
Migration of Software Components to Microservices: Matching and
Synthesis

Andreas Christoforou, Lambros Odysseos and Andreas S. Andreou
Department of Electrical Engineering / Computer Engineering and Informatics, Cyprus University of Technology,

31 Archbishop Kyprianos Street, Limassol, Cyprus

Keywords: Software Engineering, Component Decomposition, Microservices, Ontology, Migration.

Abstract: Nowadays more and more software companies, as well as individual software developers, adopt the
microservice architecture for their software solutions. Although many software systems are being designed
and developed from scratch, a significant number of existing monolithic solutions tend to be transformed to
this new architectural style. What is less common, though, is how to migrate component-based software
systems to systems composed of microservices and enjoy the benefits of ease of changes, rapid deployment
and versatile architecture. This paper proposes a novel and integrated process for the decomposition of
existing software components with the aim being to fully or partially replace their functional parts with by a
number of suitable and available microservices. The proposed process is built on semi-formal profiling and
utilizes ontologies to match between properties of the decomposed functions of the component and those
offered by microservices residing in a repository. Matching concludes with recommended solutions yielded
by multi-objective optimization which considers also possible dependencies between the functional parts.

1 INTRODUCTION

Despite the differences in their approach and the time
lag in their introduction to the software engineering
community, Component-based Software Engineering
(CBSE) (Cai et al., 2000), or, alternatively
Component-based Development (CBD), and
Microservices Architecture (MSA) (Dragoni et al.,
2017) share the same inceptions, motivation and
focus towards reuse of software artefacts. Both
approaches aim at reducing complexity of the
software development process, facilitate easy
maintenance and support the operations for IT
support. It may be argued that Service-Oriented
Architecture (SOA) (Rosen et al., 2008), as the most
recent emerging distributed development
architecture, constitutes the common denominator
between these two paradigms as it originated from
component-based architecture and evolved to
microservices architecture.

Following the new software engineering trends,
Microservices architecture is tightly connected to the
DevOps approach (Kleiner, 2009), which inherits its
basic principles from agile methodologies and
describes best practices to support the software
development and operation processes. One may also
argue that Microservices architecture actually

supports the DevOps automation process and affects
software engineering in a positive manner. To be
more specific, it affects Software Engineering by
introducing a different development approach. As
regards how the DevOps process is automated, the
latter relies primarily on the fact that the adoption of
the Microservices architecture comprises a number of
critical tasks than may be automated apart from the
rest automated tasks like communication,
coordination, monitoring, problem solving and
deployment.

In recent years, Microservices architecture is
gaining popularity in software development and the
research community has turned its attention to related
challenges (Esposito et al., 2016) such as the
decomposition of a monolithic system into a set of
independent services followed by synthesis of
selected microservices to substitute their
functionality. Microservice synthesis relies on
locating and combining small functional service
components which their characteristics match those
of the decomposed system and put them in a proper
order so as to meet the characteristics and the
requirements of the initial monolithic system.

While literature includes a number of research
works for decomposition approaches and migration
from monolithic to microservice architecture, to the
best of our knowledge, no work has been yet

134
Christoforou, A., Odysseos, L. and Andreou, A.
Migration of Software Components to Microservices: Matching and Synthesis.
DOI: 10.5220/0007732101340146
In Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2019), pages 134-146
ISBN: 978-989-758-375-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

published that deals with software component
decomposition and replacement of its functional parts
with microservices. This paper aims to introduce an
automatic process that identifies and recommends the
full or partial replacement of a software component
by a number of available microservices that support
specific business operations. The proposed process
adopts the basic principles proposed in a previous
work of the authors (Andreou and Papatheocharous,
2015) related to a layered component-based software
development architecture which was adapted and
refined to accommodate the differences and
peculiarities of the Microservices environment. The
framework in (Andreou and Papatheocharous, 2015)
supports the process of matching available
components against a set of specifications expressed
in a formalised syntax and utilizing ontologies. Apart
from modifications to this framework, the present
paper adds new tasks that extend and improve its
recommendation layer.

The following research questions motivate and
guide this research work:
RQ1: How should a Component Based Reusability
Framework be modified to work equally well with
Microservices?
RQ2: How can a component be decomposed into
functional parts, independent or not?
RQ3: How can the assessment of the suitability of
microservices to substitute component function be
performed, and how should it handle cases where the
decomposed functions present dependencies?

The remainder of the paper is organized as
follows: A brief literature overview is performed in
section 2, while section 3 describes our approach in
detail. Section 4 presents the experimental process
applied for evaluation and discusses the results
produced. Finally, section 5 concludes the paper and
outlines future research steps.

2 LITERATURE OVERVIEW

To the best of our knowledge this is the first attempt
to propose a structured process targeting the
decomposition of well described software
components and replace the identified functional
parts with microservices to the greatest possible
degree. However, a brief literature overview has been
carried out over the two topics that are strongly
related to our research work, the software
decomposition and the services synthesis.

Several different approaches have been proposed
to deal with the decomposition of monolithic systems
or services. Baresi, Garriga and De Renzis in (Baresi

et al., 2017) propose a clustering-like approach to
support the identification of microservices and the
specifications of the extracted artefacts during either
the design phase of a new system, or while the re-
architecting of an existing system. Service Cutter
(Gysel et al., 2016) is a tool framework that is based
on a structured repeatable approach to decompose a
monolith into microservices. A stepwise technique to
identify microservices on monolithic systems is
proposed in (Levcovitz et al., 2016) in which the
authors deliver an approach based on a dependency
graph among three distinct parts of an application,
client, server and database. Balalaie, Heydarnoori and
Jamshidi in (Barba, 2005) describe their experiences
of an ongoing project on migrating an on-premise
application to microservice architecture. Their
approach is based on architectural refactoring,
considering the characteristics of microservice
architecture.

The vast majority of the literature which deals
with services composition is concerned with web
services. The work in (Moghaddam and Davis, 2015)
presents a review of existing proposals for services
selection by quoting the advantages and
disadvantages of each approach. A systematical
review of recent research on QoS-aware web service
composition using computational intelligence
techniques is presented in (Jatoth et al., 2015). A
classification was developed for various research
approaches along with the analysis of the different
algorithms, mechanisms and techniques identified.
An analysis and comparison of the latest
representative approaches in the area of automated
web service composition is the main contribution of
the work in (Zeginis and Plexousakis, 2010). The
existing research approaches were grouped into four
distinct categories, workflow-based, model-based,
mathematics-based and AI planning.

It is evident that the current literature on software
services synthesis is limited, and especially in the
case where this synthesis targets the migration from
component-based development to microservices is
rare if not non-existent. This is the gap the current
paper aspires to fill.

3 AUTOMATIC SPECIFICATION
AND MATCHING OF
MICROSERVICES

3.1 Specification and Matching
Framework

As previously mentioned, the present paper aims to

Migration of Software Components to Microservices: Matching and Synthesis

135

introduce an automatic process that identifies and
recommends the full or partial replacement of a
software component by a number of available
microservices. The proposed process adopts basic
principles proposed by the authors in a previous work
(Andreou and Papatheocharous, 2015) More
specifically, the utilization of the description layer in
that work leverages the decomposition of a software
component into distinct operations and respectively
profiles all candidate microservices that may
substitute these operations and simultaneously adhere
to the same constraints (e.g. performance).
Additionally, the translation of software components
and microservices textual profiles into ontologies
assists the automatic matching process towards the
integrated replacement.

The proposed process follows the same 5-layers
architecture as in our previous work (Andreou and
Papatheocharous, 2015): (i) The Description layer
provides a profile structure which includes all
relevant information that describes the component(s)
under decomposition and the available
microservice(s). A developer/vendor of a component
or microservice, defines a set of properties (functional
and non-functional) that describe the specific artefact:
(a) the component description which will serve as the
basis for its decomposition and the properties
characterizing each decomposing part, and, (b) the
properties of a microservice that describe what it has
to offer in terms of functionality, performance,
availability, reliability, robustness etc. that one may
look for when attempting to locate suitable
microservices for integration and substitution of the
component parts. (ii) The Location layer essentially
provides general-purpose actions, like searching,
locating and retrieving the microservice(s) of interest
that match the profile of the component’s
decomposed parts. (iii) The Analysis layer evaluates
the level of suitability of the candidate
microservice(s) and provides matching results that
will guide the selection of microservices for
integration. (iv) The Recommendation layer uses the
information provided by the previous layers and
produces suggestions as to which of the candidate
microservice(s) may be best integrated and why,
based on an assessment made to ensure that certain
requirements at the microservice level are preserved
also at the integrated level. (vi) Finally, the Build
level essentially comprises a set of integration and
customization tools for combining component(s) to
build larger systems. The present paper focuses on the
first four layers and describes a novel way for
automatic matching between desired and available
microservice(s) based on the directions provided in

(Andreou and Papatheocharous, 2015) and extending
or revising them where appropriate. The interested
reader may refer to that work for more details on the
layered component architecture, whilst every effort
has been made to make the current paper self-
explanatory.

Components and microservices are first expressed
in a semi-structured form of natural language which
is then transformed into an ontology. This ontology
standardises the description of the properties of the
two software artefacts and will constitute the
cornerstone of the specifications that will be used to
match decomposed parts of components with the
available microservice(s), the latter being stored in a
repository. Thus, the problem of finding suitable
microservice(s) to replace component functionality is
reduced to matching (aligning) ontologies. This
process is executed by automatically parsing the
profile(s) of the two software artefacts (for simplicity
we assume one component and N microservices) and
their translation into instance values of two dedicated
ontologies, one for each artefact, which are built so as
to reflect the most critical properties suggested in
literature for that artefact. At the same time, as the
ontology of the component is being built, certain parts
are marked so that a second step may then be executed
which isolates these parts, as these are recognised to
be directly comparable to parts of the microservices
ontology. Hence, the latter step transforms them into
a meta-ontology (subset of the component’s initial
ontology) describing the so-called ‘required’ or
possible functions to be executed by available
microservices. Then the matching of properties
between the required and offered microservice(s)
takes place automatically at the level of ontology
items and a suitability ratio is calculated that suggests
which microservice(s) to consider for possible
integration. The whole process is graphically depicted
in figure 1.

3.2 Profiling

Based on our previous work and an extended
literature study, we identified a set of desired
properties for components and microservices thus
providing their profile. A profile is categorized into
functional, non-functional and other properties:
(i) Functional properties: Include those properties that
describe what the component or microservice actually
does. It involves a general description of the
functionality delivered through methods along with
their specific descriptions.
(ii) Non-functional properties: Include properties
reflecting how the component or microservice

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

136

behaves, mostly in terms of performance, using
indicators such as time for execution, bytes of data
processed per second, operations executed per
second, number of concurrent users supported, cold
start (the transition time from deployment to actual
execution), etc.

Figure 1: The proposed process for component
decomposition and microservices substitution.

 (iii) Other properties: Such properties involve other
critical attributes of a component or microservice that
may not be considered as functional or non-
functional. These constitute mostly properties that
provide useful general information regarding the
artefact and its usage. In this part a profile provides
information regarding the programming language it is
implemented with, the level of security it provides, its
auditability, data exchange, interaction protocol, type
(data source, application login, GUI, etc.), data
format, load balancing, obligations and constraints,
automation and level of binding, verification and
validation issues, cost, the data storage which
describes how the component stores its data, and,
lastly, a service descriptor.

Numerical properties included in the categories
above may provide minimum or maximum threshold
values, which will be used to guide the matching
process for selecting suitable microservices for
substitution.

As in our previous work we resort to using the
Extended Backus-Naur Form (EBNF) to express
component and microservice descriptions, which
allows for formally proving key properties, such as
well-formedness and closure, thus assisting in
validating the semantics. The proposed grammar has
been developed with the Another Tool for Language
Recognition (ANTLR) (http://www.antlr.org/), a
parser and translator generator tool that supports
language grammars in EBNF syntax. Figures 2 and 3
depict the EBNF description of a component and a
microservice respectively, which are analysed below.

The profile of a component includes, from top to
bottom, the following: First, some definitions of
component items are provided, including a name and
a list of one or more services it offers. Each service is
defined by a primary and a secondary function, the
latter being more informative, as well as an optional
description. Primary types involve general
functionality, like I/O, security, networking, etc.; the
secondary types explicitly define the actual function
it executes, e.g. printing, authentication, video
streaming, audio processing etc. For example, the
service could be [Security, Login Authentication].

When decomposition takes place, this is one of the
main features that will guide the searching for a
microservice and it is considered as a Constraint,
something which means that a candidate microservice
will be rejected if it does not offer such functionality.
Interfacing information comes next that outlines the
various methods that implement its logic; a method is
further analysed to Preconditions, Postconditions,
Invariants and Exceptions, if any. This piece of
information is provided upfront by the component
developer/vendor. Non-functional requirements or
properties are defined next denoting mandatory
behaviour in terms of performance. Finally, general
information intended to serve reusability purposes
(application domain, programming language, OS
etc.) is provided. It should also be mentioned that
certain features in the profile may be assigned
specific values along with a characterization as to
whether this feature is minimised (i.e. the value
denotes an upper acceptable threshold) or maximised
(i.e. the value denotes a lower acceptable threshold)
in the component under decomposition. For example,
if performance is confined under 15 seconds, then
next to the performance indicator the couple (15,
minimise) is inserted.

The definition of the attributes included in the
microservice profile is defined in a more detailed
form compared to the component profile and thus the
microservice profile may be considered as a more
refined version of the component profile. The
microservice profile first describes the data types
used to define the property values. These types
suggest three categories of microservice attributes.
The first category is the ‘functional requirements’
where a specific textual description is provided
regarding the function a microservice delivers. Since
microservices are smaller and more specific than
components, so is their description, which intuitively
documents what it does. The second category is the
‘non-functional requirements’ which includes
information describing mostly performance, as well
as other constraints. These attributes include

Migration of Software Components to Microservices: Matching and Synthesis

137

performance indicators like bytes processed per
second and operations executed per second, the level
of security it provides, and information regarding its
data storage (SQL, GraphDB, Document Store, File).
The third and last category is ‘other requirements’
and provides additional general information
regarding the microservice. The properties in this
category include the programming language used to
implement the microservice, the ability to audit
events in logs (auditability), information regarding
the data exchange protocol (REST, SOAP, RPC) and
interaction protocol (Synchronous, Asynchronous)
supported, data format in which data is exchanged
(JSON, XML), load balancing, cost etc., as shown in
figure 3.

After briefly describing both profiles, we will now
focus on the process which connects components with
microservices and demonstrate how component
decomposition is performed and microservices are
matched through ontology instances.

3.3 Components Decomposition and
Microservices Matching

3.3.1 Component and Microservices
Ontology

A special form of ontology is devised to facilitate the
subsequent steps of decomposing a component into
individual functional parts, and then locating and
assessing the suitability of available microservices for
integration using a self-contained description. The
ontology is built around the property axes of the
components and microservices profiles described
above, the latter conforming to the same semantic
rules as the former, so as to facilitate their automatic
transformation to instances of the ontology. Figures 4
and 5 depict the largest parts of these ontologies,
while some details have been intentionally omitted
due to size limitations.

The matching process works at the level of the
ontology tree and not the textual descriptions of the
profile, something that makes comparisons more easy
and quick, both computationally and graphically
(visually). This is due to an ontology alignment
algorithm used to compare (align) two same-
structured ontology instances aiming at locating
attribute similarities and attribute values distances.
The ontology alignment algorithm works by parsing
both ontologies as ontology tree instances and
investigates their structure level by level in a tree
structure hierarchy.

After the schema similarity is compared, the
algorithm calculates the value distance for each

attribute depending on their data type since there is a
form of heterogeneity between attribute values. For
example, some attributes may be of binary type, while
some others may be of numerical. The solution is to
handle distance calculation differently depending on
the data type compared in each attribute. In our case
the ontology alignment algorithm used is Graph
Matching for Ontologies (GMO) (Hu et al., 2005).
GMO initially parses two ontologies and transforms
them to RDF bipartite graphs following some matrix
operations to determine the structural similarity. This
is the first and most crucial step of the proposed
methodology as it initially discards non-matching
microservices from the pool of available candidate
microservices. The matching process is described in
detail in the next section.

3.3.2 Matching Process

Different methods are proposed in literature for
description processing, such as simple string,
(Frappier, 1994), signature matching (Zaremski and
Wing, 1993) and behavioural matching (Zaremski
and Wing, 1997). The approach followed in this paper
is slightly different; it employs a hybrid form
combining string and behavioural matching. More
specifically, a dedicated parser is implemented that
recognises certain parts in a profile (functional, non-
functional and other properties as previously
described) which is translated into an ontology
instance (either of a component or a microservice).
The parser first verifies that the profile is expressed
in the proper context and semantics of the structures
presented earlier (see figures 2 and 3) using the
ANTLR framework and then proceeds with building
the ontology tree of instances according to the the
recognized parts. Parsing and transformation
essentially build the ontology tree instances that
describe the software components under
decomposition and the available microservices. The
next step is to match properties between ontology
items. The tree instance of the component under
migration is projected on top of any other candidate
microservice assessing the level of requirements
fulfilment in two phases: The first phase checks that
all required functions (the component’s part to be
replaced) are satisfied by the available microservices;
therefore, we treat these as functional constraints.

In this case the list of services sought
(decomposed part) must be at least a subset of the
services offered (candidate microservices). The
second phase is executed once all functional
constraints are satisfied and calculates the level of
suitability of each candidate microservice.

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

138

Figure 2: Component profile in EBNF.

(**** Component EBNF Profile ****)
DIGIT : 0|1|2|3|4|5|6|7|8|9;
INTEGER : DIGIT {DIGIT};
CHAR : A|B|C|…|W|a|b|c|…|W|!|@|#|…;
STRING : CHAR {CHAR};
Variable_type : CHAR|INTEGER|…;
Variable_name : STRING;
Primary_Type : ‘Input’|’Output’|’Security’|’Multimedia’|’Networking’|’GUI’|…;
Secondary_Type : ‘Authentication’|’Data processing’|’Video’|’Audio’|’File access’|’Printing’|…;
Details_Description : CHAR {CHAR};
Min_Max_Type : ‘Minimize’|’Maximize’;
Required_Type : ‘CONSTRAINT’|’DESIRED’;
Service : ‘S’ INTEGER Primary_Type, Secondary_Type { Details_Description} Required_Type;
Service_List : Service {Service};
Operator : ‘exists’|’implies’|’equals’|’greater than’|’less than’|…;
Condition : Variable_Name Operator {Value} {Variable};
Precondition : Condition {Condition}; (*IF THESE ARE PROVIDED BY DEVELOPER/VENDOR*)
Postcondition : Condition {Condition}; (*IF THESE ARE PROVIDED BY DEVELOPER/VENDOR*)
Invariants : Condition {Condition}; (*IF THESE ARE PROVIDED BY DEVELOPER/VENDOR*)
Exceptions : Condition {Details_Description} {Exceptions}; (*IF THESE ARE PROVIDED BY DEVELOPER/VENDOR*)
Method : ‘M’ INTEGER {Variable Variable_Type} {Precondition} {Postcondition} {Invariant} {Excpetion}; (*IF THESE
ARE PROVIDED BY COMPONENT DEVELOPER/VENDOR*)
(*==== INTERFACING ====*)
Service_analysis : ‘Service’ INTEGER ‘:’ ‘Method’ INTEGER ‘:’ STRING Method {Method};
(*==== NON_FUNCTIONAL PROPERTIES ====*)
Performance_indicators : [‘Response time’ (INTEGER) Min_Max_Type Required_Type | ‘Concurrent users’ (INTEGER)
Min_Max_Type Required_Type | ‘Records accessed’ (INTEGER) Min_Max_Type Required_Type | …]
{Performance_indicators};
Resource_requirements : [‘memory utiliztion’ (INTEGER) Min_Max_Type Required_Type | ‘CPU reqs’ (INTEGER)
Min_Max_Type Required_Type | …] {Resource_requirements};
Quality_features : [‘Availability’ (INTEGER) Min_Max_Type Required_Type | ‘Reliability’ (INTEGER) Min_Max_Type
Required_Type | …] {Quality_features;
(*==== END OF NON-FUNCTIONAL PROPERTIES; NEW ITEMS MAY BE ADDED HERE ====*)
(*==== REUSABILITY PROPERTIES ====*)
Application_domain : ‘Medical’ Required_Type | ‘Financial’ Required_Type | ‘Business’ Required_Type | …
{Application_domain};
Programming_language : ‘C’ Required_Type | ‘C++’ Required_Type | ‘Java’ Required_Type | ‘VB’ Required_Type | …
{Application_domain};
Operating_systems : ‘Windows’ Required_Type | ‘Linux’ Required_Type | ‘Unix’ Required_Type | ‘IOS’ Required_Type |
‘Android’ Required_Type | … {Operating_systems};
Openness : ‘black’ Required_Type | ‘glass’ Required_Type | ‘grey’ Required_Type | ‘white’ Required_Type;
Price : INTEGER;
Development_info : STRING;
Developer: STRING;
Version : STRING; (*IF THESE ARE PROVIDED BY DEVELOPER/VENDOR*)
Protocols_Standards : [‘JMS/Websphere’ Required_Type | ‘DDS/NDDS’ Required_Type | ‘COBRA/ACE TAO’
Required_Type | ‘POSIX’ Required_Type | ‘SNMP’ Required_Type | …] {Protocols_Standards};
Documentation : [‘Manuals’ Required_Type | ‘Test cases’ Required_Type | …]; (*IF THESE ARE PROVIDED BY
DEVELOPER/VENDOR*)
(*==== END OF REUSABILITY PROPERTIES; NEW ITEMS MAY BE ADDED HERE ====*)
SPECIFICATIONS PROFILE :
 ‘Specifications Profile :’ STRING; ‘Descriptive title :’ STRING;
 ‘Functional Properties :’ Service_List;
 ‘Interfacing :’ Service_analysis {Service_analysis};
 ‘Non-functional Properties :’ Performance_indicators, Resource_requirements, Quality_features;

‘Reusability Properties :’ Application_domain, Programming_language, Operating_systems, Openness, Price,
 Protocols_Standards, Documentation;

Migration of Software Components to Microservices: Matching and Synthesis

139

Figure 3: Microservice profile in EBNF.

Figure 4: Component ontology.

(**** Microservice EBNF Profile ****)

(*==== General Properties ====*)
BINARY : 'Yes' | 'No';
STRING : (' '..'~')+;
NUMBER: ('0'..'9')+;

WS : [\r\n\t] + -> skip;
NEWLINE : [\r\n]+;

(*==== Functional Requirements ====*)
functional_description : STRING;

(*==== Non-functional Requirements ====*)
securityLevel : NUMBER;
bytesProcessedPerSecond : NUMBER;
operationsExecutedPerSecond : NUMBER;
coldStart : NUMBER '.' NUMBER;

(*==== Other ====*)
programmingLanguage : 'C' | 'C++' | 'Java' | 'Python';
dataStorage : 'None' | 'SQL' | 'Graph' | 'Document' | 'File';
auditability : BINARY;
dataExchange : 'REST' | 'SOAP' | 'RPC';
interactionProtocol : 'Synchronous' | 'Asynchronous';
type : 'Data Source' | 'Application Logic' | 'GUI';
dataFormat : 'JSON' | 'RSS' | 'XML';
loadBalancing : 'N/A' | NUMBER 'threads';
obligationsConstraints : 'Public' | 'Private' | 'Local';
automationLevelOfBinding : 'Manual' | 'Semi-automated' | 'Fully automated';
verificationValidation : 'Yes with test data' | 'Yes without test data' | 'No';
serviceDescriptor : 'N/A' | 'UML' | 'WSDL' | 'OWL-S' | 'BPEL';
cost : NUMBER '.' NUMBER;

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

140

Figure 5: Microservice ontology.

A demonstration example for this phased
approach is given in the experimental section, while
a more detailed description of the matching process is
provided below.

Firstly, the functionality offered by a software
component is decomposed into one or more functions
(methods) and the associated non-functional aspects
(performance indicators). This is performed by
traversing the ontology tree in a depth-first-search
manner until we reach the leafs, that is, the details of
the methods (e.g. interfaces, arguments, conditions,
etc.) the component is made of (see component
profile in figure 2). Then the algorithm climbs up the
ontology structure until it reaches the definition of the
method to which this detailed information refers. This
way the functional parts of interest in the
component’s ontology instance are isolated creating a
form of meta-ontology as depicted in figure 1 and
described earlier. The non-functional properties are
then visited on the ontology tree top-down using a
string-matching approach, where we differentiate
between two cases: (i) The overall performance
indicator(s), which describe how the component
behaves as one entity of integrated functions. This
will be used during the synthesis part of the matching
algorithm to guide the process of recommending
microservices for integration taking into
consideration how their combination should behave
as a whole, any incompatibilities in terms of
interfacing, timing (synchronous/asynchronous), its
type (SOAP, REST), etc. (see experimental part in
section 4); (ii) Method-specific indicators, that
constrain the way a certain function (method) delivers
its functionality as a single unit. This piece of
information will be used by the matching algorithm
when assessing the suitability of a microservice as it
is considered a mandatory requirement. As soon as all
meta-ontology parts (i.e. methods) are isolated, the
proposed matching algorithm is invoked. Considering
a single function (method) from the derived
decomposition, we aim to match it with a candidate

microservice that resides in the pool of available
microservices. For simplicity, let the instance of the
source (component) function for microservice
substitution be denoted as ܯ௦௞ (k=1..M, where M is
the number of decomposed component functions),
which is considered as the profiled microservice
sought after decomposition (from now on we will
refer to this as the ‘source microservice’). At the other
end, the profile of all of the available microservices is
also parsed and ontology instances are created, let
these be ܯ௧௜ (i=1..N, where N is the number of
available microservices). Due to the fact that there is
a form of heterogeneity between microservice
attributes that concern their data types, a combination
of metrics is used in order to assess the matching
score of each target microservice instance Ti while
taking into account the aforementioned
heterogeneity.

The ontology profile, as described through EBNF,
has three distinct data types, namely binary,
numerical and string. Therefore, a different metric
function is used for each data type. For the binary data
type, the similarity function score is given by the
following formula:

௕௜௡ݏ ൌ
1
ܰ
෍ܾ௦௧,௜

ே

௜ୀଵ

 (1)

where

ܾ௦௧,௜ ൌ ൞

0, 	௦ܯ	݊݅	݀݁ݎ݅ݑݍ݁ݎ	݅	݁ݐݑܾ݅ݎݐݐܽ	ݕݎܾܽ݊݅	݂݅
	௧ܯ	݊݅	݂݀݁݅ݏ݅ݐܽݏ	ݐ݋݊	ݏ݅

1, 	௦ܯ	݊݅	݀݁ݎ݅ݑݍ݁ݎ	݅	݁ݐݑܾ݅ݎݐݐܽ	ݕݎܾܽ݊݅	݂݅
									௧ܯ	݊݅	݂݀݁݅ݏ݅ݐܽݏ	ݏ݅

and ܯ௦ and ܯ௧ are the source and target microservice
ontology instances respectively.

Respectively, the score between any two sets
of numerical attributes is given by:

௡௨௠ݏ ൌ
1
ܰ
෍ሼ݉ܽݔ௦௧,௜,݉݅݊௦௧,௜ሽ

ே

௜ୀଵ

 (2)

Migration of Software Components to Microservices: Matching and Synthesis

141

where ݉ܽݔ௦௧,௜ is the formula for attribute i to be
maximized between source and target ontology
instances given by

௦௧,௜ݔܽ݉ ൌ 1 െ
݊௦,௜ െ ݊௧,௜

,൫݊௦,௜ݔܽ݉ ݊௧,௜൯
 (3)

and ݉݅݊௦௧,௜ is the formula for attribute i to be
minimized between source and target ontology
instances given by

݉݅݊௦௧,௜ ൌ 1 ൅
݊௦,௜ െ ݊௧,௜

,൫݊௦,௜ݔܽ݉ ݊௧,௜൯
 (4)

Since some attribute values can be maximized or
minimized, we use the correct formula for attribute
value similarity calculation each time. For example,
the attribute bytes processed per second is maximized
because it has to score higher if the value offered is
higher than the desired one. On the contrary, the
attribute cost has to be minimized due to the exact
opposite reason. Cost similarity value has to score
higher if the offered value is less than the desired one.

Lastly, the score between any two sets of string
attributes ݏ௦ and ݏ௧ is given by the mean of the
Jaccard similarity coefficient:

௦௧௥ݏ ൌ ሺܬሺݏ௦, ௧ሻሻതതതതതതതതതതതത (5)ݏ

where ܬሺݏ௦, ௧ሻݏ is the Jaccard similarity coefficient
between source and target string sets respectively,
and is calculated as:

,௦ݏሺܬ ௧ሻݏ ൌ
௦ݏ| ∩ |௧ݏ
௦ݏ| ∪ |௧ݏ

ൌ
௦ݏ| ∩ |௧ݏ

|௦ݏ| ൅ |௧ݏ| െ ௦ݏ| ∩ |௧ݏ

(6)

where:
|௦ݏ| is the number of terms contained in string
,௦ݏ ,௧ݏ ௧| is the number of terms contained in stringݏ|
and	|ݏ௦ ∩ ௧| is the number of shared terms betweenݏ
strings ݏ௦ and ݏ௧ respectively.

Using the equations above we can now describe
the procedural flow of the matching algorithm. The
algorithm consists of two sequential phases:

Phase 1: All attributes of the source microservice,
which are considered as mandatory, must map one-
on-one to the attributes of the target microservice.
This means that, by traversing all of the available
target microservices, each attribute of the source
microservice is verified to exist in the target
microservice. Otherwise, the target microservice is
discarded and it is removed from the pool of
candidate microservices. Therefore, after Phase 1
concludes, the pool of candidate target microservices
has been reformed to include only those target

1 https://tinyurl.com/y8deeffz

microservices that in general match the mandatory
requirements of the source microservice; the level of
suitability of the microservices in this pool may vary
depending on secondary, desired features or
properties they may possess, the respective values of
which are subsequently assessed in Phase 2 by the
score functions previously described. As previously
mentioned, Phase 1 is supported by a variation of the
GMO algorithm which was developed to parse every
pair of the compared microservice ontologies (source
and target) and defines their structural similarity.

Phase 2: The similarity between a source
microservice and a specific target microservice in the
pool of candidate microservices formed by Phase 1 is
assessed through the relevant score functions
depending on their data type. The algorithm
calculates the mean of binary, numerical and string
score of the pair and produces a similarity value. This
is repeated for every pair of source and target
microservice in the pool, and the final outcome is a
ranked matching score:

௧௢௧ݏ ൌ ሺݏ௕ప௡, ,௡௨௠ݏ ௦௧௥ሻതതതതതതതതതതതതതതതതതതതത (7)ݏ

The matching algorithm is shown in figure 6.

4 EXPERIMENTAL PROCESS

A two-stage experimental process was designed and
executed aiming to assess the efficiency of the
proposed framework. Specifically, in the first stage
(proof of concept) we examined the ability of the
framework to deliver and recommend a list of
microservices that are suitable to replace specific
functions of a component, ranked based on the
suitability score of equation (7). In the second stage
(composition assessment) two MOGAS were
employed to deliver near-optimal synthesis of
candidate microservices taking into account the
required dependencies as these were defined in the
software component design. All scripts that support
the aforementioned experimental environment were
implemented in Python 3.7 and the full sets of results
are available in this link 1 . The two stages are
described in detail below:

4.1 Proof of Concept

During the first stage of the experimental evaluation,
we have tested the proposed framework using two
specific cases. In the first case we consider having the
functional parts (profiles) of a decomposed CRUD

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

142

component, which provides the simple functions of
create, read, update and delete for a business artefact
(e.g. a customer or invoice). We assume in this case
that there are no dependencies across the functional
parts of the decomposed component, that is, every
operation is individual and does not depend on any
other operation. This means that execution of one of
the above operations does not require the prior
execution of another. In the second case we focus on
seeking to replace the functional parts of a component
that are part of an inventory system and are dedicated
for invoice updating. This component consists of five
different functions as follows: Update Invoice Items,
Update Invoice Headers, Update Corresponded
Posting, Update Debtor’s Balance and Print Invoice.
These functions are all sequentially dependent (in the
order listed), that is, every function depends on its
previous one and starts as soon as its predecessor has
concluded.

For the execution of the experiments, two EBNF
profiles, aligned with our proposed framework, were
created so as to fulfil the description of the two
software components in hand for the stages described
above. A pool of 5000 synthetic microservices
profiles were randomly constructed ensuring that a
minimum number of 200 microservices match the
requirements of each functional part for both software
components. This intuitively means that we make
sure that every decomposed part has at least 200

candidate microservices in the pool that are matched
and satisfy the mandatory requirements but with
unknown suitability score. This will enable
examining the correctness of our matching algorithm.
We validated the scores computed by the matching
algorithm by varying certain attribute values of the
functional parts that derive from the decomposed
component and repeating the matching process. We
observed that by varying the attribute values in a
series of repetitions and experiments, the matching
algorithm correctly yields different scores and proper
rankings among the candidate microservices as
expected. This verified that changing the
requirements of the functional parts triggers different
scores and microservices that previously matched a
specific functional part with a relatively high score
tend to score lower when the requirements shift and
vice versa.

4.2 Composition Assessment

As explained above, this experimental stage aims to
examine the suitability of the utilization of heuristic
approaches to deliver near-optimal microservices
synthesis considering the satisfaction of two or more
objectives related to non-functional characteristics of
the software component. The vast solution space of
the problem under study prohibits the utilization of
computational process. We resorted to using heuristic

Figure 6: Microservice ontology matching algorithm.

#Decompose software component
source_microservices = decompose(component)

#Parse ontologies
for s in source_microservices:
 ௦ = parseOntology(s)ܯ
 for ܯ௧ in target_ontologies:
 #Phase 1
 candidates = []

#Structurally similar microservices cause the target microservice to be included in the
microservice candidate pool

 if(ܱܯܩሺܯ௦,ܯ௧ሻ ൌൌ 1):
 #Phase 2
 candidates.append({ܯ௧ : score(ܯ௦,	ܯ௧)})

#The score function is the algorithms’ Phase 2 which is implemented below according to the similarity
functions as defined above:
def score(ܯ௦,	ܯ௧):
 (()௧.getBinaryAttributesܯ	,()௦.getBinaryAttributesܯ)௕௜௡ = scoreBinaryݏ
 (()௧.getNumericalAttributesܯ	,()௦.getNumericalAttributesܯ)௡௨௠= scoreNumericalݏ
 (()௧.getStringAttributesܯ	,()௦.getStringAttributesܯ)௦௧௥ = scoreStringݏ
 score = (ݏ௕௜௡ + ݏ௡௨௠ + ݏ௦௧௥) / 3
 return score

Migration of Software Components to Microservices: Matching and Synthesis

143

approaches and, more specifically, genetic
algorithms, as our problem was rich in candidate
solutions with conflicting objectives; therefore, we
selected multi-objective genetic optimization as it has
been proven to be quite efficient in such cases.

Two MOGAS were selected to solve the multi-
objective optimization problem, which will also be
used to compare their performance and effectiveness:
The Non-dominated Sorting Genetic Algorithm II
(NSGA-II) and the Strength Pareto Evolutionary
Algorithm 2 (SPEA2). The selection of these two
specific algorithms was made due to their wide
acceptance and use, but most importantly their good
performance in such kind of applications which was
proven in our case too after a quick verification with
preliminary runs. The multi-objective optimization
environment was accordingly adjusted and
configured based on the problem under study. The
two objectives formed are the minimization of the
microservice cost and the execution time
(performance) respectively. We assume that the two
are competing in the sense that the higher the
performance the more expensive the microservice.
The set of decision variables was constructed by five
vectors each corresponding to a decomposed function
and yielding values related to the selected candidate
microservice that delivers the same functionality.
Two constraints were also set, one for each objective,
both denoting an upper value for the objectives (cost,
time) that cannot be tampered. The experimental
implementation of the algorithms was performed
using Platypus 2 , a Python-based multi-objective
optimization algorithms library.

4.3 Results and Discussion

The results generated by the execution of the
proposed process over the two experimental cases are
provided in Tables 1 and 2 respectively (sample of the
best five ranked microservices). The results consist of
the id of the best five microservices for each
functional part along with their matched score in
descending order.

Table 1: Scoring results of components' functional parts
without dependencies.

Create Read Update Delete

184 (0.48) 1316 (0.62) 445 (0.89) 1317 (0.75)

37 (0.48) 227 (0.56) 406 (0.89) 814 (0.63)

91 (0.47) 353 (0.54) 524 (0.87) 747 (0.55)

53 (0.44) 236 (0. 53) 409 (0.87) 659 (0.53)

73 (0.44) 379 (0.51) 563 (0.86) 728 (0.52)

2 https://platypus.readthedocs.io

Table 2: Scoring results of components' functional parts
with dependencies.

Print
invoice

Update
invoice
items

Update
invoice
headers

Update
debtors
balance

Update
posting

800
(0.65)

104
(0.50)

329
(0.63)

740
(0.61)

421
(0.90)

1455
(0.60)

1506
(0.49)

1612
(0.60)

692
(0.59)

545
(0.89)

1995
(0.58)

65
(0.48)

312
(0.55)

706
(0.58)

499
(0.89)

2079
(0.57)

101
(0.47)

273
(0.53)

611
(0.55)

524
(0.88)

2137
(0.57)

82
(0.47)

231
(0.52)

1506
(0.54)

1480
(0.87)

For the first case, a total number of 955 unique

microservices have been positively assessed and
included in the candidate microservices pool in
descending order based on the calculated suitability
score. Specifically, Create function included 249
candidates, Read function 225 candidates, Update
function 233 candidates and finally Delete function
248 candidates. As regards the second case, a total
number of 1709 unique microservices have fulfilled
the mandatory requirements and were selected to be
included in the candidate microservices pool as
follows: 652 microservices were included in Print
Invoice function’s list, 283 in Update Invoice
function’s list, 236 microservices in Update Invoice
Headers function’s list, 280 microservices in Update
Debtors Balance function’s list, and, finally, 258
microservices are included in Update Posting
function’s list.

Firstly, we observed that our algorithm performed
successfully discarding all candidate microservices
that failed to satisfy even one mandatory requirement.
Secondly, by choosing and comparing arbitrarily
microservices from the same list of candidates we
confirmed the correct assessment of the
microservices by the matching algorithm reflected in
the calculated suitability scores, as well as the
correctness of their prioritization.

As described in the experimental process design,
the results extracted from the second case (software
component decomposed into a series of dependent
actions), were then used for the assessment of the
microservices synthesis. The number of possible
solutions (PS) in this case is calculated by equation
(8) to be over 3 trillions.

|ܲܵ| ൌ ෑݔ௜

ே

௜ୀଵ

 (8)

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

144

Figure 7: Near-optimal Pareto fronts.

N in eq. (8) corresponds to the number of
decomposed functions and Xi is the number of
recommended microservices for function i.

Each MOGA was run 100 times for 500000
fitness evaluations (FE) resulting in the generation of
100 Pareto fronts. By combining these Pareto fronts,
a near-optimal Pareto front was produced for each
algorithm. The two near-optimal Pareto fronts are
depicted in figure 7. The first observation one can
make when inspecting the Pareto fronts is that both
MOGAs delivered similar solutions. Going a step
further and by studying the microservices
combinations which corresponded to the optimal
solutions, we observed that microservices with high
individual suitability scores were missing from the
proposed optimal solutions and respectively
microservices belonging to the optimal solutions sets
had relatively low suitability scores compared to
others. This finding is perfectly reasonable as the
specific experiment was focused on optimising cost
and performance, while the suitability score is the
collection of other parameters as well. Therefore, the
recommended solutions that will drive the synthesis
of microservices will always depend on the aspects
designers need to optimise each time.

The performance of the two MOGAs was
assessed and compared with the use of the
Hypervolume (HV) (Thiele and Zitzler, 1999) and the
Inverted Generational Distance (IGD) (Veldhuizen
and Lamont, 2000) quality indicators. The HV
indicator assesses the volume covered by the non-
dominated solutions of a Pareto front in the objective
space and therefore, the larger the volume covered by
the solutions generated in a run, the higher the HV
value, which indicates a better performance. The IGD
indicator assesses how far the elements of the true
Pareto front are from the non-dominated points of an
approximation Pareto front and therefore, the greater
the extent of the true Pareto front that is covered by
the non-dominated points generated by a run in the

objective space, the lower the IGD value, which
denotes a better performance. Each algorithm was run
10 times and both HV and IGD values were
calculated for each algorithm. In order to compare the
performance of the two algorithms the median HV
and IGD were calculated. The HV value for both
algorithms was identical and equal to 0.0257. The
IGD value for the NSGA-II was 0.6113 and for
SPEA2 0.6150.

Considering that the results of the two indicators
suggest a balanced performance with no clear
distinction being observed between the two
algorithms used, we may safely conclude that none of
the two overcomes the other. Two statistical tests
were used to determine if there is any statistical
difference between the two algorithms. Both the
Wilcoxon signed-rank test and the Mann-Whitney U
test suggested that there is no statistical difference
(p<0.05) between the HV and IDG results of the two
algorithms. Therefore, the two MOGAs are equally
suitable to offer a sound basis for automatically
guided microservices synthesis.

5 CONCLUSIONS

While microservices architecture is gaining wide
adoption in the software development process, the
contribution of this research work is to support
software developers migrate from software
components to microservices. Guided by three
research questions, this paper aims to provide a well-
described automatic process that identifies and
recommends the full or partial replacement of a
software component’s functionality by a number of
available microservices. The proposed process
comprises a series of tasks which a developer may
follow to receive a recommended solution. The
component is expressed in a semi-formal notation in
EBNF which is parsed to identify its functional parts.
This identification takes place using an ontology
scheme. The decomposed functions are then matched
against available microservices. First, the
microservices are screened based on the required
functionality and the successful candidates are scored
using a matching algorithm. Additionally, the
proposed process is integrated with search-based
techniques and recommends the optimal synthesis of
microservices yielded by Multi-Objective Genetic
Algorithms. The proposed process was evaluated
through a two stage experimental process and
presented successful performance in delivering
proper solutions.

Migration of Software Components to Microservices: Matching and Synthesis

145

Quite a few challenges and open issues exist on
the specific topic, some of which constitute our future
work. Specifically, the constant increase in the
availability of microservices with business
orientation will require the design and execution of
more advanced and extended experiments.
Furthermore, an investigation will be performed for
improving the profiling tasks by adopting different
description models and assess whether this may
improve also the automation level of the proposed
process. Finally, more real-world cases will be
employed to assess further the practical benefits of
our approach.

ACKNOWLEDGEMENTS

This paper is part of the outcomes of the Twinning
project Dossier-Cloud. This project has received
funding from the European Union’s Horizon 2020
research and innovation programme under grant
agreement No 692251.

REFERENCES

Andreou, A. S. and Papatheocharous, E. (2015) Automatic
matching of software component requirements using
semi-formal specifications and a CBSE ontology, in
Evaluation of Novel Approaches to Software
Engineering (ENASE), 2015 International Conference
on, pp. 118–128.

Barba, L. A. (2005) Computing high-Reynolds number
vortical flows: A highly accurate method with a fully
meshless formulation, in Parallel Computational Fluid
Dynamics 2004: Multidisciplinary Applications.
Springer, Cham, pp. 305–312.

Baresi, L., Garriga, M. and De Renzis, A. (2017)
Microservices Identification Through Interface
Analysis, in Service-Oriented and Cloud Computing,
pp. 19–33.

Cai, X., Lyu, M. R. and Wong, K. (2000) Component-
Based Software Engineering: Technologies,
Development Frameworks, and Quality Assurance
Schemes, in Proceedings Seventh Asia-Pacific
Software Engeering Conference. APSEC 2000. IEEE
Comput. Soc, pp. 372–379.

Dragoni, N. et al. (2017) Microservices: Yesterday, Today,
and Tomorrow, in Present and Ulterior Software
Engineering. Cham: Springer International Publishing,
pp. 195–216.

Esposito, C., Castiglione, A. and Choo, K.-K. R. (2016)
Challenges in Delivering Software in the Cloud as
Microservices, IEEE Cloud Computing, 3(5), pp. 10–
14.

Frappier, M. (1994) Software Metrics for Predicting
Maintainability Software Metrics Study : Technical
Memorandum 2, Source.

Gysel, M. et al. (2016) Service Cutter: A Systematic
Approach to Service Decomposition, in. Springer,
Cham, pp. 185–200.

Hu, W. et al. (2005) GMO: A graph matching for
ontologies, in Proceedings of K-CAP Workshop on
Integrating Ontologies, pp. 41–48.

Jatoth, C., Gangadharan, G. R. and Buyya, R. (2015)
Computational intelligence based QoS-aware web
service composition: A systematic literature review,
IEEE Transactions on Services Computing, 10(3), pp.
475–492.

Kleiner, A. (2009) Making It Easy to Do the Right Thing,
IEEE Software, 33(3), pp. 53–59.

Levcovitz, A., Terra, R. and Valente, M. T. (2016) Towards
a Technique for Extracting Microservices from
Monolithic Enterprise Systems.

Moghaddam, M. and Davis, J. G. (2015) Service Selection
in Web Service Composition : A Comparative Review
of Existing Approaches, in Web Services Foundations.
New York, NY: Springer New York, pp. 321–346.

Rosen, M., Lublinsky, B., Smith, K., and Balcer, J. (2008)
Applied SOA: Service-Oriented Architecture and
Design Strategies. Wiley.

Thiele, L. and Zitzler, E. (1999) Multiobjective
Evolutionary Algorithms: A Comparative Case Study
and the Strength Pareto Approach, IEEE Transactions
on Evolutionary Computation, 3(4), pp. 257–271.

Veldhuizen, D. A. Van and Lamont, G. B. (2000)
Multiobjective Evolutionary Algorithms: Analyzing
the State-of-the-Art, Evolutionary Computation. MIT
Press, 8(2), pp. 125–147.

Zaremski, A. M. and Wing, J. M. (1993) Signature
matching, in ACM SIGSOFT Software Engineering
Notes, pp. 182–190.

Zaremski, A. M. and Wing, J. M. (1997) Specification
matching of software components, ACM Transactions
on Software Engineering and Methodology. ACM,
6(4), pp. 333–369.

Zeginis, C. and Plexousakis, D. (2010) Web Service
Adaptation: State of the art and Research Challenges,
Cycle.

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

146

