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Abstract: This work intends to embed the estimation of the joint roughness coefficient (JRC) in the
framework of random fields. The random field method is a probabilistic approach which involves
modeling of the spatial variability of the pertinent physical quantities as a fundamental part of the
(assumed) underlying probabilistic structure. Although this method is one of higher complexity in
regard of the presumed background knowledge, it encodes naturally subtler information about the
rock surface roughness. It is noted that, the proposed random field approach considers automatically
the scale of the problem (no correction factor is needed), whilst the JRC estimates appear to be more
stable (compared to those derived from Z2 or SF) in the sense that images of the same profile but
of different quality give similar results for its roughness. The present work could also be useful
in advanced probabilistic rock slope stability analysis based on random fields. In such a case,
the required spatial correlation length θ can be obtained by the proposed θ = 145.5 σ/JRC relationship
(σ = variance of the profile). The JRC can be obtained through tilt tests, push or pull tests, or matching
roughness profiles, whilst σ can be obtained from inspection of the digitized profile.

Keywords: joint roughness coefficient; Barton-Bandis criterion; random fields; spatial correlation
length; Fourier analysis; probabilistic analysis

1. Introduction

In 1955, the American Standards Association [1] suggested the following indices for giving
numerical values to certain components of surface roughness:

CLA =
1
L

∫ x=L

x=0

∣∣∣y∣∣∣dx, (1)

Z1 = RMS =
1
L

√∫ x=L

x=0
y2dx, (2)

where, CLA and Z1 stands for center line average and root mean square respectively, L is the distance
over which the average is taken, is the amplitude of the roughness about the center line and dx is the
small constant distance between two adjacent amplitude readings.

A few years later, Myers [2] reported that although many different surfaces have the same
RMS (or CLA) value, their geometrical properties differ greatly, suggesting the following three new
characteristics:

Z2 =
1
L

√∫ x=L

x=0

(
dy
dx

)2

dx, (3)
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Z3 =
1
L

√∫ x=L

x=0

(
d2y
dx2

)2

dx, (4)

and

Z4 =

∑
(∆xi)p −

∑
(∆xi)n

L
, (5)

where, L = Σ(∆xi)p + Σ(∆xi)n is the total profile distance, xi is segment of L and the subscripts p and n
mean positive and negative slope respectively. In this respect, the experimental work carried out by
Myers [2] showed that the most useful characteristic in predicting friction was the Z2 one.

In 1979, Tse and Cruden [3] put again the above Z-characteristics into question. The objective was
a convincing correlation with the joint roughness coefficient (JRC). In this respect, the ten standards
profiles of Barton and Choubey [4] were used (these profiles are shown in the Appendix A). The JRC
coefficient is of particular importance for calculating the peak shear strength of rock surfaces through
Barton and Choubey’s empirical equation:

τpeak = σn tan
(
φr + JRC log

JCS
σn

)
, (6)

where, τpeak is the maximum shear strength, σn is normal stress, ϕr is the residual friction angle of
discontinuity and JCS is the joint compressive strength. JCS can be estimated using the Schmidt
hammer [5]. In addition to the Z-characteristics, in their comparison, Tse and Cruden [3] used the
following statistical indices:

MSV =
1
L

∫ x=L

x=0
y2dx, (7)

ACF =
1
L

∫ x=L

x=0
y(x)y(x + ∆x)dx, (8)

and

SF =

∫ L

0
(y(x) − y(x + ∆x))2dx, (9)

where, y(x) is the amplitude of asperity height at the distance, x, along the length, L, and ∆x is a constant
distance lag. MSV, ACF and SF stand for mean square values, autocorrelation function and structure
function respectively, the latter has been proposed by Sayles and Thomas [6]. Tse and Cruden [3]
confirmed that, among all Z-characteristics, the Z2 one performed better, whilst for the SF index
they found that it was as good as Z2. Indeed, they gave JRC-logZ2 and JRC-logSF relationships
having R-squared values as high as 0.972 and 0.968 respectively. Yu and Vayssade [7] reported
an infinitesimal improvement based on the JRC-

√
Z2 and JRC-

√
SF relationships. It is mentioned that,

Tse and Cruden [3] used a laborious procedure to eliminate possible errors, something that apparently
increased the R-squared value of their correlations. The authors attempted to reproduce the JRC-logZ2

relationship and they found that:

JRC = 48.707 logZ2 + 37.912, (10)

with R2 = 0.933. The original Barton and Choubey’s [4] image depicting the ten standard JRC profiles
was used. The graph of Figure 1 was drawn based on 1024 sampling points for each of these profiles
after subtracting the linear trend. The digitalization was done with Wolfram Mathematica. It was
only verified that the digitized images coincide visually with Barton and Choubey’s profiles having
involved no further fine tuning of the digitization. Apparently, the result depends on both sampling
and the quality of image. This is in keeping with the very notion of the standard profiles. Besides,
the goal of this paper is not a refined JRC-logZ2 (or similar) relationship which will just increase R2

by a few second decimal units. It is noted that, the various sources of error are discussed in Gao and
Wong [8].
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Since Tse and Cruden [3], numerous other researchers have either evaluated the existing methods
for estimating the JRC coefficient or proposed new ones [7,9–22], e.g., Yang et al. [12] and Yu and
Vayssade [7] found R2 = 0.986 and 0.910 for the JRC-logZ2 relationship respectively. However, the Z2

characteristic remains the most popular one, apparently due to its simplicity and efficiency. A review
of these methods is out of scope of the present paper. In this respect, the authors suggest the works
done by Li and Zhang [13] and Li and Huang [14]. Instead, the present work intends to embed the
estimation of the joint roughness coefficient (JRC) in the framework of the random fields. The random
field method is a probabilistic approach to geotechnical problems which involves modeling the spatial
variability of the pertinent physical quantities as a fundamental part of the (assumed) underlying
probabilistic structure.

2. Methods

The geometric description uses the information contained in the details of the shape of the curve
to provide a measure of roughness in a deterministic way. There are many levels of complexity in the
geometric description of the profile going all the way to fractal geometry. A recent literature review of
empirical equations for estimating JRC by using the fractal dimension D has been offered by Li and
Huang [14]. As mentioned above, an elementary and attractive choice is to use the quantity Z2 defined
by Equation (3).

On the other hand, in statistical description, roughness is understood as the estimated value of
a certain statistic, treating the profile as a collection of events that obey an underlying probabilistic
structure. The autocorrelation function (ACF; Equation (8)) is an example of such a statistic. For example,
for zero correlation distance (∆x = 0), the correlation function computes an estimate of the variance σ2

of the profile regarding the height y at each point x as a random variable with a fixed variance.
In Tse and Cruden [3], the structure function (SF) defined by Equation (9) has been correlated

with the JRC value of the ten standard profiles, which treated ∆x as fixed and equal to the length
of the interval between two successive sampling points. This showed that it is as good an index as
Z2. This is not surprising because if ∆x is the sampling interval, the discrete version of Equations (8)
and (9) essentially coincide. Still, the statistical information contained in the ACF as a function over
its entire natural range (−L/2, L/2) has neither been exploited nor been put in a statistical framework.
This is done herein with the statistical description of roughness based on random fields. In this respect,
a profile as a whole is regarded as a single realization of an underlying probabilistic structure where
the function ACF(∆x) over the whole of its natural range (−L/2, L/2) is assumed to have a fixed and
pre-defined form. This form is denoted by C(∆x) and called the variance function of the random
field [23]. The exact definitions are given below.
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A function y over −∞ ≤ x ≤ ∞ is a (stationary Gaussian) random field if every number y(x) is
a Gaussian random variable with (constant) mean value µ and point-variance σ2, i.e.,

E[y(x)] = µ, E[y(x)2] = µ2 + σ2, (11)

where, E[ . . . ] denotes the expectation value of the quantity inside the brackets over a large number of
realizations of the random field, and every two random variables y(x), y(x + ∆x) (associated with two
different positions x, x + ∆x along the interval) are correlated in a given manner, i.e.,

E[y(x) y(x + ∆x)] = µ2 + C(∆x), (12)

These define completely the Gaussian random field. The variance function C(∆x) can be chosen in
a variety of ways depending on the nature of the quantity being attempted to model. Clearly, C(0) = σ2

by Equations (11) and (12). Therefore, defining the normalized variance function:

ρ(∆x) = C(∆x)/C(0), (13)

which satisfies ρ(0) = 1. The coordinates in the description of the profiles are chosen so that the mean
value µ is zero, so there is no difference between the autocorrelation and variance function of the profile.

A very convenient choice is the Gaussian variance function:

ρ(∆x) = exp[−π(∆x)2/θ2] (14)

The spatial correlation length θ is defined by

θ =

∫
∞

−∞

ρ(∆x)d(∆x) = 2
∫
∞

0
ρ(∆x)d(∆x) (15)

(e.g., see [23,24]) noting that the variance function is even.
It is also noted, that the correlation length is related to the value of the derivatives of the variance

function at zero. In particular the value of the second derivative reads:

−ρ”(0) = 2π/θ2 (16)

The integral definition above defines, for any variance function, a macro-scale, while the derivative
definition defines a micro-scale. These definitions are usual in other areas where correlation functions
are used, e.g., in the theory of turbulence [25]. In general, if the micro-scale can be defined at all,
they could be entirely different. The fact that they are both related to the single length θ is of course
due to the fact that the model variance function used here involves by definition the single length θ.
This feature is realized, in some sense, by the roughness profiles. The argument is as follows.

Consider the Z2 characteristic defined in Equation (3). If y(x) is a random field, then the index
(Z2)2 is a random variable. It can be easily shown that its expectation value is:

E[(Z2)2] = −σ2 ρ”(0) = 2πσ2/θ2, (17)

The index (Z2)2 can be regarded as a statistic that estimates the value of the (a priori fixed) quantity
2πσ2/θ2. In all, in regard of estimates:

Z2 ∝ σ/θ, (18)

It is also reminded that Z2 correlates very well with the roughness coefficient JRC, which must be
related to both the macro- and micro-scale of the profile. This recalls the almost perfect correlations
found by Tse and Cruden [3], Yang et al. [12] and Yu and Vayssade [7]. However, Z2 is rather related
more to the micro-scales of the profile than to the macro-scales, due to the derivative involved in its
definition. Therefore, it is concluded that, first, a single length may be adequate when modelling
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a roughness profile with a random field and second, that the quantity σ/θ is a good candidate for
quantifying the roughness coefficient JRC in the framework of the random fields.

3. Results

3.1. The σ/θ Ratio as an Estimate for JRC Coefficient

Clearly, a direct way to determine σ and θ for a given profile is needed. In this respect, the function
ACF(∆x) defined above must first be calculated. This is a priori even function that needs to be
determined for ∆x in the interval (0, L/2). The point-variance σ2 is estimated by ACF(0), whilst θ is
extracted from the normalized autocorrelation function ACF(∆x)/ACF(0).

Explicitly, these quantities are constructed from the profile as follows. As mentioned above the
sampled profile is a sequence of N = 1024 numbers: yn for n = 0, 1, . . . , 1023. The Fourier transform Yk
of the profile yn is defined by:

Yk =
N−1∑
n=0

yn e−i2π nk
N , (19)

where, k = 0, 1, . . . , N − 1 are the wave-numbers. Then, ACF(∆x) is the Fourier transform of the
magnitude-square of Yk:

ACF(∆x) =
N−1∑
k=0

|Yk|
2

N2 e−i2πmk
N , (20)

The correlation distance ∆x is of course discrete and is evaluated at the points m·10/N cm, where m
is an integer, having divided the 10 cm length of the profile into N = 1023 equally spaced intervals.
The ACF(∆x) so defined is a periodic function of period 10 cm. As mentioned above, ACF(∆x) is
an even function thus essentially exists in the interval (0, 5 cm) of correlation distances.

The point-variance σ2 of the ten standard profiles along with their actual JRC coefficients is given
in Table 1.

Table 1. The point-variance of the ten standard profiles along with their actual joint roughness
coefficient (JRC) coefficients.

Profile No. Real JRC σ2 (cm2)

1 0.4 0.0002092
2 2.8 0.000372183
3 5.8 0.000969378
4 6.7 0.001708827
5 9.5 0.006983672
6 10.8 0.037012614
7 12.8 0.016019078
8 14.5 0.032283009
9 16.7 0.013746304

10 18.7 0.008309631

The normalized autocorrelation functions ACF(∆x)/ACF(0) as function of the distance ∆x from
0 cm to 5 cm are shown in Figure 2 (labelled by the number of the profile).

The very form of these functions is quite telling. It is observed, for example, that the profiles
No. 5 and 6 i.e., corresponding to JRC in the range 8–10 and 10–12 respectively, hardly differ in terms
of spatial variability, which is also a large scale one. Their essential difference was the magnitude of
waviness, measured by the point-variance σ2. This is essentially visible in the profiles. Less obvious is
the fact that the JRC ranges 2–4 and 18–20 (profile No. 2 and 10 respectively) appear to correspond to
similar spatial variability, the difference again lying in the point-variance. The value of the length θ for
each profile was extracted by fitting the model (Gaussian) normalized variance function ρ(∆x) given
above to the normalized autocorrelation function ACF(∆x)/ACF(0).
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The values of the spatial correlation length θ associated with each model function ρ(∆x) are
given in Table 2. These values result from the best fit of each ACF(∆x)/ACF(0) by the respective model
function ρ(∆x). Along with them is given the ratio σ/θ, which is our proposal for the JRC coefficient in
the random field theory.

Table 2. The values of the spatial correlation length θ associated with each model function ρ(∆x).

Real JRC θ (cm) σ/θ

0.4 1.497 0.0097
2.8 0.599 0.0322
5.8 0.952 0.0327
6.7 0.763 0.0542
9.5 2.540 0.0329
10.8 2.731 0.0704
12.8 1.383 0.0915
14.5 1.596 0.1126
16.7 1.216 0.0964
18.7 0.684 0.1332

Characteristic of the autocorrelation functions of the profiles is the negative part. Negative parts
always occur in the autocorrelation function of a single realization, even if the random field belongs by
construction to a specific type, e.g., Gaussian with Gaussian correlations. Therefore, if one is given
a single realization of the field, the best way to proceed is by best fitting the obtained correlation/variance
function to suitable model function. The Gaussian model correlation used here was chosen among
various simple models (e.g., Markovian, white noise, triangular and cubic correlations; see [23]) as the
one which performed the best. The quantity σ/θ is given in Table 2 for each roughness coefficient JRC.
Moreover, the JRC-σ/θ relationship has been drawn in Figure 3. The R-squared of this relationship
was only 3% smaller than the respective one given in Figure 1, also by the authors, for the respective
JRC-logZ2 relationship. Both relationships have been extracted from the same figure (Barton and
Choubey’s [4]) without involving fine tuning of the digitization.

It should be noted that, not all of the waviness of the correlation functions, and their negative
parts shown in Figure 2, need to be an artifact of the single realization. The cases of JRC 8-10, 10-12 and
14-16 exhibited a more deterministic tendency for negative values and a different pattern than most of
the other cases. Clearly, the single-parameter model variance function in Equation (14) is too simple to
cover all forms of behavior exhibited by the profiles. A two- or three-parameter model function is
required. This shall be the subject of future work.
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Figure 3. The JRC-σ/θ relationship.

3.2. Stability of σ/θ as a Roughness Measure

Estimating roughness from the image of a rock surface entails errors due to the quality of the
image and its digitation. A simple test as to the behavior of the roughness measures is to calculate
the index Z2 and our index σ/θ and compare the results for the two cases of images. In this respect,
the original JRC profiles given in Barton and Choubey [4] and the respective ones reproduced by Tse
and Cruden [3] have been used. It is noted that, when the pages containing the standard JRC profiles
are printed in A4 paper using the “actual size” option of printer, the linear scale (accompanying the
profiles) of 10 cm in Barton and Choubey [4] measured (approximately) 6 cm, whilst the same scale of
10 cm in Tse and Cruden [3] measured just 3 cm. It is also reminded that, none of these raster images of
the late 1970s meet the quality standards of today (e.g., the quality of vector images). The profiles of
both images were analyzed in the exact same way. The results have been presented below.

The JRC-logZ2 relationships extracted by Tse and Cruden’s [3] and Barton and Choubey’s [4]
image are shown together in Figure 4, the latter has also be drawn in Figure 1. From Figure 4, it is clear
that, the different images have given incomparable estimates for the roughness. This is of particular
importance because the same Z2 value led to complete JRC values.
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The same has been done but for the JRC-σ/θ relationship. As shown in Figure 5, there is a much
greater consistency between the estimates. The level of consistency is additionally shown by plotting
the two sets of results against each other. Figure 6 shows the results for logZ2, whilst Figure 7 shows
the results for the σ/θ index introduced in present work. For the case of σ/θ, the higher R2 value has
been noticed, and also the proximity of the slope of the best fit to the value of 1. The reason why the
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σ/θ index appears to be more stable than the index Z2 might be described as follows. Z2 contains the
information contained in ACF(∆x) for equal ∆x to the length of the interval between sampling points,
i.e., the infinitesimal interval of the given digitation. On the other hand, θ is estimated employing the
information contained in ACF(∆x) over all meaningful correlation distances. Apparently, the latter
feature operates as a regularizing factor smoothing those errors present in the Z2 estimate.
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3.3. Obtaining θ through JRC

As mentioned earlier, this work intends to embed the estimation of the joint roughness coefficient
in the framework of random fields. In this respect, JRC is estimated through σ and θ, or better through
the σ/θ ratio. However, the present work could also be useful in an advanced probabilistic rock slope
stability analysis [26] based on random fields, considering that the Barton-Bandis criterion [27] has
been adopted. In order for a random field analysis to be performed, the spatial correlation length θ of
joint roughness must be known. If now the JRC coefficient and the variance σ of the profile are known,
the spatial correlation length θ can be obtained from the best fit relation of Figure 3, as follows:

Θ = 145.5 σ/JRC, (21)

The JRC coefficient can be obtained directly through tilt tests, push or pull tests, or matching
roughness profiles [4], whilst the variance σ can be obtained from inspection of the digitized profile.

4. Discussion

The authors revisited the problem of determining the joint roughness coefficient (JRC) included
in the Barton-Bandis failure criterion from the point of view of digitalized profiles of discontinuities.
However, numerous indices have been correlated with JRC, with the geometric characteristic Z2

being, probably, the most popular one. Based on the international literature, the statistical measure SF
(Structure Function), has been a good alternative giving also very strong correlations with JRC.

As the random fluctuation of discontinuities can be considered as being random fields, the present
paper targeted on embedding the estimation of the joint roughness coefficient (JRC) in the framework
of the theory of random fields. The analysis showed that the fluctuation of discontinuities in both
micro- and macro scale was related to a single length and more specifically to the spatial correlation
length, θ (essential parameter in the theory of random fields). Indeed, it was found that the quantity
σ/θ was a good candidate for quantifying the roughness coefficient JRC. Usually, the determination of
θ relies on the best fit of a suitably chosen model variance function to the normalized autocorrelation
function. The stability of the proposed σ/θ index as a roughness measure was compared against the
characteristic Z2. In this respect, the two indices were applied to images of the same discontinuity
profiles and more specifically, the ten standard JRC profiles given by Barton and Choubey [4], but of
different quality. From the results, it is clear that the estimates for JRC by the proposed method appear
to be much more stable, in contrast to Z2 or, as explained earlier, SF (structure function).

The fact that the R-squared value for the JRC-σ/θ relationship of Figure 3 (R2 = 0.9002), although
very strong, was not perfectly strong can be attributed to three main reasons. First, no fine tuning of
the digitization of Barton and Choubey’s [4] figure was involved. Second, the ten JRC profiles were
representative of the two-dimensional cross-sections, whilst their JRC values were average values
referring to the respective three-dimensional fluctuating surface of the rock blocks. Third, despite the
versatility of the random field method, the derived θ values depended on the extend of the sampling
domain [28,29]. An extensive parallel research conducted by the authors (paper under preparation)
indicated that, for eliminating this kind of error in the proposed JRC-σ/θ relationship, a domain at
least 35θ in length was required to be considered. Indeed, as the domain length increases (in this
respect, the length of discontinuity) the θ value reaches asymptotically its maximum value for the
specific random field. This is in agreement with the empirical scale correction relationship suggested
by Barton and Bandis [30]:

JRCn ≈ JRCo

(Ln

Lo

)−0.02·JRCo

(22)

where, JRCn and JRCo are the joint roughness coefficients corresponding to samples of length Ln

and Lo = 10 cm respectively. More specifically, Equation (22) shows that, the JRCn value decreases
as the Ln/Lo ratio increases towards a minimum asymptotic value. On the other hand, as Ln/Lo

increases, the σ/θ ratio and thus, the JRC value decreases (recall the JRC-σ/θ relationship in Figure 3)
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towards a minimum asymptotic value. Based on the θ values given in Table 2, the rock joint profiles
should be at least 2 to 9 times longer than the 10 cm of the original Barton and Choubey’s [4] profiles
(value depending on the fluctuation pattern of each profile) for effectively determining the JRC.

The above has been supported by the experimental findings of Barton and Choubey [4]. In this
respect, Barton and Choubey performed three tilt tests on a 40 × 45 cm joint area (sliding along the long
dimension) and they found an (average) joint roughness coefficient value equal to 5.5. The same sample
was sawn by Barton and Choubey into 18 samples 4.9 × 9.8 cm in size (samples by 45/9.8 = 4.6 times
shorter in the shear direction than the original joint area). The shear direction was marked so that each
of the small specimens could be tilt-tested, push-tested and shear box tested in the same direction
as the original tilt test of the 45 cm long joint. The results of this investigation are summarized in
Table 3. From the table in question it is inferred that: (i) The (mean) JRC value depends greatly on the
type of test; (ii) the standard deviation alone is not a good index for indicating the proper type of test;
and (iii) the best estimate was obtained from the tilt test (please compare the JRCn = 5.12 value with
the JRCn = 5.5 for the 40 × 45 cm joint area). The latter could be attributed to test compatibility, as the
40 × 45 cm joint area was also tested on a tilt test configuration.

Table 3. JRC values obtained by different test methods (see Barton and Choubey [4]) and correction
for scale.

Statistical Description of Test Data and JRCn Values Shear Box 1 Tilt 1 Push 1 Overall

Number of samples tested 18 6 12 36
Mean JRC value, µ 8.69 6.18 10.17 8.76

Standard deviation, σ 1.18 0.66 0.55 1.63
JRCn

2 (Equation (22)) 6.67 5.12 7.46 6.71
1 Not the same samples used in the tilt test were used in the push test, but all samples were tested in the shear box.
2 Reduction of the above JRC values to samples 45 cm in length based on Barton and Bandis’s [30] scale correction.

For considering the extent of the pattern of fluctuations on the JRC value, the authors suggest that
the JRC be determined based on joint profiles of adequate length. This suggestion is independent of
the method adopted (i.e., determination of JRC in the field, in the laboratory or based on correlations
e.g., with Z2 or SF). For discontinuities with large scale waviness, apparently, this length should be
even greater. A test joint surface length is adequate when considering greater length, as the JRC value
remains practically the same.

It is noted that, if the present method is adopted, no correction for the influence of scale on
JRC (such as the one proposed by Barton and Bandis [30]; see Equation (22)), is required. However,
because of the greater possibility of weaknesses in a large surface, it is likely that the average joint wall
compressive strength (JCS) decreases with increasing scale. In this respect, Barton and Bandis’ [30]
scale correction for JCS (recall Equation (6)) is suggested. It is additionally mentioned that, Barton
and Bandis’s [30] scale correction was derived from shear tests over a ten-fold range of block sizes,
involving linear extrapolation outside the block size range 0.1 m to 1 m. On the contrary, the proposed
method is straightforward, not involving such procedures.

Finally, as the problem is clearly one dimensional, and since sliding will take place along a specific
direction, the final JRC value should be an average value derived from a number of profiles parallel to
the direction of sliding. In this respect, the JRC = 145.5 σ/θ relationship is a convenient and reliable
tool for such an analysis. Refinement of this relationship based on longer sampling domain lengths is
subject matter of future research by the authors, although it is believed that this best fit equation will
not dramatically change.
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