location of the sampling points). Indeed, it has also been shown that the benefit from a
targeted field investigation is much greater than the benefit gained using “characteristic” soil property
values (such values are used by Eurocode 7 [21]). In the present paper, the problem is studied purely
analytically, embedding sampling in an analytical-random field mathematical process. It is mentioned
that analytical solutions based on the theory of random fields are generally rare in the geotechnical
engineering literature (e.g., [23,24]), whilst according to the best knowledge of the authors, the present
one is the first that embeds sampling in an analytical-random field framework.

In the analysis that follows, an axially loaded floating pile is assumed, the shaft resistance of
which is due to both friction and adhesion. The stiffness of the pile as well as the stiffness of the
surrounding soil is regarded as infinite, while the soil has finite strength; this, consequently, refers to
an ULS problem (the SLS problem, where the soil has infinite strength, but finite stiffness, is currently
under investigation by the authors). The force resisting to the vertical displacement of pile is modeled
analytically through a 1D random field with linear trend as a function of depth, representing the
ultimate soil strength per unit length. The linear trend models the mean effect of the soil friction and
cohesion; the trend is the only input of the mechanics of the soil incorporated in the model. In this
respect, the mean values of the soil cohesion and internal friction fields are assumed constant, while the
stochastic behavior of the soil cohesion and internal friction contributions to the ultimate soil strength
is assumed to be the same (i.e., the correlation function, the correlation length and the coefficient of
variation of both contributions is taken to be the same, quantified by a common fluctuations field). It
is also mentioned that the internal mechanics of the body of the soil away from the pile is neglected;
this is a widely used assumption, especially when the problem is investigated from the 1D numerical
point of view (e.g., [25–27]). Although this assumption looks crude, it is rather valid as, as shown
by Pantelidis [28], the active earth pressure and the at rest earth pressure on a retaining structure
are exerted from the same soil wedge; as known, the at rest state of soil is commonly used for the
calculation of the shaft resistance of piles due to friction. In addition, Christodoulou et al. [3] showed
numerically that the optimal sampling location in the case of retaining walls in the active state is at
zero distance from the wall face (the same authors [4] showed that the optimal sampling distance in
the problem of retaining walls in the passive state is half wall height away from the wall face). It is,
therefore, logical that since the at rest and the active state share the same soil wedge and the optimal
sampling location is at zero distance in the active state, the optimal sampling distance in the state at
rest to be at the location of the pile.

2. The Random Field of the Ultimate Soil Strength

The ultimate soil strength per unit pile length (in e.g., kN/m) is given by:

u = p(σ′n tan δ′ + αcc′) = p(1− sinφ′) tan δ′ × γz + pαcc′ (1)

where p is the pile perimeter, δ′ is the pile-soil interface friction angle (usually assumed to be equal to a
certain fixed fraction of φ′), σ′n is the normal effective stress on the pile, c′ is the effective cohesion
of the soil, and ac is a soil-pile adhesion factor that depends on c′. σ′n may be taken to be the lateral
earth pressure at rest, i.e., K0γz = (1 − sinφ′)γz, where φ′ is the internal friction angle of soil, γ the
unit weight of the soil and z the depth considered (measured from the surface). The soil is assumed
to be normally consolidated. For the sake of simplicity, the effect of the (mobilized) cohesion of soil
on the at rest earth pressure coefficient (see Pantelidis [28]) has been neglected, although for axially
loaded piles this effect is unfavorable. The adhesion factor is usually mentioned in the literature in the
undrained type of analysis (e.g., Das [29]), however, in the present paper, it is mentioned in the general
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case. Drained soil conditions could be regarded, taking φu = 0 and cohesion equal to cu instead of φ′

and c′, respectively.
The quantities φ′ and c′ will be regarded as random fields along the length of the pile which have

the same value around the perimeter of the pile at every depth z. Hence, they are 1D random fields
varying only along the pile length (Figure 1).
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Figure 1. A floating axially loaded pile surrounded by a soil having spatially random properties: this
soil-pile system is modelled as 1D random field.

For the sake of simplicity, each one of the grouped quantities p(1 − sinφ′)tanδ′ and pacc′ shall be
modeled by a random field. It is plausible that these random fields have similar stochastic properties,
differing only in the expectation values. That means that these fields can be modeled in terms of a
single random field, as follows:

p(1− sinφ′) tan δ′ = p(1− sinφ′) tan δ′(1 + covuω(z)), (2)

pαcc′ = pαcc
′(1 + covuω(z)), (3)

where covu is the (common) coefficient of variance of each one of the two fields and, hence, the
coefficient of variance value of the ultimate soil strength per unit length u; the random field ω(z) is
the fluctuations field, which is a Gaussian field of zero mean and unit variance, exhibiting Markovian
(linear exponential) correlations:

E[ω(z)ω(z′)] = exp
[
−

2|z− z′|
θ

]
(4)

E[ . . . ] is the expectation value operator. The quantity θ is the correlation length of the fluctuations
of the field ω, and hence of the fields p(1 − sinφ′)tanδ′ and pαcc′. In all, the quantities covu and θ and
the form of the function given in Equation (4) encode the common stochastic structure assumed for
the fields p(1 − sinφ′)tanδ′ and pαcc′. Finally, the possible change of the expectation values of these
fields with the depth shall be neglected. Hence, the expectation values, denoted by an overbar, will be
assumed constant.
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Forming now the field u by Equations (1)–(3) one obtains:

u = u(1 + covuω), (5)

with the expectation value u given by:

u = p(1− sinφ′) tan δ′ × γz + pαcc
′. (6)

It can, easily, now be shown that the quantity designated as covu is indeed the coefficient of
variance of the ultimate soil strength (per unit pile length) field u. The linear trend of the expectation
value u of the ultimate strength per unit length is of high importance in this work.

Given that eventually the probability of failure shall be calculated, which is a dimensionless
quantity, its dependence on the parameters of the problem will be realized through dimensionless
quantities. An important quantity is the ratio:

Λ =
αcc
′

(1− sinφ′) tan δ′γL
, (7)

where L is the pile length. The ratio Λ is the relative weight of the cohesion and friction terms in linear
trend of the ultimate soil strength, given in Equation (6) (it is called hereafter cohesion-to-friction
parameter). Then the trend can be written as:

u = A
(

z
L + Λ

)
A := p(1− sinφ′) tan δ′ × γL

, (8)

where A is a quantity defined for algebraic convenience. Equivalently, employing explicitly the values
of the trend at top and bottom end of the pile length, the trend of the ultimate soil strength can be
written as:

u = (ubottom − utop)
z
L + utop

utop = AΛ
ubottom = A(1 + Λ)

, (9)

which means that:
ubottom

utop
=

1 + Λ
Λ

. (10)

The large values of Λ correspond to relatively strong cohesion contribution and a nearly uniform
trend; inversely, small values of Λ correspond to relatively strong friction contribution, and the trend
exhibits a large slope.

From these data the statistics of the (total) ultimate soil strength U [kN] can be calculated:

U =

∫ L

0
udz. (11)

The latter, using Equations (5) and (8) becomes:

U =
∫ L

0 u dz = A
∫ L

0

(
z
L + Λ

)
(1 + covuω(z))dz

= U + covuA
∫ L

0

(
z
L + Λ

)
ω(z)dz

= U + U covu
1
2+Λ

∫ L
0

(
z
L + Λ

)
ω(z) dz

L

, (12)
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where, based on Equations (8) and (11):

U = AL
(1

2
+ Λ

)
. (13)

U (recall Equation (12)) is a superposition of Gaussian random variables. Hence, it is Gaussian
random variable itself and it is completely defined by its mean U and standard deviation. σU, or
equivalently, is its coefficient of variation. Using Equations (4) and (12), the (squared) coefficient of
variation of U reads:

E[(U −U)
2
]

U
2 =

cov2
u(

1
2 + Λ

)2

∫ L

0

∫ L

0

( z
L
+ Λ

)(z′

L
+ Λ

)
exp

[
−

2|z1 − z2|

θ

]dzdz′

L2 . (14)

The calculation of the integrals is relatively straightforward. One finds:

E[(U −U)
2
]

U
2 = cov2

u

(1
2
+ Λ

)−2
×


(

1
3 Θ − 1

4 Θ2 + 1
8 Θ4
−

1
4 Θ3e−2/Θ

−
1
8 Θ4e−2/Θ

)
+Λ

(
Θ − 1

2 Θ2 + 1
2 Θ2e−2/Θ

)
+ Λ2

(
Θ − 1

2 Θ2 + 1
2 Θ2e−2/Θ

) , (15)

where:
Θ = θ/L. (16)

is the scaled correlation length.

3. Design Ultimate Soil Strength from Sampling

Measuring the fields φ′ and c′ at any depth z = zs in the vicinity of the pile will provide an
estimate for the soil ultimate strength, Us, as follows. The stochasticity of the field u is carried—in the
present paper—by the fluctuations field ω(z), which encodes the (common) stochastic properties of
the fluctuations of the friction and cohesion random fields. A measurement at a depth z = zs picks a
value ω(zs) of the field ω. The value ω(zs) is a random variable modeling the stochastic nature of the
measurement. Then the estimated ultimate soil strength reads as:

Us = A
∫ L

0

( z
L
+ Λ

)
(1 + covuω(zs))dz = U(1 + covuω(zs)) (17)

using Equation (8). Clearly, this is a Gaussian random variable. Its expectation value is:

Us = U (18)

as the fluctuations field ω has zero expectation value. Also, by Equation (4), the (squared) coefficient of
variation of Us is:

E[(Us −U)
2
]

U
2 = cov2

u (19)

These data define completely the random variable Us.

4. Probability of Failure

Given an estimate Us for the total ultimate soil strength, the limiting load Q is designated as Us/F
for a certain factor of safety F. The probability of failure is defined as:

PF = Probability
(
U <

Us

F

)
. (20)
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Defining:

Z = U −
Us

F
, (21)

a random variable is obtained, which is also Gaussian, as a superposition of Gaussian random variables.
Therefore:

PF = Probability(Z < 0) = Φ
(
−

Z
σZ

)
= Φ

(
−

1
covZ

)
. (22)

where Φ is the probability function of the normalized normal distribution. The mean value of Z
reads as:

Z = U
(
1−

1
F

)
, (23)

while its (squared) coefficient of variation reads as:

cov2
Z =

E[(Z−Z)
2
]

Z
2 =

(
1− 1

F

)−2 1
U

2 E
[(

U −U − Us−U
F

)2
]

=
(
1− 1

F

)−2
[

E[(U−U)
2
]

U
2 −

2
F

E[(U−U)(Us−U)]

U
2 + 1

F2
E[(Us−U)

2
]

U
2

] . (24)

The first and last term in the square brackets correspond to the coefficient of variation of the
variables U and Us, given by Equations (15) and (19). The middle term corresponds to the correlation
coefficient between the soil strength U and the estimated soil strength Us from a measurement at a
depth zs. It reads as:

E[(U−U)(Us−U)]

U
2 = − 2

F
cov2

u

( 1
2+Λ)

∫ L
0

(
z
L + Λ

)
exp

[
−

2|z−zs |
θ

]
dz
L

=
cov2

u
1
2+Λ

{ 1
4 Θ(Θ − 2Λ)e−2ζ/Θ

−
1
4 Θ(Θ + 2Λ + 2)e−2(1−ζ)/Θ + (ζ+ Λ)Θ

} , (25)

where Equations (4), (12) and (17) have been used; the dimensionless depth ζ of the observation point
has been defined as:

ζ = zs/L. (26)

Clearly, this term encodes the effect of sampling on the design.
In all, by Equations (15), (19), (22) and (25), the cov value of the random variable Z is:

cov2
Z =

cov2
u

(1− 1
F )

2

(
T1 −

2
F T2 +

1
F2

)

T1 : = 1

( 1
2+Λ)

2 ×


(

1
3 Θ − 1

4 Θ2 + 1
8 Θ4
−

1
4 Θ3e−2/Θ

−
1
8 Θ4e−2/Θ

)
+Λ

(
Θ − 1

2 Θ2 + 1
2 Θ2e−2/Θ

)
+ Λ2

(
Θ − 1

2 Θ2 + 1
2 Θ2e−2/Θ

) 
T2 : = 1

1
2+Λ

{
1
4 Θ(Θ − 2Λ)e−2ζ/Θ

−
1
4 Θ(Θ + 2Λ + 2)e−2(1−ζ)/Θ + (ζ+ Λ)Θ

}


. (27)

The quantities T1 and T2 essentially correspond to suitable dimensionless forms of the three
terms in Equation (24) and depend only on Θ and Λ, which are both dimensionless. Evaluating covZ
immediately provides the probability of failure PF by Equation (22).

5. Optimal Sampling Depth

The optimal sampling depth is defined as the depth along the pile where the probability of failure
PF, given by Equations (22) and (27), attains a minimum, for given values of the parameters Θ, Λ, and
F. Note that the sampling depth appears only in the correlation term in Equation (24) as explained
above, that is, in the T2 term (recall Equation (27)). In that term, the safety factor F appears only as an
overall factor, hence the optimal sampling depth is independent of F. Given also that covu is an overall
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factor in Equation (27), the optimal sampling depth is also independent of that value (as long as it is
not zero).

Differentiating covZ with respect to ζ and setting the result to zero:

ζoptimal = −
Θ
2

ln

Θ − e−1/Θ
√

4Λ(1 + Λ) − 2Θ −Θ2 + Θ2e2/Θ

Θ − 2Λ

. (28)

In the large Θ limit, that is, in the limit where the entire field becomes a single uniform random
variable, the optimum sampling depth takes the form

ζoptimal =

√
Λ2 + Λ +

1
2
−Λ. (29)

On the other hand, in the limit of very small correlations lengths, Θ→ 0:

ζoptimal = 1. (30)

It is important to note that in the limit of small variability (large Θ), the minimum of the probability
of failure becomes very shallow and it is of no practical importance. The usefulness of Equations (29)
and (30) is that they provide the two ends of the possible optimal depths for given Λ. Figure 2 shows
the optimal sampling depth given by Equation (28) as a function of Λ for different correlation lengths.
From these curves, one deduces the following:

1. The optimal sampling depth becomes less sensitive to the parameter Λ, as Θ tends to zero.
2. The optimal sampling depth is always at the lower half of the pile.
3. For Λ values much smaller than unity, the optimal sampling location lies at depth greater than

0.7 × L.
4. For small Θ values, i.e., Θ << 1, the optimal sampling depth lies near the bottom end of the pile,

although as it is clarified below, the notion of optimality is weakened in the limit of very small Θ.
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Figure 2. Λ versus zs/L chart for different Θ values; chart drawn using Equation (28), while Λ has been
defined in Equation (7).

6. Analysis of the Probability of Failure

The dependence of the probability of failure on the parameters Θ, Λ, and F is investigated in this
section. Such an analysis will further clarify the nature and the properties of the optimal sampling
depth discussed above.
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Figure 3 shows the profile of the probability of failure with respect to the normalized sampling
depth, zs/L, for Λ = 1/16, 1 and 16 (values corresponding to weak, intermediate and strong cohesion
respectively). For all curves it stands that F = 1.1, covu = 1/3, and Θ = 1. The curves reveal the
transformation of the PF profile with increasing adhesion, and in particular the displacement of the
optimal sampling point to shallower depths. Clearly, this result is emphasized further with the remarks
of the previous section and Figure 2.Geosciences 2020, 10, x FOR PEER REVIEW 8 of 15 
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Figure 4 illustrates the effect of the correlation length on the profile of the probability of failure for
sampling along the pile. For all curves, it stands that F = 1.1, covu = 1/3, and Λ = 1. As it is inferred
from the figure in question, for large correlation lengths, the optimal sampling point arises at smaller
depths, towards the mid-point of the pile, while the minimum of the PF becomes shallower. The reason
is that in the limit Θ→∞, the spatial variability vanishes. Trivially, PF becomes independent of zs.
Using Equation (27) it can easily be shown that in this limit:

covZ = covu. (31)

Indeed, for the values of the parameters used for the curves of Figure 3, covZ = 1/3, which implies
PF = 0.00135 (recall Equation (22)).

In the limit of very small correlation lengths, the minimum arises at larger depths, towards the
lowermost point of the pile, while the minimum of the PF becomes again shallower. The reason is that
in the limit of very small correlation length, the values of the random field u at different points become
independent, hence any notion of location along the pile is lost; mathematically, the limit Θ = θ/L→ 0,
means that the length L is infinitely larger as compared to the correlation length θ of soil. Hence, the
probability of failure is independent of the sampling point. The difference with the case of large Θ, is
that the PF in this case is not zero. Indeed, Equation (27) implies that in the limit Θ→ 0

covZ =
covu

F− 1
. (32)

For the values of the parameters used for drawing the curves of Figure 4, it stands that covZ = 3.3,
which implies PF = 0.38 (recall Equation (22)).

Finally, the effect of the safety factor F is illustrated in the PF versus zs/L chart of Figure 5, where
different F values were used, i.e., F = 1.1, 1.3, and 1.5. The chart in question refers to covu = 1/3, Θ = 1,
and Λ = 1. The curves of Figure 5 indicate that as F increases, the probability of failure, as expected,



Geosciences 2020, 10, 269 9 of 14

decreases, while for a certain safety factor value, the optimal depth is the center of an interval of depths
where the associated PF is significantly smaller than the PF outside that interval.

Another interesting observation that can be made based on Figure 5 is that there is a F value
for which the difference between the maximum and minimum PF value on the PF versus zs/L chart
becomes maximum. This safety factor value is called, thereafter, optimal safety factor value (this is
subject matter of the following section).Geosciences 2020, 10, x FOR PEER REVIEW 9 of 15 
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7. The Optimal Safety Factor Value

The goal in this section is to define the required safety factor value for absorbing statistical
uncertainty in an explicit manner which is optimal in the sense that it corresponds to the target
(acceptable) failure probability. The required safety factor value is, apparently, the minimum possible;
thus, this value guarantees the desired level of reliability in the most cost-effective manner (referring to
statistical uncertainty, only).

In this respect, defining the z score corresponding to a desired probability of failure PF by

Φ(zPF) = PF, (33)

and using the standard property z1−PF = −zPF it stands that by Equation (22):



Geosciences 2020, 10, 269 10 of 14

covZ =
1

z1−PF
. (34)

Then, from Equation (27): (
1−

1
F

)2
= z2

1−PFcov2
u

(
T1 −

2
F

T2 +
1
F2

)
, (35)

where the magnitudes T1 and T2 have already been defined in Equation (27). Solving the latter as for F:

FPF=
1−YT2 +

√
Y(1 + T1 − 2T2 + Y(T2

2 − T1))

1−YT1

Y := z2
1−PFcov2

u

. (36)

The parameter Y carries the dependence of FPF on both the level of the probability PF of failure
and covu which do not appear in the quantities T1 and T2. Now, if PF refers to the optimal sampling
point, the FPF (that is, the safety factor for a given level of failure probability) can be calculated in terms
of the parameters Θ, Λ, and covu. One should recall that the optimal depth is given by Equation (28).
Then, FPF is the minimum required safety factor to achieve the desired probability of failure (optimal
safety factor value for the given probability of failure). For example, consider a 15 m pile with 25
cm perimeter, embedded in uniform clay with the following properties: γ = 18 kN/m3, φ′ = 30◦, c′

= 30 kN/m2. We may take ac = 0.8 and δ′ = (0.8)·30◦ = 24◦ (Das [29]). The correlation length θ for
clay may be taken 0.20m (see e.g., Pantelidis and Christodoulou [30]; in the paper in question, the θ
value of two clay fields in Cyprus was calculated using the more convenient Fluctuation Function
Method. A comparative assessment of the methods-of-moments for estimating the correlation length
of one-dimensional random fields can be found in [31]). For a probability of failure PF = 0.0001, the
minimum safety factor FPF is estimated 2.3.

In Figure 6, the safety factor FPF is plotted against the desired PF value in the range 0.001 to 0.1 for
(a) different values of Λ, setting covu = 1/3 and Θ = 1, and (b) different Θ values, setting Λ = 1 and
covu = 1/3. The dashed line in both charts corresponds to Θ = 1, Λ = 1 and covu = 1/3. From Figure 6a
it is inferred that the optimal safety factor increases as cohesion increases or friction decreases (that is,
as Λ increases) and vice versa. That means that a design is safer if it mostly relies on friction. Figure 6b
shows the influence of Θ on the optimal safety factor. In this respect, small correlation lengths, i.e.,
more spatially variable soils, require higher safety factor for any given desired probability of failure
and vice versa.

Geosciences 2020, 10, x FOR PEER REVIEW 11 of 15 

 

of one-dimensional random fields can be found in [31]). For a probability of failure PF = 0.0001, the 
minimum safety factor FPF is estimated 2.3. 

In Figure 6, the safety factor FPF is plotted against the desired PF value in the range 0.001 to 0.1 
for (a) different values of Λ, setting covu = 1/3 and Θ = 1, and (b) different Θ values, setting Λ = 1 and 
covu = 1/3. The dashed line in both charts corresponds to Θ = 1, Λ = 1 and covu = 1/3. From Figure 6a 
it is inferred that the optimal safety factor increases as cohesion increases or friction decreases (that 
is, as Λ increases) and vice versa. That means that a design is safer if it mostly relies on friction. Figure 
6b shows the influence of Θ on the optimal safety factor. In this respect, small correlation lengths, i.e., 
more spatially variable soils, require higher safety factor for any given desired probability of failure 
and vice versa. 

 
Figure 6. FPF versus PF chart for failure (a) for different values of Λ, setting covu = 1/3 and Θ = 1, and 
(b) for different Θ values, setting Λ = 1 and covu = 1/3; FPF is calculated using Equation (36). 

8. Comparison with RFEM 

In this section, the Random Finite Element Method (RFEM) is employed in order the optimal 
sampling depth to be investigated and to the results to be set against the respective ones of Equations 
(22) and (27). The freely available RFEM program RPILE1D [32] (http://www.engmath.dal.ca/rfem) 
has been extended by the authors [6] to allow for the consideration of sampling in the analysis. The 
RPILE1D program is described in detail in [32], so only a brief description is given here. The pile is 
divided into a series of elements, with a certain axial stiffness, related to the pile modulus of elasticity. 
Moreover, the soil spring elements, which are attached to the nodes, are characterized by their initial 
stiffness and their ultimate strength (bilinear relationship; see [22]). The initial stiffness is a function 
of the modulus of elasticity of the soil, while the ultimate strength is given by Equation (1). Hence, 
the RFEM model consists of three 1D random fields: the spring stiffness and spring strength 
contributions from the soil per unit length along the pile, and the stiffness of the pile. These fields are 
log-normally distributed [32],while they have the same spatial correlation length and the same type 
of correlation function (Markovian).  

The original RPILE1D program returns the load in each simulation beyond which the given 
maximum settlement (δmax) becomes intolerable or the ultimate load that the pile can carry just prior 
to failure. These two loads correspond to the serviceability and ultimate limit state, respectively (SLS 
and ULS). The ULS state (which is examined in the present paper) is defined by the sum of the 
ultimate strength (Us) over all the springs. The modified RPILE1D program [6] returns the probability 
of failure based on soil stiffness and ultimate strength values sampled from various depths of the 
respective 1D random fields along the pile. More specifically, the probability of failure is defined by 
the fraction of the realizations resulted in failure over the total number of realizations. In each 
realization, ‘failure’ is considered to have occurred when the calculated shaft resistance of pile 

1.0

1.2

1.4

1.6

1.8

0.001 0.01 0.1

F
PF

 

PF 

Λ=16 
Λ=1 

Λ=1/16 

(a) 

1.0

1.2

1.4

1.6

1.8

2.0

0.001 0.01 0.1
PF 

Θ=1/4 

Θ=1 

Θ=4 

F
PF

 

(b) 

Figure 6. FPF versus PF chart for failure (a) for different values of Λ, setting covu = 1/3 and Θ = 1, and
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8. Comparison with RFEM

In this section, the Random Finite Element Method (RFEM) is employed in order the optimal
sampling depth to be investigated and to the results to be set against the respective ones of Equations (22)
and (27). The freely available RFEM program RPILE1D [32] (http://www.engmath.dal.ca/rfem) has been
extended by the authors [6] to allow for the consideration of sampling in the analysis. The RPILE1D
program is described in detail in [32], so only a brief description is given here. The pile is divided into
a series of elements, with a certain axial stiffness, related to the pile modulus of elasticity. Moreover,
the soil spring elements, which are attached to the nodes, are characterized by their initial stiffness
and their ultimate strength (bilinear relationship; see [22]). The initial stiffness is a function of the
modulus of elasticity of the soil, while the ultimate strength is given by Equation (1). Hence, the
RFEM model consists of three 1D random fields: the spring stiffness and spring strength contributions
from the soil per unit length along the pile, and the stiffness of the pile. These fields are log-normally
distributed [32],while they have the same spatial correlation length and the same type of correlation
function (Markovian).

The original RPILE1D program returns the load in each simulation beyond which the given
maximum settlement (δmax) becomes intolerable or the ultimate load that the pile can carry just prior
to failure. These two loads correspond to the serviceability and ultimate limit state, respectively
(SLS and ULS). The ULS state (which is examined in the present paper) is defined by the sum of the
ultimate strength (Us) over all the springs. The modified RPILE1D program [6] returns the probability
of failure based on soil stiffness and ultimate strength values sampled from various depths of the
respective 1D random fields along the pile. More specifically, the probability of failure is defined by the
fraction of the realizations resulted in failure over the total number of realizations. In each realization,
‘failure’ is considered to have occurred when the calculated shaft resistance of pile considering spatially
uniform properties sampled from the soil divided by a factor of safety is greater than the respective
one considering spatially random properties.

The original RPILE1D program returns the load in each simulation beyond which the given
maximum settlement (δmax) becomes intolerable or the ultimate load that the pile can carry just prior
to failure. These two loads correspond to the serviceability and ultimate limit state, respectively
(SLS and ULS). The ULS state (which is examined in the present paper) is defined by the sum of the
ultimate strength (Us) over all the springs. The modified RPILE1D program [6] returns the probability
of failure based on soil stiffness and ultimate strength values sampled from various depths of the
respective 1D random fields along the pile. More specifically, the probability of failure is defined by the
fraction of the realizations resulted in failure over the total number of realizations. In each realization,
‘failure’ is considered to have occurred when the calculated shaft resistance of pile considering spatially
uniform properties sampled from the soil divided by a factor of safety is greater than the respective
one considering spatially random properties.

Allowing for a direct comparison between the RFEM method and the respective analytical work
of this paper, the RPILE1D program presented by Christodoulou et al. [6] was further modified as
to (i) consider normal distributions (in addition to the log-normal ones already considered by the
original program) and (ii) distinguish sampling cohesion values of soil from sampling internal friction
values of soil, since both contribute to the ultimate soil resistance as described by Equation (1). Both
modifications have been made so that the program to be consistent with the sampling procedure of the
analytical model discussed in the previous sections.

In Figure 7 the probability of failure profiles as a function of the sampling depth are shown for
different values of the Λ ratio (Figure 7a) and different Θ values (Figure 7b); the analytical results are
represented by continuous lines, while the RFEM results by dashed lines. For consistency between
the numerical and the analytical modeling, the pile and soil stiffness of the RFEM models was set as
very large, as in the theoretical setup of Section 2, the pile is regarded as rigid and the soil resistance is
solely given by the soil strength u. Moreover, the coefficient of variance of u was set to 1/3, while the
safety factor F was set to 1.1, in both the numerical and the analytical analyses. Figure 7a, refers to Θ =

http://www.engmath.dal.ca/rfem
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θ/L = 1, while Figure 7b to Λ = 1. Regarding the cohesion-to-friction parameter Λ, the actual numerical
input in the RFEM model is the top and bottom (of side of the pile) values of the ultimate strength
u related to Λ by Equation (10). Specifically, utop was equal to 10 kN/m, while ubottom was equal to
170, 20, 10.625 kN/m for Λ = 1/16, 1 and 16, respectively, although any top and bottom ratio of values
that produces the same Λ gives the same probability of failure. It is also noted that the analysis by
Christodoulou et al. [6] corresponds to the case of Λ =∞. Finally, for producing smooth numerical
curves, the number of realizations was set to 250,000. The results in Figure 7 show excellent agreement
between the numerical and analytical results.
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9. Discussion and Conclusions

The present work is concerned with the effect of soil spatial variability on estimating the ultimate
soil resistance of floating axially loaded piles from point measurements of soil properties along the pile.
The ultimate limit state was considered (while the serviceability limit state is under consideration by
the authors). In particular, an analytical solution for deriving the probability of failure of that estimate,
as a function of the sampling depth along the pile is proposed. The main contribution of the proposed
analysis is the derivation of closed form formulae for (i) determining the optimal sampling depth for
minimizing statistical uncertainty (considering that sampling takes place from a single point; sampling
from a domain is also under consideration by the authors), and (ii) the optimal (minimum required),
safety factor for a desired failure probability level. The main conclusions are summarized as follows:

1. A dimensionless parameter, the cohesion-to-friction parameter Λ, was introduced which quantifies
the weight of the soil cohesion contribution relative to that of soil friction in the linear trend of the
ultimate soil strength. This parameter, along with the scaled correlation length Θ = θ/L (where, L
is the pile length) and the coefficient of variation (covu) of the ultimate soil strength, define the
physical parameter space of the problem. The probability of failure depends on the safety factor
that discounts the uncertainty from sampling (i.e., the statistical uncertainty).

2. The probability of failure profile with the sampling depth attains a minimum, designating the
optimal sampling point. A closed analytical expression for the optimal sampling depth is derived.
The latter depends on Θ and Λ, but not on the covu value or the safety factor.

3. The optimal depth is always at the lower half of the pile. This is due to the fact that the profile of
the mean ultimate soil strength (per unit length) u is a linear function of the depth and, hence,
the larger depths relatively more in the integrals which estimate the probability of failure. For
relatively strong cohesion, i.e., Λ >> 1 (in which case, the mean u is nearly uniform), the optimal
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depth tends to move towards the mid-point of the pile, while for relatively strong friction, i.e.,
Λ << 1, it tends to move towards the bottom end of the pile; this stands for any value of the
spatial correlation length of soil.

4. The influence of the correlation length of soil on the optimal sampling depth is strong. For large
Θ, the optimal depth tends to be closer to the mid-point of the pile, while for small Θ, the optimal
sampling depth arises closer to the bottom end.

5. The practical usefulness of the results is related to a suitable choice of the safety factor. Inverting
the probability of failure formula at its minimum value, an optimal safety factor is obtained as
a function of the desired (acceptable) probability of failure, and the parameters Θ, Λ and covu.
The optimal safety factor is the minimum value required for a desired level of the probability
of failure.

6. The required safety factor value for a given failure probability increases with the cohesion-to-
friction parameter, Λ. Hence, strong friction lowers the optimal safety factor. In other words,
when the load is primarily taken on by friction for a given level of the probability of failure, then
the design is safer.
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