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Abstract: Inverted perovskite solar cells (PSCs) using a Cu:NiOx hole transporting layer (HTL) often
exhibit stability issues and in some cases J/V hysteresis. In this work, we developed a β-alanine surface
treatment process on Cu:NiOx HTL that provides J/V hysteresis-free, highly efficient, and thermally
stable inverted PSCs. The improved device performance due to β-alanine-treated Cu:NiOx HTL is
attributed to the formation of an intimate Cu:NiOx/perovskite interface and reduced charge trap
density in the bulk perovskite active layer. The β-alanine surface treatment process on Cu:NiOx HTL
eliminates major thermal degradation mechanisms, providing 40 times increased lifetime performance
under accelerated heat lifetime conditions. By using the proposed surface treatment, we report
optimized devices with high power conversion efficiency (PCE) (up to 15.51%) and up to 1000 h
lifetime under accelerated heat lifetime conditions (60 ◦C, N2).

Keywords: perovskite solar cells; metal oxides; hysteresis; surface treatment; β-alanine; amino acids;
charge traps; degradation; oxygen vacancies; thermal stability

1. Introduction

Perovskite solar cells (PSCs) have undoubtedly been the center of attention amongst the most
promising photovoltaic (PV) technologies during recent years. This technology has shown great
promise over the years with a respectable improvement in power conversion efficiency (PCE) from 3.8 to
25.2% [1,2]. The high PCE of PVSCs can be attributed to several key features that are extremely attractive
for PV technologies such as tunable band gap [3,4], low exciton binding energy [5,6], long carrier
diffusion length [7], high carrier mobility [8], and high absorption coefficient [9]. Equally important is
the compatibility of PVSCs with low temperature solution-processed fabrication techniques that also
render them very cost-effective [10].

Despite their high PCE, PVSCs exhibit relatively low stability in environmental conditions, such as
heat, moisture, and light, which still renders the commercialization of such devices very challenging.
Humidity can rapidly decompose the perovskite crystal due to the hygroscopic nature of its cations
such as methylammonium (MA), resulting in the formation of PbI2. Several approaches have been
reported in the literature to shield PSCs from moisture such as using hydrophobic thiols [11] and
interlayers such as cerium oxide (CeOx) [12]. Replacement of MA with less hydroscopic cations to form
mixed cation PSCs (such as FA0.83Cs0.17Pb(I0.8Br0.2)3) was also reported to improve the intrinsic stability
of PVSCs [13]. Ultraviolent illumination in conjunction with atmospheric oxygen was also reported to
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negatively affect the intrinsic stability of PVSCs due to the formation of super oxide ions (O2
−). O2

− can
deprotonate the MA cation and cause decomposition of the perovskite crystal [14,15]. Reports in the
literature have also reported improved light stability by doping the [6,6]-phenyl-butyric acid methyl
ester (PCBM) with graphene quantum dots (GQDs) [16]. Heat is another environmental factor that can
negatively affect the stability of PSCs, especially when it is combined with ambient conditions [15].
Using nickel oxide (NiO) and PCBM as the hole transporting layer (HTL) and electron transporting
layer (ETL), respectively, has been reported to improve the thermal stability of PVSCs [17]. Apart from
the intrinsic stability of the PSC active layer, electrodes and interfaces play an important role as well in
stability. For instance, it has been shown that by incorporating a thin Cr layer between the HTL and
PSK active layer, diffusion of Au from the metal electrode into the active layer can be reduced [18].
In our most recent work, we also showed that a top electrode using γ-Fe2O3 (PC70BM/γ-Fe2O3/Al)
improved the properties and stability of inverted PSCs under accelerated heat conditions [19].

Amongst the various metal oxides that have been used as HTLs, NiOx has been a popular
choice for PVSCs due to its transparency and favorable energy level alignment, which enables
improved PCE, particularly due to the improvement of Voc and Jsc [20–22]. Nickel oxide has a rock salt
structure and exhibits p-type conductivity with a wide bandgap between 3.5 and 4.0 eV while being
transparent to visible light. Due to its poor conductivity, doping with several metals such as Li, Mg,
Ag, and particularly Cu is very common practice for improvement [20]. Cu is a particularly popular
dopant due to having a similar ionic radius with Ni (~0.69 Å) [23]. Solution Combustion-synthesized
(SCS) Cu:NiOx has been reported to have a conductivity value of 1.25 × 10−3 S/cm [24]. An alternative
approach to improve the conductivity of NiOx as well as optimizing its hole collection properties and
interface with the perovskite has been reported by Lin et al. In their work they employed a two-step
annealing process to minimize issues associated with high temperature annealing. In their report,
they showed improved conductivity and PCE as well as improved ambient stability [25]. Due to its
chemical stability in ambient conditions and low cost, NiOx has been used as a HTL in several recent
PSCs applications. More recently, NiOx has been used as the HTL during an ambient perovskite film
fabrication that utilized a prenucleation strategy based on water induced fast intermediate crystallite
growth, resulting in highly compact perovskite films [26]. In general, the high robustness, cheap
fabrication, suitable energy level alignment and easy processing in ambient conditions render NiOx
a very attractive alternative choice for HTL within inverted PSC device structures compared to its
organic counterparts such as PEDOT:PSS and PTAA [27].

Although NiOx has been widely used as an effective HTL in terms of both PCE and stability;
its behavior has also been reported to be inconsistent. In particular, the stability and performance
of NiOx-based devices can vary based on the deposition methods of the NiOx films. For instance,
PSCs based on combustion synthesis (CS)of NiOx films have been reported to exhibit better ambient
stability compared to their sol-gel counterparts due to better interface with the perovskite as well as
better perovskite film quality [28]. A more recent approach for Cu:NiOx synthesis incorporates a sol-gel
approach with various organic solvents in order to avoid toxic catalysts [29]. Another factor that can
negatively impact the stability of PSCs is the presence of organic ligands on the surface of nanoparticle
suspensions of NiOx [30]. Even by solely considering the nature of NiOx films, the situation is not
straightforward. The PCE of NiOx-based PSCs was reported to have a large variation between 8%
and 20%, even in cases where similar synthesis and deposition methods of NiOx were used [29].
Furthermore, hysteresis effects have also been observed. It has been reported in the literature that such
effects can manifest due to the composition of NiOx, which consists of NiO and Ni2O3, from which NiO
is known to have strong dipole moment [31]. This can cause device limitations due to the appearance
of surface dipoles in NiOx, which can attract perovskite precursor ions (e.g., CH3NH3

+, I−, and Pb2+)
during the crystallization process and induce ionic vacancies and defects in the perovskite crystal.
This is particularly apparent if NiOx is used as a HTL for inverted p-i-n PVSCs, because it acts as the
underlayer and will affect the crystallization process of the perovskite [29].
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Metal oxides interact with atmospheric oxygen, especially when photoexcited by UV light.
Different from most organic semiconductors, which will become oxidized, metal oxides can catalyze
oxidative decomposition of other organic materials that they come in contact with. Oxygen is readily
adsorbed at oxygen vacancies in metal oxides, where it can form reactive superoxide species upon
UV light exposure [32]. These superoxide species will ultimately oxidize most materials they come
in contact with, including metal halide perovskites. In this study, we propose the application of
organic interfacial modifiers such as β-alanine (3-aminopropanoic acid) with the chemical formula of
NH2CH2CH2COOH), as a surface treatment method for metal oxides to eliminate oxygen vacancies,
avoiding interfacial recombination and enhancing device stability [33]. The amino acid carboxyl groups
have been previously shown to be the dominant anchoring points on surface treatment applications for
metal oxides utilizing mechanisms such as electrostatic attraction, H-bonding, monodentate (ester-like
linkage), bidentate bridging, and bidentate chelating [34].

Amino acids have been used before in the field of PSCs either as cross-linkers [35] or anchoring
groups [36] due to their unique structure (−HOOC–R–NH3

+). In terms of cross-linking, their structure
allows them to form hydrogen bonds between the cations and halogen ions of the perovskite crystal,
thus improving its properties [35]. Furthermore, they can be adsorbed in the surface of metal oxides
through their COOH- group, leaving their NH3

+ group exposed, which in return can contribute to
the crystallization process of the perovskite [36]. A common amino acid is β-alanine, which has been
previously used in the form of β-alanine-HI salt, acting as an anchoring group on the surface of porous
TiO2, improving the PCE of normal-structured PSCs [36]. β-Alanine has also been used as an additive
to PEDOT:PSS in order to reconstruct the distribution of –SO3

− and –SO3H, thus improving charge
transport and collection as well as its hydrophobicity [37].

In this work, we developed a β-alanine-based surface treatment for Cu:NiOx HTLs for the inverted
(p-i-n) PVSCs device structure. Due to a combination of a more intimate Cu:NiOx/Perovskite interface
and passivation of oxygen vacancies, we achieved reduced charge trap density both at the interface as
well as in the bulk perovskite layer. Using the proposed β-alanine surface treatment, we significantly
reduced the hysteresis of Cu:NiOx-based PVSCs and achieved a champion PCE of 15.51% while also
improving stability from 24 to 1000 h under accelerated heat conditions in an inert atmosphere (60 ◦C,
N2).

2. Materials and Methods

Materials: Toluene (99.7%), nickel (II) nitrate hexahydrate (> 98.5%) (Ni(NO3)2·6H2O,) copper (II)
nitrate trihydrate (99%–104%) (Cu(NO3)2·3H2O), 2-methoxyethanol anhydrous (99.8%), acetylacetone
(≥99%), β-alanine (99%), dimethyl sulfoxide (≥99.7%), γ-butyrolactone (≥99%), and chlorobenzene
anhydrous (99.8%) were purchased from Sigma-Aldrich Chemical. Methylammonium iodide (≥99%)
was purchased from GreatCell Solar. Lead (II) iodide (99.999%) and bathocuproin (98%) were purchased
from Alfa Aeser. Phenyl-C70-butyric acid methyl ester (99%) was purchased from Solenne BV. Cu pellets
were purchased from Kurt J. Lesker. Ultrapure water was produced by a milli-Q Academic system,
Millipore (Burlington, MA, USA). All solutions were prepared with analytical grade chemicals and
ultrapure milli-Q water with a conductivity of 18.2 µS/cm. ITO patterned glass substrates (sheet
resistance 4 Ω/sq.) were purchased from Psiotec Ltd (Berkhamsted, UK).

Cu:NiOx solution: Combustion synthesis of Cu:NiOx, 0.95 mmol of Ni(NO3)2·6H2O and
0.05 mmol of Cu(NO3)2·3H2O were dissolved in 2.5 mL 2-methoxyethanol. The solutions were
stirred at 50 ◦C for 1 h; then, 0.1 mmol acetylacetone was added to the solution, and the whole solution
was left for further stirring for 1 h at room temperature.

β-Alanine solution: Different concentrations of β-alanine (30, 10, 8, and 6 mg/mL) were prepared
using deionized H2O, and the pH was adjusted to 4.2 with 1M HNO3. The solution was stirred at
room temperature for 30 min.

Perovskite solution: The perovskite solution was prepared using a mixture MAI:PbI2 (1:1).
The mixture was dissolved in a solvent of γ-butyrolactone:DMSO (7:3). The solution was stirred
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at 60 ◦C for 1 h. The perovskite solution was left to cool at room temperature inside the glove box
followed by filtering using a 0.22 µm PVDF filter.

PC70BM solution: The PC70BM solution was prepared in a concentration of 20 mg/mL in
chlorobenzene. The solution was left over night at 60 ◦C.

Device fabrication: ITO-patterned glass substrates were cleaned using an ultrasonic bath for
10 min in acetone followed by 10 min in isopropanol. The Cu:NiOx films were coated using Doctor
Blade with a blade speed of 5 mm/s and a plate temperature of 85 ◦C. The films were annealed at 300 ◦C
on a hot plate for 1 h in ambient atmosphere. For the surface treatment, the β-alanine solution was
drop-casted on the Cu:NiOx films which were left to adhere for 5 min. Following that step, the spin
coating process was initiated on the Cu:NiOx layer at 6000 rpm for 40 s. The β-alanine-treated films
were annealed at 100 ◦C for 10 min. The perovskite films were coated inside a N2 atmosphere glovebox
using a three-step spin-coating process: first step—500 rpm for 5 s; second step—1000 rpm for 45 s; and
third step—5000 rpm for 45 s. During the third step, after the first 20 s of the duration of the step, 0.5 mL
toluene was dropped onto the spinning substrate as the anti-solvent to achieve the rapid crystallization
of the films. The resulting perovskite films were annealed at 100 ◦C for 10 min. The PC70BM film
was coated inside the glovebox using spin coating at 1300 rpm for 30 s. The BCP and Cu layers were
deposited using thermal evaporation.

Device Characterization: The thicknesses and the surface profile of the device layers were
measured with a Veeco Dektak 150 profilometer (Hong Kong, China). The current density-voltage
(J/V) characteristics were characterized by a Botest LIV Functionality Test System (Kreuzwertheim,
Germany). Both forward (short circuit-open circuit) and reverse (open circuit-short circuit) scans were
measured with 10 mV voltage steps and 40 ms of delay time. For illumination, a calibrated Newport
Solar simulator (Irvine, CA, USA) equipped with a Xe lamp was used, providing an AM1.5G spectrum
at 100 mW/cm2 as measured by a certified oriel 91,150 V calibration cell. A custom-made shadow
mask was attached to each device prior to measurements to accurately define the corresponding
device area (9 mm2). External quantum efficiency (EQE) measurements were performed by a Newport
System (Irvine, CA, USA), Model 70356_70316NS. Impedance spectroscopy was performed using a
Metrohm Autolab PGSTAT 302N equipped with FRA32M module (Herisau, Switzerland). To extract
the Nyquist plots, the devices were illuminated using a white light emitting diode (LED). A small AC
perturbation voltage of 10 mV was applied, and the current output was measured at a frequency range
of 1 MHz to 1 Hz. The steady-state DC bias was kept at 0 V. Mott–Schottky measurements were using
a Metrohm Autolab PGSTAT 302N potentiostat. The Mott–Schottky measurements were performed
using a Metrohm Autolab PGSTAT 302N potentiostat by connecting the anode and the cathode of the
PSC devices directly to the system. The frequency values used were 5 and 100 kHz with a bias range
of −0.5–1.3 V under dark. Photoluminescence (PL) spectra were obtained at room temperature on a
Jobin-Yvon Horiba FluoroMax-P (SPEX) spectrofluorometer (Singapore) equipped with a 150 W Xenon
lamp and operated from 300 to 900 nm. Transmittance and absorption measurements were performed
with a Shimadzu UV-2700 UV–vis spectrophotometer (Kyoto, Japan). Atomic force microscopy
(AFM) data were obtained using Nanosurf easy scan 2 controllers in tapping mode. The contact
angle measurements were performed using a Kruss drop shape analyzer equipped with DSA 100
camera. The conductivity measurements were performed using a Jandel RM3000 four-point probe
system. The aging of devices was conducted in a hotplate at 60 ◦C inside a N2 glovebox atmosphere.
The devices were taken outside the glovebox in order to measure their PV parameters and undergo
device characterization when it was needed at 24 h intervals. The devices were placed back in the
glovebox to continue the aging process every 24 h.
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3. Results and Discussion

3.1. Film Characterization

In order to study the effect of β-alanine-treated Cu:NiOx on the performance of p-i-n PSCs,
an initial study was performed on both the film properties of Cu:NiOx and Cu:NiOx/β-alanine as well
as the perovskite film crystallized on top of Cu:NiOx and Cu:NiOx accordingly.

Figure 1 shows the AFM data as well as the calculated roughness (RMS) and peak to valley
(P-V) of the films. Initially, the RMS of both Cu:NiOx and Cu:NiOx/β-alanine on quartz were
calculated and showed similar values at ~3 nm. It is also worth noting that when the perovskite
film was coated on top of ITO/Cu:NiOx and ITO/Cu:NiOx/β-alanine, it had similar RMS of ~10 nm.
This indicates that β-alanine surface treatment does not introduce any extra roughness to the Cu:NiOx
film. Although the RMS of the perovskite film was very similar, there was a distinguishable difference
in P-V. In detail, P-V decreased from 90 to 76 nm when the perovskite film crystallized on top of
ITO/Cu:NiOx/β-alanine compared to ITO/Cu:NiOx. P-V is defined as the distance between the highest
peak and the lowest valley of a topographical image and is desirable to be as low as possible in order to
ensure compact, smooth, and pinhole free films [38]. The phase contrast data of ITO/Cu:NiOx/Pvsk and
ITO/Cu:NiOx/β-alanine/Pvsk are shown in Figure S1. From Figure 1c,d and Figure S1, we report similar
morphology of the crystallized perovskite between pristine and alanine treated Cu:NiOx. Although
wetting properties in some cases influence the performance of interfaces, a negligible difference in
the contact angle measurements of pristine Cu:NiOx and alanine-treated Cu:NiOx was observed
(please see Figure S2), indicating that wetting properties by the proposed surface treatment remain
unaffected. Furthermore, having a bottom electrode with high transparency in order to ensure efficient
light transmission towards the active layer for the generation of carriers is required. Considering
these requirements, we also performed transmittance and absorption measurements in ITO/Cu:NiOx,
ITO/Cu:NiOx/β-alanine, ITO/Cu:NiOx/Pvsk, and ITO/Cu:NiOx/β-alanine/Pvsk films. The plots shown
in Figure S3 indicate that there are no significant differences between either the transmittance of
ITO/Cu:NiOx and ITO/Cu:NiOx/β-alanine or the absorption of the perovskite active layer, crystallized
on top of the aforementioned two films.

Following the AFM measurements, contact angle measurements, absorption measurements,
and photoluminescence (PL) spectroscopy was performed, using an excitation wavelength of 500
nm, in order to determine the charge carrier recombination characteristics of both Cu:NiOx and
β-alanine-surface treated Cu:NiOx as well as the perovskite active layer crystallized in the two different
films. The absorption spectra shown in Figure 2a show very similar characteristics and we can,
therefore, deduce that the band gap (Eg) of Cu:NiOx does not change significantly upon β-alanine
treatment. The chemical structure of β-alanine that was used for the proposed surface treatment is
provided as an inset within Figure 2a [33]. Equally interesting observations are indicated in Figure 2b.
ITO/Pvsk exhibited a large peak at 760 nm as expected. Since the HTL was absent, very poor quenching
was observed due to the poor carrier extraction and more frequent recombination events. Upon using
Cu:NiOx, we immediately observed an improvement to PL(photoluminescence) quenching of more
than 90%, indicating a great reduction in the band-to-band charge recombination and a better hole
carrier selectivity. Upon β-alanine-treatment of the Cu:NiOx, the PL quenching improved even further
(95% quenching) pointing to even more efficient charge collection and an efficient suppression of
the electron-hole recombination. The reported experimental results provide indication that charge
traps lying in the Cu:NiOx/Pvsk interface are passivated upon treatment with β-alanine. Similar PL
quenching behavior was also reported by Shih et al. [39]. In their work, which studied the effect
of surface treatment using several amino acids including β-alanine on TiO2, they attributed this
observation to the preferential, perpendicular, orientation of the (110) plane of the MAPI crystallites
towards the amino acid treated surface. This was observed using grazing-incidence wide-angle X-ray
scattering of thin CH3NH3PbI3 perovskite films [39]. This resulted in a more intimate interface of
the metal oxide with MAPI, reducing the charge trap density of the metal oxide/MAPI interface.
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We hypothesized that we would observe a similar behavior for the alanine treatment of Cu:NiOx.
Furthermore Shih et.al also performed UPS measurements and showed that the Ewf of TiO2 upon
alanine treatment remains essentially the same [39]. Based on their results, we did not expect a
considerable shift to the Ewf of Cu:NiOx either upon alanine treatment. Finally, the conductivity
values of pristine Cu:NiOx and alanine treated Cu:NiOx films were measured using a four-point
probe system, and no considerable change was observed(Cu:NiOx: 4.7 × 10−3 S/cm, Cu:NiOx/alanine
3.5 × 10−3 S/cm)—in good agreement with the values reported in the literature [24]. The similar
conductivity values of Cu:NiOx and alanine treated Cu:NiOx indicated that non-intentional doping
effects are unlikely due to the proposed surface treatment.

Figure 1. AFM images of (a) phase contrast of quartz/Cu:NiOx, (b) phase contrast of
quartz/Cu:NiOx/β-alanine, (c) topography of ITO/Cu:NiOx/Perovskite, and (d) topography of
ITO/Cu:NiOx/β-alanine/Perovskite.

Figure 2. (a) Absorption spectra of ITO/Cu:NiOx, ITO/Cu:NiOx/β-alanine and β-alanine structure
that used for the surface treatment method (the inset of Figure 2a provides the chemical structure of
β-alanine used for the proposed surface treatment). (b) PL spectra of ITO/Pvsk, ITO/Cu:NiOx/Pvsk,
ITO/Cu:NiOx/β-alanine/Pvsk.
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3.2. Device Characterization

Following the film characterization, we fabricated full PSC devices based on two different
HTLs—pristine Cu:NiOx and β-alanine-treated Cu:NiOx. Two different thicknesses of Cu:NiOx
were tested (20 and 40 nm) as well as three different concentrations of β-alanine solutions (30, 10,
and 6 mg/mL). The perovskite active layer used was based on a CH3NH3PbI3 (MAPI) formulation,
detailed in the materials and methods section. The main device structure used was ITO/Cu:NiOx
(40nm)/CH3NH3PbI3 (300 nm)/PC70BM (70 nm)/BCP (7 nm)/Cu (80 nm). The thickness of each layer
was measured using a profilometer. The PV device parameters are shown in Table 1. Standard
deviation (SD) of the PCE is shown in Figure S4.

Table 1. Perovskite solar cells (PSCs) photovoltaic (PV) parameters.

Device Architecture Voc (V) Jsc (mA/cm2) FF (%) PCE (%)

ITO/Cu:NiOx (40 nm)/CH3NH3PbI3/PC70 BM/BCP/Cu 0.94 16.05 81.6 12.31
ITO/Cu:NiOx (40 nm)/β-alanine

(30 mg/mL)/CH3NH3PbI3/PC70BM/BCP/Cu
ITO/Cu:NiOx (40 nm)/β-alanine

(10 mg/mL)/CH3NH3PbI3/PC70BM/BCP/Cu

1.05
1.07

14.54
17.68

48.4
70.2

7.40
13.31

ITO/Cu:NiOx (40 nm)/β-alanine
(6 mg/mL)/CH3NH3PbI3/PC70BM/BCP/Cu 1.05 18.61 74 14.46

ITO/Cu:NiOx (20 nm)/CH3NH3PbI3/PC70BM/BCP/Cu 1.03 17.19 79.5 14.13
ITO/Cu:NiOx (20 nm)/β-alanine

(10 mg/mL)CH3NH3PbI3/PC70BM/BCP/Cu 1.07 20.13 71.7 15.51

In Table 1, it is shown that upon surface treatment with β-alanine, the Voc (open circuit voltage) of
Cu:NiOx-based devices increased from 0.94 to 1.05 V; however, the FF (fill factor) dropped dramatically
from 81.6% to 48.4%. We observed that by decreasing the concentration of the β-alanine solution, the FF
improved. This is to be expected since amino acids in general are not conductive [40], and therefore,
a very thin layer should be coated on top of the Cu:NiOx to maintain functional devices. It is worth
mentioning that apart from Voc, the Jsc (short circuit current) of devices also improved upon the surface
treatment of Cu:NiOx with β-alanine. As we mentioned in the introduction, the stability of devices is
equally important. The different device structures mentioned in Table 1 were subjected to accelerated
heat conditions in an inert atmosphere (60 ◦C, N2) in order to test the effect of β-alanine treatment in
the stability of the devices.

By examining the lifetime plots in Figure 3, the difference in stability between Cu:NiOx and
β-alanine-treated Cu:NiOx is very apparent. The PCE (power conversion efficiency) of Cu:NiOx
(40 nm)-based devices dropped at ~40% even in the first 24 h of aging, primarily due to a drop in Jsc.
On the contrary, β-alanine-treated (10 mg/mL) Cu:NiOx devices retain their PCE and T80 (determined
as the time needed for a device to reach 80% of its initial PCE) was reached at 1000 h of aging. It is
interesting to note that when the concentration of β-alanine decreased to 6 mg/mL, the stability also
decreased, with the PCE dropping at 60% of its initial value at 24 h of aging, similar to pristine Cu:NiOx.
However, even if the PCE dropped to 60% of its initial value, this was retained even at 1000 h of
aging, although it was still lower than the standard T80. When the thickness of Cu:NiOx decreased
from 40 to 20 nm, there was no significant difference observed in the device lifetime performances.
The J/V characteristics of devices were studied to understand the mechanisms behind the degradation
of Cu:NiOx devices and β-alanine-treated Cu:NiOx devices. Impedance spectroscopy was also used
to understand these mechanisms in more detail. The characterization of devices was performed in
Cu:NiOx (40 nm) and Cu:NiOx (40 nm)/β-alanine (10 mg/mL)-based devices. Both device structures
were characterized at a time frame where the degradation phenomena were detectable but did not
render the device unmeasurable (24 h for untreated Cu:NiOx-based devices and 1000 h for β-alanine
treated Cu:NiOx-based devices).
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Figure 3. Lifetime plots of normalized: (a) Voc, (b) Jsc, (c) FF, and (d) PCE under accelerated
heat conditions.

Cu:NiOx-based devices exhibited severe hysteresis, as shown in Figure 4a, which was eliminated
by leaving the devices under light soaking for 20 min. The PV parameters of Cu:NiOx-based devices,
in the forward (FW) and reverse (RV) scan direction, before and after light soaking are shown in Table 2.

Figure 4. (a) Illuminated J/V characteristics of Cu:NiOx devices before and after light soaking,
(b) illuminated J/V characteristics of fresh and aged Cu:NiOx and β-alanine-treated Cu:NiOx devices,
(c) dark J/V characteristics of fresh and aged Cu:NiOx and β-alanine-treated Cu:NiOx devices, (d) EQE
spectra of fresh and aged Cu:NiOx and β-alanine-treated Cu:NiOx devices.
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Table 2. PV parameters of Cu:NiOx-based devices before and after light soaking.

Device Architecture Voc (V) Jsc (mA/cm2) FF (%) PCE (%)

Cu:NiOx-based devices without light soaking FW = 0.94
RV = 0.99

FW = 16.05
RV = 11.42

FW = 81.6
RV = 76.41

FW = 12.31
RV = 8.61

Cu:NiOx-based devices after 20 m light soaking FW = 0.98
RV = 0.97

FW = 10.79
RV = 10

FW = 77.4
RV = 74.2

FW = 8.19
RV = 7.20

The hysteresis of p-i-n PSC devices based on Ni:Ox was also reported in the literature as we
have previously stated, and it was shown to have a recoverable effect on the PCE of the device upon
light soaking [29]. In our case, even though the hysteresis reduced significantly after light soaking for
20 min, the PCE was not recovered; on the contrary, it decreased, primarily due to a decrease in Jsc.
Interestingly, the Voc increased after light soaking. J/V hysteresis is a very common phenomenon in
PSCs that has been previously ascribed to trapping and de-trapping of charged carriers [41]. Specifically,
Jsc hysteresis has been previously ascribed to trapping of charged carriers due to bulk defects of the
perovskite layer [42]. Upon light soaking, passivation of these traps can occur by the charged carriers
themselves; however, less photo generated charges will contribute to the Jsc of the device due to a
change in local electrical polarization effects on the surface of the crystal, resulting in poorer charge
dissociation and reduction in Jsc. A similar passivation mechanism can be used to explain the increase
in Voc. Voc is directly related to the built-in electric field (Ebi) of the device which is affected by the
accumulation of charges at the electrodes. The increase in Voc after light soaking can be explained
by the reduction in charge accumulation at the interfaces of the devices. Trap passivation in the
Cu:NiOx/Pvsk interface due to charged carriers generated after light soaking can cause a reduction
in charge accumulation in this interface, thus increasing the Voc [41]. Trap filling phenomena have
been previously reported to decrease the FF of PSCs upon light soaking [29]. This is also true in our
case where we observed a drop in FF upon light soaking of Cu:NiOx-based devices, as shown in
Table 2. Upon surface treatment of Cu:NiOx with β-alanine, we observed an increase in Voc and Jsc

as well as significant reduction in hysteresis, as shown in Figure 4b. Following the investigation of
the observed J/V characteristics of devices with and without light soaking, as well as the Ewf data
reported from Shih et al. [39], the increase in Voc can be attributed to a reduction in charge traps at the
Cu:NiOx perovskite interface and the increase in Jsc to reduce bulk defects in the perovskite crystal.
The reduction in charge traps both at the interfaces as well as the bulk perovskite layer is also ascribed
to the improved stability that β-alanine-treated Cu:NiOx inverted PSCs showed. Significant changes
were also observed in the dark J/V characteristics shown in Figure 4c. In detail, β-alanine-treated
Cu:NiOx-based devices showed a reduction in the series resistance (Rs) from 75.14 to 18.25 Ω and an
increase in shunt resistance (Rsh) from 15.47 to 35.65 kΩ, resulting in the improved Voc and Jsc that
these devices exhibited. The EQE spectra were also studied and presented in Figure 4d. Interestingly,
the shape of the spectra was similar between untreated and β-alanine-treated Cu:NiOx-based devices.
The spectra of untreated Cu:NiOx were lower than β-alanine-treated Cu:NiOx-based devices. The EQE
spectra of untreated Cu:NiOx-based devices showed a significant decrease upon aging, following the Jsc

drop, whereas β-alanine-treated Cu:NiOx-based devices showed no significant decrease in their EQE.
The photocurrent from the EQE spectra was calculated using the overlap integral of the EQE spectrum
with the AM 1.5G global spectrum and was found to have <5% deviation from the calculated Jsc using the
J/V characteristics for all the device structures under test (Cu:NiOx fresh: EQE current = 15.72 mA/cm2;
JV current = 16.05 mA/cm2; Cu:NiOx aged: EQE current = 8.31 mA/cm2; JV current = 7.91 mA/cm2;
Cu:NiOx/alanine fresh: EQEcurrent = 17.76 mA/cm2; JV current = 17.68 mA/cm2; Cu:NiOx/alanine
aged: EQE current = 17.47 mA/cm2; JV current = 17.25 mA/cm2).

To obtain a visual representation of the degradation of untreated and β-alanine-treated
Cu:NiOx-based devices, we performed photocurrent (PCT) mapping, as shown in Figure 5. PCT allows
us to obtain a visual representation of the current distribution in the device. Untreated Cu:NiOx-based
devices showed non-uniform current distribution even if they were fresh. There were also areas in the
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device that showed very little presence of current, which can be tied to the defects. Upon aging, the areas
that showed defects were enlarged and show even further current loss. β-alanine-treated devices
showed a much more uniform current distribution which was also retained at a large degree even
after aging. It is interesting to note that there was a small current loss at the edges of β-alanine-treated
devices after aging, as shown in Figure 5d, which can be tied to the ingress of moisture from the edges
of the encapsulation cover slip after the prolonged aging test.

Figure 5. Photocurrent mapping of (a) fresh Cu:NiOx, (b) aged Cu:NiOx, (c) fresh β-alanine-treated
Cu:NiOx, and (d) aged β-alanine-treated Cu:NiOx-based device.

In order to further investigate the origin of the degradation differences between the two device
structures, we performed impedance spectroscopy (IS) and Mott–Schottky (MS) analysis. MS analysis
is a very useful characterization technique that can be used to distinguish mechanisms that take place
in the active layer with those in the interfaces. In reverse bias, a capacitive plateau appeared that
corresponded to the geometric capacitance (Cg), related to the dielectric characteristics and polarizability
of the active layer. The point of intersection of the linear slope with the x-axis corresponded to the
estimated built in voltage (EVbi). It is interesting to note that the EVbi deviated from the real Vbi
value due to the depletion approximation used in the MS analysis. The depletion approximation
states that the capacitance in the space charge region manifests purely due to doping and not free
charges, which generally does not hold true close to the metal contacts where free charges tend to
accumulate. Although there was a deviation between EVbi and Vbi, it can still be used for comparative
studies tied with the Voc [43,44]. By varying the frequency of the AC signal between high (HF) and low
frequencies (LF) in MS analysis, we can also detect trapping phenomena. In general, at LF, since we
approach DC conditions, trapped charges can de-trap and, therefore, by observing the change in MS
plots between HF and LF, we can obtain a rough understanding of the trapping phenomena inside the
device [45,46]. In Figure 6a, we can observe an increase in the capacitive plateau from 3.2 × 10−9 F/cm2

to 1.4 × 10−8 F/cm2 when we changed the frequency from 100 to 5 kHz for untreated Cu:NiOx-based
devices. The increase in capacitance at negative biases when we decreased the frequency indicates
the presence of trapped charges in the space charge region, which is related to bulk defects of the
perovskite layer. Capacitance increases further from 1.4 × 10−8 F/cm2 to 7 × 10−7 F/cm2 when we aged
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the untreated Cu:NiOx-based devices and we kept the frequency constant at 5 kHz. When choosing an
appropriate frequency for MS analysis, it should usually coincide in the high-frequency plateau of the
relevant capacitance frequency (CF) plot [44]. CF measurements were performed using this particular
perovskite formulation and a similar p-i-n device structure in our previous work, and therefore, 5 kHz
is an appropriate choice for our particular measurements [22]. In comparison, β-alanine-treated
Cu:NiOx devices retain their capacitance at ~2 × 10−9 F/cm2 between HF and LF as well as after
aging. These results agree with the Jsc and hysteresis behavior of both untreated and β-alanine-treated
Cu:NiOx-based devices. By observing the Nyquist plots, we can observe two different frequency
features at HF and LF, as denoted by the two different semi-circle arcs similar to what is reported in
the literature [47]. The HF feature was previously attributed to the charge transport resistance (Rtr).
There is also a small series resistance (Rs) shown by the indent of the curve with the y-axis that is
attributed to the resistance from the experimental setup as well as the ITO [48]. The LF feature was
previously attributed to ionic diffusion and the charge recombination resistance (Rrec) due to charge
accumulation at the interfaces [49,50]. Under illumination, the charge accumulation at the interfaces
has been reported to be the dominant mechanism, similar to our case [48,51]. Using the equivalent
circuit model from our previous work [22], we fitted the Nyquist plot data in order to extract values
for Rrtr and Rrec (Figure S5). Upon alanine treatment, we report a drop for Rtr from 1.6 to 1.3 kΩ
and an increase to Rrec from 19.5 to 33 kΩ. These values are in good agreement with the drop of
Rs and increase in Rsh, respectively. Since Rrec was tied to the charge accumulation at the interfaces,
we can conclude that β-alanine-treated Cu:NiOx devices exhibited reduced charge trap density at the
Cu:NiOx/Perovskite interface. This is also in agreement with the increased EVbi in the MS analysis and
improved Voc that β-alanine-treated Cu:NiOx devices exhibited.

Figure 6. Mott–Schottky plots of (a) untreated and β-alanine-treated Cu:NiOx-based devices in
5 and 100 kHz, (b) fresh and aged untreated an β-alanine-treated Cu:NiOx-based devices at 5 kHz,
and (c) Nyquist plots fresh an aged untreated and β-alanine-treated Cu:NiOx-based devices.
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The presence of traps in the Cu:NiOx/Pvsk interface as well as the degradation mechanisms of
the perovskite bulk layer can be explained by examining the nature of metal oxides. In particular,
metal oxide functionality, including the Cu:NiOx under investigation within this work, is known to
influenced by oxygen vacancies that are caused by the impurities and the changes of stoichiometry [52].
The creation of oxygen defects within the metal-oxide is caused by loss of oxygen atoms which can serve
as active sites on which oxidation or reduction take place during photocatalytic activity, or a trapping
site which can inhibit and reduce the functionality of inverted PVSCs [52]. Oxygen vacancies can act as
trap states themselves by inhibiting the carrier movement inside the charge-selective layer—in our case
Cu:NiOx—as well as the Cu:NiOx/Pvsk interface and, therefore, promoting charge recombination in the
interfaces of the device. Furthermore, metal oxides are known to form reactive superoxide (O2

−) species
by adsorbing atmospheric oxygen through their vacancies and reacting with UV from ambient light.
The O2

- can further negatively impact PVSCs by deprotonating the MA+ cation through oxidation and,
therefore, negatively impact both PCE and cause instability by introducing charge traps in the active
layer [53]. Deprotonation of the MA+ cation was also recently reported by McGehee et al. to be caused
the Ni ≥3+ metal cation sites in NiOx that can act both as Brønsted proton acceptors and Lewis electron
acceptors and can react with the amine functional groups. This results in cation-deficient perovskite
crystals that cause poor hole extraction in the NiOx/Pvsk interface and promote charge recombination.
In their work they used excess cation salts during the Pvsk active layer deposition to neutralize this
effect. We believe this happens to an extent in our case as well since alanine can act as a source of
amine functional groups, similar to the MA+ cation and, therefore, neutralize the effect described by
McGehee et al. [54]. Through the proposed metal-oxide β-alanine treatment, we have shown that the
charge trap density can be reduced both at the Cu:NiOx/Pvsk interface as well as the perovskite active
layer [52,53]. The experimental results indicate the importance of the reduction in oxygen vacancies
and, therefore, passivation of the charge traps for the development of high performance inverted
PVSCs that are based on metal-oxide HTLs. By optimizing the thickness of Cu:NiOx, we managed to
achieve high PCE while still retaining the improved lifetime. By decreasing the thickness of Cu:NiOx
to 20 nm and by using the proposed β-alanine surface treatment, we developed hysteresis-free devices
with a PCE = 15.51% (Figure S6) and improved stability with T80 at 1000 h under accelerated heat
conditions (60 ◦C, N2).

4. Conclusions

We identified that the main reason for the poor device performance and J/V hysteresis of inverted
(p-i-n) PSCs incorporating Cu:NiOx HTLs to be the presence of charge traps at the bulk perovskite active
layer as well as the Cu:NiOx/Pvsk interface. We introduced a β-alanine-based metal-oxide surface
treatment method that can improve the performance and stability of inverted PVSCs incorporating
Cu:NiOx HTLs. Using β-alanine-surface treatment, we reduced interfacial charge trap density due to
the formation of a more intimate Cu:NiOx/Pvsk interface, which results in improved Voc. The improved
Jsc is attributed to the reduced oxygen vacancies on β-alanine-treated Cu:NiOx HTL which leads
to the reduction in the bulk perovskite active layer charge trap density. Those effects contribute to
the improved PCE and stability of inverted PSCs that are using β-alanine-surface treated Cu:NiOx
HTLs. Using the β-alanine metal-oxide surface treatment, we reported hysteresis-free inverted PSCs
with PCE = 15.51%. More importantly, the thermal stability is greatly improved from 24 h for the
untreated Cu:NiOx HTL to 1000 h for the β-alanine-surface treated Cu:NiOx HTL-based inverted PSCs
at accelerated heat lifetime conditions in an inert atmosphere (60 ◦C, N2). We believe that the proposed
surface treatment process using β-alanine can be applied in other functional metal oxides, thus paving
the way to hysteresis-free, high performance, and long-lived PSCs.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/10/1961/s1,
Figure S1: AFM images of: (a) ITO/Cu:NiOx/Pvsk, (b) ITO/Cu:NiOx/β-alanine/Pvsk; Figure S2: contact angle
film measurements of (a) Cu:NiOx, (b) Cu:NiOx/alanine; Figure S3: (a) transmittance spectra ITO/Cu:NiOx,
ITO/Cu:NiOx/alanine, and (b) absorbance spectra ITO/Cu:NiOx/Pvsk, ITO/Cu:NiOx/β-alanine/Pvsk; Figure S4:
average PCE and SD for the optimized devices based on Cu:NiOx (20 nm); Figure S5: (a) Nyquist data and fitting
for (a) Rtr and (b) Rrec; Figure S6: J/V characteristic of optimized ITO/Cu:NiOx/β-alanine/Pvsk/PC70BM/BCP/Cu.
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