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Abstract: Nowadays more and more software companies, as well as individual software developers, adopt the 
microservice architecture for their software solutions. Although many software systems are being designed 
and developed from scratch, a significant number of existing monolithic solutions tend to be transformed to 
this new architectural style. What is less common, though, is how to migrate component-based software 
systems to systems composed of microservices and enjoy the benefits of ease of changes, rapid deployment 
and versatile architecture. This paper proposes a novel and integrated process for the decomposition of 
existing software components with the aim being to fully or partially replace their functional parts with by a 
number of suitable and available microservices. The proposed process is built on semi-formal profiling and 
utilizes ontologies to match between properties of the decomposed functions of the component and those 
offered by microservices residing in a repository. Matching concludes with recommended solutions yielded 
by multi-objective optimization which considers also possible dependencies between the functional parts. 

1 INTRODUCTION 

Despite the differences in their approach and the time 
lag in their introduction to the software engineering 
community, Component-based Software Engineering 
(CBSE) (Cai et al., 2000), or, alternatively 
Component-based Development (CBD), and 
Microservices Architecture (MSA) (Dragoni et al., 
2017) share the same inceptions, motivation and 
focus towards reuse of software artefacts. Both 
approaches aim at reducing complexity of the 
software development process, facilitate easy 
maintenance and support the operations for IT 
support. It may be argued that Service-Oriented 
Architecture (SOA) (Rosen et al., 2008), as the most 
recent emerging distributed development 
architecture, constitutes the common denominator 
between these two paradigms as it originated from 
component-based architecture and evolved to 
microservices architecture. 

Following the new software engineering trends, 
Microservices architecture is tightly connected to the 
DevOps approach (Kleiner, 2009), which inherits its 
basic principles from agile methodologies and 
describes best practices to support the software 
development and operation processes. One may also 
argue that Microservices architecture actually 

supports the DevOps automation process and affects 
software engineering in a positive manner. To be 
more specific, it affects Software Engineering by 
introducing a different development approach. As 
regards how the DevOps process is automated, the 
latter relies primarily on the fact that the adoption of 
the Microservices architecture comprises a number of 
critical tasks than may be automated apart from the 
rest automated tasks like communication, 
coordination, monitoring, problem solving and 
deployment.  

In recent years, Microservices architecture is 
gaining popularity in software development and the 
research community has turned its attention to related 
challenges (Esposito et al., 2016) such as the 
decomposition of a monolithic system into a set of 
independent services followed by synthesis of 
selected microservices to substitute their 
functionality. Microservice synthesis relies on 
locating and combining small functional service 
components which their characteristics match those 
of the decomposed system and put them in a proper 
order so as to meet the characteristics and the 
requirements of the initial monolithic system.  

While literature includes a number of research 
works for decomposition approaches and migration 
from monolithic to microservice architecture, to the 
best of our knowledge, no work has been yet 
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published that deals with software component 
decomposition and replacement of its functional parts 
with microservices. This paper aims to introduce an 
automatic process that identifies and recommends the 
full or partial replacement of a software component 
by a number of available microservices that support 
specific business operations. The proposed process 
adopts the basic principles proposed in a previous 
work of the authors (Andreou and Papatheocharous, 
2015) related to a layered component-based software 
development architecture which was adapted and 
refined to accommodate the differences and 
peculiarities of the Microservices environment. The 
framework in (Andreou and Papatheocharous, 2015) 
supports the process of matching available 
components against a set of specifications expressed 
in a formalised syntax and utilizing ontologies. Apart 
from modifications to this framework, the present 
paper adds new tasks that extend and improve its 
recommendation layer. 

The following research questions motivate and 
guide this research work: 
RQ1: How should a Component Based Reusability 
Framework be modified to work equally well with 
Microservices? 
RQ2: How can a component be decomposed into 
functional parts, independent or not? 
RQ3: How can the assessment of the suitability of 
microservices to substitute component function be 
performed, and how should it handle cases where the 
decomposed functions present dependencies? 

The remainder of the paper is organized as 
follows: A brief literature overview is performed in 
section 2, while section 3 describes our approach in 
detail. Section 4 presents the experimental process 
applied for evaluation and discusses the results 
produced. Finally, section 5 concludes the paper and 
outlines future research steps. 

2 LITERATURE OVERVIEW 

To the best of our knowledge this is the first attempt 
to propose a structured process targeting the 
decomposition of well described software 
components and replace the identified functional 
parts with microservices to the greatest possible 
degree. However, a brief literature overview has been 
carried out over the two topics that are strongly 
related to our research work, the software 
decomposition and the services synthesis. 

Several different approaches have been proposed 
to deal with the decomposition of monolithic systems 
or services. Baresi, Garriga and De Renzis in (Baresi 

et al., 2017) propose a clustering-like approach to 
support the identification of microservices and the 
specifications of the extracted artefacts during either 
the design phase of a new system, or while the re-
architecting of an existing system. Service Cutter 
(Gysel et al., 2016) is a tool framework that is based 
on a structured repeatable approach to decompose a 
monolith into microservices. A stepwise technique to 
identify microservices on monolithic systems is 
proposed in (Levcovitz et al., 2016) in which the 
authors deliver an approach based on a dependency 
graph among three distinct parts of an application, 
client, server and database. Balalaie, Heydarnoori and 
Jamshidi in (Barba, 2005) describe their experiences 
of an ongoing project on migrating an on-premise 
application to microservice architecture. Their 
approach is based on architectural refactoring, 
considering the characteristics of microservice 
architecture.  

The vast majority of the literature which deals 
with services composition is concerned with web 
services. The work in (Moghaddam and Davis, 2015) 
presents a review of existing proposals for services 
selection by quoting the advantages and 
disadvantages of each approach. A systematical 
review of recent research on QoS-aware web service 
composition using computational intelligence 
techniques is presented in (Jatoth et al., 2015). A 
classification was developed for various research 
approaches along with the analysis of the different 
algorithms, mechanisms and techniques identified. 
An analysis and comparison of the latest 
representative approaches in the area of automated 
web service composition is the main contribution of 
the work in (Zeginis and Plexousakis, 2010). The 
existing research approaches were grouped into four 
distinct categories, workflow-based, model-based, 
mathematics-based and AI planning. 

It is evident that the current literature on software 
services synthesis is limited, and especially in the 
case where this synthesis targets the migration from 
component-based development to microservices is 
rare if not non-existent. This is the gap the current 
paper aspires to fill. 

3 AUTOMATIC SPECIFICATION 
AND MATCHING OF 
MICROSERVICES 

3.1 Specification and Matching 
Framework 

As previously mentioned, the present paper aims to 
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introduce an automatic process that identifies and 
recommends the full or partial replacement of a 
software component by a number of available 
microservices. The proposed process adopts basic 
principles proposed by the authors in a previous work 
(Andreou and Papatheocharous, 2015) More 
specifically, the utilization of the description layer in 
that work leverages the decomposition of a software 
component into distinct operations and respectively 
profiles all candidate microservices that may 
substitute these operations and simultaneously adhere 
to the same constraints (e.g. performance). 
Additionally, the translation of software components 
and microservices textual profiles into ontologies 
assists the automatic matching process towards the 
integrated replacement. 

The proposed process follows the same 5-layers 
architecture as in our previous work (Andreou and 
Papatheocharous, 2015): (i) The Description layer 
provides a profile structure which includes all 
relevant information that describes the component(s) 
under decomposition and the available 
microservice(s). A developer/vendor of a component 
or microservice, defines a set of properties (functional 
and non-functional) that describe the specific artefact: 
(a) the component description which will serve as the 
basis for its decomposition and the properties 
characterizing each decomposing part, and, (b) the 
properties of a microservice that describe what it has 
to offer in terms of functionality, performance, 
availability, reliability, robustness etc. that one may 
look for when attempting to locate suitable 
microservices for integration and substitution of the 
component parts. (ii) The Location layer essentially 
provides general-purpose actions, like searching, 
locating and retrieving the microservice(s) of interest 
that match the profile of the component’s 
decomposed parts. (iii) The Analysis layer evaluates 
the level of suitability of the candidate 
microservice(s) and provides matching results that 
will guide the selection of microservices for 
integration. (iv) The Recommendation layer uses the 
information provided by the previous layers and 
produces suggestions as to which of the candidate 
microservice(s) may be best integrated and why, 
based on an assessment made to ensure that certain 
requirements at the microservice level are preserved 
also at the integrated level. (vi) Finally, the Build 
level essentially comprises a set of integration and 
customization tools for combining component(s) to 
build larger systems. The present paper focuses on the 
first four layers and describes a novel way for 
automatic matching between desired and available 
microservice(s) based on the directions provided in 

(Andreou and Papatheocharous, 2015) and extending 
or revising them where appropriate. The interested 
reader may refer to that work for more details on the 
layered component architecture, whilst every effort 
has been made to make the current paper self-
explanatory. 

Components and microservices are first expressed 
in a semi-structured form of natural language which 
is then transformed into an ontology. This ontology 
standardises the description of the properties of the 
two software artefacts and will constitute the 
cornerstone of the specifications that will be used to 
match decomposed parts of components with the 
available microservice(s), the latter being stored in a 
repository. Thus, the problem of finding suitable 
microservice(s) to replace component functionality is 
reduced to matching (aligning) ontologies. This 
process is executed by automatically parsing the 
profile(s) of the two software artefacts (for simplicity 
we assume one component and N microservices) and 
their translation into instance values of two dedicated 
ontologies, one for each artefact, which are built so as 
to reflect the most critical properties suggested in 
literature for that artefact. At the same time, as the 
ontology of the component is being built, certain parts 
are marked so that a second step may then be executed 
which isolates these parts, as these are recognised to 
be directly comparable to parts of the microservices 
ontology. Hence, the latter step transforms them into 
a meta-ontology (subset of the component’s initial 
ontology) describing the so-called ‘required’ or 
possible functions to be executed by available 
microservices. Then the matching of properties 
between the required and offered microservice(s) 
takes place automatically at the level of ontology 
items and a suitability ratio is calculated that suggests 
which microservice(s) to consider for possible 
integration. The whole process is graphically depicted 
in figure 1.  

3.2 Profiling 

Based on our previous work and an extended 
literature study, we identified a set of desired 
properties for components and microservices thus 
providing their profile. A profile is categorized into 
functional, non-functional and other properties:  
(i) Functional properties: Include those properties that 
describe what the component or microservice actually 
does. It involves a general description of the 
functionality delivered through methods along with 
their specific descriptions. 
(ii) Non-functional properties: Include properties 
reflecting how the component or microservice 
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behaves, mostly in terms of performance, using 
indicators such as time for execution, bytes of data 
processed per second, operations executed per 
second, number of concurrent users supported, cold 
start (the transition time from deployment to actual 
execution), etc. 

 

Figure 1: The proposed process for component 
decomposition and microservices substitution. 

 (iii) Other properties: Such properties involve other 
critical attributes of a component or microservice that 
may not be considered as functional or non-
functional. These constitute mostly properties that 
provide useful general information regarding the 
artefact and its usage. In this part a profile provides 
information regarding the programming language it is 
implemented with, the level of security it provides, its 
auditability, data exchange, interaction protocol, type 
(data source, application login, GUI, etc.), data 
format, load balancing, obligations and constraints, 
automation and level of binding, verification and 
validation issues, cost, the data storage which 
describes how the component stores its data, and, 
lastly, a service descriptor. 

Numerical properties included in the categories 
above may provide minimum or maximum threshold 
values, which will be used to guide the matching 
process for selecting suitable microservices for 
substitution. 

As in our previous work we resort to using the 
Extended Backus-Naur Form (EBNF) to express 
component and microservice descriptions, which 
allows for formally proving key properties, such as 
well-formedness and closure, thus assisting in 
validating the semantics. The proposed grammar has 
been developed with the Another Tool for Language 
Recognition (ANTLR) (http://www.antlr.org/), a 
parser and translator generator tool that supports 
language grammars in EBNF syntax. Figures 2 and 3 
depict the EBNF description of a component and a 
microservice respectively, which are analysed below. 

The profile of a component includes, from top to 
bottom, the following: First, some definitions of 
component items are provided, including a name and 
a list of one or more services it offers. Each service is 
defined by a primary and a secondary function, the 
latter being more informative, as well as an optional 
description. Primary types involve general 
functionality, like I/O, security, networking, etc.; the 
secondary types explicitly define the actual function 
it executes, e.g. printing, authentication, video 
streaming, audio processing etc. For example, the 
service could be [Security, Login Authentication].  

When decomposition takes place, this is one of the 
main features that will guide the searching for a 
microservice and it is considered as a Constraint, 
something which means that a candidate microservice 
will be rejected if it does not offer such functionality. 
Interfacing information comes next that outlines the 
various methods that implement its logic; a method is 
further analysed to Preconditions, Postconditions, 
Invariants and Exceptions, if any. This piece of 
information is provided upfront by the component 
developer/vendor. Non-functional requirements or 
properties are defined next denoting mandatory 
behaviour in terms of performance. Finally, general 
information intended to serve reusability purposes 
(application domain, programming language, OS 
etc.) is provided. It should also be mentioned that 
certain features in the profile may be assigned 
specific values along with a characterization as to 
whether this feature is minimised (i.e. the value 
denotes an upper acceptable threshold) or maximised 
(i.e. the value denotes a lower acceptable threshold) 
in the component under decomposition. For example, 
if performance is confined under 15 seconds, then 
next to the performance indicator the couple (15, 
minimise) is inserted.  

The definition of the attributes included in the 
microservice profile is defined in a more detailed 
form compared to the component profile and thus the 
microservice profile may be considered as a more 
refined version of the component profile. The 
microservice profile first describes the data types 
used to define the property values. These types 
suggest three categories of microservice attributes. 
The first category is the ‘functional requirements’ 
where a specific textual description is provided 
regarding the function a microservice delivers. Since 
microservices are smaller and more specific than 
components, so is their description, which intuitively 
documents what it does. The second category is the 
‘non-functional requirements’ which includes 
information describing mostly performance, as well 
as other constraints. These attributes include 
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performance indicators like bytes processed per 
second and operations executed per second, the level 
of security it provides, and information regarding its 
data storage (SQL, GraphDB, Document Store, File). 
The third and last category is ‘other requirements’ 
and provides additional general information 
regarding the microservice. The properties in this 
category include the programming language used to 
implement the microservice, the ability to audit 
events in logs (auditability), information regarding 
the data exchange protocol (REST, SOAP, RPC) and 
interaction protocol (Synchronous, Asynchronous) 
supported, data format in which data is exchanged 
(JSON, XML), load balancing, cost etc., as shown in 
figure 3. 

After briefly describing both profiles, we will now 
focus on the process which connects components with 
microservices and demonstrate how component 
decomposition is performed and microservices are 
matched through ontology instances.   

3.3 Components Decomposition and 
Microservices Matching 

3.3.1 Component and Microservices 
Ontology 

A special form of ontology is devised to facilitate the 
subsequent steps of decomposing a component into 
individual functional parts, and then locating and 
assessing the suitability of available microservices for 
integration using a self-contained description. The 
ontology is built around the property axes of the 
components and microservices profiles described 
above, the latter conforming to the same semantic 
rules as the former, so as to facilitate their automatic 
transformation to instances of the ontology. Figures 4 
and 5 depict the largest parts of these ontologies, 
while some details have been intentionally omitted 
due to size limitations. 

The matching process works at the level of the 
ontology tree and not the textual descriptions of the 
profile, something that makes comparisons more easy 
and quick, both computationally and graphically 
(visually).  This is due to an ontology alignment 
algorithm used to compare (align) two same-
structured ontology instances aiming at locating 
attribute similarities and attribute values distances. 
The ontology alignment algorithm works by parsing 
both ontologies as ontology tree instances and 
investigates their structure level by level in a tree 
structure hierarchy.  

After the schema similarity is compared, the 
algorithm calculates the value distance for each 

attribute depending on their data type since there is a 
form of heterogeneity between attribute values. For 
example, some attributes may be of binary type, while 
some others may be of numerical. The solution is to 
handle distance calculation differently depending on 
the data type compared in each attribute. In our case 
the ontology alignment algorithm used is Graph 
Matching for Ontologies (GMO) (Hu et al., 2005). 
GMO initially parses two ontologies and transforms 
them to RDF bipartite graphs following some matrix 
operations to determine the structural similarity. This 
is the first and most crucial step of the proposed 
methodology as it initially discards non-matching 
microservices from the pool of available candidate 
microservices. The matching process is described in 
detail in the next section.  

3.3.2 Matching Process 

Different methods are proposed in literature for 
description processing, such as simple string,  
(Frappier, 1994), signature matching (Zaremski and 
Wing, 1993) and behavioural matching (Zaremski 
and Wing, 1997). The approach followed in this paper 
is slightly different; it employs a hybrid form 
combining string and behavioural matching. More 
specifically, a dedicated parser is implemented that 
recognises certain parts in a profile (functional, non-
functional and other properties as previously 
described) which is translated into an ontology 
instance (either of a component or a microservice).  
The parser first verifies that the profile is expressed 
in the proper context and semantics of the structures 
presented earlier (see figures 2 and 3) using the 
ANTLR framework and then proceeds with building 
the ontology tree of instances according to the the 
recognized parts. Parsing and transformation 
essentially build the ontology tree instances that 
describe the software components under 
decomposition and the available microservices. The 
next step is to match properties between ontology 
items. The tree instance of the component under 
migration is projected on top of any other candidate 
microservice assessing the level of requirements 
fulfilment in two phases: The first phase checks that 
all required functions (the component’s part to be 
replaced) are satisfied by the available microservices; 
therefore, we treat these as functional constraints.  

In this case the list of services sought 
(decomposed part) must be at least a subset of the 
services offered (candidate microservices). The 
second phase is executed once all functional 
constraints are satisfied and calculates the level of 
suitability of each candidate microservice. 

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

138



 

Figure 2: Component profile in EBNF. 

(**** Component EBNF Profile ****) 
DIGIT : 0|1|2|3|4|5|6|7|8|9; 
INTEGER : DIGIT {DIGIT}; 
CHAR : A|B|C|…|W|a|b|c|…|W|!|@|#|…; 
STRING : CHAR {CHAR}; 
Variable_type : CHAR|INTEGER|…; 
Variable_name : STRING; 
Primary_Type : ‘Input’|’Output’|’Security’|’Multimedia’|’Networking’|’GUI’|…; 
Secondary_Type : ‘Authentication’|’Data processing’|’Video’|’Audio’|’File access’|’Printing’|…; 
Details_Description : CHAR {CHAR}; 
Min_Max_Type : ‘Minimize’|’Maximize’; 
Required_Type : ‘CONSTRAINT’|’DESIRED’; 
Service : ‘S’ INTEGER Primary_Type, Secondary_Type { Details_Description} Required_Type; 
Service_List : Service {Service}; 
Operator : ‘exists’|’implies’|’equals’|’greater than’|’less than’|…; 
Condition : Variable_Name Operator {Value} {Variable}; 
Precondition : Condition {Condition}; (*IF THESE ARE PROVIDED BY DEVELOPER/VENDOR*) 
Postcondition : Condition {Condition}; (*IF THESE ARE PROVIDED BY DEVELOPER/VENDOR*) 
Invariants : Condition {Condition}; (*IF THESE ARE PROVIDED BY DEVELOPER/VENDOR*) 
Exceptions : Condition {Details_Description} {Exceptions}; (*IF THESE ARE PROVIDED BY DEVELOPER/VENDOR*) 
Method : ‘M’ INTEGER {Variable Variable_Type} {Precondition} {Postcondition} {Invariant} {Excpetion}; (*IF THESE 
ARE PROVIDED BY COMPONENT DEVELOPER/VENDOR*) 
(*==== INTERFACING ====*) 
Service_analysis : ‘Service’ INTEGER ‘:’ ‘Method’ INTEGER ‘:’ STRING Method {Method}; 
(*==== NON_FUNCTIONAL PROPERTIES ====*)  
Performance_indicators : [ ‘Response time’ (INTEGER) Min_Max_Type Required_Type | ‘Concurrent users’ (INTEGER) 
Min_Max_Type Required_Type | ‘Records accessed’ (INTEGER) Min_Max_Type Required_Type | … ] 
{Performance_indicators}; 
Resource_requirements : [ ‘memory utiliztion’ (INTEGER) Min_Max_Type Required_Type | ‘CPU reqs’ (INTEGER) 
Min_Max_Type Required_Type | … ] {Resource_requirements}; 
Quality_features : [ ‘Availability’ (INTEGER) Min_Max_Type Required_Type | ‘Reliability’ (INTEGER) Min_Max_Type 
Required_Type | … ] {Quality_features; 
(*==== END OF NON-FUNCTIONAL PROPERTIES; NEW ITEMS MAY BE ADDED HERE ====*) 
(*==== REUSABILITY PROPERTIES ====*) 
Application_domain : ‘Medical’ Required_Type | ‘Financial’ Required_Type | ‘Business’ Required_Type | … 
{Application_domain}; 
Programming_language : ‘C’ Required_Type | ‘C++’ Required_Type | ‘Java’ Required_Type | ‘VB’ Required_Type | … 
{Application_domain}; 
Operating_systems : ‘Windows’ Required_Type | ‘Linux’ Required_Type | ‘Unix’ Required_Type | ‘IOS’ Required_Type | 
‘Android’ Required_Type | … {Operating_systems}; 
Openness : ‘black’ Required_Type | ‘glass’ Required_Type | ‘grey’ Required_Type | ‘white’ Required_Type; 
Price : INTEGER; 
Development_info : STRING; 
Developer: STRING; 
Version : STRING; (*IF THESE ARE PROVIDED BY DEVELOPER/VENDOR*) 
Protocols_Standards : [ ‘JMS/Websphere’ Required_Type | ‘DDS/NDDS’ Required_Type | ‘COBRA/ACE TAO’ 
Required_Type | ‘POSIX’ Required_Type | ‘SNMP’ Required_Type | … ] {Protocols_Standards};  
Documentation : [ ‘Manuals’ Required_Type | ‘Test cases’ Required_Type | … ]; (*IF THESE ARE PROVIDED BY 
DEVELOPER/VENDOR*) 
(*==== END OF REUSABILITY PROPERTIES; NEW ITEMS MAY BE ADDED HERE ====*) 
SPECIFICATIONS PROFILE :  
 ‘Specifications Profile :’ STRING; ‘Descriptive title :’ STRING; 
 ‘Functional Properties :’ Service_List; 
 ‘Interfacing :’ Service_analysis {Service_analysis}; 
 ‘Non-functional Properties :’ Performance_indicators, Resource_requirements, Quality_features; 

‘Reusability Properties :’ Application_domain, Programming_language, Operating_systems, Openness, Price,            
 Protocols_Standards, Documentation; 
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Figure 3: Microservice profile in EBNF. 

 

Figure 4: Component ontology. 

(**** Microservice EBNF Profile ****) 
 
(*==== General Properties ====*) 
BINARY : 'Yes' | 'No'; 
STRING : (' '..'~')+; 
NUMBER: ('0'..'9')+; 
 
WS : [ \r\n\t] + -> skip; 
NEWLINE : [\r\n]+; 
 
(*==== Functional Requirements ====*) 
functional_description : STRING; 
 
(*==== Non-functional Requirements ====*) 
securityLevel : NUMBER; 
bytesProcessedPerSecond : NUMBER; 
operationsExecutedPerSecond : NUMBER; 
coldStart : NUMBER '.' NUMBER; 
 
(*==== Other ====*) 
programmingLanguage : 'C' | 'C++' | 'Java' | 'Python'; 
dataStorage : 'None' | 'SQL' | 'Graph' | 'Document' | 'File'; 
auditability : BINARY; 
dataExchange : 'REST' | 'SOAP' | 'RPC'; 
interactionProtocol : 'Synchronous' | 'Asynchronous'; 
type : 'Data Source' | 'Application Logic' | 'GUI'; 
dataFormat : 'JSON' | 'RSS' | 'XML'; 
loadBalancing : 'N/A' | NUMBER 'threads'; 
obligationsConstraints : 'Public' | 'Private' | 'Local'; 
automationLevelOfBinding : 'Manual' | 'Semi-automated' | 'Fully automated'; 
verificationValidation : 'Yes with test data' | 'Yes without test data' | 'No'; 
serviceDescriptor : 'N/A' | 'UML' | 'WSDL' | 'OWL-S' | 'BPEL'; 
cost : NUMBER '.' NUMBER; 
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Figure 5: Microservice ontology. 

A demonstration example for this phased 
approach is given in the experimental section, while 
a more detailed description of the matching process is 
provided below. 

Firstly, the functionality offered by a software 
component is decomposed into one or more functions 
(methods) and the associated non-functional aspects 
(performance indicators). This is performed by 
traversing the ontology tree in a depth-first-search 
manner until we reach the leafs, that is, the details of 
the methods (e.g. interfaces, arguments, conditions, 
etc.) the component is made of (see component 
profile in figure 2). Then the algorithm climbs up the 
ontology structure until it reaches the definition of the 
method to which this detailed information refers. This 
way the functional parts of interest in the 
component’s ontology instance are isolated creating a 
form of meta-ontology as depicted in figure 1 and 
described earlier. The non-functional properties are 
then visited on the ontology tree top-down using a 
string-matching approach, where we differentiate 
between two cases: (i) The overall performance 
indicator(s), which describe how the component 
behaves as one entity of integrated functions. This 
will be used during the synthesis part of the matching 
algorithm to guide the process of recommending 
microservices for integration taking into 
consideration how their combination should behave 
as a whole, any incompatibilities in terms of 
interfacing, timing (synchronous/asynchronous), its 
type (SOAP, REST), etc. (see experimental part in 
section 4); (ii) Method-specific indicators, that 
constrain the way a certain function (method) delivers 
its functionality as a single unit. This piece of 
information will be used by the matching algorithm 
when assessing the suitability of a microservice as it 
is considered a mandatory requirement. As soon as all 
meta-ontology parts (i.e. methods) are isolated, the 
proposed matching algorithm is invoked. Considering 
a single function (method) from the derived 
decomposition, we aim to match it with a candidate 

microservice that resides in the pool of available 
microservices. For simplicity, let the instance of the 
source (component) function for microservice 
substitution be denoted as ܯ௦௞ (k=1..M, where M is 
the number of decomposed component functions), 
which is considered as the profiled microservice 
sought after decomposition (from now on we will 
refer to this as the ‘source microservice’). At the other 
end, the profile of all of the available microservices is 
also parsed and ontology instances are created, let 
these be ܯ௧௜  (i=1..N, where N is the number of 
available microservices). Due to the fact that there is 
a form of heterogeneity between microservice 
attributes that concern their data types, a combination 
of metrics is used in order to assess the matching 
score of each target microservice instance Ti while 
taking into account the aforementioned 
heterogeneity. 

The ontology profile, as described through EBNF, 
has three distinct data types, namely binary, 
numerical and string. Therefore, a different metric 
function is used for each data type. For the binary data 
type, the similarity function score is given by the 
following formula: 

௕௜௡ݏ ൌ
1
ܰ
෍ܾ௦௧,௜

ே

௜ୀଵ

 (1)

where  

ܾ௦௧,௜ ൌ ൞

0, 	௦ܯ	݊݅	݀݁ݎ݅ݑݍ݁ݎ	݅	݁ݐݑܾ݅ݎݐݐܽ	ݕݎܾܽ݊݅	݂݅
	௧ܯ	݊݅	݂݀݁݅ݏ݅ݐܽݏ	ݐ݋݊	ݏ݅

1, 	௦ܯ	݊݅	݀݁ݎ݅ݑݍ݁ݎ	݅	݁ݐݑܾ݅ݎݐݐܽ	ݕݎܾܽ݊݅	݂݅
									௧ܯ	݊݅	݂݀݁݅ݏ݅ݐܽݏ	ݏ݅

 

 
and ܯ௦ and ܯ௧ are the source and target microservice 
ontology instances respectively. 

Respectively, the score between any two sets 
of numerical attributes is given by: 

௡௨௠ݏ ൌ
1
ܰ
෍ሼ݉ܽݔ௦௧,௜,݉݅݊௦௧,௜ሽ

ே

௜ୀଵ

 (2)
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where ݉ܽݔ௦௧,௜  is the formula for attribute i to be 
maximized between source and target ontology 
instances given by   

௦௧,௜ݔܽ݉ ൌ 1 െ
݊௦,௜ െ ݊௧,௜

,൫݊௦,௜ݔܽ݉ ݊௧,௜൯
 (3)

and ݉݅݊௦௧,௜  is the formula for attribute i to be 
minimized between source and target ontology 
instances given by   

݉݅݊௦௧,௜ ൌ 1 ൅
݊௦,௜ െ ݊௧,௜

,൫݊௦,௜ݔܽ݉ ݊௧,௜൯
 (4)

Since some attribute values can be maximized or 
minimized, we use the correct formula for attribute 
value similarity calculation each time. For example, 
the attribute bytes processed per second is maximized 
because it has to score higher if the value offered is 
higher than the desired one. On the contrary, the 
attribute cost has to be minimized due to the exact 
opposite reason. Cost similarity value has to score 
higher if the offered value is less than the desired one. 

Lastly, the score between any two sets of string 
attributes ݏ௦  and ݏ௧  is given by the mean of the 
Jaccard similarity coefficient: 

௦௧௥ݏ ൌ ሺܬሺݏ௦, ௧ሻሻതതതതതതതതതതതത (5)ݏ

where ܬሺݏ௦, ௧ሻݏ  is the Jaccard similarity coefficient 
between source and target string sets respectively, 
and is calculated as: 

,௦ݏሺܬ ௧ሻݏ ൌ
௦ݏ| ∩ |௧ݏ
௦ݏ| ∪ |௧ݏ

ൌ
௦ݏ| ∩ |௧ݏ

|௦ݏ| ൅ |௧ݏ| െ ௦ݏ| ∩ |௧ݏ
 

(6)

where: 
|௦ݏ|  is the number of terms contained in string 
,௦ݏ  ,௧ݏ ௧| is the number of terms contained in stringݏ|
and	|ݏ௦ ∩  ௧| is the number of shared terms betweenݏ
strings ݏ௦ and ݏ௧ respectively. 

Using the equations above we can now describe 
the procedural flow of the matching algorithm. The 
algorithm consists of two sequential phases: 

Phase 1: All attributes of the source microservice, 
which are considered as mandatory, must map one-
on-one to the attributes of the target microservice. 
This means that, by traversing all of the available 
target microservices, each attribute of the source 
microservice is verified to exist in the target 
microservice. Otherwise, the target microservice is 
discarded and it is removed from the pool of 
candidate microservices. Therefore, after Phase 1 
concludes, the pool of candidate target microservices 
has been reformed to include only those target 

                                                                                                 
1 https://tinyurl.com/y8deeffz 

microservices that in general match the mandatory 
requirements of the source microservice; the level of 
suitability of the microservices in this pool may vary 
depending on secondary, desired features or 
properties they may possess, the respective values of 
which are subsequently assessed in Phase 2 by the 
score functions previously described. As previously 
mentioned, Phase 1 is supported by a variation of the 
GMO algorithm which was developed to parse every 
pair of the compared microservice ontologies (source 
and target) and defines their structural similarity.   

Phase 2: The similarity between a source 
microservice and a specific target microservice in the 
pool of candidate microservices formed by Phase 1 is 
assessed through the relevant score functions 
depending on their data type. The algorithm 
calculates the mean of binary, numerical and string 
score of the pair and produces a similarity value. This 
is repeated for every pair of source and target 
microservice in the pool, and the final outcome is a 
ranked matching score: 

௧௢௧ݏ ൌ ሺݏ௕ప௡, ,௡௨௠ݏ ௦௧௥ሻതതതതതതതതതതതതതതതതതതതത (7)ݏ

The matching algorithm is shown in figure 6. 

4 EXPERIMENTAL PROCESS  

A two-stage experimental process was designed and 
executed aiming to assess the efficiency of the 
proposed framework. Specifically, in the first stage 
(proof of concept) we examined the ability of the 
framework to deliver and recommend a list of 
microservices that are suitable to replace specific 
functions of a component, ranked based on the 
suitability score of equation (7). In the second stage 
(composition assessment) two MOGAS were 
employed to deliver near-optimal synthesis of 
candidate microservices taking into account the 
required dependencies as these were defined in the 
software component design. All scripts that support 
the aforementioned experimental environment were 
implemented in Python 3.7 and the full sets of results 
are available in this link 1 . The two stages are 
described in detail below: 

4.1 Proof of Concept 

During the first stage of the experimental evaluation, 
we have tested the proposed framework using two 
specific cases. In the first case we consider having the 
functional parts (profiles) of a decomposed CRUD 
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component, which provides the simple functions of 
create, read, update and delete for a business artefact 
(e.g. a customer or invoice). We assume in this case 
that there are no dependencies across the functional 
parts of the decomposed component, that is, every 
operation is individual and does not depend on any 
other operation. This means that execution of one of 
the above operations does not require the prior 
execution of another. In the second case we focus on 
seeking to replace the functional parts of a component 
that are part of an inventory system and are dedicated 
for invoice updating. This component consists of five 
different functions as follows: Update Invoice Items, 
Update Invoice Headers, Update Corresponded 
Posting, Update Debtor’s Balance and Print Invoice. 
These functions are all sequentially dependent (in the 
order listed), that is, every function depends on its 
previous one and starts as soon as its predecessor has 
concluded. 

For the execution of the experiments, two EBNF 
profiles, aligned with our proposed framework, were 
created so as to fulfil the description of the two 
software components in hand for the stages described 
above. A pool of 5000 synthetic microservices 
profiles were randomly constructed ensuring that a 
minimum number of 200 microservices match the 
requirements of each functional part for both software 
components. This intuitively means that we make 
sure that every decomposed part has at least 200 

candidate microservices in the pool that are matched 
and satisfy the mandatory requirements but with 
unknown suitability score. This will enable 
examining the correctness of our matching algorithm. 
We validated the scores computed by the matching 
algorithm by varying certain attribute values of the 
functional parts that derive from the decomposed 
component and repeating the matching process. We 
observed that by varying the attribute values in a 
series of repetitions and experiments, the matching 
algorithm correctly yields different scores and proper 
rankings among the candidate microservices as 
expected. This verified that changing the 
requirements of the functional parts triggers different 
scores and microservices that previously matched a 
specific functional part with a relatively high score 
tend to score lower when the requirements shift and 
vice versa. 

4.2 Composition Assessment 

As explained above, this experimental stage aims to 
examine the suitability of the utilization of heuristic 
approaches to deliver near-optimal microservices 
synthesis considering the satisfaction of two or more 
objectives related to non-functional characteristics of 
the software component. The vast solution space of  
the problem under study prohibits the utilization of  
computational process. We resorted to using heuristic 

 

Figure 6: Microservice ontology matching algorithm. 

#Decompose software component 
source_microservices = decompose(component)  
 
#Parse ontologies 
for s in source_microservices: 
 ௦ = parseOntology(s)ܯ 
 for ܯ௧ in target_ontologies: 
  #Phase 1 
  candidates = [] 

#Structurally similar microservices cause the target microservice to be included in the 
microservice candidate pool 

  if(ܱܯܩሺܯ௦,ܯ௧ሻ ൌൌ 1): 
   #Phase 2 
   candidates.append({ܯ௧ : score(ܯ௦,	ܯ௧)}) 
   
#The score function is the algorithms’ Phase 2 which is implemented below according to the similarity 
functions as defined above: 
def score(ܯ௦,	ܯ௧): 
 (()௧.getBinaryAttributesܯ	,()௦.getBinaryAttributesܯ)௕௜௡ = scoreBinaryݏ 
 (()௧.getNumericalAttributesܯ	,()௦.getNumericalAttributesܯ)௡௨௠= scoreNumericalݏ 
 (()௧.getStringAttributesܯ	,()௦.getStringAttributesܯ)௦௧௥ = scoreStringݏ 
 score = (ݏ௕௜௡ + ݏ௡௨௠ + ݏ௦௧௥) / 3 
 return score 
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approaches and, more specifically, genetic 
algorithms, as our problem was rich in candidate 
solutions with conflicting objectives; therefore, we 
selected multi-objective genetic optimization as it has 
been proven to be quite efficient in such cases.  

Two MOGAS were selected to solve the multi-
objective optimization problem, which will also be 
used to compare their performance and effectiveness: 
The Non-dominated Sorting Genetic Algorithm II 
(NSGA-II) and the Strength Pareto Evolutionary 
Algorithm 2 (SPEA2). The selection of these two 
specific algorithms was made due to their wide 
acceptance and use, but most importantly their good 
performance in such kind of applications which was 
proven in our case too after a quick verification with 
preliminary runs.  The multi-objective optimization 
environment was accordingly adjusted and 
configured based on the problem under study. The 
two objectives formed are the minimization of the 
microservice cost and the execution time 
(performance) respectively. We assume that the two 
are competing in the sense that the higher the 
performance the more expensive the microservice. 
The set of decision variables was constructed by five 
vectors each corresponding to a decomposed function 
and yielding values related to the selected candidate 
microservice that delivers the same functionality. 
Two constraints were also set, one for each objective, 
both denoting an upper value for the objectives (cost, 
time) that cannot be tampered. The experimental 
implementation of the algorithms was performed 
using Platypus 2 , a Python-based multi-objective 
optimization algorithms library.  

4.3 Results and Discussion 

The results generated by the execution of the 
proposed process over the two experimental cases are 
provided in Tables 1 and 2 respectively (sample of the 
best five ranked microservices). The results consist of 
the id of the best five microservices for each 
functional part along with their matched score in 
descending order. 

Table 1: Scoring results of components' functional parts 
without dependencies. 

Create Read Update Delete 

184 (0.48) 1316 (0.62) 445 (0.89) 1317 (0.75) 

37 (0.48) 227 (0.56) 406 (0.89) 814 (0.63) 

91 (0.47) 353 (0.54) 524 (0.87) 747 (0.55) 

53 (0.44) 236 (0. 53) 409 (0.87) 659 (0.53) 

73 (0.44) 379 (0.51) 563 (0.86) 728 (0.52) 

                                                                                                 
2 https://platypus.readthedocs.io 

Table 2: Scoring results of components' functional parts 
with dependencies. 

Print 
invoice 

Update 
invoice 
items 

Update 
invoice 
headers 

Update 
debtors 
balance 

Update 
posting 

800 
(0.65)

104 
(0.50)

329 
(0.63) 

740 
(0.61) 

421 
(0.90)

1455 
(0.60)

1506 
(0.49)

1612 
(0.60) 

692 
(0.59) 

545 
(0.89)

1995 
(0.58)

65  
(0.48)

312 
(0.55) 

706 
(0.58) 

499 
(0.89)

2079 
(0.57)

101 
(0.47)

273 
(0.53) 

611 
(0.55) 

524 
(0.88)

2137 
(0.57)

82  
(0.47)

231 
(0.52) 

1506 
(0.54) 

1480 
(0.87)

 
For the first case, a total number of 955 unique 

microservices have been positively assessed and 
included in the candidate microservices pool in 
descending order based on the calculated suitability 
score. Specifically, Create function included 249 
candidates, Read function 225 candidates, Update 
function 233 candidates and finally Delete function 
248 candidates. As regards the second case, a total 
number of 1709 unique microservices have fulfilled 
the mandatory requirements and were selected to be 
included in the candidate microservices pool as 
follows:  652 microservices were included in Print 
Invoice function’s list, 283 in Update Invoice 
function’s list, 236 microservices in Update Invoice 
Headers function’s list, 280 microservices in Update 
Debtors Balance function’s list, and, finally, 258 
microservices are included in Update Posting 
function’s list.  

Firstly, we observed that our algorithm performed 
successfully discarding all candidate microservices 
that failed to satisfy even one mandatory requirement. 
Secondly, by choosing and comparing arbitrarily 
microservices from the same list of candidates we 
confirmed the correct assessment of the 
microservices by the matching algorithm reflected in 
the calculated suitability scores, as well as the 
correctness of their prioritization. 

As described in the experimental process design, 
the results extracted from the second case (software 
component decomposed into a series of dependent 
actions), were then used for the assessment of the 
microservices synthesis. The number of possible 
solutions (PS) in this case is calculated by equation 
(8) to be over 3 trillions.  

|ܲܵ| ൌ ෑݔ௜

ே

௜ୀଵ

 (8)
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Figure 7: Near-optimal Pareto fronts. 

N in eq. (8) corresponds to the number of 
decomposed functions and Xi is the number of 
recommended microservices for function i. 

Each MOGA was run 100 times for 500000 
fitness evaluations (FE) resulting in the generation of 
100 Pareto fronts. By combining these Pareto fronts, 
a near-optimal Pareto front was produced for each 
algorithm. The two near-optimal Pareto fronts are 
depicted in figure 7. The first observation one can 
make when inspecting the Pareto fronts is that both 
MOGAs delivered similar solutions. Going a step 
further and by studying the microservices 
combinations which corresponded to the optimal 
solutions, we observed that microservices with high 
individual suitability scores were missing from the 
proposed optimal solutions and respectively 
microservices belonging to the optimal solutions sets 
had relatively low suitability scores compared to 
others. This finding is perfectly reasonable as the 
specific experiment was focused on optimising cost 
and performance, while the suitability score is the 
collection of other parameters as well. Therefore, the 
recommended solutions that will drive the synthesis 
of microservices will always depend on the aspects 
designers need to optimise each time. 

The performance of the two MOGAs was 
assessed and compared with the use of the 
Hypervolume (HV) (Thiele and Zitzler, 1999) and the 
Inverted Generational Distance (IGD) (Veldhuizen 
and Lamont, 2000) quality indicators. The HV 
indicator assesses the volume covered by the non-
dominated solutions of a Pareto front in the objective 
space and therefore, the larger the volume covered by 
the solutions generated in a run, the higher the HV 
value, which indicates a better performance. The IGD 
indicator assesses how far the elements of the true 
Pareto front are from the non-dominated points of an 
approximation Pareto front and therefore, the greater 
the extent of the true Pareto front that is covered by 
the non-dominated points generated by a run in the 

objective space, the lower the IGD value, which 
denotes a better performance. Each algorithm was run 
10 times and both HV and IGD values were 
calculated for each algorithm. In order to compare the 
performance of the two algorithms the median HV 
and IGD were calculated. The HV value for both 
algorithms was identical and equal to 0.0257. The 
IGD value for the NSGA-II was 0.6113 and for 
SPEA2 0.6150. 

Considering that the results of the two indicators 
suggest a balanced performance with no clear 
distinction being observed between the two 
algorithms used, we may safely conclude that none of 
the two overcomes the other.  Two statistical tests 
were used to determine if there is any statistical 
difference between the two algorithms. Both the 
Wilcoxon signed-rank test and the Mann-Whitney U 
test suggested that there is no statistical difference 
(p<0.05) between the HV and IDG results of the two 
algorithms. Therefore, the two MOGAs are equally 
suitable to offer a sound basis for automatically 
guided microservices synthesis. 

5 CONCLUSIONS 

While microservices architecture is gaining wide 
adoption in the software development process, the 
contribution of this research work is to support 
software developers migrate from software 
components to microservices. Guided by three 
research questions, this paper aims to provide a well-
described automatic process that identifies and 
recommends the full or partial replacement of a 
software component’s functionality by a number of 
available microservices. The proposed process 
comprises a series of tasks which a developer may 
follow to receive a recommended solution. The 
component is expressed in a semi-formal notation in 
EBNF which is parsed to identify its functional parts. 
This identification takes place using an ontology 
scheme. The decomposed functions are then matched 
against available microservices. First, the 
microservices are screened based on the required 
functionality and the successful candidates are scored 
using a matching algorithm. Additionally, the 
proposed process is integrated with search-based 
techniques and recommends the optimal synthesis of 
microservices yielded by Multi-Objective Genetic 
Algorithms. The proposed process was evaluated 
through a two stage experimental process and 
presented successful performance in delivering 
proper solutions. 
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Quite a few challenges and open issues exist on 
the specific topic, some of which constitute our future 
work. Specifically, the constant increase in the 
availability of microservices with business 
orientation will require the design and execution of 
more advanced and extended experiments. 
Furthermore, an investigation will be performed for 
improving the profiling tasks by adopting different 
description models and assess whether this may 
improve also the automation level of the proposed 
process. Finally, more real-world cases will be 
employed to assess further the practical benefits of 
our approach. 
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