

This item was submitted to KTISIS by the author. Items in KTISIS are protected by copyright,

with all rights reserved, unless otherwise indicated.

Title: Tackling Problems of Marker-Based Augmented Reality Under Water

Publication Date: 08 April 2020 Deposit in to KTISIS Date: 19 October 2020

Please cite the Publisher Version: https://doi.org/10.1007/978-3-030-37191-3_11

Publisher: Springer Link

Version of article: Preprint

Publisher Statement © The Authors, 2020. The definitive version of this article is published

in Visual Computing for Cultural Heritage, 2020, pp 205-224

ISBN: 978-3-030-37191-3

License: This Preprint version is made available under the CC-BY-NC-ND 4.0 license

http://creativecommons.org/licenses/by-nc-nd/4.0/

Repository Record: https://ktisis.cut.ac.cy/handle/10488/19199

https://doi.org/10.1007/978-3-030-37191-3_11
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://ktisis.cut.ac.cy/handle/10488/19199

Tackling problems of marker-
based augmented reality un-
der water

Authors: Jan Čejka, Fotis Liarokapis

Abstract

Underwater sites are a harsh environment for augmented reality applications.
Obstacles that must be battled include poor visibility conditions, difficult naviga-
tion, and hard manipulation with devices under water. This chapter focuses on the
problem of localizing a device under water using markers. It discusses various fil-
ters that enhance and improve images recorded under water, and their impact on
marker-based tracking. It presents various combinations of 10 image improving
algorithms and 4 marker detecting algorithms, and tests their performance in real
situations. All solutions are designed to run real-time on mobile devices to provide
a solid basis for augmented reality. Usability of this solution is evaluated on loca-
tions in Mediterranean Sea. It is shown that image improving algorithms with
carefully chosen parameters can reduce the problems with visibility under water
and improve the detection of markers. The best results are obtained with marker
detecting algorithms that are specifically designed for underwater environments.

Introduction

Cultural heritage sites and artefacts are spread all around the word, and people
search them to learn more about their history and lives. Today, they are not limited
only to observe these objects in their current state and read about their story, but
thanks to modern technologies like augmented reality (AR), they can see these ob-
jects as virtual models superimposed into the real world to see how they fit into
the scene and how they interact with other objects. These technologies are able to
show even missing parts of settlements or whole buildings [1, 2].

Historical artefacts are not only on land, but many of them are hidden under
water. This includes wrecks of ancient ships transporting goods between cities, or
seaside settlements that submerged over the last thousands of years. Unfortunate-

2

ly, underwater sites are not only harder to access for people that wish see the arte-
facts, but they also impose many problems for technology to work. Localization
techniques based on GPS, Wi-Fi, or Bluetooth technology do not work as their
signal is absorbed very quickly. Augmented reality and other computer vision so-
lutions that require visual input struggle with problems like low contrast of imag-
es, sensor noise caused by recording images in low light, occlusions caused by
small particles and fish floating in water, unnatural colors due to uneven absorp-
tion of light, and short visibility limited due to turbidity.

The idea of using AR under water is not new [3], however, solutions are lim-
ited mostly on the clear water of swimming pools [4, 5, 6]. In marine areas, AR
solutions use acoustic beacons to replace the visual input [7, 8], but they are lim-
ited only to show a map and a textual information about the area, since they are
not able to track precise position of the diver required to accurately superimpose
virtual objects. Impact of bad visibility conditions on algorithms of computer vi-
sion was tested in laboratory conditions [9] or as a part of an evaluation of a single
image improving algorithm [10, 11], but such evaluation was not focused on sea
environments.

This chapter describes solutions used for improving marker-based tracking for
project iMareCULTURE [12] and is based on results of Žuži et al. [13] and Čejka
et al. [14, 15]. These works focus on postprocessing images taken under water to
increase their quality to improve detection of markers for AR. It is divided into
three parts. First, it evaluates nine algorithms for improving images to assess their
performance for enhancing a quality of images before detecting markers for AR.
Second, it chooses the most promising solutions and performs a deeper analysis in
various sea environments. The final part inspects which components of marker de-
tecting algorithms are affected in in bad visibility conditions and presents a results
of a cultural heritage use case scenario.

Performance of image-enhancing algorithms

Visibility under water is affected by many factors that are hard to separate to
explore their impact individually, so for this reason, all algorithms in this chapter
are evaluated using a data recorded in sea environments. First, to get an initial in-
sight about the performance of image-enhancing algorithms, this section presents
a brief analysis of nine solutions by recording a video with markers placed under
water, processing it offline, and comparing the number of detected markers. The
most promising solutions are chosen and studied in more details in the following
sections.

The test was conducted with a video with two divers holding a sheet with
markers (see Figure 1). A camera operated by another diver is moving closer to
them to decrease the impact of bad under water visibility conditions when the dis-
tance to the markers gets smaller. The video is recorded with a GoPro camera with

3

resolution of 1920 × 1080, in the Mediterranean Sea near Athens in depths ranging
from 5 to 7 meters. At the beginning of the video, the size of the smaller markers
is roughly 20 pixels to assess the influence of turbidity on detection of small dis-
tant markers. The larger marker is roughly 85 pixels in the beginning of the video,
which focuses more on the problem of turbidity if the size of the marker is just a
minor issue.

ARUco library [16] is used to detect markers in images. This library is open-
source, kept up-to-date, robust to different lighting conditions, runs in real time,
and as shown in [9], it provides good results in a reasonable time. Its implementa-
tion is a part of OpenCV 3.2.0. It detects markers in gray-scale images, so prior
the detection, all images are converted to YUV color space. This color space was
chosen, because it is natively supported by many mobile devices. The color con-
version is done before or after enhancing original images, depending on the en-
hancing algorithm.

The sheets contained seven markers. To identify individual markers, ARUco
uses a binary matrix of 6 rows and 6 columns to create a code with 36 bits. Thanks
to this, it can correct up to 6 incorrectly detected bits. Six markers were printed on
a A4 paper, formed in a grid of two rows and three columns. Each marker meas-
ured approximately 7 centimeters with 1 centimeter of white space between them.
The seventh marker was printed larger with size of approximately 15 centimeters
on a separate paper. This was decided in order to evaluate the performance of two
potential settings: single marker tracking (in which a one marker superimposes
one object), and multi marker tracking (where multiple markers superimpose one
object). Regardless, the detection of each marker of this multi marker was evaluat-
ed separately, to obtain finer results. It is worth mentioning that the markers were
plasticized in order to ’survive’ in underwater environments.

Figure 1: Two divers holding sheets with markers for initial assessment of image-

improving algorithms.

4

The video was processed off-line on a standard PC with processor Intel Core i5
760, 8 GB of operating memory, and operating system Windows 10. Each frame
was processed separately, first increasing its quality by applying image-improving
algorithms, and then detecting markers.

Tested image enhancing algorithms
In total, nine image-improving algorithms were evaluated: two algorithms de-

signed to improve the colors of underwater images (fusion based on [17], and
bright channel prior based on [11]), three algorithms for denoising (Gaussian fil-
ter, median filter, and bilateral filter), three algorithms for increasing contrast (his-
togram equalization, contrast limited adaptive histogram equalization, and white
balancing), and one algorithm for image sharpening (debluring), see Figure 2. The
algorithms were implemented in MATLAB, OpenCV 3.2.0, and C++. To assess
them, different parameters were explored to find out how they affect tracking ac-
curacy. Algorithms based on neural networks [18, 19] were not considered in this
experiment, as they require a large amount of data for training.

Figure 2: Image enhancing algorithms. Top row from left to right: original image, fusion,
bright channel prior, Gaussian filter, median filter; bottom row from left to right: bilateral
filter, histogram equalization, contrast limited adaptive histogram equalization, white bal-

ancing, debluring.

5

Fusion

The fusion algorithm is based on [17]. It restores the colors and enhances the
contrast of images taken under water by deriving two improved versions of the in-
put image and combines them together using a multi-scale fusion process with a
weight function computed from each image.

The restoration process is simplified by using general image-improving tech-
niques, instead of choosing a more sophisticated technique based on the physical
properties of the scene. The first enhanced version of the input image is obtained
by using a white balancing algorithm that corrects the shift of colors caused by
various illuminations of the scene. This algorithm is based on the Gray-World ap-
proach [20], which was found as the most appropriate method for underwater im-
ages. The second enhanced version of the input image is aiming at reducing noise
and improving contrast of the underwater image, by applying the bilateral filter on
the color-corrected image created in previous step. The contrast is further im-
proved by applying a local adaptive histogram equalization method.

Fusion of the derived images is controlled by local contrast weights derived
from the luminance of the images, and saliency weight to highlight the objects
with higher importance. The final image is created by blending the two derived
input images by their normalized weight values. The implementation was done in
Matlab, where most of the filters and operations are available directly, using its
Image Processing Toolbox.

Bright channel prior

Bright channel prior (BCP) is a technique developed by [11], which is based on
a method of [21] to dehaze images taken on land that are affected by fog. [21] ob-
serves that with images taken on land with no fog, intensity of one color channel is
very low. However, this assumption fails to work for images taken under water,
since the colors are shifted due to an uneven absorption of light under water. Visi-
ble light with longer wavelength is absorbed more quickly, which results in un-
derwater scenes being green or blue due to very low intensities of red color chan-
nel. Because of this, [11] define the bright channel image as follows:

𝐽"#$ = 	 max
*∈,(.)

0 max
#∈{2,4,"}

𝐼789(𝑦)	;

where Ω(𝑥) denotes a window neighborhood centered at pixel 𝑥 and 𝐼789 is the
input image with original red color channel and inverted green and blue channels.
Intensities of all color channels of this bright channel image are close to one for
pixels without haze, and lower for pixels affected by haze and turbidity.

To estimate atmospheric light, which is defines the color distortion of the im-
age, [11] takes one percent of darkest pixels, and a pixel with the least variance is
selected as the color of atmospheric light. Transmittance is then derived from the
bright channel image and estimated atmospheric light by following equation

𝑡#(𝑥) = 	
(𝐽"#$(𝑥) − 𝐴#)

1 − 𝐴#

6

where 𝑐 denotes red, green, and blue color channels, 𝑡#(.) denotes the transmit-
tance of this channel, and 𝐴# denotes the value of atmospheric light. The final
transmittance is obtained by averaging values across the all color channels, which
is then processed with guide filter [22] to remote halos. The final haze-free image
is restored by formula:

𝐽(𝑥) =
𝐼(𝑥) − 𝐴
𝑡(𝑥) + 𝐴

where 𝐽 is the haze-free image, 𝐼(𝑥) is the degraded underwater image, 𝐴 is the
previously estimated atmospheric light and 𝑡(𝑥) is the transmittance of the scene.
BCP algorithm was implemented in Matlab using Image Processing Toolkit.

Gaussian filter

Gaussian filter is a standard filter for reducing noise in images. It is defined as:

𝐼DEF(𝑥) =
1
𝑊
H 𝐼I7(𝑥I)𝐺K$L#8(|𝑥I − 𝑥|)
.N∈,

with normalizing factor:
𝑊 =	 H 𝐺K$L#8(|𝑥I − 𝑥|)

.N∈,

where 𝐺K$L#8 is a Gaussian function with parameter 𝜎K$L#8. Gaussian filter is a lin-
ear filter that sums neighbor pixels using weights based on their mutual distance in
image space. It decreases the number of edges found by edge detecting algorithms,
and thus improves the image for marker detection. Gaussian filtering was applied
on the Y channel of our images after their conversion to YUV color space.

Median filter

Median filter is another standard filter for reducing noise in images and can be
defined as:

𝐼DEF(𝑥) = 𝑚𝑒𝑑𝑖𝑎𝑛.N∈,(𝐼
I7(𝑥I))

Median filter is used for removing a noise in image like Gaussian filter, but un-
like it, it provides good results when removing impulse noise. Median filtering
was applied on the Y channel after the images are converted to YUV color space.

Bilateral filter

Bilateral filter is a variation of Gaussian filter, which preserves edges while
simultaneously removing noise in smooth areas. It is defined as:

𝐼DEF(𝑥) =
1
𝑊
H 𝐼I7(𝑥I)𝐺K$L#8(|𝑥I − 𝑥|)𝐺#DVD2(|𝐼(𝑥I) − 𝐼(𝑥)|)
.N∈,

with normalizing factor:
𝑊 =	 H 𝐺K$L#8(|𝑥I − 𝑥|)

.N∈,

𝐺#DVD2(|𝐼(𝑥I) − 𝐼(𝑥)|)

7

where 𝐺K$L#8 is a Gaussian function with parameter 𝜎K$L#8, and 𝐺#DVD2 is a Gaussi-
an function with parameter 𝜎#DVD2. As Gaussian filter, it sums the weighted intensi-
ties of neighbor pixels, but unlike it, the weights do not depend only on the spacial
distance of the weighted pixels in image space, but also on the different between
intensities of these pixels in color space, allowing the filter to decrease the amount
of blurring over edges. The implementation of bilateral filter is based on [23] and
is applied to Y channel after the input image is converted to YUV color space.

Histogram equalization

Histogram equalization technique is a method that maps intensities of pixels of
the original image to different values to balance the histogram of the filtered im-
age. This test uses an ordinary histogram equalization implementation from
OpenCV. It was applied on the Y channel after the images were converted to
YUV color space.

Contrast limited adaptive histogram equalization

Contrast limited adaptive histogram equalization (CLAHE) [24] is an adapta-
tion of histogram equalization, which works with a histogram of a small window
around each pixel and reduces the contrast of output image by clipping the highest
values of the histogram. CLAHE is applied to Y channel after the images are con-
verted to the YUV color space. CLAHE has a single parameter (clip limit), which
influences the amount of values clipped in the histogram.

White balancing

White balancing algorithm changes the colors of input image to render white
objects correctly under different illuminations like sun or clouded sky. In this test,
we used an algorithm presented in [25]:

foreach color channel do
 compute histogram of this channel;
 channelmin ← black-th percentile of values in histogram;
 channelmax ← white-th percentile of values in histogram;
 linearly transform all intensities so that channelmin = 0 and channelmax = 255;
end

The main advantages of this method include speed and simplicity. Though the re-
stored image may not represent the colors of objects properly, due to the simplici-
ty of the algorithm, this is not a problem, since the image is not presented to a
viewer, but it is only processed by a marker detection algorithm. The algorithm
was applied to all channels of RGB image before it is converted to YUV space for
marker detection.

8

Debluring

The last filter used is a debluring filter (or unsharp mask filter [26]), which em-
phasizes high frequencies in input image by subtracting its low frequencies from
itself as shown below:

𝐼DEF = (1 +𝑤) ⋅ 𝐼I7 − 𝑤 ⋅ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛[𝐼I7,𝜎K$L#8\
where 𝑤 represents the weight of subtracted low frequencies, and 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛
[𝐼I7, 𝜎K$L#8\ is a Gaussian filter with standard deviation 𝜎K$L#8 applied to the input
image 𝐼I7. This method was implemented and applied on the Y channel after the
image was transformed into the YUV color space.

Results of enhancing underwater images
We experimented with different values of parameters for each technique and

counted the number of newly found markers that were detected in the enhanced
video and not detected in the original video, and a number of lost markers that
were detected in the original video and not in the enhanced video. All image en-
hancing algorithms were also compared between each other, counting the number
of detected markers in images processed with one algorithm and not detected in
images processed with the other algorithm. To reduce the number results to pre-
sent, the following tables show the results of only the best parameters for each al-
gorithm that obtain the highest number of newly detected markers while keeping
the number of lost markers as low as possible. The following parameters were se-
lected:

• Gaussian filter, 𝜎K$L#8 = 0.4;
• Median filter, window size = 3;
• Bilateral filter, 𝜎#DVD2 = 2.0 and 𝜎K$L#8 = 4.0;
• CLAHE, clip limit 2;
• White balancing, black / white percentile 2/98;
• Debluring, 𝜎K$L#8 = 2.8 and weight = 1.9.

The evaluation of the results is shown in Table 1 and demonstrates that the white
balancing algorithm provides the best outcome, followed by debluring, then
CLAHE, and BCP. Other algorithms provided similar or worse results then with
the original image. Also, it is worth noting that Gaussian filter parameter 𝜎K$L#8 is
very low, which indicates that high amount of blur worsens the results.

Performance of the algorithms depend on the chosen parameters. Improper pa-
rameters for CLAHE and white balancing algorithms make the results of detection
worse than when detecting markers in the original images. It should be also noted
that the best results are obtained when using very low values of parameters, e.g.,
in case of debluring, sufficiently good results are available even with smaller val-
ues.

This test was not focused on measuring the time to process the images, howev-
er, we see that real-time algorithms CLAHE, white balancing, and debluring out-

9

performed more sophisticated BCP. This shows that even a simple real-time algo-
rithm can improve the detection of markers under water.

Summary of algorithms enhancing underwater images
We see that there is no algorithm that would be strictly better than other algo-

rithms. Many algorithms were found to improve the detection of markers when,
but in all cases, some markers from the original image were lost. Also, sophisti-
cated offline solutions are not necessarily better than real-time general solutions.
This test shows that the most promising algorithms are algorithms that improve
sharpness of the image (debluring), colors of the image (white balancing), and its
contrast (CLAHE). In the following section, these algorithms are tested into more
depth with more videos and more marker detecting algorithms.

Algorithm Found
Markers

Number of found markers that were not found
by following algorithms

O
rig

in
al

 im
ag

e

Fu
sio

n

BC
P

G
au

ss
ia

n
fil

te
r

M
ed

ia
n

fil
te

r

Bi
la

te
ra

l f
ilt

er

H
is

t.
eq

ua
liz

at
io

n

CL
A

H
E

W
hi

te
 b

al
an

ci
ng

D
eb

lu
rin

g

Original
image 4811 0 231 35 57 312 30 625 43 28 20

Fusion 4611 31 0 16 26 152 27 457 17 9 8

BCP 5097 321 502 0 336 592 309 876 91 83 71

Gaussian
filter 4795 41 210 34 0 298 48 612 40 24 19

Median
filter 4515 16 56 10 18 0 13 395 13 7 7

Bilateral
filter 4818 37 234 30 71 316 0 628 35 29 20

Histogram
equalization 4238 52 84 17 55 118 48 0 20 14 12

CLAHE 5120 352 526 114 365 618 337 902 0 75 58

White
balancing 5264 481 662 250 493 756 475 1040 219 0 116

Debluring 5249 458 646 223 473 741 451 1023 187 101 0

Table 1: Results of various image improving algorithms

10

Methodology of the second test

The second test focuses on the image-enhancing algorithms that gave the best
results in the first test and analyses them in additional underwater environments.
Also, it adds the results of an improved version of which balancing algorithm,
marker-based underwater white balancing (MBUWWB) [14] that is better adapted
to underwater conditions. Additionally, it compares the results with AprilTag [27],
a marker detecting algorithm that provides better results than ARUco at a higher
detection time, as shown in [9].

Testing sites
Three additional sets of videos were tested, to the total number of four, includ-

ing the video from the previous experiment, see Table 2.
The first set of videos is the video tested in the previous section. As already

noted, it was taken in the depth of approximately 7 to 9 meters in a moderately
turbid environment with a GoPro camera with resolution of 1920 × 1080. We refer
to this set as Environment 1. The video was recorded using MPEG-4 compression
and decoded into RGB frames. The camera starts far from the markers and moves
slowly towards the markers.

The second set of videos consists of videos taken in depth of 5 to 6 meters in a
highly turbid environment using iPad Pro 9.7-inch with resolution of 1920 × 1080.
We refer to this set as Environment 2. These videos were recorded using MPEG-2
compression and decoded into RGB frames. In these videos, the position of the
camera from the markers changes from very large distances, where the markers
are not distinguishable due to the turbidity, to distances of tens of centimeters.

The third set of videos consists of ten videos taken in the depth of 20 to 22 me-
ters in a moderately turbid environment with a GARMIN VIRB XE camera with
resolution of 1920 × 1440. We refer to this set as Environment 3. These videos

Environment 1 Environment 2 Environment 3 Environment 4

Moderate turbidity High turbidity Moderate turbidity Low turbidity
Depth 5 – 7 meters Depth 5 – 6 meters Depth 20–22 meters Depth 7 – 9 meters

GoPro camera iPad Pro 9.7 GARMIN VIRB XE NVIDIA SHIELD
1920 × 1080 1920 × 1080 1920 × 1440 1920 × 1080

MPEG-4 MPEG-2 MPEG-4 MPEG-4
29.97 fps, 31 sec. 30 fps, 85 sec. 24 fps, 160 sec. 30 fps, 81 sec.

Table 2: Four different testing sites

11

were recorded using MPEG-4 compression, and decoded into RGB frames. This
set of videos contains not only videos with the camera moving towards the mark-
ers, but also videos with markers recorded from multiple directions and distances.

The fourth set of videos consists of eight videos taken in the depth of 7 to 9 me-
ters in a moderately turbid environment with a NVIDIA SHIELD tablet. We refer
to this set as Environment 4. Two of these videos were recorded with resolution of
1920 × 1080 using MPEG-4 compression and decoded into RGB frames. The rest
was recorded with resolution of 1280 × 720 and stored without using any com-
pression as YUV frames. As with the third set of videos, this set of videos also
contains not only videos with the camera moving towards the markers, but also
videos with markers recorded from multiple directions and distances.

Tested algorithms
In addition to the best algorithms tested in the previous test, CLAHE, deblur-

ring, and white balancing, this section contains also results of a fourth algorithm,
marker-based underwater white balancing (MBUWWB), that is adapted for mark-
er-based tracking under water [14]. This algorithm solves an intrinsic part of white
balancing algorithms, which is finding the colors that are subsequently mapped to
the white and black in the filtered image. White balancing algorithm define in the
previous section chooses these colors as a percentile of values in input image his-
togram, but MBUWWB assumes that the marker is black and white, and instead
of computing the histogram of the whole image, it computes the histogram only of
the part of the image which contains markers.

In this experiment, MBUWWB is applied to all channels of RGB image, and
afterwards, the improved is converted into YUV space, similarly as with the sim-
ple white balancing. The images stored in YUV format are also converted to RGB
before they were processed by MBUWWB.

Results in various environments
Image enhancing algorithms and marker detection algorithms were compared

in two aspects: the total number of detected markers, and performance in different
visibility conditions.

Summed number of all markers found by ARUco in every set of enhanced vid-
eos are illustrated in Table 3. They clearly demonstrate that all tested algorithms
improve detection of markers in strongly turbid environments. In moderately tur-
bid environments, the visibility is better, so the improvement in detection is not
very apparent.

The behavior of CLAHE algorithm is hard to predict. Using CLAHE for en-
hancing images can lead to an improvement in the detection of markers (Environ-
ment 1, Environment 2), but also it is able to decrease the number of detected
markers (Environment 3, Environment 4). The result is also highly dependent on
the value of clip limit. On the other hand, debluring, white balancing, and
MBUWWB provide much stable results. The results of debluring clearly shows

12

that using value 4 for subtraction weight w leads to higher number of detected
markers.

The results also illustrate that MBUWWB provided better overall results than
original white balancing, although the difference is much lower in moderately tur-
bid environments. Careful choice of percentile affects the performance of both
these algorithms, especially in highly turbid environments. This difference is more
visible in case of WB algorithm, while in case of MBUWWB, percentile 3/97
provided better or nearly the same results when compared to percentile 0/100.

The results for AprilTag are in Table 4. Unlike ARUco, AprilTag algorithm is
much more robust to environments with strong turbidity (a similar result was ob-
served by [9]). The detection provides already very good results in original video,
and the improvement obtained by enhancing the image is not very large, if any.

 Environment 1 Environment 2 Environment 3 Environment 4
Original video 5338 512 5847 9925

CLAHE, clip limit 2 5670 3904 5405 8227
CLAHE, clip limit 4 5541 4916 4801 7276
CLAHE, clip limit 6 5399 5010 4190 7057
Debluring, weight 1 5696 1852 6033 10105
Debluring, weight 4 5804 4622 6050 10372

White bal., perc. 0/100 5557 3603 6053 9988
White bal., perc. 3/97 5668 5159 5950 9558

MBUWWB, perc. 0/100 5781 5842 6094 10026
MBUWWB, perc. 3/97 5787 6351 6069 10085

Table 3: Total number of markers detected with ARUco in tested sets of videos en-
hanced by tested algorithms.

 Environment 1 Environment 2 Environment 3 Environment 4
Original video 5925 6884 5775 9141

CLAHE, clip limit 2 5868 7032 5552 8119
CLAHE, clip limit 4 5667 6679 4974 6655
CLAHE, clip limit 6 5381 6186 4362 6326
Debluring, weight 1 5850 6652 5781 9351
Debluring, weight 4 5474 5542 5847 9526

White bal., perc. 0/100 5922 6873 5648 9091
White bal., perc. 3/97 5479 6476 5597 8769

MBUWWB, perc. 0/100 5925 6914 5705 9067
MBUWWB, perc. 3/97 5887 6695 5697 8925

Table 4: Total number of markers detected with AprilTag in tested sets of videos en-
hanced by tested algorithms.

13

The best results in individual sets were obtained by CLAHE with clip parameter 2
(Environment 1) and debluring (Environment 3 and Environment 4), although
these two algorithms provided much worse results on other videos.

Unlike the results of ARUco, these results show that proper choice of subtrac-
tion weight w in debluring algorithm is not easy to get the highest number of de-
tected markers. It can be shown that in environments Environment 1 and Envi-
ronment 2, using weight 1 lead to a higher number of detected markers than using
weight 4, but in environments Environment 3 and Environment 4 the result is the
opposite.

The results also show that WB and MBUWWB were not improving the detec-
tion, but they are also not making it worse. This is true only when we used percen-
tile 0; the results when using percentile 3 were always worse.

Camera moves towards and away from the markers in some videos of all sets.
With decreasing distance, the marker gradually emerges from the turbid, which al-
lows us to evaluate the behavior of image enhancing algorithms in different levels
of marker visibility.

We focused on ARUco detector and the video from Environment 1, and plotted
the progress of the number of detected markers in time, see Figure 3. In the video,
markers start partially in turbid, and as the camera moves towards them, the dis-
tance where all the markers are visible is reached very soon.

This experiment shows that in worse visibility conditions (first frames of the
video), all image enhancing algorithms improves the detection of the markers,
with debluring giving the best results, only slightly better than MBUWWB. Since

Figure 3: Number of markers detected by ARUco in a video from Environment 2.

14

approximately 150th frame, the visibility is good for all algorithms to find all mark-
ers.

Summary of algorithms performing in various environments
Results indicate the detection of markers can be improved by adding an image

improving step, however, proper choice of the algorithm and its parameters is
heavily dependent on the environment and the marker-detecting algorithm. If the
marker-detecting algorithm is robust, there is no need to improve the input image,
its “enhancement” may make the results even worse, but robust algorithms run
very slowly. In the final section of this chapter, we will focus on ARUco marker
detector to find, which parts are affected by bad visibility conditions.

Underwater marker-detecting algorithms

The last part of this chapter is focused on the structure of ARUco marker-
detecting algorithm to identify parts that are affected by underwater conditions. It
also presents results of a cultural heritage use case scenario from Baiae, Italy.

Structure of marker-detecting algorithm ARUco
The ARUco detector runs fast and reliably recognize markers. First, it thresh-

olds the input image using an adaptive thresholding algorithm, then it finds all
contours to detect marker-like shapes, and filters out non-square polygons. After
that, it reprojects them to remove perspective distortion, obtains the inner binary
marker code, compares it with a dictionary to remove errors, and if correct, it
computes the relative position of the marker using its corners.
Čejka et al. in [15] investigates, which parts of ARUco are influenced by image

improving algorithms and finds that the most vulnerable part is the initial thresh-
olding. Figure 4 shows that when an underwater image is thresholded by ARUco,
the border often breaks, and the marker is not recognized as a square-like object.
This can be avoided by changing the parameters of the thresholding, but this step
increases the number of small contours, which increases the processing time (a

Figure 4: Left: input image taken under water; Middle: thresholded by ARUco, notice a

broken contour; Right: the contour is solid with better parameters of ARUco, but the
image contains a lot of noise

15

similar method is used in the robust AprilTag algorithm). All four image-
improving algorithms tested in previous sections increased the contrast of the im-
age, with approximately the same output with a lesser number of false contours,
and so they do not increase the detection time very much.
Čejka et al. in [15] presents an improved version of ARUco called UWARUco

that is adapted to underwater environments. This algorithm creates a mask to re-
move image parts that contain no contour, and applies it to an image thresholded
with proper parameters. This approach provides results that are comparable with
robust marker detecting algorithms, but their algorithm runs faster.

Use case: Presenting submerged ancient buildings with AR
The last part of this chapter is focused on using marker-based augmented reali-

ty to present virtual structures to divers that dive in Baiae in Italy at locations of
ancient villas. The focus of the testing was limited to one building, Villa a Protiro,
with a characteristic mosaic in one of the rooms. Using the improved approach,
divers were able to perceive a 3D reconstruction of Villa a Protiro in AR. The test
used nine markers from the ARUco DICT_6X6_50 dictionary, forming a grid of 3
× 3 markers. Size of each marker was 19 cm, and the space between markers was
approximately 5 cm. The setup and the application are illustrated in Figure 5.

Solutions for augmented reality were tested with a video recorded with Sam-
sung S8 in FullHD resolution. The results are taken from [15] and are presented in
Table 5. We see that both solutions that improves the detection of markers,
ARUco with MBUWWB and UWARUco, provide better results than original
ARUco. ARUco3 [28] is a newer version of ARUco that is optimized for speed

Figure 5: Left: nine markers placed at the location of a room with mosaic of Villa a

Protiro in Baiae, Italy. Right: a virtual model superimposed in augmented reality at the
place of these markers.

 ARUco ARUco with

MBUWWB UWARUco ARUco3 AprilTag

of markers 14457 19398 20145 12589 20082
Time (ms) 75.747 45.239 62.872 2.368 323.005

 Table 5: Number of detected markers and computation time for various augmented
reality solutions.

16

and is less robust to underwater environment, which is clearly visible in the re-
sults. Robust AprilTag detects high number of markers without the necessity of
improving images, but its computation time is very high.

Conclusion

This chapter described problems with detecting markers in marine underwater
environments when targeting applications that use augmented reality to present
additional information about cultural heritage sites and superimpose ancient virtu-
al objects. First, it presented a comparison of general solutions that improve imag-
es affected by bad visibility conditions under water. It was shown that there is no
solution that would perform better than every other solution, and that more elabo-
rated algorithms designed for underwater images do not provide strictly better re-
sults than general solutions. Then, the chapter focused deeply on the most promis-
ing solutions in multiple underwater environments. Here, the results showed that
image improving step can improve the detection of markers if the parameters of
the image improving algorithm are correctly set. Finally, it investigated the impact
of underwater visibility conditions on a single marker detecting algorithm, and
showed that a properly adapted algorithm can outperform general algorithms
combined with image enhancing algorithms.

Acknowledgements
This research is a part of the i-MareCulture project (Advanced VR, iMmersive

Serious Games and Augmented REality as Tools to Raise Awareness and Access
to European Underwater CULTURal heritagE, Digital Heritage) that has received
funding from the European Union’s Horizon 2020 research and innovation pro-
gram under Grant Agreement No. 727153.

References

[1] V. Vlahakis, N. Ioannidis, J. Karigiannis, M. Tsotros, M. Gounaris, D.

Stricker, T. Gleue, P. Daehne and L. Almeida, "Archeoguide: An Augmented
Reality Guide for Archaeological Sites," IEEE Computer Graphics and
Applications, vol. 22, pp. 52-60, 2002.

[2] C. Panou, L. Ragia, D. Dimelli and K. Mania, "An Architecture for Mobile
Outdoors Augmented Reality for Cultural Heritage," ISPRS International
Journal of Geo-Information, vol. 7, no. 12, 2018.

[3] D. Gallagher, "Development of Miniature, Head-Mounted, Virtual Image
Displays for Navy Divers," OCEANS ’99, vol. 3, pp. 1098-1104, 1999.

[4] A. Bellarbi, C. Domingues, S. Otmane, S. Benbelkacem and A. Dinis,
"Augmented Reality for Underwater Activities with the Use of the

17

DOLPHYN," 10th IEEE International Conference on Networking, Sensing
and Control (ICNSC), pp. 409-412, 2013.

[5] L. Oppermann, L. Blum, J.-Y. Lee and J.-H. Seo, "AREEF Multi-player
Underwater Augmented Reality experience," 2013 IEEE International
Games Innovation Conference (IGIC), pp. 199-202, 2013.

[6] L. Oppermann, L. Blum and M. Shekow, "Playing on AREEF: Evaluation of
an Underwater Augmented Reality Game for Kids," Proceedings of the 18th
International Conference on Human-Computer Interaction with Mobile
Devices and Services, pp. 330-340, 2016.

[7] F. Bruno, A. Lagudi, L. Barbieri, M. Muzzupappa, G. Ritacco, A. Cozza, M.
Cozza, R. Peluso, M. Lupia and G. Cario, "Virtual and Augmented Reality
Tools to Improve the Exploitation of Underwater Archaeological Sites by
Diver and Non-Diver Tourists," Digital Heritage. Progress in Cultural
Heritage: Documentation, Preservation, and Protection: 6th International
Conference, EuroMed, pp. 269-280, 2016.

[8] F. Bruno, A. Lagudi, M. Muzzupappa, M. Lupia, G. Cario, L. Barbieri, S.
Passaro and R. Saggiomo, "Project VISAS: Virtual and Augmented
Exploitation of Submerged Archaeological Site - Overview and First
Results," Marine Technology Society Journal, vol. 50, pp. 119-129, 2016.

[9] D. B. d. S. Cesar, C. Gaudig, M. Fritsche, M. A. d. Reis and F. Kirchner, "An
Evaluation of Artificial Fiducial Markers in Underwater Environments,"
OCEANS, pp. 1-6, 2015.

[10] C. Ancuti and A. Codruta, "Effective Ccontrast-Based Dehazing for Robust
Image Matching," IEEE Geoscience and Remote Sensing Letters, vol. 11, pp.
1871-1875, 2014.

[11] Y. Gao, H. Li and S. Wen, "Restoration and Enhancement of Underwater
Images Based on Bright Channel Prior," Mathematical Problems in
Engineering, pp. 1-15, 2016.

[12] D. Skarlatos, P. Agrafiotis, T. Balogh, F. Bruno, F. Castro, B. Petriaggi, S.
Demesticha, A. Doulamis, P. Drap, A. Georgopoulos, F. Kikillos, P.
Kyriakidis, F. Liarokapis, C. Poullis and S. Rizvic, "Project
iMARECULTURE: Advanced VR, iMmersive Serious Games and
Augmented REality as Tools to Raise Awareness and Access to European
Underwater CULTURal heritagE.," Digital Heritage. Progress in Cultural
Heritage, pp. 805-813, 2016.

[13] M. Žuži, J. Čejka, F. Bruno, D. Skarlatos and F. Liarokapis, "Impact of
Dehazing on Underwater Marker Detection for Augmented Reality,"
Frontiers in Robotics and AI, vol. 5, pp. 1-13, 2018.

[14] J. Čejka, M. Žuži, P. Agrafiotis, D. Skarlatos, F. Bruno and F. Liarokapis,
"Improving Marker-Based Tracking for Augmented Reality in Underwater
Environments," Proceedings of the Eurographics Workshop on Graphics and

18

Cultural Heritage, pp. 21-30, 2018.
[15] J. Čejka, F. Bruno, D. Skarlatos and F. Liarokapis, "Detecting Square

Markers in Underwater Environments," Remote Sensing, vol. 11, no. 4, 2019.
[16] S. Garrido-Jurado, R. n. Salinas, F. Madrid-Cuevas and M. Marín-Jiménez,

"Automatic Generation and Detection of Highly Reliable Fiducial Markers
under Occlusion," Pattern Recognition, vol. 47, pp. 2280-2292, 2014.

[17] C. Ancuti, C. O. Ancuti, T. Haber and P. Bekaert, "Enhancing Underwater
Images and Videos by Fusion," Proceedings of the 2012 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 81-88, 2012.

[18] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu and M. S. Lew, "Deep learning
for visual understanding: A review," Neurocomputing, pp. 27-48, 2016.

[19] A. Voulodimos, N. Doulamis, A. Doulamis and E. Protopapadakis, "Deep
Learning for Computer Vision: A Brief Review," Computational Intelligence
and Neuroscience, pp. 1-13, 2018.

[20] G. Buchsbaum, "A Spatial Processor Model for Object Colour Perception,"
Journal of the Franklin Institute, pp. 1-26, 1980.

[21] K. He, J. Sun and X. Tang, "Single Image Haze Removal Using Dark
Channel Prior," IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 33, no. 12, pp. 2341-2353, 2011.

[22] K. He, J. Sun and X. Tang, "Guided Image Filtering," IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 35, pp. 1397-1409, 2013.

[23] C. Tomasi and R. Manduchi, "Bilateral Filtering for Gray and Color Images,"
International Conference on Computer Vision, 839-846 1998.

[24] S. Pizer, E. Amburn, J. Austin, R. Cromartie, A. Geselowitz, T. Greer, B.
Romeny and J. Zimmerman, "Adaptive Histogram Equalization and Its
Variations," Computer Vision, Graphics, and Image Processing, vol. 39, pp.
355-368, 1987.

[25] N. Limare, J. Lisani, J. Morel, A. Petro and C. Sbert, "Simplest Color
Balance," Image Processing On Line, 2011.

[26] L. Krasula, P. Callet, K. Fliegel and M. Klíma, "Quality Assessment of
Sharpened Images: Challenges, Methodology, and Objective Metrics," IEEE
Transactions on Image Processing, vol. 26, pp. 1496-1508, 2017.

[27] J. Wang and E. Olson, "AprilTag 2: Efficient and Robust Fiducial Detection,"
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2016.

[28] F. Romero-Ramirez, R. n. Salinas and R. Medina-Carnicer, "Speeded up
detection of squared fiducial markers," Image and Vision Computing, pp. 38-
47, 2018.

	one - Copy
	BookChapterCejka_Reviewed_Ack

