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Tackling problems of marker-
based augmented reality un-
der water 

 
Authors: Jan Čejka, Fotis Liarokapis 

Abstract   

Underwater sites are a harsh environment for augmented reality applications. 
Obstacles that must be battled include poor visibility conditions, difficult naviga-
tion, and hard manipulation with devices under water. This chapter focuses on the 
problem of localizing a device under water using markers. It discusses various fil-
ters that enhance and improve images recorded under water, and their impact on 
marker-based tracking. It presents various combinations of 10 image improving 
algorithms and 4 marker detecting algorithms, and tests their performance in real 
situations. All solutions are designed to run real-time on mobile devices to provide 
a solid basis for augmented reality. Usability of this solution is evaluated on loca-
tions in Mediterranean Sea. It is shown that image improving algorithms with 
carefully chosen parameters can reduce the problems with visibility under water 
and improve the detection of markers. The best results are obtained with marker 
detecting algorithms that are specifically designed for underwater environments. 

Introduction 

Cultural heritage sites and artefacts are spread all around the word, and people 
search them to learn more about their history and lives. Today, they are not limited 
only to observe these objects in their current state and read about their story, but 
thanks to modern technologies like augmented reality (AR), they can see these ob-
jects as virtual models superimposed into the real world to see how they fit into 
the scene and how they interact with other objects. These technologies are able to 
show even missing parts of settlements or whole buildings [1, 2]. 

Historical artefacts are not only on land, but many of them are hidden under 
water. This includes wrecks of ancient ships transporting goods between cities, or 
seaside settlements that submerged over the last thousands of years. Unfortunate-



2  

 

ly, underwater sites are not only harder to access for people that wish see the arte-
facts, but they also impose many problems for technology to work. Localization 
techniques based on GPS, Wi-Fi, or Bluetooth technology do not work as their 
signal is absorbed very quickly. Augmented reality and other computer vision so-
lutions that require visual input struggle with problems like low contrast of imag-
es, sensor noise caused by recording images in low light, occlusions caused by 
small particles and fish floating in water, unnatural colors due to uneven absorp-
tion of light, and short visibility limited due to turbidity. 

The idea of using AR under water is not new [3], however, solutions are lim-
ited mostly on the clear water of swimming pools [4, 5, 6]. In marine areas, AR 
solutions use acoustic beacons to replace the visual input [7, 8], but they are lim-
ited only to show a map and a textual information about the area, since they are 
not able to track precise position of the diver required to accurately superimpose 
virtual objects. Impact of bad visibility conditions on algorithms of computer vi-
sion was tested in laboratory conditions [9] or as a part of an evaluation of a single 
image improving algorithm [10, 11], but such evaluation was not focused on sea 
environments. 

This chapter describes solutions used for improving marker-based tracking for 
project iMareCULTURE [12] and is based on results of Žuži et al. [13] and Čejka 
et al. [14, 15]. These works focus on postprocessing images taken under water to 
increase their quality to improve detection of markers for AR. It is divided into 
three parts. First, it evaluates nine algorithms for improving images to assess their 
performance for enhancing a quality of images before detecting markers for AR. 
Second, it chooses the most promising solutions and performs a deeper analysis in 
various sea environments. The final part inspects which components of marker de-
tecting algorithms are affected in in bad visibility conditions and presents a results 
of a cultural heritage use case scenario. 

Performance of image-enhancing algorithms 

Visibility under water is affected by many factors that are hard to separate to 
explore their impact individually, so for this reason, all algorithms in this chapter 
are evaluated using a data recorded in sea environments. First, to get an initial in-
sight about the performance of image-enhancing algorithms, this section presents 
a brief analysis of nine solutions by recording a video with markers placed under 
water, processing it offline, and comparing the number of detected markers. The 
most promising solutions are chosen and studied in more details in the following 
sections. 

The test was conducted with a video with two divers holding a sheet with 
markers (see Figure 1). A camera operated by another diver is moving closer to 
them to decrease the impact of bad under water visibility conditions when the dis-
tance to the markers gets smaller. The video is recorded with a GoPro camera with 
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resolution of 1920 × 1080, in the Mediterranean Sea near Athens in depths ranging 
from 5 to 7 meters. At the beginning of the video, the size of the smaller markers 
is roughly 20 pixels to assess the influence of turbidity on detection of small dis-
tant markers. The larger marker is roughly 85 pixels in the beginning of the video, 
which focuses more on the problem of turbidity if the size of the marker is just a 
minor issue. 

ARUco library [16] is used to detect markers in images. This library is open-
source, kept up-to-date, robust to different lighting conditions, runs in real time, 
and as shown in [9], it provides good results in a reasonable time. Its implementa-
tion is a part of OpenCV 3.2.0. It detects markers in gray-scale images, so prior 
the detection, all images are converted to YUV color space. This color space was 
chosen, because it is natively supported by many mobile devices. The color con-
version is done before or after enhancing original images, depending on the en-
hancing algorithm. 

The sheets contained seven markers. To identify individual markers, ARUco 
uses a binary matrix of 6 rows and 6 columns to create a code with 36 bits. Thanks 
to this, it can correct up to 6 incorrectly detected bits. Six markers were printed on 
a A4 paper, formed in a grid of two rows and three columns. Each marker meas-
ured approximately 7 centimeters with 1 centimeter of white space between them. 
The seventh marker was printed larger with size of approximately 15 centimeters 
on a separate paper. This was decided in order to evaluate the performance of two 
potential settings: single marker tracking (in which a one marker superimposes 
one object), and multi marker tracking (where multiple markers superimpose one 
object). Regardless, the detection of each marker of this multi marker was evaluat-
ed separately, to obtain finer results. It is worth mentioning that the markers were 
plasticized in order to ’survive’ in underwater environments. 

 
Figure 1: Two divers holding sheets with markers for initial assessment of image-

improving algorithms. 
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The video was processed off-line on a standard PC with processor Intel Core i5 
760, 8 GB of operating memory, and operating system Windows 10. Each frame 
was processed separately, first increasing its quality by applying image-improving 
algorithms, and then detecting markers. 

Tested image enhancing algorithms 
In total, nine image-improving algorithms were evaluated: two algorithms de-

signed to improve the colors of underwater images (fusion based on [17], and 
bright channel prior based on [11]), three algorithms for denoising (Gaussian fil-
ter, median filter, and bilateral filter), three algorithms for increasing contrast (his-
togram equalization, contrast limited adaptive histogram equalization, and white 
balancing), and one algorithm for image sharpening (debluring), see Figure 2. The 
algorithms were implemented in MATLAB, OpenCV 3.2.0, and C++. To assess 
them, different parameters were explored to find out how they affect tracking ac-
curacy. Algorithms based on neural networks [18, 19] were not considered in this 
experiment, as they require a large amount of data for training. 

 

 
Figure 2: Image enhancing algorithms. Top row from left to right: original image, fusion, 
bright channel prior, Gaussian filter, median filter; bottom row from left to right: bilateral 
filter, histogram equalization, contrast limited adaptive histogram equalization, white bal-

ancing, debluring. 
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Fusion 

The fusion algorithm is based on [17]. It restores the colors and enhances the 
contrast of images taken under water by deriving two improved versions of the in-
put image and combines them together using a multi-scale fusion process with a 
weight function computed from each image. 

The restoration process is simplified by using general image-improving tech-
niques, instead of choosing a more sophisticated technique based on the physical 
properties of the scene. The first enhanced version of the input image is obtained 
by using a white balancing algorithm that corrects the shift of colors caused by 
various illuminations of the scene. This algorithm is based on the Gray-World ap-
proach [20], which was found as the most appropriate method for underwater im-
ages. The second enhanced version of the input image is aiming at reducing noise 
and improving contrast of the underwater image, by applying the bilateral filter on 
the color-corrected image created in previous step. The contrast is further im-
proved by applying a local adaptive histogram equalization method. 

Fusion of the derived images is controlled by local contrast weights derived 
from the luminance of the images, and saliency weight to highlight the objects 
with higher importance. The final image is created by blending the two derived 
input images by their normalized weight values. The implementation was done in 
Matlab, where most of the filters and operations are available directly, using its 
Image Processing Toolbox. 

Bright channel prior 

Bright channel prior (BCP) is a technique developed by [11], which is based on 
a method of [21] to dehaze images taken on land that are affected by fog. [21] ob-
serves that with images taken on land with no fog, intensity of one color channel is 
very low. However, this assumption fails to work for images taken under water, 
since the colors are shifted due to an uneven absorption of light under water. Visi-
ble light with longer wavelength is absorbed more quickly, which results in un-
derwater scenes being green or blue due to very low intensities of red color chan-
nel. Because of this, [11] define the bright channel image as follows: 

𝐽"#$ = 	 max
*∈,(.)

0 max
#∈{2,4,"}

𝐼789(𝑦)	; 

where Ω(𝑥) denotes a window neighborhood centered at pixel 𝑥 and 𝐼789 is the 
input image with original red color channel and inverted green and blue channels. 
Intensities of all color channels of this bright channel image are close to one for 
pixels without haze, and lower for pixels affected by haze and turbidity. 

To estimate atmospheric light, which is defines the color distortion of the im-
age, [11] takes one percent of darkest pixels, and a pixel with the least variance is 
selected as the color of atmospheric light. Transmittance is then derived from the 
bright channel image and estimated atmospheric light by following equation 

𝑡#(𝑥) = 	
(𝐽"#$(𝑥) − 𝐴#)

1 − 𝐴#  
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where 𝑐 denotes red, green, and blue color channels, 𝑡#(.) denotes the transmit-
tance of this channel, and 𝐴# denotes the value of atmospheric light. The final 
transmittance is obtained by averaging values across the all color channels, which 
is then processed with guide filter [22] to remote halos. The final haze-free image 
is restored by formula: 

𝐽(𝑥) =
𝐼(𝑥) − 𝐴
𝑡(𝑥) + 𝐴 

where 𝐽 is the haze-free image, 𝐼(𝑥) is the degraded underwater image, 𝐴 is the 
previously estimated atmospheric light and 𝑡(𝑥) is the transmittance of the scene. 
BCP algorithm was implemented in Matlab using Image Processing Toolkit. 

Gaussian filter 

Gaussian filter is a standard filter for reducing noise in images. It is defined as: 

𝐼DEF(𝑥) =
1
𝑊
H 𝐼I7(𝑥I)𝐺K$L#8(|𝑥I − 𝑥|)
.N∈,

 

with normalizing factor: 
𝑊 =	 H 𝐺K$L#8(|𝑥I − 𝑥|)

.N∈,

 

where 𝐺K$L#8  is a Gaussian function with parameter 𝜎K$L#8. Gaussian filter is a lin-
ear filter that sums neighbor pixels using weights based on their mutual distance in 
image space. It decreases the number of edges found by edge detecting algorithms, 
and thus improves the image for marker detection. Gaussian filtering was applied 
on the Y channel of our images after their conversion to YUV color space. 

Median filter 

Median filter is another standard filter for reducing noise in images and can be 
defined as: 

𝐼DEF(𝑥) = 𝑚𝑒𝑑𝑖𝑎𝑛.N∈,(𝐼
I7(𝑥I)) 

Median filter is used for removing a noise in image like Gaussian filter, but un-
like it, it provides good results when removing impulse noise. Median filtering 
was applied on the Y channel after the images are converted to YUV color space. 

Bilateral filter 

Bilateral filter is a variation of Gaussian filter, which preserves edges while 
simultaneously removing noise in smooth areas. It is defined as: 

𝐼DEF(𝑥) =
1
𝑊
H 𝐼I7(𝑥I)𝐺K$L#8(|𝑥I − 𝑥|)𝐺#DVD2(|𝐼(𝑥I) − 𝐼(𝑥)|)
.N∈,

 

with normalizing factor: 
𝑊 =	 H 𝐺K$L#8(|𝑥I − 𝑥|)

.N∈,

𝐺#DVD2(|𝐼(𝑥I) − 𝐼(𝑥)|) 
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where 𝐺K$L#8  is a Gaussian function with parameter 𝜎K$L#8, and 𝐺#DVD2 is a Gaussi-
an function with parameter 𝜎#DVD2. As Gaussian filter, it sums the weighted intensi-
ties of neighbor pixels, but unlike it, the weights do not depend only on the spacial 
distance of the weighted pixels in image space, but also on the different between 
intensities of these pixels in color space, allowing the filter to decrease the amount 
of blurring over edges. The implementation of bilateral filter is based on [23] and 
is applied to Y channel after the input image is converted to YUV color space. 

Histogram equalization 

Histogram equalization technique is a method that maps intensities of pixels of 
the original image to different values to balance the histogram of the filtered im-
age. This test uses an ordinary histogram equalization implementation from 
OpenCV. It was applied on the Y channel after the images were converted to 
YUV color space. 

Contrast limited adaptive histogram equalization 

Contrast limited adaptive histogram equalization (CLAHE) [24] is an adapta-
tion of histogram equalization, which works with a histogram of a small window 
around each pixel and reduces the contrast of output image by clipping the highest 
values of the histogram. CLAHE is applied to Y channel after the images are con-
verted to the YUV color space. CLAHE has a single parameter (clip limit), which 
influences the amount of values clipped in the histogram. 

White balancing 

White balancing algorithm changes the colors of input image to render white 
objects correctly under different illuminations like sun or clouded sky. In this test, 
we used an algorithm presented in [25]: 

foreach color channel do 
    compute histogram of this channel; 
    channelmin ← black-th percentile of values in histogram; 
    channelmax ← white-th percentile of values in histogram; 
    linearly transform all intensities so that channelmin = 0 and channelmax = 255; 
end 

The main advantages of this method include speed and simplicity. Though the re-
stored image may not represent the colors of objects properly, due to the simplici-
ty of the algorithm, this is not a problem, since the image is not presented to a 
viewer, but it is only processed by a marker detection algorithm. The algorithm 
was applied to all channels of RGB image before it is converted to YUV space for 
marker detection. 
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Debluring 

The last filter used is a debluring filter (or unsharp mask filter [26]), which em-
phasizes high frequencies in input image by subtracting its low frequencies from 
itself as shown below: 

𝐼DEF = (1 +𝑤) ⋅ 𝐼I7 − 𝑤 ⋅ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛[𝐼I7,𝜎K$L#8\ 
where 𝑤 represents the weight of subtracted low frequencies, and 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 
[𝐼I7, 𝜎K$L#8\ is a Gaussian filter with standard deviation 𝜎K$L#8 applied to the input 
image 𝐼I7. This method was implemented and applied on the Y channel after the 
image was transformed into the YUV color space. 

Results of enhancing underwater images 
We experimented with different values of parameters for each technique and 

counted the number of newly found markers that were detected in the enhanced 
video and not detected in the original video, and a number of lost markers that 
were detected in the original video and not in the enhanced video. All image en-
hancing algorithms were also compared between each other, counting the number 
of detected markers in images processed with one algorithm and not detected in 
images processed with the other algorithm. To reduce the number results to pre-
sent, the following tables show the results of only the best parameters for each al-
gorithm that obtain the highest number of newly detected markers while keeping 
the number of lost markers as low as possible. The following parameters were se-
lected: 

• Gaussian filter, 𝜎K$L#8 = 0.4; 
• Median filter, window size = 3; 
• Bilateral filter, 𝜎#DVD2 = 2.0 and 𝜎K$L#8 = 4.0; 
• CLAHE, clip limit 2; 
• White balancing, black / white percentile 2/98; 
• Debluring, 𝜎K$L#8 = 2.8 and weight = 1.9. 

The evaluation of the results is shown in Table 1 and demonstrates that the white 
balancing algorithm provides the best outcome, followed by debluring, then 
CLAHE, and BCP. Other algorithms provided similar or worse results then with 
the original image. Also, it is worth noting that Gaussian filter parameter 𝜎K$L#8 is 
very low, which indicates that high amount of blur worsens the results. 

Performance of the algorithms depend on the chosen parameters. Improper pa-
rameters for CLAHE and white balancing algorithms make the results of detection 
worse than when detecting markers in the original images. It should be also noted 
that the best results are obtained when using very low values of parameters, e.g., 
in case of debluring, sufficiently good results are available even with smaller val-
ues. 

This test was not focused on measuring the time to process the images, howev-
er, we see that real-time algorithms CLAHE, white balancing, and debluring out-
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performed more sophisticated BCP. This shows that even a simple real-time algo-
rithm can improve the detection of markers under water.  

Summary of algorithms enhancing underwater images 
We see that there is no algorithm that would be strictly better than other algo-

rithms. Many algorithms were found to improve the detection of markers when, 
but in all cases, some markers from the original image were lost. Also, sophisti-
cated offline solutions are not necessarily better than real-time general solutions. 
This test shows that the most promising algorithms are algorithms that improve 
sharpness of the image (debluring), colors of the image (white balancing), and its 
contrast (CLAHE). In the following section, these algorithms are tested into more 
depth with more videos and more marker detecting algorithms. 

Algorithm Found 
Markers 

Number of found markers that were not found 
by following algorithms 
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Original 
image 4811 0 231 35 57 312 30 625 43 28 20 

Fusion 4611 31 0 16 26 152 27 457 17 9 8 

BCP 5097 321 502 0 336 592 309 876 91 83 71 

Gaussian 
filter 4795 41 210 34 0 298 48 612 40 24 19 

Median 
filter 4515 16 56 10 18 0 13 395 13 7 7 

Bilateral 
filter 4818 37 234 30 71 316 0 628 35 29 20 

Histogram 
equalization 4238 52 84 17 55 118 48 0 20 14 12 

CLAHE 5120 352 526 114 365 618 337 902 0 75 58 

White 
balancing 5264 481 662 250 493 756 475 1040 219 0 116 

Debluring 5249 458 646 223 473 741 451 1023 187 101 0 

Table 1: Results of various image improving algorithms 
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Methodology of the second test 

The second test focuses on the image-enhancing algorithms that gave the best 
results in the first test and analyses them in additional underwater environments. 
Also, it adds the results of an improved version of which balancing algorithm, 
marker-based underwater white balancing (MBUWWB) [14] that is better adapted 
to underwater conditions. Additionally, it compares the results with AprilTag [27], 
a marker detecting algorithm that provides better results than ARUco at a higher 
detection time, as shown in [9]. 

Testing sites 
Three additional sets of videos were tested, to the total number of four, includ-

ing the video from the previous experiment, see Table 2. 
The first set of videos is the video tested in the previous section. As already 

noted, it was taken in the depth of approximately 7 to 9 meters in a moderately 
turbid environment with a GoPro camera with resolution of 1920 × 1080. We refer 
to this set as Environment 1. The video was recorded using MPEG-4 compression 
and decoded into RGB frames. The camera starts far from the markers and moves 
slowly towards the markers. 

The second set of videos consists of videos taken in depth of 5 to 6 meters in a 
highly turbid environment using iPad Pro 9.7-inch with resolution of 1920 × 1080. 
We refer to this set as Environment 2. These videos were recorded using MPEG-2 
compression and decoded into RGB frames. In these videos, the position of the 
camera from the markers changes from very large distances, where the markers 
are not distinguishable due to the turbidity, to distances of tens of centimeters. 

The third set of videos consists of ten videos taken in the depth of 20 to 22 me-
ters in a moderately turbid environment with a GARMIN VIRB XE camera with 
resolution of 1920 × 1440. We refer to this set as Environment 3. These videos 

    
Environment 1 Environment 2 Environment 3 Environment 4 

Moderate turbidity High turbidity Moderate turbidity Low turbidity 
Depth 5 – 7 meters Depth 5 – 6 meters Depth 20–22 meters Depth 7 – 9 meters 

GoPro camera iPad Pro 9.7 GARMIN VIRB XE NVIDIA SHIELD 
1920 × 1080 1920 × 1080 1920 × 1440 1920 × 1080 

MPEG-4 MPEG-2 MPEG-4 MPEG-4 
29.97 fps, 31 sec. 30 fps, 85 sec. 24 fps, 160 sec. 30 fps, 81 sec. 

Table 2: Four different testing sites 
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were recorded using MPEG-4 compression, and decoded into RGB frames. This 
set of videos contains not only videos with the camera moving towards the mark-
ers, but also videos with markers recorded from multiple directions and distances. 

The fourth set of videos consists of eight videos taken in the depth of 7 to 9 me-
ters in a moderately turbid environment with a NVIDIA SHIELD tablet. We refer 
to this set as Environment 4. Two of these videos were recorded with resolution of 
1920 × 1080 using MPEG-4 compression and decoded into RGB frames. The rest 
was recorded with resolution of 1280 × 720 and stored without using any com-
pression as YUV frames. As with the third set of videos, this set of videos also 
contains not only videos with the camera moving towards the markers, but also 
videos with markers recorded from multiple directions and distances. 

Tested algorithms 
In addition to the best algorithms tested in the previous test, CLAHE, deblur-

ring, and white balancing, this section contains also results of a fourth algorithm, 
marker-based underwater white balancing (MBUWWB), that is adapted for mark-
er-based tracking under water [14]. This algorithm solves an intrinsic part of white 
balancing algorithms, which is finding the colors that are subsequently mapped to 
the white and black in the filtered image. White balancing algorithm define in the 
previous section chooses these colors as a percentile of values in input image his-
togram, but MBUWWB assumes that the marker is black and white, and instead 
of computing the histogram of the whole image, it computes the histogram only of 
the part of the image which contains markers.  

In this experiment, MBUWWB is applied to all channels of RGB image, and 
afterwards, the improved is converted into YUV space, similarly as with the sim-
ple white balancing. The images stored in YUV format are also converted to RGB 
before they were processed by MBUWWB. 

Results in various environments 
Image enhancing algorithms and marker detection algorithms were compared 

in two aspects: the total number of detected markers, and performance in different 
visibility conditions. 

Summed number of all markers found by ARUco in every set of enhanced vid-
eos are illustrated in Table 3. They clearly demonstrate that all tested algorithms 
improve detection of markers in strongly turbid environments. In moderately tur-
bid environments, the visibility is better, so the improvement in detection is not 
very apparent. 

The behavior of CLAHE algorithm is hard to predict. Using CLAHE for en-
hancing images can lead to an improvement in the detection of markers (Environ-
ment 1, Environment 2), but also it is able to decrease the number of detected 
markers (Environment 3, Environment 4). The result is also highly dependent on 
the value of clip limit. On the other hand, debluring, white balancing, and 
MBUWWB provide much stable results. The results of debluring clearly shows 
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that using value 4 for subtraction weight w leads to higher number of detected 
markers. 

The results also illustrate that MBUWWB provided better overall results than 
original white balancing, although the difference is much lower in moderately tur-
bid environments. Careful choice of percentile affects the performance of both 
these algorithms, especially in highly turbid environments. This difference is more 
visible in case of WB algorithm, while in case of MBUWWB, percentile 3/97 
provided better or nearly the same results when compared to percentile 0/100. 

The results for AprilTag are in Table 4. Unlike ARUco, AprilTag algorithm is 
much more robust to environments with strong turbidity (a similar result was ob-
served by [9]). The detection provides already very good results in original video, 
and the improvement obtained by enhancing the image is not very large, if any. 

 Environment 1 Environment 2 Environment 3 Environment 4 
Original video 5338 512 5847 9925 

CLAHE, clip limit 2 5670 3904 5405 8227 
CLAHE, clip limit 4 5541 4916 4801 7276 
CLAHE, clip limit 6 5399 5010 4190 7057 
Debluring, weight 1 5696 1852 6033 10105 
Debluring, weight 4 5804 4622 6050 10372 

White bal., perc. 0/100 5557 3603 6053 9988 
White bal., perc. 3/97 5668 5159 5950 9558 

MBUWWB, perc. 0/100 5781 5842 6094 10026 
MBUWWB, perc. 3/97 5787 6351 6069 10085 

Table 3: Total number of markers detected with ARUco in tested sets of videos en-
hanced by tested algorithms. 

 

 Environment 1 Environment 2 Environment 3 Environment 4 
Original video 5925 6884 5775 9141 

CLAHE, clip limit 2 5868 7032 5552 8119 
CLAHE, clip limit 4 5667 6679 4974 6655 
CLAHE, clip limit 6 5381 6186 4362 6326 
Debluring, weight 1 5850 6652 5781 9351 
Debluring, weight 4 5474 5542 5847 9526 

White bal., perc. 0/100 5922 6873 5648 9091 
White bal., perc. 3/97 5479 6476 5597 8769 

MBUWWB, perc. 0/100 5925 6914 5705 9067 
MBUWWB, perc. 3/97 5887 6695 5697 8925 

Table 4: Total number of markers detected with AprilTag in tested sets of videos en-
hanced by tested algorithms. 
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The best results in individual sets were obtained by CLAHE with clip parameter 2 
(Environment 1) and debluring (Environment 3 and Environment 4), although 
these two algorithms provided much worse results on other videos. 

Unlike the results of ARUco, these results show that proper choice of subtrac-
tion weight w in debluring algorithm is not easy to get the highest number of de-
tected markers. It can be shown that in environments Environment 1 and Envi-
ronment 2, using weight 1 lead to a higher number of detected markers than using 
weight 4, but in environments Environment 3 and Environment 4 the result is the 
opposite. 

The results also show that WB and MBUWWB were not improving the detec-
tion, but they are also not making it worse. This is true only when we used percen-
tile 0; the results when using percentile 3 were always worse. 

Camera moves towards and away from the markers in some videos of all sets. 
With decreasing distance, the marker gradually emerges from the turbid, which al-
lows us to evaluate the behavior of image enhancing algorithms in different levels 
of marker visibility.  

We focused on ARUco detector and the video from Environment 1, and plotted 
the progress of the number of detected markers in time, see Figure 3. In the video, 
markers start partially in turbid, and as the camera moves towards them, the dis-
tance where all the markers are visible is reached very soon. 

This experiment shows that in worse visibility conditions (first frames of the 
video), all image enhancing algorithms improves the detection of the markers, 
with debluring giving the best results, only slightly better than MBUWWB. Since 

 
Figure 3: Number of markers detected by ARUco in a video from Environment 2. 
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approximately 150th frame, the visibility is good for all algorithms to find all mark-
ers. 

Summary of algorithms performing in various environments 
Results indicate the detection of markers can be improved by adding an image 

improving step, however, proper choice of the algorithm and its parameters is 
heavily dependent on the environment and the marker-detecting algorithm. If the 
marker-detecting algorithm is robust, there is no need to improve the input image, 
its “enhancement” may make the results even worse, but robust algorithms run 
very slowly. In the final section of this chapter, we will focus on ARUco marker 
detector to find, which parts are affected by bad visibility conditions. 

Underwater marker-detecting algorithms 

The last part of this chapter is focused on the structure of ARUco marker-
detecting algorithm to identify parts that are affected by underwater conditions. It 
also presents results of a cultural heritage use case scenario from Baiae, Italy. 

Structure of marker-detecting algorithm ARUco 
The ARUco detector runs fast and reliably recognize markers. First, it thresh-

olds the input image using an adaptive thresholding algorithm, then it finds all 
contours to detect marker-like shapes, and filters out non-square polygons. After 
that, it reprojects them to remove perspective distortion, obtains the inner binary 
marker code, compares it with a dictionary to remove errors, and if correct, it 
computes the relative position of the marker using its corners. 
Čejka et al. in [15] investigates, which parts of ARUco are influenced by image 

improving algorithms and finds that the most vulnerable part is the initial thresh-
olding. Figure 4 shows that when an underwater image is thresholded by ARUco, 
the border often breaks, and the marker is not recognized as a square-like object. 
This can be avoided by changing the parameters of the thresholding, but this step 
increases the number of small contours, which increases the processing time (a 

     
Figure 4: Left: input image taken under water; Middle: thresholded by ARUco, notice a 

broken contour; Right: the contour is solid with better parameters of ARUco, but the 
image contains a lot of noise 
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similar method is used in the robust AprilTag algorithm). All four image-
improving algorithms tested in previous sections increased the contrast of the im-
age, with approximately the same output with a lesser number of false contours, 
and so they do not increase the detection time very much. 
Čejka et al. in [15] presents an improved version of ARUco called UWARUco 

that is adapted to underwater environments. This algorithm creates a mask to re-
move image parts that contain no contour, and applies it to an image thresholded 
with proper parameters. This approach provides results that are comparable with 
robust marker detecting algorithms, but their algorithm runs faster. 

Use case: Presenting submerged ancient buildings with AR 
The last part of this chapter is focused on using marker-based augmented reali-

ty to present virtual structures to divers that dive in Baiae in Italy at locations of 
ancient villas. The focus of the testing was limited to one building, Villa a Protiro, 
with a characteristic mosaic in one of the rooms. Using the improved approach, 
divers were able to perceive a 3D reconstruction of Villa a Protiro in AR. The test 
used nine markers from the ARUco DICT_6X6_50 dictionary, forming a grid of 3 
× 3 markers. Size of each marker was 19 cm, and the space between markers was 
approximately 5 cm. The setup and the application are illustrated in Figure 5. 

Solutions for augmented reality were tested with a video recorded with Sam-
sung S8 in FullHD resolution. The results are taken from [15] and are presented in    
Table 5. We see that both solutions that improves the detection of markers, 
ARUco with MBUWWB and UWARUco, provide better results than original 
ARUco. ARUco3 [28] is a newer version of ARUco that is optimized for speed 

   
Figure 5: Left: nine markers placed at the location of a room with mosaic of Villa a 

Protiro in Baiae, Italy. Right: a virtual model superimposed in augmented reality at the 
place of these markers. 

 
 ARUco ARUco with 

MBUWWB UWARUco ARUco3 AprilTag 

# of markers 14457 19398 20145 12589 20082 
Time (ms) 75.747 45.239 62.872 2.368 323.005 

   Table 5: Number of detected markers and computation time for various augmented 
reality solutions. 

 



16  

 

and is less robust to underwater environment, which is clearly visible in the re-
sults. Robust AprilTag detects high number of markers without the necessity of 
improving images, but its computation time is very high. 

Conclusion 

This chapter described problems with detecting markers in marine underwater 
environments when targeting applications that use augmented reality to present 
additional information about cultural heritage sites and superimpose ancient virtu-
al objects. First, it presented a comparison of general solutions that improve imag-
es affected by bad visibility conditions under water. It was shown that there is no 
solution that would perform better than every other solution, and that more elabo-
rated algorithms designed for underwater images do not provide strictly better re-
sults than general solutions. Then, the chapter focused deeply on the most promis-
ing solutions in multiple underwater environments. Here, the results showed that 
image improving step can improve the detection of markers if the parameters of 
the image improving algorithm are correctly set. Finally, it investigated the impact 
of underwater visibility conditions on a single marker detecting algorithm, and 
showed that a properly adapted algorithm can outperform general algorithms 
combined with image enhancing algorithms. 
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