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Abstract: Increasing integration of renewable energy sources, like solar photovoltaic (PV), necessitates
the development of power forecasting tools to predict power fluctuations caused by weather.
With trustworthy and accurate solar power forecasting models, grid operators could easily determine
when other dispatchable sources of backup power may be needed to account for fluctuations in PV
power plants. Additionally, PV customers and designers would feel secure knowing how much
energy to expect from their PV systems on an hourly, daily, monthly, or yearly basis. The PROGNOSIS
project, based at the Cyprus University of Technology, is developing a tool for intra-hour solar
irradiance forecasting. This article presents the design, training, and testing of a single-layer
long-short-term-memory (LSTM) artificial neural network for intra-hour power forecasting of a
single PV system in Cyprus. Four years of PV data were used for training and testing the model
(80% for training and 20% for testing). With a normalized root mean squared error (nRMSE) of 10.7%,
the single-layer network performed similarly to a more complex 5-layer LSTM network trained and
tested using the same data. Overall, these results suggest that simple LSTM networks can be just as
effective as more complicated ones.
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1. Introduction

Many countries around the world have been transitioning from fossil fuels to more renewable
energy sources to mitigate the effects of climate change. Because the current energy grid is built
around dispatchable sources of power, the intermittency and variance of many renewable energy
sources, such as solar and wind, makes large-scale integration difficult. To meet this challenge, new
tools must be developed to aid grid operators and energy utilities in accurately predicting the output
of renewable power plants on an hourly or daily basis. Accurate intra-hour forecasts would alert
grid operators to when other backup sources of power should be brought online or ramped down.
With reliable day-ahead energy forecasts, the sale and purchase of prospective power across the
boarders of independent system operators (ISOs) would become easier. One of the goals of the
PROGNOSIS project, a research project based at the Cyprus University of Technology, is to develop a
“dynamic data assimilation model for intra-hour forecasting of solar irradiance over a specific area
taking into consideration the presence of clouds/aerosols over the area” [1].
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One PROGNOSIS sub-project is to research the use of artificial neural networks (ANNs) as
a method for near-future solar forecasting. While many ANN models for solar forecasting have
been developed over the past several years, few use solely endogenous data. Rather, they rely on
meteorological data which can be expensive to obtain. This article presents the training, testing,
and performance of a single-layer long-short-term memory (LSTM) network for intra-hour solar
forecasting of a single PV system in Cyprus. The performance of the single-layer LSTM network is
compared to a previously-developed 5-layer LSTM network trained using the same data.

1.1. Background

1.1.1. Theory of LSTM Networks

Machine learning has gained popularity over the past several years, and engineers have developed
many different types of machine learning models. Two of the more popular models for prediction and
forecasting, are support-vector machines (SVMs) and artificial neural networks (ANNs). In recent years,
a significant body of research has been published on the application of ANNs for solar forecasting.

As James Dacombe defines in his article An Introduction to Artificial Neural Networks, “An Artificial
Neural Network is an information processing model that is inspired by the way biological nervous
systems, such as the brain, process information. They are loosely modeled after the neuronal structure
of the mammalian cerebral cortex but on much smaller scales” [2]. Neurons, the most basic components
of an ANN take two or more inputs and give one output. They then compute an output based on a set
of weights (applied to the inputs) and a bias (which modifies the output). When several neurons are
organized into layers and connected such that the output of one layer feeds into the input of another
layer, this creates a feedforward ANN that can learn to solve complex problems using the experience it
gained during the training process [2].

ANNs learn by example. During the training process, an ANN is given a set of inputs to process.
The output from the ANN is then compared to the desired output, and an error is calculated. After a
set of training examples has been processed, a backpropagation algorithm tweaks the weights and
biases using gradient descent to reduce the error. This process is repeated many times until the error
function converges, or the researcher is satisfied with the ANN’s performance. Once effectively trained,
an ANN can be fed new data and predict the correct output with relatively high precision.

Recurrent neural networks (RNNs) are popular for predicting time series data. For each timestep,
the RNN receives not only the new input data but also its own output from the previous timestep,
known as the hidden state. In this way, RNNs have a rudimentary form of short-term memory and are
better at finding short-term trends in the data than plain feedforward networks [3].

LSTM networks are a type of RNN. The LSTM modules are typically referred to as cells rather than
neurons and contain a series of gates. A diagram of an LSTM cell can be seen in Figure 1. Each LSTM
cell has a form of longer-term memory in the form of a cell state that is updated through time. A forget
gate looks at the new input and the hidden state and decides which information in the cell state can be
safely forgotten. The input gate then decides what information from the new input should be added to
the cell state to be remembered. Finally, the output gate takes information from the cell state, input,
and hidden state and generates the output for the current time step. In this way, LSTM networks can
remember information through many timesteps, making them ideal for finding longer-term trends in
data. At the same time, the LSTM cell still uses the hidden state, and therefore has short-term memory
as well. Overall, LSTM networks can be a powerful tool in time series forecasting [4,5].

ANNs perform best when the training data adheres to certain conditions. First, when all the
data have been cleaned and processed so that there are no wrong, not-a-number values or significant
time gaps in the data. Secondly, because ANNs have no concept of units but rather look only at the
numerical value of the input, it is advisable to normalize all training inputs to be within the same
range. Feature scaling prevents the ANN from learning false patterns that result from unit differences
in the data. A common practice is to use feature scaling to map all the data to between 0 and 1.
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Feature scaling the inputs has the additional effect of speeding up the training process of the ANN
because small changes in the weights and biases will have a greater and more consistent effect on the
output [6].

ANNs have several hyperparameters that can be tweaked and customized to particular
applications. These hyperparameters include the number of hidden layers, the number of neurons per
layer, batch size, and the number of training epochs. When designing an ANN, multiple experiments
are needed to find the optimal hyperparameters for the specific application. There are a few heuristic
guides that ANN designers can use to optimize their hyperparameters. According to one of the most
common heuristics, each layer of the ANN adds a level of abstraction to the prediction or classification
function. Each neuron in the first layer linearly approximates a section of the input. The additional
layers would combine these pieces into a more continuous function and the next could add curvature
or an offset to the prediction function [7].

Figure 1. Diagram of an LSTM cell [3]

That being said, the best way to optimize an ANN is with simple trial and error. Each problem is
going to be unique, and, heuristics aside, even a single-layer ANN can provide a reasonable amount of
abstraction with enough neurons. There are a few signs that researchers look for to indicate if their
network is to large or too small for their application. Networks that are too small, generally will not
perform well because they do not have enough parameters (weights and biases) to properly fit to the
data. If a network is too large, it will be slow to train and can overfit the data. Overfitting is when a
model learns the particular patterns of the training data too well, making it difficult to extrapolate to
new data. An overfit model can have high accuracy when used to predict the training data, but poor
performance when given new data to predict [7].

1.1.2. Related Studies from Literature

Over the past several years, there has been increasing interest and investigation into using
LSTM networks for solar forecasting. Many of these methods, such as those presented in [8],
require exogenous meteorological data.

In [8], Donghun Lee et al. developed two LSTM models for hourly PV power forecasting in Gumi
City, South Korea. Their first LSTM model received six inputs: temperature, humidity, cloudiness,
radiation, month, and day. Their second LSTM model used only the four meteorological inputs and
omitted the seasonal information of month and day. Both models had three hidden layers and gave a
single output of PV power for the next hour. The seasonal LSTM model outperformed all the other
forecast models it was compared to including an ARIMA, seasonal ARIMA, simple feedforward ANN,
deep-learning ANN, and a seasonal deep-learning ANN.
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In [9], Abdel-Nasser et al. developed several LSTM models for 1-hour ahead solar power
forecasting in Aswan and Cario Egypt. They trained and tested five different LSTM architectures with
varying inputs, numbers of layers, and type of LSTM. All of their models used purely endogenous,
historical PV data as input. Their base LSTM model (Model 1) received the PV production value as its
only input one hour prior to the desired forecast time. It had a single hidden layer which consisted of
four LSTM cells. Their second model (Model 2) was similar to Model 1 except it received production
values from the last three, one-hour timesteps as separate input features to forecast one-hour ahead.
Their third model (Model 3) processed the last three timesteps through a single input feature before
calculating its forecasted value. Model 4 is similar to Model 1 except that it used stateful LSTM blocks
which enabled the network to remember trends across training batches. Finally, their Model 5 was a
two-layer, stateful LSTM network.

The researchers in [9] used 70% of their data for training and 30% for testing. Each model was
evaluated after being trained with 20, 50 and 100 epochs. Model 3, trained with 50 epochs performed
the best. The researchers compared Model 3’s performance to a multiple-linear regression model
(MLR), a bagged regression trees (BRT) model, and a simple feedforward neural network model,
all of which were trained using the same data. Nasser et al. found that the Model 3 LSTM network
significantly outperformed the MLR, BRT and feedforward neural network.

While LSTM models using meteorological data show promise, depending on the location of the
PV system being forecasted, exogenous data like those used in [8] may be unavailable, expensive to
obtain or unreliable. Because of these potential problems, the PROGNOSIS project aims to develop
LSTM models that use only endogenous, historical PV production data as their input.

Our study is similar to [9] in that it explores different LSTM architectures for solar forecasting
using only endogenous data. Two main differences exist between our study and [9]. The most
significant difference is that our study uses 192, 15-min timesteps as input instead of the 1-2, one-hour
timesteps used in [9]. Our larger number of timesteps can take better advantage of the LSTM cell’s
ability to remember longer-term trends in the data. The 15 min sample time provided our forecast
models with greater temporal resolution which could be more helpful to grid operators than an hourly
forecast. Additionally, Ref. [9] used relatively small LSTM networks of one or two layers with four
LSTM cells per layer, whereas our study investigates one and five layer LSTM networks with 50 LSTM
cells per layer. As LSTM optimization is largely trial and error, it was possible that our, the slightly
larger networks would perform better than the smaller ones presented in [9].

2. Data and Methods

2.1. Data Preprocessing Methods

Before training or testing an ANN, the training and testing data must go through a series of
preprocessing steps. These methods included removing any unnecessary information, interpolating
any missing data points, and organizing the energy production data chronologically. Finally,
the resulting data column was normalized using feature scaling before it was used as input to the
LSTM network.

All data preprocessing was done in Python 3.6 using the Spyder integrated development
environment (IDE) through Anaconda. The Python script contained all the functions that were
used to process the Cyprus PV data and build, train, and validate the single-layer LSTM network.

The first step in data preprocessing was to load the data into Python and reformat it. The original
data files were separated by month, and each column represented a day of PV generated DC energy.
Once reformatted, all the data were loaded into a single data frame with a DateTime index.

Once the data were formatted, the quality of the data was evaluated. A function was developed
to search for and record the location of any nan, negative, and duplicate values. To reduce the number
of zeros in the data frame, the nighttime values between 20:00 h and 5:15 h were removed. The times
were specifically chosen so that the LSTM network trained on these data could be directly compared to
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the existing, previously trained LSTM network. After removing the nighttime data, the missing data
were interpolated, using the time or linear interpolation method.

2.2. Data Quality and Preprocessing

The Cyprus PV data contained energy production data from a single PV system over four years
of study (2016–2019). The data had a sample rate of 15 min and contained energy production values
ranging from 0 to 5 kW. There were no significant time gaps in the time series. The PV production
data had 90 nan values, all of which occurred in 2017 and 2018, accounting for 0.1062% of the data.
There were no negative or duplicate data entries. As stated in the Methods section, all the data between
20:00 h and 5:15 h were removed to reduce the number of zeros in the final data frame.

Two interpolation methods were considered to fill in the nan values: time interpolation and linear
interpolation, both of which are built-in methods of the Pandas Python library’s interpolation function.
The time interpolation method was specially designed for time series data, while linear interpolation
uses a linear function. To determine which interpolation method was best, several days from the
Cyprus data were chosen and the missing entries were interpolated using both methods. The results
were then visually compared. Although in most cases, the time and linear methods generated very
similar results, there were a couple of days where they differed significantly. Figure 2 shows one
such day.

Figure 2. Linear vs. time interpolation methods on a single, incomplete day of PV data.

In this instance, linear interpolation outperformed the time interpolation, reaching 0 at the
beginning of the day as it should. However, this example was not sufficient to definitively determine
if linear interpolation outperformed time interpolation. It was decided to train two identical
neural networks, one that used time-interpolated data and one that used linearly interpolated data.
The performances of these two networks were then compared to determine which model was more
accurate. The results of this comparison are in Section 3.
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2.3. LSTM Building, Training, and Evaluation

Before the data were used to train the LSTM network, they were split into a training set and
a test set. The data were split by assigning the first 80% to the training set and the last 20% to the
testing set. Next, the DateTime columns were removed from the training and test sets, leaving a single
column of energy production data in each set. Those columns were then normalized to between zero
and one using feature scaling. Finally, the training and testing sets were split into input and target
arrays. Each row of the input arrays contained a vector of length 192 and represented the input for a
single training example. Each row of the target arrays contained a vector of length 6 and represented
the 6 target values for a single training example. Each of the 6 target values were the next 6 energy
production values directly following the corresponding input vector of 192 values. The time window
of inputs and outputs then shifted by 6 values so that the first value in a given input vector is the
same as the 7th value in the previous input vector. This way, the outputs and targets do not overlap,
but rather are continuous in time.

To illustrate the building of the input and target vectors consider the following theoretical PV
data column: [A1, A2, A3, ..., An]. The first input vector would be [A1, A2, A3, ..., A192] and the
corresponding first target vector would be [A193, A194, A195, A196, A197, A198]. The second input
vector would be [A7, A8, ..., A198] and the second target vector would be [A199, A200, A201, A202,
A203, A204].

The Keras Python library was used to build, train and test the LSTM network. The LSTM model
was built upon Keras’s sequential class. A single hidden layer of 50 neurons and an output layer of
6 neurons were added. The "Adam" optimizer was chosen for training. Once built, the LSTM was
trained and tested using the training and test sets, respectively. The model underwent 100 epochs of
training with a batch size of 32, dropout rate of 0.2, and the "Adam" optimizer function. In addition to
the test results, a 10-fold cross-validation process was used to evaluate the model.

This entire building, training and testing process was conducted twice, once with the
time-interpolated data sets and once with the linearly interpolated data sets.

3. Results

The single-layer LSTM network received 192 timesteps of the PV system’s energy production
data and forecasted 6 timesteps into the future. Each timestep was 15 min, so the model received just
over three days of data as input and forecasted up to 1.5 h into the future. Both the single-layer models
and the 5-layer model to which they were compared had 50 neurons in each hidden layer.

Table 1 shows results from testing the two single-layer LSTM models with the test sets and
compares their performances with that of the pre-existing 5-layer LSTM network. The RMSE is the
standard deviation of the residuals and is a measure of how well a regression fits a set of data [10].
The nRMSE is the RMSE divided by the mean of the data [11], which makes it possible to compare
the results between models regardless of units. The MBE is a measure of the average bias in the
prediction and indicates whether the model tends to over or under estimate [12]. The MAE measures
the average error between the forecasted and actual values [13]. The R2 value measures the strength of
the relationship between the forecasted and actual values where 1 represents a strong correlation and
0 represents no correlation. In addition to the test data, 10-fold validation was used to evaluate the
model. The results of the validation are shown in Table 2 in the form of the mean squared error (MSE)
and variance.

Table 1. Test results for single-layer and 5-layer LSTM model.

RMSE (W) nRMSE MBE (W) MAE (W) R2

time-interpolated single-layer model 450.90 10.7% 26.56 235.10 0.882
linearly interpolated single-layer model 455.35 10.8% 1.30 259.39 0.879

5-layer (time interpolated) model 478.25 11.4% 76.2 240.65 0.868
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Table 2. The 10-fold validation results for single-layer LSTM models.

Mean Squared Error (W)2 Variance (W)

time-interpolated single-layer model 0.0097 0.0069
linearly interpolated single-layer model 0.0010 0.0075

To further explore how well the three models forecasted under different conditions, Figure 3
shows how they performed under sunny conditions and Figure 4 shows how they performed under
cloudy conditions. As expected, the forecasts follow the trends in the sunny day data very well.
The cloudy day forecasts, though less accurate, do a commendable job of capturing some of the
fluctuations in PV production when clouds pass over.

It is clear from Table 1, and Figures 3 and 4 that the two single-layer models perform very similarly
to the five-layer model across most of the performance metrics. The notable exception is the MBE of
the linearly interpolated, single-layer model which seems abnormally low.

The fact that the performance of a large five-layer LSTM network could be replicated so closely by
two, much smaller networks suggests that five layers may be overly complicated for this application.

Figure 3. Examples of real vs. forecasted PV production for sunny days.

Figure 4. Examples of real vs. forecasted PV production for cloudy days.

4. Discussion and Conclusions

Although many studies use ANNs for solar forecasting, few employ LSTM networks specifically.
The majority of the research to date uses deep-learning multi-layer perceptron networks or RNNs.
During our literature review of over 30 research papers, it was found that these ANN and RNN models
achieved nRMSE values of around 10–30% with the occasional outlier performing better or worse.
According to [14], the average nRMSE for published machine learning solar forecasting models in
2018 was 23% with a low mean bias error and relatively high volatility. More than anything else,
the accuracy of ANN models depend on location and weather predictability. The models that had
lower nRMSE values tended to be in locations such as Greece [15], Corsica island [16] and Senegal [17]
where the weather is consistently sunny for a significant portion of the year.
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At 10.7% and 10.8% nRMSE, the error of the single-layer models presented in this article fall
at the low end of the published spectrum. Given the predictability of Cyprus weather, this is not
surprising. What this study does show, however, is that LSTM networks are at least as good as the other,
more well-researched ANNs for near-future solar forecasting. Additionally, because the single-layer
LSTM networks performed similarly to the five-layer LSTM network, smaller LSTM networks may be
able to accomplish quite complicated tasks as well as, or better than their larger counterparts. Most of
the high-performing ANN models use large multi-layered networks that are slow to train and require
high processing power. If a single-layer LSTM network can achieve the same results as a larger MLP,
or a larger LSTM, it would be more economical to choose the smaller LSTM network.

Of course, this is a small-scale study, and further research would have to be done to confirm these
findings. Specifically the performance of single-layer LSTM networks should be compared to that of
larger LSTM and deep-learning MLP networks in several differing climates to see if they are indeed
superior for solar forecasting.
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Abbreviations

The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
BRT bagged regression trees
IDE Integrated Development Environment
ISO Independent System Operator
kW kilowatt
LSTM long-short-term memory network
MLR multiple-linear regression
MSE mean squared error
nan not-a-number value
nRMSE normalized root mean squared error
PV photovoltaic
RMSE Root mean squared error
RNN recurrent neural network
SVM support vector machine
W Watts
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