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Abstract
Climate change (CC) clearly impacts foodproduction, but risks on the climatic suitability of agricultural
areas for vegetable crops, their pests and associatednatural enemies are largelyunexplored.Tomato, oneof
themost important vegetables in theworld, is grownmostly outdoors, andmaybe severely impactedby
CC.Farmers cultivating tomatoes need to adapt to an increase in thepotential for outbreaks of pests
favouredbyCCanddisruptionof biological control, yet, no attempthas beenmade to simultaneously
evaluateCCeffects on a crop-pest-natural enemy system for tomatoor anyother crop.Here,wemodelled
the suitability of areas equippedwith irrigation facilities (AEI) in 2050 for tomato, the two-spotted spider
mite,Tetranychus urticae, amite pest of tomato amongmore than200 crops, and its keypredator
Phytoseiulus persimilis.Weevaluated the suitability ofAEI for tomatoproductionunder a 1.6 °Cwarming
by2050,within the targets of theParis agreement. Projections show that climatic conditionsbecome
unsuitable for tomatoproductionon30%–100%ofAEI for sevenout of the 29 top tomatoproducing
countries of theworld.Model predictions suggest that two-spotted spidermite potential for outbreaks
would increase substantially innine countries inEurope,Africa andAsia,while biological control failures
wouldoccur globally.Model results have a significant relationshipwith growth rates for the three species
measured inoutdoor experiments, and farmer/expert perceptionson two-spotted spidermite outbreak
severity captured via interviews.The expansionofAEI inother agricultural areas in the sub-SaharanAfrica
mayoffset losses of suitable land.However, several nations in theMiddle East andSouthAsiawith
prevalent small scale agriculturewould experience devastating impacts because of theunsuitability of
conditions for tomatoproduction and thepotential increase in two-spotted spidermite outbreaks.

Introduction

Climate change (CC) impacts global agricultural
production (e.g. Rosenzweig et al 2014, Fleisher et al
2017, Moat et al 2019, Yoon et al 2019). Considerable
effort focuses on exploring CC risks on production of
stable crops, with studies on vegetables, pests and
natural enemies underrepresented in the literature
(Porter et al 2017). While some studies have included
both crops and pests (e.g. Berzitis et al 2014,

Ponti et al 2014, Ramirez-Cabral et al 2018, Ramos
et al 2018, Santana et al 2018), none has looked at a
crop-pest-natural enemy system. We provide for the
first time an assessment of CC impacts on the climatic
suitability of agricultural areas for a vegetable-
pest-natural enemy combination of global impor-
tance: Tomato (Solanum lycopersicum L.), the two-
spotted spider mite (Tetranychus urticae (Koch)) and
its key natural enemy, the predatorymite Phytoseiulus
persimilisAthias-Henriot.
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Tomato is one of the most popular vegetables in
the world, with an annual value exceeding 90 billion
USD (FAOSTAT 2019). Tomato acreage increased by
almost threefold in the last 50 years to around fivemil-
lion ha in 2015. In the EU, one of the most important
tomato producers, more than 85% of tomatoes are
produced outdoors, mainly in Mediterranean Mem-
ber States (Eurostat 2019). Modelling of worst-case
CC scenaria revealed substantial restrictions of sui-
table areas for cultivation of the crop (da Silva et al
2017b, Ramos et al 2018). The Paris agreement created
substantial interest in assessing the impacts of a 1.5 °C
warming in different productive sectors (Hoegh-
Guldberg et al in press), but currently no information
exists for tomato. Furthermore, prior assessments for
the crop were not restricted to agriculturally suitable
land, as they included all terrestrial areas of the planet.

A suite of pests attack tomato, including the two-
spotted spider mite (Meck et al 2013, Gigon et al 2016),
one of the world’s most notorious pests (Vacante 2015),
with a host range of more than 200 cultivated crops
(Migeon and Dorkeld 2006–2017). Control costs exceed
$400 million annually in pesticide sales alone (van
Leeuwen et al 2015). The pest has developed resistance
to close to 100 chemical active ingredients, more than
any other plant-feeding arthropod (Michigan State
University 2019). The sequencing of its genome illumi-
nated a vast array of unique detoxification genes that
contribute to its impressive ability to develop resistance
(vanLeeuwen et al2010,Grbić et al2011).

The unmatched ability of the two-spotted spider
mite to evade control has catalysed early on the search
for effective natural enemies. The predatory mite, P.
persimilis, has been one of the key successes of biologi-
cal control worldwide (Knapp et al 2018). The pre-
dator is both mass produced by companies and occurs
in natural populations around the globe (Demite et al
2014). The mite feeds almost exclusively on the two-
spotted spider mite, and unlike its prey, it is limited by
both high and low temperatures, and lacks the ability
to diapause (Khodayari et al 2012, Coombs and
Bale 2013). Phytoseiulus persimilis is known to develop
strains adapted to the harsh environment of tomato
leaves (Ditillo et al 2016), that are defended by glandu-
lar hairs oozing sticky exudates.

In the current work we used CLIMEX, a species
distribution model, to assess the impacts of CC on
tomato, the two-spotted spider mite and P. persimilis.
CLIMEX is a semi-mechanistic model that has been
used successfully to project climatically suitable areas
under CC for many species including insects, plants
and pathogens (Berzitis et al 2014, Burgess et al 2017,
Ireland et al 2018). We restrict our analyses to agri-
cultural areas equipped with AEI (Siebert et al 2013),
and rely on outdoor experiments and a farmer survey
to validatemodelfindings.

The specific aims of the study were: (a) develop a
global niche model for tomato, the two-spotted spider
mite, and P. persimilis; (b) evaluatemodel results using

global datasets, outdoor experiments and expert/
farmer input and (c) assess the effects of CCby 2050 on
the three species on areas equipped with irrigation
facilities.

Materials andmethods

CLIMEXmodels and spatial analysis
CLIMEXmodels
The software relies on data on the biology, seasonal
phenology, and the geographic distribution of the
organism to infer a set of parameters that summarise its
response to the climate (Sutherst and Maywald 1985,
Sutherst et al 2007). Once climatic parameters are
inferred for the species using current climate data,
CLIMEX can project the expected distribution based on
different CC scenarios. The main CLIMEX output is the
ecoclimatic index (EI), that ranges from0 to100with low
EI values indicating less suitable habitats that have a low
probability for population persistence. Establishment is
only possible when the value exceeds zero; areas with
EI�10 are generally considered as unsuitable for
species persistence, and areas with an EI>30 as very
favourable (Sutherst et al2007).

Phytoseiulus persimilis potential for effective biolo-
gical control was evaluated with the biological control
index (BCI): BCI=EIpredator – EIpest. Where EIpredator
and EIpest, the EI for the predator and pest, respec-
tively. Effective spider mite predators usually have an
equal or greater intrinsic rate of population increase
than the pest (Janssen and Sabelis 1992, Nomikou et al
2001), captured in a BCI�0. BCI ranges from a
potential maximum of 99 to a minimum of −99. BCI
is a yearly summary statistic that does not capture the
seasonal variation in EI for the two-spotted spider
mite and P. persimilis nor the complex spatial comp-
onent of prey–predator dynamics.

Distribution records
Presence data (see supplementary material available
online at stacks.iop.org/ERL/14/084041/mmedia)
for open field tomato distribution (1087) were
retrieved from the Global Biodiversity Information
Facility (figure S1(a)). Presence data for the two-
spotted spider mite (931 single location records) were
obtained from the literature in the Spider Mites Web
database (Migeon and Dorkeld 2006–2017), and
personal records (AM) (figure S2(a)), while for P.
persimilis, the 143 single-location records (figure
S3(a)) were retrieved from the literature and personal
records (MST) (Migeon et al 2019).

Climate data
Global climate data were downloaded from the
CliMond database (https://climond.org) at 10 arc
minutes resolution (approximately 18.5×18.5 km at
the equator) (Kriticos et al 2012). Historical climate
data were centred on 1975H (1961–1990), and the CC
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scenario used was the IPCC SRES IV A1B for 2050 in
the CSIRO-MK3.0 (CSIRO, Australia) global circula-
tion model (GCM). The CSIRO-MK3.0 generates a
1.61 °C increase by 2050 relative to pre-industrial
levels (or 1.18 °C relative to the 1961–1990 reference
period), very close to the mean of models in the
ensemble report of AR5, for RCP 2.6, the optimistic
scenario for reaching the targets of the Paris
agreement.

Model building and sensitivity analysis
Presence data for each species separately were used for
the parameter fitting procedure with a special focus in
Europe, Middle East and N. Africa. Starting parameter
values for temperature and moisture limits, diapause
(only for the two-spotted spider mite), as well as
irrigation amounts were used from literature sources
(Kroon et al 1998, Vangansbeke et al 2015, FAO 2017)
and then adjusted iteratively until a close match was
observed between the projected climate suitability pat-
terns and the observed abundance patterns (Sutherst et al
2007). Sensitivity analysis was carried out to quantify the
effect of parameters on model predictions for the three
species (da Silva et al 2018). See supplementary material
for a detaileddescriptionof themethodology.

Spatial analysis
CLIMEX model results at 10 arc minutes were
projected on global areas equipped with AEI, retrieved
from the Global Map of Irrigation Areas v. 5 at 5 arc
minute resolution (Siebert et al 2013). The impact of
CC on climatic suitability for tomato was evaluated at
the country level for 29 countries with an average area
of tomato cultivation exceeding 20 000 ha. The 29
countries represented more than 85% of the global

tomato area (FAOSTAT 2019—see supplementary
material formore details).

Model validation
Outdoor experiments
The experiments aimed at evaluating the relationship
between EI values and growth for tomato, or population
rate of increase for the two-spotted spider mite and
P. persimilis. The experiments were conducted in eight
locations in Cyprus in the summer of 2016, for tomato
and the two-spotted spider mite, and repeated in six of
these locations in 2017 with the addition of P. persimilis
to the system (see supplementary material for detailed
description). Each experiment lasted for a six-day period.
The locations represented different climatic conditions,
as theywereplaced in a temperature andaltitude gradient
from the coast toup to1700m.

Farmer/expert survey
A questionnaire survey was conducted on the island of
Cyprus during the 2016 cultivation season to evaluate
the relationship between CLIMEX EI values and
farmer/expert perceptions on two-spotted spidermite
infestation severity. A total of 80 persons were
interviewed for the study—see supplementary mat-
erial for a full description of themethodology.

Results

CLIMEXmodels and spatial analysis
Approximately 90%, 98% and 99% of the presence
data for tomato, the two-spotted spider mite and
P. persimilis, respectively, fell in areas with EI values
greater than 10. Detailed results of the baseline model

Figure 1.Changes in area suitability for tomato between 2050 (A1B—CSIROMK.3) and 1975H. Area loss refers to area equippedwith
irrigation facilities (AEI) that was suitable for tomato cultivation under 1975H and becomes unsuitable-low suitability under 2050,
while gain refers to the opposite case. The light green colour represents areas suitable for tomato cultivation under both 1975Hand
2050 conditions. The two-spotted spidermite occupies virtually all areas suitable for tomato production in both 1975H and 2050,
with the pink lines showing expansion areas under 2050. Black lines represent areas where biological control by P. persimiliswas
effective under 1975H andbecomes ineffective under 2050 conditions. Orange lines represent areas where biological control is
effective under 2050 conditions. Biological control is not effective in all areas outside orange lines. See text formore information on
area classification.
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for each species are shown in the supplementary
material and table S1.

Tomato
Approximately 20%of AEI was classified as unsuitable
or low suitability (EI�30) for commercial tomato
production in 1975H, while the rest 26%, 34% and
20% fell in the medium (EI from 31 to 40), high (EI
from 41 to 50) and optimal categories (EI�50),
respectively (figures 1, 2, S1(b), table S3). Categorisa-
tion of EI values in different classes was based on a
spatial land use dataset depicting outdoor tomato
crops (Monfreda et al 2008—see section on Categor-
isation of EI values suitable for commercial tomato
production in supplementary material). The historic
range for optimal suitability includes extensive areas
throughout theworld, and especially in the Americas.

In 2050 land available for tomato cultivation in the
three upper classes is estimated at 69% of AEI (figures 1,
2 and S1(c)), because approximately 15% of AEI
becomes unsuitable-low suitability, while 3% changes
from unsuitable-low suitability to medium suitability or
higher. Approximately 43% of AEI remains in the same
category, while 13% of AEI becomes less and 9% more
suitable. Most of the improvements in land suitability
occur in North America, Europe and China. The model
predicts that 12 nations in total (five EUmembers States)
experience a positive impact of CC on conditions for
tomato production (figure 3). Conditions become less
suitable for commercial tomato cultivation on extensive
areas in India and parts of South East Asia, aswell as scat-
tered areas in the Middle East and Africa (figures 2 and
3). Six out of the 10worst affected byCC countries are in
Africa, while the rest four nations are: Pakistan, Iran,
India andMexico (figure 3).

Two-spotted spidermite
Approximately 95%of AEI is classified as suitable for the
two-spotted spider mite, with slightly less than 1/3 of
AEI in the low suitability category, and 25%, 19% and
20% in the medium, high and optimal classes (figures 2
and S2(b), table S3). The historic range for the two-
spotted spider mite includes the largest part of AEI in all
continents, except for northern areas of Scandinavia, the
RussianFederation andChina. (figure 2).

Land suitable for the two-spotted spider mite
drops slightly to 92% of AEI in 2050, with both expan-
sion and contraction areas covering less than 5% of
AEI (figures 2 and S2(c), table S3). Suitability remains
the same on 57% of AEI, while 17% becomes less and
16% more suitable. The pest follows a northward
expansion trend.

The two-spotted spider mite continues to persist
in all areas suitable for commercial tomato production
(suitability of land for tomato production medium or
higher) in 2050. However, suitability of climate for the
pest changes to a higher category on 15% or more of
AEI suitable for commercial tomato production in
nine countries: India and Pakistan in South East Asia,

Nigeria and Cameroon in Africa, Italy, Bulgaria,
Ukraine, Romania in Europe and China in Asia (figure
S2(d)). The climate worsens for the pest in only two
countries: Sudan andUzbekistan.

Phytoseiulus persimilis
Only 56%ofAEI is classified as suitable forP. persimilis
(figures 2 and S3(c), table S3). Slightly less than 20% of
AEI falls in the low suitability category, while 14%,
10% and 14% in the medium, high and optimal
classes. AEI suitable for P. persimilis drops to 50% of
AEI in 2050 (figures 2 and S3(c)), with expansion areas
covering 5% and contraction areas 10% (table S3).
Suitability remains the same on 25% of AEI, while
14%becomes less and 7%more suitable.

Under historical data, climatic conditions are not
favourable for biological control (BCI<0) on 40% of
AEI, while conditions favour pest suppression by the
natural enemy (BCI�0) on 15%ofAEI (figures 1 and
S3(d) and table S4). The pest persists in the absence of
the natural enemy on 39% of AEI. In 2050, the pest
persists on 42% of AEI where the natural enemy is not
present (figure S3(d) and table S4). The percentage of
AEI where conditions favour biological control drops
to 7%, while biological control is not favoured on 43%
of AEI. Close to 8% of AEI switch from adequate to
failing biological control, including an extensive area
on the South east coast of the US, smaller areas mainly
inWest South America, and substantial areas in South
Asia, and especially in South East China (figure S3(d).

In areas with conditions suitable for commercial
tomato production (suitability of land medium or
higher), biological control is effective on 15%of AEI in
1975H and drops to 7% in 2050 (table S4). Changes
are not uniformly distributed among the top produ-
cing tomato nations (figure S3(e)). Brazil in South
America, Algeria and Cameroon in Africa, and Indo-
nesia and China in Asia experience a substantial
reduction in the percentage of land under effective
biological control.

Model validation
Outdoor experiments
There was a significant relationship between tomato
RGR and EIw values from the baselineCLIMEXmodel
(P<0.001, figure S5, see supplementary material for
full results). R2 values ranged from 0.56 to 0.72 for the
baseline CLIMEX model with 6 mm of irrigation and
the model with irrigation adjusted to evapotranspira-
tion, respectively. There was also a significant relation-
ship between EIw and the rate of increase of the two
mites (P<0.001, figure S6). R2 values for the CLI-
MEX model with 3 mm of irrigation were 0.26 and
0.32 for the two-spotted spider mite and P. persimilis,
respectively, while for the model with irrigation
adjusted to evapotranspiration R2 values increased to
0.46 and 0.60 for the two-spotted spider mite and
P. persimilis, respectively.
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Farmer/expert survey
There was a statistically significant relationship
between the rating of infestation severity by farmers/
experts and annual EI values from the 1985-centred
data (F=399.21; df=1,78;P<0.001) (figure S7).

Discussion

The current study predicts a net loss in suitable AEI of
11.3% for tomato. Loss and gain of suitable AEI is not
distributed uniformly across the globe, resulting in

Figure 2.Changes in land suitability categories on area equippedwith AEI between 2050 (A1B—CSIROMK.3) and 1975H for:
Tomato (top), the two-spotted spidermite (middle) andP. persimilis (bottom). For tomato, only areas considered suitable for large
scale outdoor production (EI>30—suitability categorymediumor higher) are included in the analysis, with area loss referring to
areas with an EI>30 under 1975H and anEI�30 (categorised as unsuitable-low suitability) under 2050 (see Results).Worse refers to
areas that changed to a lower suitability category and better to areas that changed to a higher category. Land loss for the twomites
refers to area where suitability was low or higher (EI>10) in 1975H and becomes unsuitable in 2050 (EI�10), while area gain refers
to the opposite case.
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dramatic impacts at the country level in some cases.
Seven countries are projected to lose from 30% to
almost all of their area suitable for tomato production
(figures 2(a) and 3). Major losses of suitable AEI are
expected to occur exclusively in parts of Africa (Sudan,
Nigeria, Benin, Cameroon, Egypt, Ghana), South Asia
(India and Pakistan) and Iraq and Mexico (figure 3).
Most of the affected regions are characterised by small
scale agriculture (Lesiv et al 2019), and are therefore
more prone toCC risks.

The large variations in temperature on AEI is a
major factor determining its suitability for tomato
production, as was previously shown for wheat, rice,
maize and soybean in a different modelling context
(Zhao et al 2015). The CLIMEXmodel is very sensitive
to minor changes in the value of irrigation (table S1),
highlighting the importance of irrigation provision for
tomato cultivation. The availability of irrigation water
under CC seems to be a realistic scenario for most
countries (Elliott et al 2014), and offers an adaptation
strategy via the expansion of AEI into new suitable
areas of agricultural land not equipped with irrigation
facilities. For example, Sudan and countries in the sub-
Saharan Africa are projected to have an abundance of
water towards the end of the century even under RCP
8.5 (Elliott et al 2014), and can expand their AEI into
agricultural land of high suitability (Portmann et al
2010). However, several countries are projected to
have a deficiency of irrigation water—Morocco, West

Egypt, Iraq, Uzbekistan, Pakistan, North West India,
east China andMexico (Elliott et al 2014)—and there-
fore our model may underestimate CC impacts as it
assumes the provision of adequate volumes of irriga-
tion water. Drought severity under CC is an ongoing
area of research (Swann et al 2016). Engineering solu-
tions, such as the cultivation of the crop under net-
houses with cooling systems can enable its production
in hot areas. Selection of heat/drought resistant vari-
eties is another pathway towards CC adaptation.
Development of models that incorporate the potential
effects of new technologies/breeding efforts in the
assessment of CC impacts (e.g. Asseng et al 2019)
would enable the evaluation of the viability of different
adaptation options.

Previous work onCC effects on tomato cultivation
lacked a relevant spatial context as it included all ter-
restrial areas of the planet. Parameters of the baseline
CLIMEXmodel (table S1) are generally similar/within
reasonable range of that of da Silva et al (2017b). Varia-
tion in parameter values between the two studies
probably reflects differences in the initial areas used
for parameter estimation, and the literature sources
for parameter identification. Saadi et al (2015)model-
led CC impacts on tomato yield in the Mediterranean
under the A1B scenario in 2050 and showed no major
impacts, in accordance with the current work. Da Silva
et al (2017b) and Ramos et al (2018) used projections
for a warmer world than the GCM/SERS used in the

Figure 3.Change in area suitability for tomato cultivation between 1975H and 2050 (A1B—CSIROMK.3). Data for areas equipped
with AEI for 29 countries withmore than 20000 ha of tomatoes in 2000 (FAOSTAT 2019), ranked frommost to least affected. Area
loss refers to areas suitable for tomato cultivation in 1975H (EI>30—suitability categorymediumor higher) and unsuitable-low
suitability (EI�30) in 2050, while area gain refers to the opposite case.Worse/Better refers to a decrease/increase in area suitability,
respectively. The black dashed line shows the average area of tomato cultivation (1998–2002) per country (FAOSTAT2019).
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current study and reported both restrictions and
expansions in land suitable for tomato cultivation. The
choice of the modelling platform, GCM and CC sce-
nario/RCP can significantly influence predictions
(Meynard et al 2013, Shabani et al 2016). An additional
factor that needs to be incorporated in future model-
ling efforts is the potential positive effect of CO2 fertili-
sation on tomato growth and yield. Wei et al (2018)
have shown that elevated CO2 mitigates the negative
effects of drought and low nitrogen availability on the
yield of tomato plants, and elevated CO2 can also
enhance tomato quality (Dong et al 2018).

Regional worsening of conditions for tomato cul-
tivation is associated with an intensification of two-
spotted spider mite infestations. Four countries with
better conditions for the pest under CC (15% or more
of area changing to a higher class) are in the top 10
countries worst affected by CC for tomato production:
India and Pakistan in Asia, andNigeria and Cameroon
in Africa (figures 3 and S2(d)). The climate becomes
less suitable for the pest in just two nations: Sudan and
Uzbekistan. Drought can potentially intensify two-
spotted spider mite pressure on tomato (Ximénez-
Embún et al 2017), while a recent study on maize sug-
gests that the increase in CO2 can attenuate some of
the positive effects of temperature increase on the spe-
cies (Xie et al 2018).

Expected failures in biological control are highly con-
centrated in North and South America, China and South
East Asia, as well as parts of the Mediterranean (figures 1
and S3(d)). Five countries (Brazil, Cameroon, Indonesia,
China, and Algeria) experience a 20 to 40-unit reduction
in area under effective biological control by 2050 (figures
S3(d)–(e)). No meaningful increase in the area under
effective biological control occurs for any country (figure
S3(e)). Effects of CC on biological control as estimated in
the current study represent the most optimistic scenario,
as the underlying assumption is a temporal overlap
between pest and natural enemy. Potential temporal dif-
ferentiation in the periods of activity of pest and natural
enemy will result in decreased effectiveness of biological
control (da Silva et al 2017a). Both pests and natural ene-
mies can adapt to CC through phenotypic plasticity and
genetic adaptation, and future evaluations of CC impacts
need to incorporate phenotypic and evolutionary pro-
cesses (e.g. Bush et al2016,Macfadyen et al2018).

Model results showed good correspondencewith the
short-termoutdoor experiments (figures S5 and6), espe-
cially when irrigation in the model was adjusted to site-
based evapotranspiration. Coefficient of determination
values in regressions for the baseline model ranged from
26% for the two-spotted spider mite to 56% for tomato,
and increased to 46% and 72%, respectively when irriga-
tion was adjusted to field evapotranspiration (-see
Results andfigures S5–6). Future research basedon long-
term experiments would provide a more complete pic-
ture of the relationship between model predictions and

field observations. EI values from the baseline CLIMEX
model showed very good correspondence to farmer/
expert opinion, highlighting the relevance of results to
pest outbreaks in the field (figure S7). Further research
needs to evaluate whether farmers are already experien-
cing a higher frequency of CC-related spider mite out-
breaks as has been shown for other pests (e.g. Savary et al
2019). In North Carolina for example, Meck et al (2009)
report an increase in spider mite outbreaks on tomatoes
and other vegetables, with efforts focusing on improving
biological control by P. persimilis (Meck et al 2013).
While farmers in Cyprus generally agree that spidermite
infestations are more problematic in recent years, it is
very difficult to tease apart whether the increase is
because of CC alone or because of the withdrawal of sev-
eral pesticides from theEUmarket thatwere used against
themulti-resistant pest.

Understanding and adapting toCC effects requires
work on both detailed biophysical models (Antle et al
2017), as well as broader picture studies at different
trophic levels, such as the current work. The present
study predicts substantial impacts under a 1.5 °C
warming, suggesting that impacts can be severe if the
world overshoots this target. Future studies in the
direction of developing detailed biophysical crop
models for tomato and other vegetables, including
CO2 effects, as well as incorporating pest and natural
enemy impacts under different CC futures (Donatelli
et al 2017), including the difference between 1.5 °C
and 2 °Cofwarming, will aid adaptation efforts.
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