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Progressive Training for Motor
Imagery Brain-Computer Interfaces
Using Gamification and Virtual
Reality Embodiment

Filip Škola*, Simona Tinková and Fotis Liarokapis

Faculty of Informatics, Masaryk University, Brno, Czechia

This paper presents a gamified motor imagery brain-computer interface (MI-BCI) training
in immersive virtual reality. The aim of the proposed training method is to increase
engagement, attention, and motivation in co-adaptive event-driven MI-BCI training. This
was achieved using gamification, progressive increase of the training pace, and virtual
reality design reinforcing body ownership transfer (embodiment) into the avatar. From
the 20 healthy participants performing 6 runs of 2-class MI-BCI training (left/right hand),
19 were trained for a basic level of MI-BCI operation, with average peak accuracy
in the session = 75.84%. This confirms the proposed training method succeeded in
improvement of the MI-BCI skills; moreover, participants were leaving the session in high
positive affect. Although the performance was not directly correlated to the degree of
embodiment, subjective magnitude of the body ownership transfer illusion correlated
with the ability to modulate the sensorimotor rhythm.
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1. INTRODUCTION

Research in brain-computer interfaces (BCIs) promises to provide humans with the possibility
to interact with arbitrary tools using direct connection to the brain. In practice, communication
and control of robots or computer systems is the aim of BCI research. BCIs are unique tools for
the reason that they are the first ones allowing people to manifest their will without any kind
of movement required in the process (Wolpaw et al., 2002), allowing severely paralyzed persons
to communicate with their surroundings (Kübler et al., 2004). While an ideal BCI would allow
communication using arbitrary conscious activity, so far only a few direct brain communication
paradigms have been invented. This study is focused on the BCI paradigm that exploits changes
in ongoing neural activity during periods of imagined bodily movement, commonly known as the
motor imagery (MI). The control strategy of MI-BCIs requires the users to consciously imagine
performing a bodily movement. This process has pronounced electroencephalographic (EEG)
neural correlates, mostly consisting of lateralized event-related desynchronization (ERD) of mu
(8–12 Hz) and beta (15–30 Hz) neural rhythms over the motor cortex parts corresponding to
the imagined body part moving (Pfurtscheller and Lopes da Silva, 1999; Pfurtscheller and Neuper,
2001).

To accurately use MI-BCIs, users must produce stable ERDs, achieved by modulation of
sensorimotor rhythm (SMR). Although most people have some SMRmodulation ability (Dickhaus
et al., 2009), training is usually needed to achieve reasonable accuracy in control of the MI-BCI.
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During the training, ERD patterns in the user are strengthened
(Kaiser et al., 2014), and machine learning processes the
signals in the BCI system (Lotte et al., 2015). The human
participant trains with the help of neurofeedback, while
sophisticated feature extraction and classification algorithms are
used in the BCI system side in this non-trivial co-adaptation
process (Lotte et al., 2015).

One of the many problems that prevents BCIs from practical
adoption is the performance variation among population and the
closely associated BCI-illiteracy phenomenon, showing that an
estimated 15–30% of the population cannot develop the ability
to control BCI systems based on mental imagery or event-related
potentials, such as the P300 wave (Dickhaus et al., 2009). On the
other hand, there is evidence against BCI-illiteracy, at least in the
steady-state visual evoked potentials (SSVEP), which work more
robustly and after only very short training (Guger et al., 2012).

Most of the BCI research has been focused on advances in the
realms of signal processing, feature extraction, and classification
(Chavarriaga et al., 2017). Nevertheless, a trend in the recent
BCI research highlights the importance of the human-facing
side of the brain interface (Lotte et al., 2013; Jeunet et al.,
2016a,b; Sollfrank et al., 2016; Kosmyna and Lécuyer, 2017).
The standard training protocols, guiding users through the
obligatory training process, were especially criticized for their
sub-optimality, often ignoring elementary recommendations
about training from psychology, e.g., having tasks in progressive
or adaptive fashion, or leveraging of a rich, multi-modal feedback
(see Jeunet et al., 2016b for details). It has been hypothesized
that even the BCI-illiteracy issue may be caused by improperly
designed training, rather than being rooted in physiological
origin (Jeunet et al., 2016a).

Commonly used training (based on the Graz protocol,
Pfurtscheller and Neuper, 2001) for MI-BCIs is externally paced,
event-driven, and makes use of symbolic guidance. The user
performs MI in successive trials (usually 30–40 in one run) while
the feedback is represented as an extending bar, proportional to
the classifier confidence on the current trial. It is not uncommon
that study participants cannot make sense of the feedback or find
it difficult to focus on the process of MI and the feedback at the
same time (Jeunet et al., 2016a; Škola and Liarokapis, 2018).

This study is focused on two following problems with the
traditional MI-BCI training. The first issue is split attention
(Sweller et al., 1998), emerging when participants performing the
imagery need to comprehend their performance and progress
using symbolic guidance in visual modality. We hypothesize
that freeing the participant from this kind of distraction and
transferring the feedback into an easily integrable channel will
help the participants to engage the imagery and to easily
accommodate them to the training. The second issue this study
deals with is the form of the traditional training, which has
been identified as unengaging and possibly demotivating. With
the current form of the training, participants must have strong
intrinsic motivation to adhere to the procedure, or they might be
easily discouraged by its simplistic and heavily repetitive form.

We tackle these issues from two sides; firstly, we leverage
virtual embodiment, property of immersive virtual reality
(VR) with realistic avatar (Kilteni et al., 2012), and deliver

training feedback using the participant’s surrogate virtual body.
BCI feedback mapped onto new “owned” body parts using
body ownership transfer has been previously identified as
beneficial for more efficient MI-BCI training (Braun et al.,
2016; Penaloza et al., 2018; Škola and Liarokapis, 2018).
Secondly, we reimplemented the training procedure using
gamification techniques. Gamification aims to improve the
immersion and motivation in non-entertainment fields using
implementation of features from games (de Freitas, 2011).
Our gamified training makes use of themed environment
and score points, while the challenge arises mainly from the
progressive increase in speed across several training runs, or
levels (categories of motivational affordances were adapted
from Hamari et al., 2014).

Our VR training environment is set in outer space,
participants were transferred inside a cockpit of a virtual
starship, and their task was to shoot asteroids approaching
the nearby Earth-like planet using MI of left and right hands.
Feedback was mediated visually using avatar movements in
VR and using vibrations delivered to the corresponding hand.
Additionally, score was displayed after each training trial and
after the entire training run, to provide participants with
accurate quantification of their performance. Training runs were
presented with increasing pace to keep participants motivated
and to increase the information transfer rate in the span
of the experimental session. Motivation and mood of the
participants were assessed before the experiment, and affect
was assessed after the training. Our results (average peak
accuracy in the session= 75.84%) indicate the proposed training
environment improves MI-BCI operation performance in a
naïve and non-experienced population. Moreover, participants
were in high positive affect after the training. We also provide
additional evidence that subjective degree of embodiment in
VR during embodied training positively correlates with SMR
modulation abilities.

2. BACKGROUND

2.1. Action-Driven Body Ownership
Illusions
Sense of ownership (SoO) toward a body denotes the subjective
experience of owning a body (Gallagher, 2000). Self-attribution
of own body is essential for normal human existence and
rarely questioned concept by healthy population. However, body
ownership illusions using targeted sensory manipulation can
temporarily override perceived bodily image and cause partial
or full body ownership transfer (first described in the rubber
hand illusion, created by Botvinick and Cohen, 1998). Contrary
to earlier hypotheses presuming the key role of visual dominance
in the rubber hand illusion, it is now widely accepted (Ehrsson
et al., 2005; Ehrsson, 2012) that the rubber hand illusion, similarly
to other body ownership illusions, emerges due to manipulated
multisensory integration processes. Multisensory integration is
one of the main mechanisms behind the process of bodily self-
attribution, mediated by continuous monitoring of inputs from
available sensory modalities (visual, proprioceptive, tactile, etc.),
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and their simultaneous processing to plausible image of the
bodily self (Ehrsson, 2012).

Of special interest for the self-recognition is the process
comparing a person’s intentions to expected sensory outcomes
(Tsakiris et al., 2005), known in the literature as “central
monitoring theory” of action recognition or the “comparator
model” (David et al., 2008). According to this model, an initiated
voluntary action is accompanied by its efference copy. For motor
actions, this means that when bodily movement occurs, it is
compared to the efference copy of the intent, if such intent
existed. In case of match, the observed action is self-attributed,
while in the case of afferent sensory signaling not preceded by a
correspondingmotor command, the observed action is attributed
to an external cause (vonHolst andMittelstaedt, 1950; Jeannerod,
2007).

Self-identification (in terms of SoO) of the acting body
in action self-attribution is then proceeded under normal
circumstances. The experience of having motor control and
the subjective experience of controlling one’s own actions and
intentions, termed the sense of agency (SoA) (Blanke and
Metzinger, 2009), is normally bound to the bodily SoO (although
SoO and SoA can be dissociated as demonstrated by Kalckert and
Ehrsson, 2012).

SoA is often described in the context of control of motor
actions; however, the SoA can be treated as a more general
concept that represents feeling of authorship of intent in the
brain, covering also covert actions such as the capability to create
a thought in the stream of thoughts (Gallagher, 2000, 2007). For
the action recognition process, one must feel the SoA toward
one’s own actions, which can be disturbed in neurological or
psychiatric illnesses, e.g., schizophrenia (with symptoms such as
thought insertion or delusions of control, Gallagher, 2000).

While the rubber hand illusion is based on manipulation
of visual and tactile inputs, illusory transfer of the SoO can
be mediated by illusions based on voluntary actions—more
specifically, by exploiting congruency between the efferent signals
conveying motor commands and the re-afferent signals (visual
and proprioceptive feedback) (Dummer et al., 2009). In VR, full
or partial body transfer illusion occurs when users experience
control of their virtual avatars, usually by means of body tracking
(Slater et al., 2009).

In the context of the VR, illusory effect of transfer of the
SoO, SoA, and sense of bodily self-location is termed virtual
embodiment (or just embodiment). Kilteni et al. (2012) define
embodiment as follows: “Sense of embodiment toward a body B
is the sense that emerges when B’s properties are processed as if
they were the properties of one’s own biological body.”

2.2. Agency for BCI Actions and Embodied
BCI Training
Experiencing a high SoA is critical during the process of gaining
control of a tool—the degree of agency toward it influences the
attitude toward the technology, and the resulting performance
(Vlek et al., 2014). Eliciting the SoA in the strictly non-motor
BCI context is not a straightforward task, as users are facing a
new challenge and must rely solely on the synthetic feedback

provided by the implementation of the BCI system. Evans et al.
(2015) explored the SoA for MI-BCI actions (on a trial-by-
trial basis), finding that agency is decreased with introduction
of a delay or other discrepancy between the action and the
feedback (this reduces the SoA in the traditional bodily context
as well). This was however not true for the cases when the
visual discrepancy corrected a poorly controlled BCI action. The
authors hypothesize that as an only re-afferent feedback on the
BCI action, the visual feedback is what the feeling of the SoA is
based on during BCI control.

As described in section 2.1, SoA for bodily actions of virtual
avatar is the essential principle behind virtual embodiment. If
the congruent “bodily feedback” suffices for the illusory transfer
of the SoO, could the same kind of feedback (mapped onto
movements of a virtual avatar), but synchronized with the MI
instead of movement, help to convey the SoA for BCI actions by
creating the sense of embodiment?

Vourvopoulos et al. (2016) created an embodied MI-BCI
training environment based on the Graz training protocol. The
training events were complemented with VR feedback based
on motor observation from the first-person perspective. The
study further presents an embodied game for MI training based
on motor priming. The game consists of a rowing simulator
and has self-paced progress, thus it serves to train the user,
rather than gradual co-adaptation between the machine and
the human participant, as is common in the event-based MI-
BCI training paradigms. More recent research (Vourvopoulos
et al., 2019) demonstrated the beneficial effect of EEG-based
embodied neurofeedback to patients after stroke. The benefits of
neurofeedback were most prominent in participants with severe
motor impairments. In their preprint, Juliano et al. (2019) studied
the specific effect of embodiment onto the MI-BCI control
performance in a VR study controlled using the standard training
protocol. The study is limited by using 12 participants and
only one class of MI (imagined right hand movement), but the
results show consistent effect of spatial embodiment positively
influencing the BCI performance in VR condition.

Besides the VR context, embodiment is an important topic
in robot control, as it can facilitate telepresence. The possibility
to control a humanoid robot to carry out complex tasks such
as fetching objects using BCIs was demonstrated in Bell et al.
(2008). Martens et al. (2012) aimed at embodied robot control
using combination of event-related potentials and SSVEP control
strategies for an EEG-based BCI and with visual feedback in
HMD. The authors suggest that synchronization of a robot’s
movements with the user’s representation of his or her own
movements could to lead to increased embodiment. Still, SSVEP
is often used in BCI-mediated robotic control, mostly due
to the higher accuracy. The low bandwidth issue of current
BCI systems is compensated with the usage of semi-autonomic
approaches leveraging localization, visual object recognition and
targeted control (Petit et al., 2015). Another experiment with
SSVEP-controlled robot was done by Kishore et al. (2014), who
implemented two control strategies for the robot: SSVEP and
eye tracking. Both strategies allowed a strong body ownership
transfer illusion, but SSVEP control lead to stronger SoO than
eye tracking.
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MI paradigm for embodied control of robots using fMRI
was prototyped in study by Cohen et al. (2012), who effectively
mediated BCI control of a robot located in a different
country thousands of kilometers away from the fMRI chamber.
Experiments done by Alimardani et al. (2013, 2016b) succeeded
in eliciting the SoO toward a humanoid robot controlled by MI-
BCI. SoA aroused during MI-BCI manipulation with robotic
hands or avatars in VR has been demonstrated to facilitate
binding of the body ownership transfer (Perez-Marcos et al.,
2009; Braun et al., 2016; Alimardani et al., 2018). Alimardani
et al. (2016a) reported that in the span of one session, there was
not a significant learning difference between embodied MI-BCI
control using human-like hands or a pair of metallic grippers.
However, the group training MI skills using humanoid hands
performed better in a follow-up session, suggesting a positive role
of humanoid embodiment for BCI control.

Using the same humanoid robot as in previous studies
by Penaloza et al. (2018) conducted a study focused on the
traditional event-based MI training using the robot’s movements
as the visual feedback. Participants trained using the embodied
feedback performed better in the evaluation task than control
group participants trained using standard Graz training. Both
groups received the visual stimulation using LCD display but still
maintained some level of illusory body ownership transfer.

Those results are consistent with our previous study
(Škola and Liarokapis, 2018), comparing Graz training using
visualization on a standard computer screen to an embodied
VR training. A similar methodology, equipment, and set-up
were used in the last study; experimental group participants
received real-time VR feedback using hand movements of the
virtual avatar, but the training lasted only 2 runs and the 3rd
run used for evaluation was shorter (10 trials per class). Control
group training consisted of standard Graz training without
VR. Embodied training led to better BCI performance and
a trend was apparent between the magnitude of embodiment
and ability to modulate the SMR, but it was not significant.
Stronger SMR modulation was also present in the experimental
group, but the effect was not significant due to very high
variance in performance (both in terms of ERD strength and
control accuracy).

2.3. Motivation, Attention, and Their
Influence to the BCI Performance
To study the role of motivation on BCI performance, metrics
used previously in MI-BCI research by Nijboer et al. (2008,
2010) were employed. They quantified the motivation in four
dimensions according to Vollmeyer and Rheinberg (1998):
mastery confidence (participants’ belief in successful mastering
of the BCI training task), incompetence fear (level of anxiety
connected to anticipated failure in the task), challenge, and
interest. In their work, the level of MI-BCI control with visual
feedback correlated positively to mastery confidence and the
mood in the healthy participants, whereas it was negatively
correlated to the incompetence fear (Nijboer et al., 2008).
Previous experiments by Leeb et al. (2007) also confirmed
a strong role of motivation to performance in the MI-BCI

task (navigation in a virtual apartment). The improvement of
underperforming subjects was especially significant when the
motivation was stronger (by changing the task environment
from the standard display to VR). Nevertheless, motivation was
examined only qualitatively in this experiment.

Publication by Jeunet et al. (2016b) provides a systematic
investigation into the psychological and cognitive factors
influencing MI-BCI performance. Cognitive states identified as
predictors of BCI performance were motivation (Nijboer et al.,
2008; Hammer et al., 2012), mood (Nijboer et al., 2008), and
attention (Grosse-Wentrup and Schölkopf, 2012).

A problem commonly occurring in MI-BCI training stems
from the need to split attention during training with the standard
protocol. This effect is apparent when “two or more sources of
attention must be processed simultaneously in order to derive
meaning from material” (Sweller et al., 1998). We argue that
this is the case when participants are required to visualize bodily
movement while being presented with symbolic visual feedback
at the same time. Presenting the feedback in the embodied,
“bodily domain” should alleviate the split attention issue. While
the VR environment can be seen as more visually cluttered
compared to standard symbolic feedback on a display (and
thus leading to even larger issues with focusing attention), the
virtual bodily representation should be processed as if it is one’s
own body after the body transfer illusion is aroused (Kilteni
et al., 2012). The comparator model engaged during action self-
recognition is handled by subconscious processes, and it is not
impaired in environment with rich visual stimuli. We believe
that when the observed bodily actions reflect manifestation of
corresponding imagery and complement it in the expected way,
one does not require as much additional cognitive processing
as in the case with symbolic feedback. To further compensate
deficiencies in the non-visual sensory domain, we opted to
accompany the embodied visual feedback with vibrotactile
stimulation of the corresponding hand.

3. MATERIALS AND METHODS

3.1. Participants
Twenty four participants were recruited for the experiment. Out
of these, 5 participants were excluded from the experiment for
the following reasons: two participants failed to adhere to the
instructions (too many hand movements were produced), one
participant did not surpass chance level during the first four runs
of the experiment, and two participants were excluded because
of technical failure during the experimental session (controller
vibration malfunction in one case, and severely damaged EEG
recording in the other case). Data from the remaining 19
participants (7 females) were used for analysis; their median age
was 26 (min. 21, max. 30, SD = 2.780). This study was approved
and carried out in accordance with the recommendations of the
local ethics committee of Masaryk University. All subjects gave
written informed consent in accordance with the Declaration
of Helsinki.

Participant recruitment was done using an ad in a university
magazine article and by contacting participants from our
previous experiment (all participants were contacted, regardless
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FIGURE 1 | EEG channel locations used in the on-line BCI feedback loop and
for the off-line analysis.

of their results) (Škola and Liarokapis, 2018). Consequently,
some of the participants have had previous experience with
a BCI. Specifically, 9 participants experienced one MI-BCI
training session more than a year ago, and one participant
experienced threeMI-BCI sessions, one in the last year. However,
statistical testing confirmed that the previous experience with
BCI did not affect the results (for details, see section 4.6.1).
Participants received no material compensation for taking part
in the experiment.

3.2. Apparatus
EEG data were recorded using a wireless lightweight EEG system
Neuroelectrics Enobio 321 with 28 electrodes centered around
the motor cortex (see Figure 1 for the details on electrode
set-up). Electrodes (AgCl NG Geltrode) were placed using a
neoprene cap, following the standard 10–10 system for high-
resolution EEG recording. Common mode sense/driven right leg
(CMS/DRL) earclip served as a reference for the signals.

To immerse participants into the VR environment,
participants wore a state-of-the-art HMD Oculus Rift CV12

(resolution 1,080 × 1,200 per eye, 90 Hz refresh rate, 110◦ field
of view, rotational and positional tracking). Rift HMD was
chosen due to its suitability together with EEG recording (as
was confirmed by our previous studies) and its anatomically
shaped Oculus Touch controllers. The Touch controllers
provided vibrotactile feedback and monitored participants’
hand movements. Participants did not actively interact with the
controllers, they served only as support for the hands during the

1https://www.neuroelectrics.com/products/enobio/
2https://www.oculus.com/rift/

FIGURE 2 | Participant with EEG and VR HMD during the training process
finishing a right hand MI trial.

training runs. A participant during the experiment is displayed
in Figure 2.

Thanks to the mobile EEG system used, Rift HMD did not
have to be mounted using special equipment. Participants were
equipped with the EEG cap and after ensuring satisfactory signal
quality, HMD was positioned with experimenter’s help. Signal
quality was re-checked again after HMD was put on.

3.3. Experimental Design
This study was focused on co-adaptive MI-BCI training using
gamified tasks and progressive pace. All participants took part in
the same procedure, and all training runs were set in the same VR
environment. The first run consisted of MI facilitated by motor
observation in VR. The second to fifth runs provided participants
with real-time embodied feedback and had progressively faster
pace. The last run was dedicated to an experiment inquiring
into modality change (post-trial discrete feedback instead of
real-time feedback).

The training task took the form of a game of destroying
asteroids using left/right hand MI, while the implementation
of the underlying training protocol was loosely based on the
Graz protocol. Participant performance was evaluated in terms
of trial-wise accuracy (i.e., percentage of trials where participant
maintained the correct mental state for the majority [>50%]
of its duration). This approach to evaluation was motivated
by practical use of a BCI for issuing discrete commands using
the MI.

To leverage the properties of embodied VR, participants were
instructed to synchronize their MI with the avatar movements.
At the same time, exploring mental strategies was encouraged,
but within the boundaries of avatar movement. Feedback
was provided using three modalities; (1) movements of the
avatar, (2) vibrations, (3) providing information about trial
accuracy (score).

Firstly, the avatar was programmed to adjust the speed of
its hand movements according to the classifier decisions on
participant’s actions. Movements were slowed down when the
classifier did not recognize the current state of a participant as
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the one specified by the current training trial, and slower avatar
movements in turn urged the participant to find a more suitable
MI strategy. On the other hand, producing recognizable MI
patterns led to restoration of the avatar movement speed to the
baseline level. In any case, the avatar animations were initiated
only after the participant switched to the required MI state first.

Secondly, the controllers were set to vibrate during the periods
of a recognized correct state. Thirdly, as a complementary
feedback, participants received information about trial accuracy
after its completion and after the entire run was finished.
Participants received an instruction to maximize the number of
trials with a score of 50 or more.

Runs 2–5, although consisting of the same task, were
performed with progressively increasing speed. This was
achieved by shortening the total time for a trial and speeding
up the animation (exact values regarding the animation speed in
different runs are provided in section 3.7). As the participants’
task was to maintain the correct MI state proportionally
to the trial duration, less MI time was needed to finish
the trial successfully, but at the same time, participants
were required to enter the MI state faster after instruction
was displayed.

The last run of the experiment was designed to inquire
whether removal of the real-time feedback significantly impairs
the performance. Participants were again asked to imagine
lateralized hand movement, but the avatar-mediated and
vibrotactile feedback modalities were not provided. Results of
each trial were shown after end of the MI period (the avatar
moved accordingly and the score was displayed, but vibrotactile
feedback was not provided). Again, participants had to maintain
the MI state for at least 50% of time in order to trigger the
BCI command.

3.4. Training Application
Application providing the training had a gamified form aiming at
increasing levels of attention and motivation during the training
procedure. The gamification was accomplished using a themed
virtual scene with human-like avatar and game-like progression
of difficulty levels. The application for training was developed
using the Unity game engine3, version 2018.2.14f1.

The VR scene was set in outer space and the participant was
virtually transferred inside a cockpit of a spaceship with an Earth-
like planet ahead. The spaceship contained a simplistic control
panel consisting of a low number of interaction elements that
triggered weapons aiming at asteroids flying toward the Earth-
like planet (see Figure 3). The goal of a training trial was to shoot
flying asteroids using MI of the left or right hand, depending on
its source position (flying from the left or the right side of the
spaceship). The asteroid was destroyed in case the participant was
able to produce recognizable MI for at least 50% of the total trial
time. In case the trial performance was bellow 50%, the asteroid
was destroyed after a timeout (not using the spaceship weapons).

Length of each trial was determined by the run number and
participant performance in the trial; therefore, even though it
was event driven, the training was not externally paced. Better

3https://unity3d.com/unity

FIGURE 3 | VR view on a successful end of right hand MI trial.

performance was rewarded by shortening of the training run (but
maximal duration of trials was limited). To prevent habituation
of the procedure, rest phases consisted of a constant and a
random component.

Two virtual displays were placed near the center of the
field of view in VR: progress display and instruction display.
While the former was used solely to provide information about
temporal progression of the current run (using percentage of
completed trials), the latter display showed instruction/status
concerning the current trial. More specifically, instruction was
either start eye fixation (“+” sign), start of the left MI (left
arrow sign), start of the right MI (right arrow sign), invalid
trial (explained later in this section), or start of the rest period
(blank display or score displayed). During the runs with feedback,
the instruction display showed the score immediately after the
end of each trial (thus displaying score indicated start of the
rest period).

Design of VR applications used concurrently to EEG
recording is subject to many limitations. Firstly, VR encourages
bodily interaction; secondly, VR encourages visual exploration
of the scene. Both of these properties of virtual environments
would contribute to producing bodily movements that in turn
produce electromyographical artifacts disturbing recording of
the encephalic origins. To reduce bodily movements, participants
were placed into the VR environment for pretraining first, to
become familiar with the VR environment (by active exploration
of the scene) before the actual EEG recording phase started.

Hand movements produced during the training runs were
detected using the VR controllers. In case one of the controllers
moved during the ongoing trial, the trial was invalidated and the
participant was informed about the detectedmovement bymeans
of the instruction display (three “x” symbol). Generation of eye
movements was suppressed using the eye fixation element on
the instruction display (participants were specifically instructed
to not follow the flying asteroid with their gaze, but to
rather perceive the rest of the scene using peripheral vision;
by fixating their eyes to the instruction display, participants
could see both the virtual hand movements and the asteroids
being destroyed).

Frontiers in Human Neuroscience | www.frontiersin.org 6 September 2019 | Volume 13 | Article 329

https://unity3d.com/unity
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Škola et al. Gamified VR Training for MI-BCIs

The animations were created using keyframing on a freely
available rigged humanoid avatar model (downloaded from
Mixamo4), and the rest of the scene (spaceship, interaction
elements) was modeled manually. The avatar’s head was deleted
from the scene so the participants did not see the internals of the
model during set-up. The used avatar represented a male, but its
hands had an androgynous look (see Figure 3), thus they were
not replaced for female participants. To keep participants in a
natural resting position, they had a fully customizable swivel chair
available, and the VR camera was adjusted to an anatomically
plausible position.

EEG data recording and classification was handled by
Openvibe (Renard et al., 2010). Unity and Openvibe were
connected directly using a local TCP socket (both applications
run on the same computer). Our experimental application
provided events using a connection to Openvibe Acquisition
Server, and classification results were gathered using connection
to Openvibe Designer running the BCI scenario.

3.5. Procedure
The experimental session was opened by providing participants
with detailed informed consent containing information about
the study. This introductory document consisted of two parts;
firstly, participants were briefly familiarized with the concept
of BCI, MI-BCIs, and motivation to study BCIs (one page).
Secondly, the following information about the experimental
session were provided: duration of the runs, limitations during
EEG recording, and instructions to perform kinesthetic MI (one
page). The purpose of the document was not only to prepare
the participants for the experimental session, but also to raise
the intrinsic motivation by providing meaningful information
about the purpose of the study and by ensuring participants that
their time spent in the session was valuable, regardless of their
performance (this was explicitly stated in the document).

A pre-experiment questionnaire surveying each participant’s
mood and motivation followed. After filling in the questionnaire,
the experimenter explained further details about the experiment.
Specifically, objectives of the gamified VR training and the role
of symbolic instructions in VR were provided. Participants were
seated in the VR tracking area and the HMD was handed out. Its
customization was explained (interocular distance setting) and,
after HMD was put on, the viewpoint of the virtual environment
was set up.

In pre-training, the experimental application was launched in
demo mode. Participants had the chance to freely explore the
VR scene, and most importantly, they were asked to prepare for
imagery of the left and right hand movements. For that purpose,
the demo mode in the experimental application consisted of an
exact simulation of the first run of the training procedure, with
the avatar performing left/right hand MI in randomized order.
Time for pre-training was not limited; however, no participant
pre-trained for the duration of the entire 40 trials in one run.

Set-up of the EEG device took approximately 30 min.
After ensuring satisfactory signal quality, HMD was carefully

4https://www.mixamo.com/

positioned on the participant, and the signal quality was re-
checked. Before the start of the first run, instructions regarding
bodily movements were repeated (with special emphasis put on
special cases possibly creating muscle artifact contamination or
resembling motor action execution, such as eyelid movement
during periods of intense imagery or muscle tension).

Six runs of MI-BCI training were then performed. After
finishing each run, the experimenter trained the classifier (1–
2 min) and the next run started immediately after. Participants
rested during the breaks, and the HMD was not taken off if
this was not specifically requested by the participant. Participants
were virtually present in the Oculus home environment during
the break with HMD on. Before the 6th run of the experiment
with feedback modality change, participants were shown the
altered progression of trials (feedback after the end of a trial—
avatar hitting the spaceship buttons, no vibrations provided).

After the last run, the experimenter helped the participants to
take off the HMD and the EEG cap and handed out the post-
experiment questionnaires (surveying embodiment and affect,
and qualitative questionnaire). The average total training time
was approximately 28.5 min.

3.6. On-Line Feature Construction
Raw EEG data were processed into the features for classifier
training and subsequent on-line classification during the training
runs with feedback (runs 2–6). The whole procedure was
carried out in Openvibe. Data were first digitally filtered using
Butterworth passband filter with order 5 in range 8–30Hz. Spatial
filtering was performed using common spatial patterns (CSP)
with 3 filters for each class, and epochs were generated using
sliding windows with a length of 1 s each 1/16th of a second.

Features were extracted from the epoched signal by applying
the Hamming Window and Fast Fourier Transform (FFT).
Using FFT, 4-dimensional features were generated using the
band power in the following bands: 8–12, 12–16, 16–20, and
20–30 Hz. After logarithmic transformation, these features
were passed to a linear discriminant analysis (LDA) classifier
with regularized covariance matrix (and automatically generated
shrinkage coefficient) for training.

Onset of each MI trial was recognized using markers in the
EEG data, as received from the experimental application. As
trial lengths varied between the runs in a session, length of the
generated epochs for training were as follows: epochs from runs
1–2 were 4 s long, epochs from run 3 were 3.5 s long, epochs
from run 4 were 3 s long, and epochs from run 5 were 2.5 s
long. Classifier for run 2 was trained with EEG signals from
run 1, classifier for run 3 was trained with signals from run 2,
classifier for run 4 was trained with concatenated signals from
runs 2 and 3, classifier for run 5 was trained with concatenated
signals from runs 3 and 4, and classifier for run 6 was trained
with concatenated signals from runs 4 and 5. CSP re-calibration
took place before each classifier re-training.

3.7. Feedback Generation
During runs 2–5, classification results were gathered each 1/16th
of a second to adjust the feedback in the training application. To
adjust the speed of animations naturally, changes were applied
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gradually. After initial experimentation, it was decided to set
the step for changing the speed to ±1/4 of the last speed value
(changes were applied each 1/16th of a second). Speed limits were
20–100% of the initial speed in the run (lower boundary was set
to prevent incompetence frustration).

In practice, if a participant performed poorly in a trial, it took
approximately 350 ms of incorrect mental state to drop to 20%
animation speed from the initial speed. In such cases, it took 250
ms of correct MI state to increase the speed from bottom limit to
48.828% of the speed and another 250 ms to reach the full speed.

After the trial was successfully finished or timeout occurred,
the rest of the animations was played using initial speed.
Animations in runs 1 and 2 had the same speed. After that, run 3
speed= 2x run 1 speed, run 4 speed= 3x run 1 speed, and run 5
and 6 speed= 4x run 1 speed.

Score feedback aimed to provide the participants with precise
quantification of success rate after each trial. Only values between
1 and 100 were displayed; in case the participant spent all trial
time in the other MI state, zero was not displayed and the
display was kept blank. In the end of each run, participants were
presented with the total score, i.e., sum of scores over all trials
in the current run. Participants could use this information to
compare their performances across the runs.

Vibrotactile feedback provided participants information about
the classification result. The controller of the active hand was set
to vibrate lightly during correct classification in trials. Strength
of the vibrations was adjusted for each participant during the
calibration run, as some of the participants claimed to not feel
the vibrations at all, while some participants found the vibrations
too strong and disturbing.

To quantify latency of the feedback generation mechanism,
latencies of each component are considered. EEG data were
acquired with 500 samples per second, and drift correction with
a threshold of 2 ms was applied. The specification of latency of
the used VR system is not officially available, however testing
using older generation of the HMD demonstrated 45 ms (Raaen
and Kjellmo, 2015) or 46 ms latency time (Oculus, 2013), while
unofficial information5 on motion-to-photon latency of the used
HMD claims it to be <5 ms. Consequently, the majority of
delay between the participant and system is created during the
epoching. Epochs were created using a sliding window each
1/16th of a second, meaning that feedback was generated based
on 62.5-ms-old data. Total latency of the feedback generation
mechanism is less than 100 ms, i.e., small enough to not
compromise perceived SoA.

3.8. EEG Data Processing for Off-Line
Analysis
Cleaning, processing and analysis of the EEG data was
performed via EEGLAB (Delorme and Makeig, 2004). Due
to considerable amounts of noise generated during the EEG
recording concurrent to HMD usage in a non-shielded room,
we first re-sampled the signals to 100 Hz (to cut off 50 Hz
line noise; our frequency range of interest ended at 30 Hz) and
high-pass filtered at 1.5 Hz. Cleaning was done using automatic

5Based on information from: https://xinreality.com/wiki/Oculus_Rift

subspace reconstruction (Chang et al., 2018, available as plugin
for EEGLAB) and independent component analysis (ICA). Bad
channels rejected with automatic subspace reconstruction were
interpolated using the spherical interpolation model in EEGLAB.
Epochs for ICA (and following analysis steps) were generated
from 0.75 s pre-stimulus to 4 s post-stimulus (stimulus was the
instruction to start left/right hand MI). ICA decomposition was
calculated for each dataset separately, and artifactual components
were identified using the Multiple Artifact Rejection Algorithm
(Winkler et al., 2014).

ERSPs were computed for each dataset from the following
EEG channels: C4, CP4, C2, FC4, and C6 for the left hand; and
C3, CP3, C1, FC3, and C5 for the right hand. From the ERSP
courses, we further calculated event-related desynchronization
(ERD) in the frequency range 8-30 Hz. ERDs were averaged over
the duration of theMI epoch according to the run number (4, 3.5,
3, or 2.5 s) for both hands and used as representations of SMR
modulation abilities.

Classification accuracy per dataset was gathered using
Openvibe trainer using the same settings as in on-line feature
construction (details are provided in section 3.6).

We leveraged the EEG signals to compute an index of fatigue
levels in each run of the experiment. Spectral analysis was
performed on the latter half of the trials, and the fatigue index was
computed from the ratio of theta/alpha power spectral density
(adapted from Cao et al., 2014).

3.9. Questionnaires
A pre-experiment questionnaire surveyed the participants’
motivation in the following dimensions: interest, mastery
confidence, incompetence fear and challenge (Vollmeyer and
Rheinberg, 1998). The questionnaire consisted of 18 questions,
based on the questionnaire in Nijboer et al. (2008), translated
into Czech. The post-experiment questionnaire surveyed
the participants’ magnitude of embodiment and affect. The
embodiment questionnaire was based on the original rubber
hand illusion questionnaire (Botvinick and Cohen, 1998) and
psychometric questionnaire for embodiment created by Longo
et al. (2008). All questions were answered on a 7-point Likert
scale. The English version of both questionnaires can be found in
the Supplementary Materials.

Embodiment was surveyed on the following subscales: SoO,
SoA, illusory loss of the hands (feelings of not being able to
move one’s own hands, or of one’s own hands disappearing),
and illusion of being located at the position of the virtual body.
The last variable was adapted from the rubber hand illusion
questionnaires, where the position of the rubber hand necessarily
differs from the actual position of the participant’s hand. In this
experiment, this variable denotes susceptibility of the participants
to feel the position of their hands to be driven by the animations
(i.e., lifting from a table and moving spaceship controls).

4. RESULTS

4.1. On-Line Accuracy
Accuracy was calculated as the percent of targets hit in a run
(target was hit if classifier decision overlapped with the training
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task for the majority of time in the trial). Bit transfer rate (BTR)
was calculated using accuracy and length of a trial in each run.
BTR, contrary to accuracy, reflects the increasing pace of the
training runs. The formula from Shannon (1949) was used (the
original formula is taking into account variable trial length, as
used in Krausz et al., 2003):

BTR =

[

log2N + P ∗ log2P + (1− P) ∗ log2
1− P

N − 1

]

60

trial length
(1)

Where N (number of classes) equals 2, and probability P
corresponds to a participant’s accuracy in a run. Trial length is the
actual average length of trial in a run, including the rest period.

The average of the best accuracy achieved during the session
was 75.84% (min = 60%, max = 92%, SD = 11.251). Peak
performance was gained most frequently in the 3rd run, with
its average accuracy = 67.11%. This is an improvement from
our previous study (Škola and Liarokapis, 2018) where the
experimental group (N = 15) gained an average hit-wise
accuracy of 63.33% (SD = 15.887). The study utilized a similar
methodology, but participants performed only two runs of
training (one with real-time feedback) followed by the evaluation
run. The pace of the tasks was fixed and slower in comparison to
the current study (maximal achievable BTR was = 4 bits/min),
consequently producing poor results in terms of BTR (0.373
bits/min).

Average best BTR in the current study was 1.992 bits/min
(min = 0.280, max = 5.011, SD = 1.585), mostly gained
in the 6th training run (7 participants), followed by the 5th
run (5 participants), 4th run (4 participants) and 3rd run (3
participants). Details on both performance metrics are present
in Table 1, for comparison of on-line and classification accuracy
per run see Figure 4.

Only one participant was excluded due to poor results
(accuracy 47%, 50%, 47% in first three runs), indicating sub-
chance on-line accuracy in 1 out of 20 participants.

4.2. Classification Accuracy
Grand average classification accuracy (CA) was 72.814%
(SD = 4.675), while average of peak performance CA in each
participant equaled 78.991% (SD = 4.852). Both of these values
are higher than chance level (65%) for 2-class BCI with 20 trials
per class, computed using binomial distribution for a significance
level of 5% (Müller-Putz et al., 2008). All participants surpassed
the chance level CA in both peak performance and their average
session CA.

CA was strongly correlated with the on-line accuracy in all
runs of the experiment (p < 0.05 in all cases), and the Spearman
correlation between average on-line accuracy and average CAwas
r = 0.754, p = 0.000 (all correlations in this paper were tested
using the Spearman correlation).

4.3. ERD Results
From the available mean ERDs per run, two values were
calculated; the average ERD per participant and the strongest
participant’s ERD (“best ERD”). For completeness, we disclose

TABLE 1 | Average performance (SD in parenthesis) per run and average peak
performance.

Run Accuracy (%) BTR (bits/min) CA (%) ERD (dB)

1 – – 70.862 (5.406) −0.762 (0.443)

2 62.26 (15.566) 0.571 (0.921) 70.115 (6.355) −1.048 (0.605)

3 67.11 (10.603) 0.825 (0.949) 72.220 (5.441) −1.117 (0.565)

4 66.74 (10.964) 1.026 (1.227) 74.701 (6.165) −0.921 (0.595)

5 65.74 (9.683) 1.002 (0.978) 75.081 (6.648) −0.751 (0.415)

6 62.53 (15.193) 0.992 (1.414) 73.905 (7.651) −0.550 (0.517)

Best 75.84 (11.251) 1.992 (1.585) 78.991 (4.852) −1.316 (0.513)

the results of statistical tests for both of these SMR modulation
indices where applicable.

All participants were able to produce distinct ERD patterns
during the session, while the grand average was a change of -0.858
dB (SD = 0.436) from the baseline (more negative ERD value
corresponds to a stronger SMR modulation, hence the values of
correlations including SMR modulation are negative in case of
stronger ERDs associated). The average value of the best ERDs
achieved in a run equaled−1.316 dB (SD= 0.513).

4.4. Embodiment
Median of the SoO statements was 5 (SD = 1.190), median
SoA 5.5 (SD = 0.947). Both of the main embodiment metrics
show a positive, moderately strong rating of embodiment.
The correlation between these two variables is moderate and
statistically non-significant (r= 0.357, p= 0.134). Due to the lack
of a control group in our experiment, it is not possible to measure
the increase of embodiment. Nevertheless, our previous study
(Škola and Liarokapis, 2018) utilized a very similar embodied
virtual training. The main differences between these two studies
(with respect to embodiment) are the greater length of the
session and elements of gamification added in the current design.
This allows us to compare the difference between embodiment
variables at least indirectly. Both SoO and SoA were perceived
as slightly weaker and with a greater SD in the previous study
(SoO mean = 4.7, SD = 1.669, SoA mean = 5.4, SD = 1.773).
It is likely that both the length of the VR training part and
added engagement created using the gamification contributed to
this increase.

Investigation into the relationship between embodiment and
the ability to modulate SMR rhythms showed a non-significant
correlation between the ownership and the average ERD strength
(r = −0.371, p = 0.118) and a stronger, significant correlation
between SoO and the best ERD (r = −0.459, p = 0.048).
Figure 5 showing the correlations between the SoO and ERD
reveals the strong linear trend between SMR modulation and
the SoO ratings with the exception of an outlying participant
#14 (this participant also produced the lowest SoA rating
despite being amongst the top performing participants with peak
BTR = 3.709). Investigation into this correlation after exclusion
of the outlying participant confirmed very strong correlation
between the SoO and ERD strength, with an average ERD
(N = 18, r = −0.595, p = 0.009) and the best ERD (N = 18,
r =−0.698, p= 0.001).
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FIGURE 4 | Boxplot showing comparison of on-line accuracy and CA per run side-by-side.

FIGURE 5 | Scatterplot showing the SoO values gathered from questionnaires (x axis) and SMR modulation abilities (y axis). Left plot represents relationship with
average ERD across all runs, right plot relationship with best ERD achieved.

Interestingly, the correlation between SoA and training results
is not present in our data; i.e., no link between participants’
perceived performance and their actual performance was
established (r = 0.002, p = 0.994), similarly to our last study
on embodied MI-BCI training. Agency measures were correlated
(with borderline significance) with two questionnaire scales; the
affect (r = 0.445, p = 0.056) and the embodiment measure of
“Loss of Hand” (r = 0.445, p = 0.056). Descriptive statistics for
embodiment are represented in Figure 6.

4.5. Motivation and Affect
Affect was linked to better SMR modulation (correlation with
average ERD: r = −0.436, p = 0.062 and with best ERD:
r = −0.324, p = 0.176), but only non-significantly. Statistically

significant correlations between pre-experiment questionnaires
and performance were revealed only regarding the last training
runs. Pre-experiment interest was correlated to BTR in the 6th
run (r = 0.541, p = 0.017) and non-significantly in the 5th
run (r = 0.399, p = 0.091). Similarly, challenge correlated with
6th run BTR (r = 0.459, p = 0.048) and non-significantly
in the 5th run (r = 0.430, p = 0.066). Challenge was also
non-significantly correlated to better SMR modulation in the
6th run (r = −0.403, p = 0.087). A strong correlation was
found also between interest and order of participant’s best run
in terms of BTR (r = 0.559, p = 0.013), while a weaker
non-significant correlation was present also between challenge
and order of best BTR performance (r = 0.429, p = 0.067).
These findings together suggest that participants with greater
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FIGURE 6 | Boxplot with descriptive statistics of questionnaire variables; MC is mastery confidence, IF incompetence fear, and LoH loss of hand.

interest tended to give their best performance in the last runs of
the experiment.

Overall, questionnaires revealed a surprisingly high positive
affect (median 7, SD = 0.348), and no participant reported
engagement or interest after the experimental session lower than
6 out of 7 points. See Figure 6 showing descriptive statistics for
questionnaire variables.

4.6. Other Results
4.6.1. BCI-Naïvity
As both first time users and users with some (although very
limited) BCI experience participated in this study, statistical
testing was conducted to rule out the effect of previous exposure.
Previous experience with MI-BCI did not affect the training
results, classification accuracy, or ERDs, in any of the runs (tested
using Mann-Whitney U test). For clarity, results of the U-tests of
aggregated results are present in Table 2.

Differences were found in fatigue index in the first run (see
below) and in the questionnaire scale fear of incompetence
(U = 19.000, p = 0.035), with mean = 2.422 and SD = 0.851 in
naïve population vs. mean= 1.560 and SD= 0.782 in non-naïve.

4.6.2. Gender
It is not possible to draw definite conclusions from the discovered
differences between genders, as our data sample is not balanced.
However, similar to our previous study (Škola and Liarokapis,
2018), we found females to perform better than males on average.

In terms of on-line accuracy, a statistically significant
difference was present in the mean performance; female mean
= 70.286%, SD = 7.846 and male mean = 61.717%, SD = 8.061
(U = 68.000, p= 0.028).

Females performed better in the 6th run of the experiment
(with changed feedback modality), which can be observed as
significant differences in terms of both BTR: female mean =

1.896, SD = 1.860 and male mean = 0.465, SD = 0.748
(U = 69.500, p = 0.017) and on-line accuracy: female mean =

73.710%, SD = 12.880 and male mean = 56.000%, SD = 12.692
(U = 71.500, p = 0.010). Difference in 6th-run SMR modulation
is not significant (U = 22.000, p= 0.100).

Gender had an effect only on the first run CA, female mean
= 73.659%, SD = 4.864 and male mean = 69.230%, SD = 5.199
(U = 65.500, p= 0.045).

4.6.3. Fatigue
Evolution of the fatigue index per run does not confirm an
effect of growing fatigue during the session. The highest fatigue
index was present during the 6th run (mean 0.809, SD = 2.161),
but the values are comparable across other runs: 1st (0.690,
SD = 0.691), 2nd (0.701, SD = 1.632), 3rd (0.405, SD = 1.104),
4th (0.597, SD = 1.300), and 5th (0.602, SD = 1.080). The
distribution of the values did not differ significantly (related-
samples Friedman’s two-way ANOVA χ

2(5)= 3.271, p= 0.658).
A curious effect of BCI exposure on fatigue during the first run
was found: the BCI-naïve participants had a higher fatigue index
(1.062, SD = 0.859) than non-naïve (0.355, SD = 0.187), with
U = 13.000, p= 0.008. This effect was not replicated in any of the
remaining runs.

4.6.4. Qualitative Results
The opportunity to comment on the experiment qualitatively
was not used frequently by the participants. One category of
comments was concerning the visual appearance of the VR
scene; two participants considered the hand movements to
appear unnatural, two other comments stated that the visuals
indicating asteroid destruction were disturbing (but one of
these participants stated this improved eventually). Physical
discomfort in the head area was reported by three participants.
One participant specifically noted that it would be beneficial to
have more time to explore MI strategies.

The rest of the comments were either suggestions
to improve the VR environment or BCI tasks with the
participants’ own ideas, or positive comments regarding the
experimental application.

4.6.5. Feedback Modality Change
From the total of 19 participants, 11 participants had worse
accuracy in the 6th compared to the previous run and 1 had
the same accuracy. The rest of the participants gained better
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TABLE 2 | Aggregated results from U tests showing no effect of previous BCI
experience in our data.

Metric U p

Best CA 51.000 0.661

Avg CA 50.000 0.720

Best accuracy 48.500 0.780

Avg accuracy 44.000 0.968

Best ERD 42.000 0.842

Avg ERD 37.000 0.549

Best BTR 49.000 0.780

results in the run with delayed feedback compared to the previous
run. Wilcoxon signed-rank test did not confirm any significant
within-subject differences in trial accuracy between the 6th run
and other runs; for the 5th run Z=−0.806, p= 0.420, for the 4th
run Z =−1.109, p= 0.268.

Examination of SMR modulation indices showed larger
differences between the last run and the rest. ERD differences
were not significant between the 5th and 6th runs (Z =−1.932,
p= 0.053) and the 1st and 6th runs (Z =−1.730, p= 0.084), but
ERD differed significantly between the 6th run and each of runs
2, 3, and 4 (p < 0.01 for all cases). The reader can find the mean
and SD values of examined variables per run in Table 1.

5. DISCUSSION

This article presented a training environment for MI-BCIs
utilizing VR embodiment and gamification with a progressive
increase of training pace. Results show the proposed method can
effectively train participants for a basic level ofMI-BCI operation,
comparable to the state-of-the-art (Ahn and Jun, 2015), while
steadily increasing BTR in the span of the session. Due to the
event-driven training design, the classifier in the core of the BCI
system can be re-trained from the annotated datasets at any point
in the training procedure.

In our work, we aimed to reinforce the effect of virtual
embodiment to facilitate the MI training. This was achieved by
designing the VR scene centered around a realistic human-like
avatar from the first-person perspective. First-person perspective
alone can be a factor strong enough to induce illusions of
virtual body ownership (Kokkinara et al., 2016), although
more traditionally either synchronization of visuotactile or
visuomotor signals is leveraged to produce stronger illusory
ownership transfer (see section 2.1 for more details). In this
work, visuo-imagery synchrony was employed to induce the
embodiment. According to the results, and consistently with
previous studies, the SoO illusion was created in the majority of
the participants.

Correlations between the ERD strength and questionnaire
ratings of the SoO toward avatar’s moving hands suggest the
subjective level of embodiment is indeed linked to a participant’s
ability to modulate the SMR. Interestingly, no correlation at
all was found between ERDs and SoA statements. Participants
tended to self-evaluate the perceived agency as high, regardless of

their actual performance. Consequently, the SoA results are not
correlated to any of the performancemetrics (ERD, accuracy, CA,
BTR). The reason why participants’ subjective self-evaluation of
performance did not reflect their real performance might have
its roots in the embodiment and its influence on the SoA. It has
been demonstrated that an illusory SoA can be acquired; illusory
SoA over walking can be created in seated participants, based
only on first-person-perspective virtual embodiment (Kokkinara
et al., 2016). This means that participants’ ability to assess the
level of SoA toward their BCI actions could have been biased by
observing the acting avatar embodying them, in turn producing
subjective answers uncorrelated with the objective measures.

Additional difficulty arises from the fact that the avatar’s
movements were used as a proxy for surveying the SoA (see
the questionnaires in Supplementary Materials). In our case, the
perceived SoAmight be in fact composed of two components; the
perceived accuracy of the BCI actions, as manifested by the hand
movements seen in the VR. Although these two components are
in fact perfectly correlated, the agency acquired in the embodied
VR experience most likely distorted participants’ assessment of
their BCI accuracy. Still, such subjective strengthening of the
SoA for BCI actions could be beneficial, as increased SoA can
facilitate the learning process (it is not uncommon to bias the
feedback toward better performance in the early stages of training
to support a participant’s motivation; Jeunet et al., 2016b).

Our results do not show any correlations between the on-line
performance and perceived SoO either. That means that either
the used questionnaire does not properly assist investigation of
the SoO in the case of MI-BCI-mediated VR embodiment, or
that the degree of embodiment does not correlate with the actual
performance of the synchronized congruent visuo-imagery trials.
The correlation between SoO and SMRmodulation ability in our
results suggests the former suggestion is likely not valid, so it
is probably the relationship between BCI accuracy and the SoO
(and also the SoA, as we discussed in the last paragraphs) that
needs deeper investigation. Indeed, action- (or agency-) driven
illusions are known to arise with bodily movements, but more
research is needed to assess the requirements for emergence,
strength, and other properties of embodiment mediated by
a non-motor, BCI operation. Together with the increased
SoA uncorrelated to the actual participant performance, these
results suggest that the first-person perspective can contribute
to perceived embodiment more than the number or accuracy
of correctly performed, self-attributed MI-BCI commands,
embodied in avatar’s motor actions.

The progressive design influenced the training tasks in each
following run; participants had to begin with the recognizable
MI faster (otherwise timeout curred), but they did not have to
stay in the MI state for as long. Performance results show this
approach kept the participants alert and motivated sufficiently to
improve their results while it maintained non-increasing levels of
EEG correlates of fatigue. It has been shown that the demanding
MI process can cause growth of fatigue levels during the training
(Talukdar et al., 2019). Growing fatigue can in turn influence
the performance by means of losing attention and interest.
Our investigation into the influence of fatigue did not confirm
increasing levels in the span of the experimental session.
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Although the peak performance was not achieved strictly in
the last runs of the experiment, SoA and especially the post-
experimental affect were very high. This suggests our take on
gamification was well-accepted, even though the chosen increase
in pace was suboptimal and training pace increase should rather
follow individual improvements in the training results in future
applications. Games aim for high engagement, and BCI training
benefits from high levels of attention, which can be facilitated by
engagement. Progress and challenge are common motivational
affordances increasing engagement in gamified applications
(Hamari et al., 2014). Similarly to overly difficult progression,
constant winning leads to loss of engagement. Moreover, in
the case of the BCI training, too slow pace wastes the time
and cognitive resources of the learner. The goal is to keep the
challenge at a reasonable level, which would in turn effectively
communicate improvements, leading to an influx of positive
emotions connected to winning or achieving a goal (Vorderer
et al., 2003).

The last training run in the experimental session leveraged
different feedback modality (delayed feedback). Alimardani et al.
(2016b) showed that when delays between the MI-BCI command
and its outcome were introduced in BCI teleoperation of a robot,
participants tolerated larger delays than with motion tracking
control. Performance in the last run in our experiment did not
differ significantly from the previous runs, despite high variance
in the accuracy (comparable to the first run with feedback in
the session). Our motivation to incorporate the last run with
delayed feedback was to investigate the performance after real-
time feedback is removed. In that run, participants relied on
the acquired MI skills only, and the evaluation was free from
influence of motion observation and vibration feedback.

Vibrations to the corresponding hand were delivered during
the periods of MI. Usage of vibrations in MI-BCI feedback is
not uncommon (Ahn and Jun, 2012; Leonardis et al., 2012;
Yao et al., 2014; Barsotti et al., 2018), and it is known that
they can have an influence on the ERD. Indeed, as found in
Barsotti et al. (2018), participants in the multimodal feedback
group (haptic and visual) produced more stable ERD patterns
compared to the visual feedback group. Previous research
Lopez et al. (2017) found strengthening of the ERDs in the
contralateral motor cortex following focal vibration stimulation.
However, the stimulation was delivered for at least 10 min and
participants were holding a handgrip during the stimulation
and EEG recording. Taken together, there is a body of evidence
confirming that the vibrotactile stimulation can help participants
to produce more pronounced ERDs during MI, effectively
helping them to acquire the BCI operation skills faster. This is
especially interesting in case of vibrations producing illusory arm
movement sensations (proprioceptive feedback), further helping
the embodiment (Leonardis et al., 2012).

5.1. Limitations
This study is subject to two main limitations: absence of a control
group and a limited length of the experimental intervention. The
fact that no control group was employed in the study prevents us
from separation of effects found in the results. After comparison
of the current data to our previous study that employed a similar

design (Škola and Liarokapis, 2018), a clear improvement is
shown in the main experimental variables (i.e., BCI performance
and virtual embodiment). Nevertheless, based on the single-
group results, we cannot argue for specificity of the intervention
to the experimental variables, as the comparison of the main
variables is indirect, and we lack previous data for comparison
in case of motivation and affect. To resolve this problem, further
data collection with the aim to form a control group would need
to be performed. Correlations found in the data are not affected
by this limitation.

The study was performed in the span of one day, limiting
the conclusions regarding learning effects. Long-term studies
with healthy participants are not very common in the BCI field,
and most of the studies are either performing the training in
separate sessions over several days (2–4 days are common) or are
performed within a single day (see e.g., Leeb et al., 2007; Hwang
et al., 2009; Neuper et al., 2009; Alimardani et al., 2013; Sollfrank
et al., 2015; Braun et al., 2016). It should be noted that even single-
session BCI training can produce large changes in brain signals
used for BCI control (Shenoy et al., 2006).

The short length of this study prevents us from making
conclusions regarding long-term plastic changes in the
brain. Based on our results, we can only demonstrate rapid
familiarization to the proposed training procedure and steep
increase in accuracy during the first couple of runs, but to prove
whether this method can be used to acquire the ability to control
BCIs accurately and with consistent performance over longer
periods of time, a study spanning days, or preferably weeks
would be required.

A limitation of our study that should be mentioned as well
is that electromyography was not used to monitor attempted
movement during the training and instead, controllers were used
to detect movement of the hands. Although this method should
cover most of the cases when muscle activity was engaged, it
is less rigorous than electromyographical recordings and thus
it is possible that participants produced some muscle tension
or subtle movements that were not properly discarded from
the recording.

6. CONCLUSION

This article presented a gamified VR training for MI-BCIs
leveraging body ownership transfer into the avatar to mediate
embodied feedback. Contrary to the standard training protocols,
our training was designed with the aim to maintain high
levels of attention and motivation. This was achieved using
a progressively increasing training pace and by providing
participants with the information about their progress (using
score points). The proposed training method is event-driven,
but not externally paced. Event-driven design is especially
useful early in the BCI skill acquisition process when classifier
training occurs often. This design allows for the creation of
datasets for supervised learning while adhering to turn-based
game mechanics.

Performance results (on-line accuracy, CA, SMR modulation
indices) confirm that the proposed training method improves
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initial MI-BCI operation skills in first-time and beginner users.
Questionnaires indicate very high affect after approximately
a half-hour of actual training in the span of a 2-h long
session. This, together with low levels of fatigue as assessed
from the EEG data, shows that we succeeded in the design
of a user-friendly BCI training method. Moreover, pre-
experiment motivation and post-experiment affect were both
linked to better SMR modulation abilities, further confirming
importance of the psychological state of a user in the MI-BCI
training process.

We additionally present results concerning the influence
of embodiment on MI-BCI control. While the strength of
ERDs during session was positively correlated to the subjective
magnitude of SoO, the perceived ownership of the avatar
body was not correlated to the MI-BCI control performance
nor to the SoA. This raises a question of how much
the perceived SoA or actual BCI proficiency influence the
magnitude of virtual embodiment in case of MI-BCI-induced
ownership illusions.

7. FUTURE WORK

Last run of our experiment showed that removal of the real-
time feedback does not necessarily need to negatively affect the
performance. Especially participants achieving good results in the
last run before the modality change did not have problems with
adaptation on the modified training task, often producing the
best results in the last run. This fact can be leveraged in design
of training environments; training can be more interesting after
incorporation of different training tasks, theoretically boosting
learning of the MI-BCI skills (suggested in Jeunet et al., 2016b).
It enables the design of more complex gamified scenarios that
would facilitate the training using variety of training tasks.

Current trend in MI-BCI research is to use a study design
that requires participants to be trained with the standard protocol
first, and only after they get to a sufficient level of accuracy, the
actual research task follows. Results from the last run of our
experiment suggest that the skill transfer from the embodied
VR training could be done seamlessly after a basic level of
performance is achieved. To determine it with confidence,
future studies are needed. As the proposed VR training method
is comparably effective to the state-of-the-art, using it as a
replacement for the standard, abstract-guidance Graz training
implementation would likely create more bearable conditions for
participants in BCI experiments.

It would be interesting to conduct a deeper investigation into
the relationship between the accuracy of the MI-BCI actions and
the embodiment during BCI-mediated body ownership transfer
illusions. Employment of more detailed, and possibly objective,
SoO and SoA measures would further assist investigation of
this relationship.
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