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A B S T R A C T

Monitoring invasive species distribution and prevalence is important, but direct field-based assessment is often
impractical. In this paper, we introduce and validate a cost-effective method for mapping understory invasive
plant species. We utilized Landsat imagery, spectral mixture analysis (SMA) and a maximum entropy (Maxent)
modeling framework to map the spatial extent of Mikania micrantha in Chitwan National Park, Nepal and
community forests within its buffer zone. We developed a spectral library from reference and image sources and
applied multiple endmember SMA (MESMA) to selected Landsat imagery. Incorporating the resultant green
vegetation and shade fractions into Maxent, we mapped the distribution of understory M. micrantha in the study
area, with training and testing Area under Curve (AUC) values around 0.80, and kappa around 0.55. In vegetated
places, especially mature forests, an increase in green vegetation fraction and decrease in shade fraction was
associated with higher likelihood of M. micrantha presence. In addition, the inclusion of elevation as a model
input further improved map accuracy (AUC around 0.95; kappa around 0.80). Elevation, a surrogate for distance
to water in this case, proved to be the determining factor of M. micrantha's distribution in the study area. The
combination of MESMA and Maxent can provide significant opportunities for understanding understory vege-
tation distribution, and contribute to ecological restoration, biodiversity conservation, and provision of sus-
tainable ecosystem services in protected areas.

1. Introduction

Invasive species have long been associated with human-introduced
environmental change, rendering negative effects on ecosystem services
and human well-being (Pejchar and Mooney, 2009). The first step in
invasive species management and intervention requires identifying
their geographical locations. Traditional invasive plant detection and
identification usually involves intensive field surveys, which can be
time consuming and expensive. Remote sensing provides a potential
alternative method for detection. In general, direct remote sensing of
invasive plants aims to detect spectral, textural and/or phenological
differences between the invasive and native species (Bradley, 2014).
Spectral differentiation focuses on the unique spectral signatures of
invasive plants compared to native vegetation and is mostly applied to

hyperspectral imagery (Asner et al., 2008; Barbosa et al., 2016;
Underwood et al., 2003). Textural differentiation examines the distinct
spatial patterns of invasive species and background land covers cap-
tured within a neighborhood of adjacent pixels and is usually conducted
with high-spatial resolution imagery, depending on the size of the in-
vasive plant or its aggregation (Lishawa et al., 2013; McCormick, 1999;
Pearlstine et al., 2005). Phenological differentiation identifies different
seasonal or inter-annual growth patterns between invasive and native
plants, including base and maximum level greenness of growing season,
time and rate of greening up and senescence, date of the middle of the
season, and other parameters (Bradley et al., 2018; Hoyos et al., 2010;
Peterson, 2005; Somers and Asner, 2013). Phenological differentiation
requires repeat imaging to gain adequate temporal information to de-
fine spectral differences.
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Obscured by the top canopy, detection of understory invasive plants
is even more challenging, especially in closed-canopy mature forests.
Direct detection through passive optical remote sensing techniques can
be achieved when understory vegetation has distinct phenologies from
overstory species, such as an extended green season or earlier greening
up when the overstory trees are leaf-off (Taylor et al., 2013; Tuanmu
et al., 2010; Wilfong et al., 2009). Understory invasive plants may be
indirectly identified if the invasion introduces competition for nutrients
as well as water and renders biochemical changes in overstory leaves,
thus altering the spectral features of the overstory vegetation (Asner
and Vitousek, 2005). Indirect detection of understory invasive plants
may also be achieved through linking its presence with remote sensing
imagery related biophysical and socio-ecological factors governing its
growth, such as light-availability and human disturbance in the forests
(Joshi et al., 2006).

Spectral mixture analysis (SMA) is a powerful tool for inspecting
mixed pixels in remote sensing imagery and quantifying their con-
stituents, especially for moderate and coarse spatial resolution images.
Theoretically, the invasion of understory plants can introduce changes
to the types and quantities of constituents within mixed pixels, which
may be directly or indirectly detected in SMA. Nevertheless, few studies
have incorporated SMA to investigate understory invasive plant map-
ping. In this research, we explore the detection and mapping of un-
derstory invasive plant species through multiple endmember SMA
(MESMA; Roberts et al., 1998) and maximum entropy (Maxent; Phillips
et al., 2006) modeling framework. In particular, we map the spatial
extent of Mikania micrantha in Chitwan National Park (CNP), Nepal and
its buffer zone community forests. M. micrantha is one of the world's
most notorious invaders (IUCN, 2019) and its invasion is jeopardizing
and has the potential of totally disrupting local coupled human and
natural systems. M. micrantha also decreases forest productivity by
hindering the growth of native species, weakens social organizations
that manage and shape households' resource use in the community
forests, and downgrades local ecosystems and their corresponding ser-
vices (Murphy et al., 2013). According to research literature, and dis-
cussions with local forest users and park rangers, M. micrantha mostly
flourishes in riverine habitats and tends not to grow in higher-elevation
environments (Murphy et al., 2013). Given this general distribution
pattern, our goal is to create a detailed, pixel-based distribution map for
M. micrantha in the study area. The results from this research will help
identify the locations of M. micrantha and guide local invasive plant
species management and intervention practices.

2. Methods

2.1. Study area

The Chitwan district is located in the central part of Nepal near the
border with India. It is famous for the Chitwan National Park, re-
cognized as a World Heritage site and a significant biodiversity hotspot
in the Terai region of Nepal with elevation between 120 and 815 m,
nurturing endangered great one-horned rhinoceros (Rhinoceros uni-
cornis), Bengal tiger (Panthera tigris tigris) and other endemic species
(UNESCO, 2019; CEPF, 2019). Chitwan is also home to about 600,000
people who live and farm nearby (Central Bureau of Statistics-Nepal,
2011). Beginning in the 1950s, large-scale deforestation occurred as
forest was converted to farmland, and to better manage remaining
forests in the area, community forests were established upon passing of
the Community Forestry Act in 1993 (Nagendra, 2002; Spiteri and
Nepal, 2008). Community forestry programs grant local users limited
access to the forest resources and a certain degree of autonomous
management (Charnley and Poe, 2007). Our investigation focuses on
the Chitwan National Park, established in 1973, and the community
forests within its buffer zone (Fig. 1).

The study area has a tropical monsoon climate with mean annual
precipitation of 2100 mm with most of the rain falling from June

through early October. Average daily temperature ranges from 36 °C in
the summer to 18 °C in January. The dominant vegetation types within
the park are Sal forests (Shorea robusta), riverine mixed forests (most
common species include Acacia catechu, Bombax cieba, Dalbergia sissoo,
Maesa chisia, Melia azedarach and Trewia nudiflor) and riparian grass-
lands (most common species include Saccharum spontaneum, Narenga
porphyracorma, Phragmites karka and Imperata cylindraica).

2.2. Field vegetation inventory

In the three consecutive years of 2013, 2014 and 2015, field vege-
tation surveys were conducted in the western Chitwan buffer zone
community forests, bounded to the south by the Rapti River and the
west by the Narayani River (Fig. 2). Field data were collected around
the peak biomass period right after the monsoon season, approximately
between late September and mid-November. In every community
forest, we set up parallel transects that are 200 m apart, angling from
human settlements toward the park. Along each transect, at 50 m in-
tervals, we set up a sample site with two 5 m by 5 m plots adjacent to
each other and perpendicular to the transect. For each plot, several
ecological measurements were obtained, including M. micrantha cov-
erage (in categories 0–4 through visual estimation, where 0 represents
absence of M. micrantha, 1 for 1%–25% coverage and 2 for 26%–50%
coverage, etc.), canopy cover (in percentage, measured through a forest
densiometer) and identification of dominant tree and herbaceous spe-
cies.

In the field vegetation survey, the coverage of sample sites in the
community forests was affected by accessibility (rivers, lakes and
wetlands were inaccessible) and occasionally by likely presence of
dangerous animals such as tigers and rhinos. We were able to in-
vestigate most of the areas to the north of the Rapti River and to the
south of the Narayani River (e.g. in BELS, SAYU, NARA, DIYA, MAJH,
SIDD and SETI; Fig. 3). We also crossed the borders of three Sal com-
munity forests in the east (e.g. BAND, NABA and DASH; Fig. 3) and
doubled the lengths of the sampling transects.

2.3. Ground reference spectra

In September 2018, apart from the field vegetation surveys, we
collected in situ reference spectra for major herbaceous species (in-
cluding M. micrantha) at 1 m height with a nadir view geometry under
cloud-free conditions within 2 h of solar noon in the community forests.
We also collected spectra of other common land cover types in the study
area, including soil, non-photosynthetic vegetation (NPV; e.g. senesced
grass, plant residue, etc.; Roberts et al., 1993) and gravel fields (cate-
gorized as Soil here) in the study area. Spectroscopic surface reflectance
data were collected with an Analytical Spectral Devices (ASD) Field-
Spec® 4 Standard-Res spectroradiometer (Malvern Panalytical, West-
borough, MA). Equipped with three detectors spanning the visible and
near infrared (VNIR) and shortwave infrared (SWIR1 and SWIR2), the
instrument samples at a spectral range of 350–2500 nm, with a sam-
pling interval of 1.4 nm for the VNIR detector, and 1.1 nm for SWIR
detectors. The Full Width Half Maximum is 3 nm in VNIR and 10 nm in
the SWIR. With a 25° field of view, the 1.5 m fiber optic cable transmits
light from the aperture to the spectrometer. Each plant spectrum was
sampled 10 times to account for random errors, and was bracketed by
measurements from a Spectralon white reference panel to offset any
changes in solar illumination or changes due to weather. The re-
flectance values, automatically calibrated from the radiance records in
the field, were later extracted through the software package View-
SpecPro (Malvern Panalytical, Westborough, MA).

2.4. Remotely sensed data

We obtained Landsat Operational Land Imager (OLI) surface re-
flectance products (Level-2) from USGS EarthExplorer (https://
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earthexplorer.usgs.gov/) to align with the field vegetation survey dates.
For the years 2013, 2014 and 2015, we were able to identify one de-
sirable scene for each year (Path/Row: 142/41; Table 1). We also ob-
tained a 30 m spatial resolution digital elevation model (DEM) derived
from Terra Advanced Spaceborne Thermal emission and Reflectance
Radiometer (ASTER) stereoscopic imagery for the study area (NASA/
METI, 2019).

2.5. Multiple endmember spectral mixture analysis

Spectral mixture analysis (SMA) is a classic method for estimating
mixed constituents within ground resolution elements associated with

image pixels. It assumes that the spectral reflectance of a pixel can be
modeled as the weighted sum of endmember reflectance, or spectrally
“pure” materials, within that pixel. Most SMA adopts a linear addition
method and the weights correspond to fractions of endmembers in the
pixel. As an extension of simple SMA, Multiple Endmember SMA
(MESMA) allows the number and types of endmembers to vary on a per-
pixel basis, generating more legitimate unmixing results for imagery
with high inter- and intra-endmember variance (Roberts et al., 1998).

To apply MESMA, we developed a spectral library across end-
member types while incorporating endmember variability. Ground re-
ference spectra, including Green Vegetation (GV), NPV and Soil, were
acquired through in situ measurements. Complimentary NPV and Soil

Fig. 1. False colour Landsat 8 three-band composite of the study area (highlighted in white polygon). Image acquisition date: 27 October 2014. Red: Band 6
(1560–1660 nm); Green: Band 5 (845–885 nm); Blue: Band 4 (630–680 nm). (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 2. Terrain map of the study area and vegetation survey sites.
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spectra were identified from two online spectral libraries: (1) Jet
Propulsion Laboratory (JPL) ASTER Spectral library (Baldridge et al.,
2009), and (2) USA Geological Survey (USGS) Spectral Library (Kokaly
et al., 2017). All candidate reference spectra were convolved to Landsat
8 OLI wavelength in the software package ENVI (Harris Geospatial
Solutions, Boulder, CO). Candidate image spectra, including GV, NPV
and Soil, were extracted by drawing representative region of interest
(ROI) polygons in the Landsat imagery and including all pixels in the
polygons. Image spectra identified through applying Pixel Purity Index
(PPI) were also included. The Coastal Band (Band 1) of all candidate
spectra was discarded before further processing.

Combining all candidate reference and image spectra, we identified
subsets of spectra from the library through Endmember Optimization
module in Viper Tools, an ENVI add-on module (Roberts et al., 2007).
For each bright endmember type (GV, NPV and Soil), the spectra with
the lowest Endmember Average Root-mean-square-error (EAR;
Dennison & Roberts, 2003), lowest Mean Average Spectral Angle
(MASA; Dennison et al., 2004) and highest Count-Based Endmember
Selection (COB; Roberts et al., 2003) score were selected. In the case of

a tie with COB, EAR was used to split the tie. We consider this subset a
reasonable balance between MESMA processing time and endmember
variabilities.

We then used this comprehensive endmember set to unmix the se-
lected Landsat OLI imagery. Physically reasonable ranges were set to
[0,1] for bright endmembers (GV, NPV and Soil) fractions. The allowed
range for Shade fractions was [0, 0.8]. The most complex endmember
combinations were four-endmember models (4-EM; three bright EMs
plus Shade). All combination sets (2-EM, 3-EM and 4-EM; Table 2) were
tested for each pixel, and the one that generated the lowest root-mean-
square-error (RMSE) was selected as the candidate model. If this RMSE
was no higher than 0.025, the candidate model was selected, otherwise

Fig. 3. Community forests (highlighted by white polygons) in the study area and sample sites with M. micrantha presence. Background image: false colour Landsat 8
three-band composite. Image acquisition date: 27 October 2014. Red: Band 6 (1560–1660 nm); Green: Band 5 (845–885 nm); Blue: Band 4 (630–680 nm). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Selected Landsat OLI imagery.

Year Acquisition date Cloud cover Image quality

2013 11/09 2.00% 9
2014 10/27 0.94% 9
2015 10/14 4.84% 9

Table 2
Allowed models by endmember types with total model numbers in parentheses.

Two-endmember (7) Three-endmember (16) Four-endmember (12)

GV + Shade GV + NPV + Shade GV + NPV + Soil + Shade
NPV + Shade GV + Soil + Shade
Soil + Shade NPV + Soil + Shade

Table 3
Number of total sample sites and invaded sites in each community forest.

Region Forest code Total sites Invaded sites Invasion %

East Sal BAND 299 23 7.7%
NABA 39 4 10.3%
DASH 232 31 13.4%
BATU 126 7 5.6%

South Central Rapti BELS 167 33 19.8%
BIRE 28 7 25.0%
GHAI 136 100 73.5%
BELH 87 39 44.8%
DOVA 19 10 52.6%

South West Rapti SAYU 52 21 40.4%
BETA 109 62 56.9%
MALI 9 9 100.0%
RADH 76 76 100.0%
SADA 177 147 83.1%

Far West RAPP 148 101 68.2%
NARA 88 33 37.5%

North Narayani DIYA 70 62 88.6%
MAJH 74 67 90.5%
SIDD 59 47 79.7%
SETI 92 78 84.8%
GANE 136 99 72.8%
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the pixel was left unmodeled.
For Landsat multispectral imagery of vegetated landscapes, most

pixels can be modeled as GV-NPV-Soil-Shade mixture in MESMA. In our
study area, M. micrantha is genetically and physiologically distinct from
other plants, including the other two major invasive species,
Chromolaena odorata and Lantana camara. M. micrantha is a perennial

creeping vine with higher spectral reflectance than mature forests in the
near-infrared wavelength, tends to form dense layers and fill the gaps
among top canopies. We hypothesized that the pixels representing areas
invaded by M. micrantha would yield higher GV fractions and lower
Shade fractions than unaffected pixels. To test this hypothesis, we
conducted two-sample t-tests (two-tailed and unequal variance) for

Fig. 4. Spectra included in the final endmember library.

Fig. 5. False colour three band composite of MESMA results with CNP and buffer zone boundaries highlighted (white polygon). Image acquisition date: 27 October
2014. Red: NPV; Green: GV; Blue: Soil; Black: water, cloud, cloud shadow or no data. The southern boundary of the validation image extends beyond this figure
extent. The 67 validation points reside within both the study area and validation image boundaries. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 6. Scatterplots of MESMA fraction validations.
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both GV and Shade fraction values between presence and background
pixels to identify potential significant differences.

2.6. Maximum entropy modeling framework

We utilized the software package Maxent to generate models for
mapping M. micrantha distribution in the Landsat image we selected
(Phillips et al., 2006). Maxent makes presence predictions based on the
relationships between presence records and corresponding environ-
mental data. The difference between Maxent and many other species
distributions modeling methods is that there is no real “absence data” in
the modeling procedures, and it is typically developed to accommodate
presence-only data. In our vegetation survey, the presence and coverage
of M. micrantha were recorded for all 5 m by 5 m sample plots. If M.
micrantha was not detected in a specific sample plot, we cannot guar-
antee if it was absent from the whole 30 m by 30 m Landsat ground
resolution element, or whether the plant was present in that element
but outside of the sample plots. Therefore, instead of interpreting the
field records as “presence-absence” data, we consider them to be more
appropriately treated as “presence-only” data.

We also emphasize the importance of the representativeness of
presence data to Maxent model results. The ultimate objective of
Maxent is to make predictions of species distributions by evaluating the
presence records and their corresponding environmental information,
and the representativeness of any presence data is vital to the overall
model accuracy. Ideal presence records should include all types of
possible presence locations (in the dimensions of the environment data)
in the target predicting area. In our research, although the community
forests and sample sites are spatially biased, residing mostly on the
fringe of the park and covering relatively small areas compared to the
whole study area, they were highly diverse in floral species and con-
tained all local vegetation types (e.g. Sal forest, riverine forest and ri-
parian grassland), and consequently contain all possible M. micrantha
presence location types. Because we are aware of the general dis-
tribution pattern of M. micrantha in the study area (mostly in riverine
habitats), we consider our sampling data to be sufficient.

In the Maxent models, we used the pixels with M. micrantha cov-
erage level of 1 or above (excluding all pixels without detected cov-
erage) as presence data; 10,000 pixels were randomly selected from the

study area as background data (Phillips and Dudik, 2008). We imported
the four fraction layers (GV, NPV, Soil and Shade, from MESMA) and
elevation as potential predictor variables. The maximum iterations
were set at 500 times and the predicted M. micrantha presence prob-
abilities were averaged for each pixel. The presence data and MESMA
fraction layers can only account for the ground conditions around the
time the records and imagery were collected, thus for each year (2013,
2014 and 2015), we generated one map for each predictor combination
(e.g. GV-Shade-NPV, GV-Shade-Soil and GV-Shade-DEM).

2.7. Model validation

2.7.1. MESMA fraction validation
We obtained a 5-m spatial resolution RapidEye image captured on

Nov 29, 2013 to generate reference data and validate the fractions of
bright endmembers (e.g. GV, NPV and Soil) in MESMA results. We as-
sumed that since the imagery type and MESMA procedures were con-
sistent among the 3 years (2013–2015), the validation of 1 year's image
would be sufficient. MESMA fractions were first shade-normalized be-
fore validation. We then generated 100 random points in the study area,
and the corresponding pixels were assigned as candidate validation
pixels. After excluding points that fell out of the reference image or
points where pixels were not modeled by MESMA (e.g. water, cloud,
shadow, etc.), 67 pixels were left for validation. Through unsupervised
classification in ERDAS and with the aid of Google Earth high spatial-
resolution imagery, we classified the reference image into GV, NPV, Soil
and other cover types, including water, cloud and shadow. For each
bright endmember type (GV, NPV and Soil), using the centroid of the 67
validation pixels as the focal points, we analyzed the focal statistics
(sum) at a neighborhood setting of 6 by 6 cells (30 m by 30 m). In this
way, the sum divided by 36 would be the reference fraction of that
pixel. In the end, validation pixels were assessed using R2 derived from
plotting MESMA fractions (y) against reference fractions (x).

2.7.2. Maxent validation
The receiver operating characteristic (ROC) analysis and the area

under the ROC curve (AUC) incorporated in Maxent were used for
model evaluation (Fielding and Bell, 1997; Pearce and Ferrier, 2000).
AUC values between 0.7 and 0.8 indicate fair modeling results, values
between 0.8 and 0.9 are considered good, and values higher than 0.9
are excellent (Fielding and Bell, 1997; Pearce and Ferrier, 2000). We
randomly allocated 75% of the presence data for model training, and
the remaining 25% for testing. We also applied kappa analysis to
evaluate Maxent results (Cohen, 1960). For this purpose, we randomly
selected 100 presence pixels and another 100 background pixels from
the whole study area in each year's modeling results. Continuous pre-
sence probabilities were dichotomized to 0 or 1, with values greater
than 0.5 assigned to the latter. Since all pixels, including presence data,
were involved in the random selection of background data, the AUC and
kappa values tend to be underestimated in this case. Jackknife analyses
were conducted to evaluate the relative contributions of the environ-
mental variables. The results are the AUC values of the relative Maxent
model if only one of the variables was included in the modeling process
(e.g. GV-only or Shade-only Maxent models, etc.).

3. Results

3.1. M. micrantha presence in the sample sites

The fieldwork was conducted in the 2-month window right after the
monsoon and it took us 3 years (2013–2015) to survey all 21 commu-
nity forests. We were able to visit 2219 sample sites in total, of which
1038 were invaded by M. micrantha. The four East Sal forests were
sparsely invaded, with M. micrantha presence at around 10% of the
sample sites (Table 3; Fig. 3). Invasions were more prominent in riv-
erine forests, where M. micrantha occurred in more than half of the

Fig. 7. Boxplots of GV and Shade fractions between presence (green) and
community forest background (orange) pixels. (For interpretation of the re-
ferences to colour in this figure legend, the reader is referred to the web version
of this article.)

J. Dai, et al. Remote Sensing of Environment 250 (2020) 112037

6



sample sites (Table 3; Fig. 3). This general pattern resembles the results
from the assessment ofM. micrantha distribution conducted in the study
area in 2008 (Murphy et al., 2013). Forests in the South West Rapti
region and the North Narayani region bore the most severe invasion,
with invasion rates close to or above 80%. Two forests in particular,
MALI and RADH, had M. micrantha detected at every sample site.

3.2. MESMA library and fractions

The final endmember library was processed based on the criteria
described in Section 2.5 and included two GV (one reference, GV1, and
one image, GV2) endmember, two NPV (one reference, NPV1, and one
image, NPV2) endmember, and three Soil (two reference Soil2 and
Soil3, and one image, Soil1) endmember spectra (Fig. 4). The allowed
models consisted of all possible permutations of the endmember types
listed in Table 2, resulting in 7 two-endmember models, 16 three-
endmember models and 12 four-endmember models (Table 2).

MESMA results without shade normalization are shown in Fig. 5.
Water, cloud and shadow were mostly unmodeled and appear black in
the map. The park and its buffer zone community forests were

dominated by green vegetation, which included highland Sal forests,
riverine forests, and riparian grasslands (Fig. 5). Sal forests accounted
for the majority of the green vegetation in the study area, and they
appeared darker in the map than the latter two vegetation types. NPV
and Soil pure pixels were rare and their fractions were mostly con-
centrated in riverine habitats, including gravels fields, river banks and
senesced grasses. The landscape was observed to be relatively uniform
within the study area compared to outside human settlements sur-
rounded by the Narayani and Rapti Rivers, where human settlements
and agricultural lands prevailed (Fig. 1). MESMA fraction validation
produced a similar range of accuracy for GV (R2 = 0.95), NPV
(R2 = 0.92) and Soil (R2 = 0.93), indicating good MESMA results
(Fig. 6).

We used the 2219 sample sites in the community forests to identify
potential significant differences in GV and Shade fractions between M.
micrantha invaded sites (1038) and background sites (1181). t-test re-
sults confirmed that compared to background pixels, presence pixels
generated significantly higher GV fractions and lower Shade fractions
(both p < 0.001; Fig. 7).

Fig. 8. ROC curves and AUC values for training and test data in GV-Shade-NPV (first column, a, d, g), GV-Shade-Soil (second column, b, e, h) and GV-Shade-DEM
(third column, c, f, i) Maxent models for 2013, 2014 and 2015.
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3.3. M. micrantha distribution

Incorporating both GV and Shade fraction layers with an addition of
NPV or Soil, the AUC values ofM. micrantha distribution Maxent models
for training and testing data were both between 0.74 and 0.86, re-
spectively (Fig. 8, first two columns from the left). The relative kappa
coefficients ranged from 0.49 to 0.61. Both ranges, even though un-
derestimated due to the inclusion of presence records in background
data, indicate fair or good model results. The estimated M. micrantha
presence probabilities ranged from 0 to 1 across the study area, with
most of the higher probability pixels located in riverine forests and ri-
parian grasslands along the Narayani and Rapti Rivers (Fig. 9). Some of

the high probabilities were associated with high-GV-fraction pixels at
higher elevations, e.g. the sunlit slopes along the southern side of
Churia Hills (Fig. 9).

Although MESMA-fraction-only Maxent models (e.g. GV-Shade-Soil
and GV-Shade-NPV) produced fair/good model results (AUC between
0.7 and 0.9, kappa between 0.4 and 0.75), the inclusion of elevation
(DEM) as a model input significantly improved map accuracy, with
both training and testing AUC values around 0.95 (Fig. 8, last column at
right). Their kappa coefficients ranged between 0.75 and 0.81. Both
ranges indicate excellent mapping results. The effects of including
elevation will be further examined in the Discussion section.

4. Discussion

4.1. MESMA fractions and M. micrantha mapping

In this study, we developed an effective approach for mapping un-
derstory invasive plant species using SMA and the Maxent modeling
framework. By applying MESMA to Landsat 8 OLI surface reflectance
products, we verified the significant differences in GV and Shade frac-
tions between M. micrantha-invaded and non-invaded pixels. We then
successfully mapped the spatial extent of M. micrantha in Chitwan
National Park and the community forests within its buffer zone using
MESMA generated fraction layers. The resulting distribution maps
proved to be fair/good for MESMA-fraction-only models (AUC between
0.7 and 0.9, kappa between 0.4 and 0.75). The inclusion of elevation as
a model input produced excellent map results (AUC above 0.9 and
kappa above 0.75). While endmember fractions from MESMA have
been used for sub-pixel land cover mapping (Roberts et al., 1998;

Fig. 9. M. micrantha average presence probability maps generated from GV-Shade-NPV (First column from left) and GV-Shade-Soil (Second column from left) Maxent
models in 2013, 2014 and 2015. Large blue patches above Churia Hills in 2013 and 2015 maps are associated with clouds or cloud shadows. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. AUC values of Maxent models with only one of the predictors.
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Powell et al., 2007), deforestation and forest degradation evaluation
(Souza Jr. et al., 2005; Souza Jr. et al., 2013) and plant species classi-
fication (Roberts et al., 2015; Roth et al., 2015), in this study their
application was extended to analyze the spatial extent of invasive plant
species growing under forest canopies.

By analyzing endmember fractions generated from MESMA, we
found that pixels with M. micrantha invasion can be distinguished from
background pixels in the study area. Higher GV fractions and lower
Shade fractions reflect the differences between invaded forests and
unaffected landscape types. The growth and densification of M. mi-
crantha from ground to tree crowns in the forests may contribute to the
higher GV fractions, whereas the filling between canopy gaps may ac-
count for the lower Shade fractions of the invaded pixels.

Some of the pixels along the southern side of Churia Hills were also
assigned high-probability values, especially in the 2015 maps (Fig. 9).
These results might be explained by the limitation of the 2015 presence
data, since no Sal forest was sampled that year and all M. micrantha

presence records were in riverine forests along the Narayani River
(Fig. 2). In addition, due to sun-sensor geometry, sunlit slope vegetation
usually has higher reflectance and higher GV values before shade nor-
malization in MESMA. Since the GV fraction was positively related to
M. micrantha presence, sunlit slope vegetation pixels with high GV
values could be assigned with higher presence probabilities. Despite fair
model results, the presence data may not be sufficiently representative
for predicting sites with distinct environmental conditions in the study
area.

4.2. Incorporating elevation

In MESMA-fraction-only Maxent models (e.g. GV-Shade-NPV and
GV-Shade-Soil), GV and Shade made prominent contributions to M.
micrantha mapping, producing fair or good mapping results for both
training and test datasets (Fig. 8). Nevertheless, according to the jack-
knife analysis in Maxent, although GV and Shade fractions were fair or

Fig. 11. Predictors' contributions to their relevant Maxent models.
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good indicators of understory M. micrantha distribution (with-only AUC
around 0.8), the most powerful predictor was elevation (with-only AUC
above 0.9; Fig. 10). All GV-Shade-DEM Maxent models generated ex-
cellent map accuracies (AUC around 0.95; Fig. 8c, f & i), and the con-
tributions of elevation dwarfed that of GV or Shade (Fig. 11). Map re-
sults show that the general distribution pattern is similar to those from
fraction-only models, with M. micrantha presence allocated to pixels
close to the Narayani and Rapti Rivers (Fig. 12). However, higher-ele-
vation pixels were mostly assigned with low presence probabilities. This
observation is in agreement with local knowledge that most M. mi-
crantha was detected in riverine mixed forests, while invasion was less
common in higher-elevation Sal forests.

Although elevation made prominent contributions to the map re-
sults and it alone could generate excellent model outputs (With-only
AUC above 0.9, Fig. 10), both MESMA fractions and elevation are

critical in generating optimal M. micrantha distribution maps. Elevation
alone may have produced good results for our training/testing dataset,
which are the sample sites within the community forests, but it may not
be sufficient for mapping the whole study area. If elevation was the sole
environmental layer, Maxent would assign high presence probabilities
to all pixels with low elevation values, such as rivers and lakes (Fig. 13).
Landscape factors like elevation may not be sufficient to explain eco-
logical questions such as the distribution of certain species, thus bio-
logical factors should also be included. In our case, as indicators of
forest structure and canopy conditions, the MESMA fractions were in-
corporated to produce optimal map results.

4.3. M. micrantha invasion in Chitwan

Invasion ecology proposes that there are three main steps in the

Fig. 12. M. micrantha presence probability maps from GV-Shade-DEM Maxent models.
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spread of an invasive species: first, an individual or a small population
is transported from its native habitat to a geographically distant loca-
tion it would otherwise not have reached through natural dispersal;
secondly, this individual or population survives and reproduces in the
new environment and forms sustainable communities; third, the exotic
species thrives in the new environment and expands to its immediate
neighbors or to more distant areas with the help of environmental or
anthropogenic factors such as natural disasters and the movement of
animals or humans (Lockwood et al., 2013). M. micrantha was in-
troduced from the tropical and subtropical Americas to India in World
War II as camouflage for military facilities (Tiwati et al., 2005). It was
first reported in eastern Nepal in the early 1960s and reached Chitwan
in the early 1990s through catastrophic flooding according to local
knowledge. M. micrantha is a fast-growing climber which can reproduce
through sexual (seeds) or asexual (stems) processes, and its seeds are
adapted to fire (Murphy et al., 2013). The stems and seeds of M. mi-
crantha would first arrive at and inhabit riverine and riparian en-
vironments. After establishing sustainable populations and commu-
nities, it would invade higher-elevation habitats that are further away
from rivers. In this case, proximity to a river would be the determining
factor of the first wave of M. micrantha invasion. Besides, M. micrantha
prefers and grows best in high soil moisture conditions (Zhang and
Wen, 2009). It is more likely to invade and thrive in low-lying areas
having higher soil moisture. Our results show that by the year 2015, M.
micrantha invasion in Chitwan National Park and its buffer zone com-
munity forests had mostly occurred in riverine forests and riparian
grasslands.

4.4. Combination of MESMA and Maxent

In addition to the good agreement between the presence records and
the M. micrantha distribution maps generated in this study, our ap-
proach of combining MESMA and Maxent species distribution modeling
provides a novel approach for mapping understory vegetation. In si-
tuations where direct detection with satellite data is obscured by ca-
nopy tops, Maxent modeling enables understory mapping through in-
direct methods. Compared to other indirect detection approaches which
require additional temporal information through time series analysis of
vegetation phenology, our approach only need the process of a single-
time image (Tuanmu et al., 2010). Other than the presence records, the
only other data we need are remotely sensed which are open source and
can be acquired conveniently from online sources. Besides, this ap-
proach can be easily extended to other understory plant species, as long
as they introduce composition (e.g. GV and Shade fractions) changes
alongside their growth.

5. Conclusions

It can be challenging to identify and map understory invasive plants
through traditional remote sensing techniques due to the obstruction by
canopies. In this paper, we developed an effective and practical ap-
proach for mapping understory invasive plant using endmember frac-
tions derived from Landsat 8 OLI imagery and the Maxent modeling
framework. The easy access, global coverage and rich historical archive
of Landsat data make this approach applicable to a wide range of dif-
ferent study sites. It can also be applied to other satellite imagery with
moderate/coarse spatial resolution and global coverage, such as
Sentinel 2 data. The combination of MESMA and Maxent provides a
significant opportunity for understanding understory vegetation dis-
tribution, not only about invasive non-native species, but also native
shrubs and herbaceous species. The map results can provide guidance to
local invasive plant eradication practices and conservation plans, sub-
stantially contributing to ecological restoration, biodiversity conserva-
tion, and provision of sustainable ecosystem services in protected areas.
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