






## Processing wastewaters from Spanish-style cv. Chalkidiki green olives: A potential source of *Enterococcus casseliflavus* and hydroxytyrosol

## Eugenia Papadaki<sup>1</sup>, George Botsaris<sup>2</sup>, Eleftheria Athanasiadi<sup>1</sup> and Fani Th. Mantzouridou<sup>1,\*</sup>

- <sup>1</sup> Laboratory of Food Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; epapadaki@chem.auth.gr (E.P.); aelefther@chem.auth.gr (E.A.)
- <sup>2</sup> Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 50329 Limassol, Cyprus; george.botsaris@cut.ac.cy
- \* Correspondence: fmantz@chem.auth.gr; Tel.: +30 2310 997774

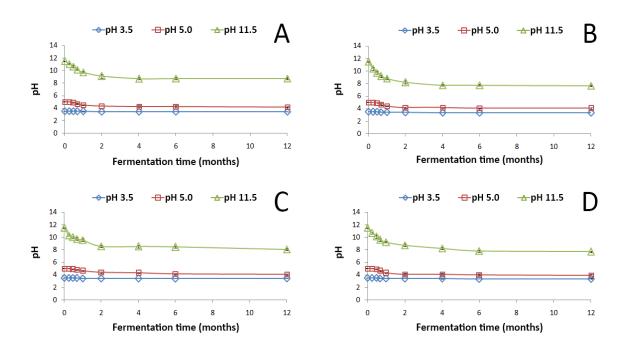
## This document contains supplementary materials:

Table S1: Levels of factors in actual and coded values used in the experimental design.

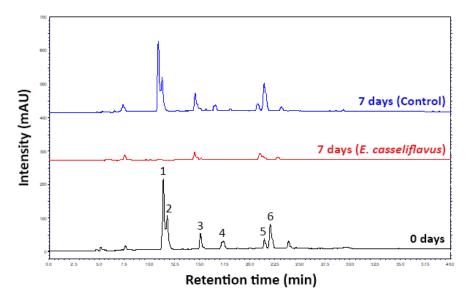
**Figure S1:** Changes in the pH value during the spontaneous fermentation of Spanish-style green olive processing wastewaters with an initial pH value of 3.5, 5.0 or 11.5 at 15 °C (A), 30 °C (B), 50 °C (C), and room temperature (D).

**Figure S2:** RP-HPLC phenolic profiles at 280 nm of Spanish-style green olive processing wastewaters prior (0 d) and after incubation without (control) or with the *Enterococcus casseliflavus* isolate at 37 °C for 7 d under static conditions.

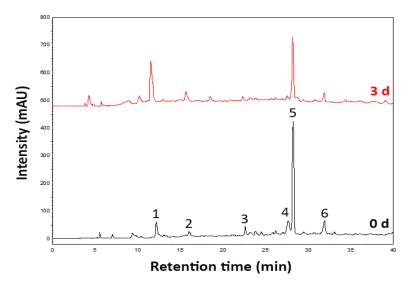
**Figure S3:** RP-HPLC phenolic profiles at 280 nm of a substrate containing a diluted polar extract of the olive fruit with 806.7 mg/L initial oleuropein concentration and bacterial growth factors prior (0 d) and after incubation with the *Enterococcus casseliflavus* isolate at 37 °C for 3 d under static conditions.


## Microorganisms 2020

| Factor                | Variable | Levels                    |     |      |      |      |
|-----------------------|----------|---------------------------|-----|------|------|------|
|                       |          | Coded values <sup>1</sup> |     |      |      |      |
|                       |          | -α                        | -1  | 0    | +1   | +α   |
|                       |          | Actual values             |     |      |      |      |
| Initial pH value      | $X_1$    | 3.1                       | 5.0 | 7.8  | 10.5 | 12.4 |
| NaCl content (%, w/v) | $X_2$    | 1.6                       | 5.0 | 10.0 | 15.0 | 18.4 |
| Temperature (°C)      | $X_3$    | 13                        | 20  | 30   | 40   | 47   |


Table S1. Levels of factors in actual and coded values used in the experimental design.

<sup>1</sup> *Coded value* =  $\frac{actual \ level - (high \ level + low \ level)/2}{(high \ level - low \ level)/2}$ , where  $a = 2^{n/4}$ , n = the number of variables and -1, 0,


+1 correspond to the low-, mid- and high-level of X<sub>i</sub>, respectively.



**Figure S1.** Changes in the pH value during the spontaneous fermentation of Spanish-style green olive processing wastewaters with an initial pH value of 3.5, 5.0 or 11.5 at 15 °C (A), 30 °C (B), 50 °C (C), and room temperature (D). Data points are mean values of 5 independent experiments × 3 measurements (n = 15) and error bars represent the standard deviation of the mean value.



**Figure S2.** RP-HPLC phenolic profiles at 280 nm of Spanish-style green olive processing wastewaters prior (0 d) and after incubation without (control) or with the *Enterococcus casseliflavus* isolate at 37 °C for 7 d under static conditions. Peaks: (1) Hydroxytyrosol, (2) Methoxy derivative of hydroxytyrosol, (3) Tyrosol, (4) Caffeic acid, (5) Luteolin-7-*O*-glucoside, (6) *p*-Coumaric acid.



**Figure S3.** RP-HPLC phenolic profiles at 280 nm of a substrate containing a diluted polar extract of the olive fruit with 806.7 mg/L initial oleuropein concentration and bacterial growth factors prior (0 d) and after incubation with the *Enterococcus casseliflavus* isolate at 37 °C for 3 d under static conditions. Peaks: (1) Hydroxytyrosol, (2) Tyrosol, (3) Luteolin-7-*O*-glucoside, (4) Decarboxymethyl oleuropein aglycon, (5) Oleuropein, (6) Luteolin.



© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).