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Abstract: In one of their recent works, the authors examined parametrically the effect of targeted field
investigation on reducing statistical uncertainty in active state analysis of earth retaining structures
based on 2165 different cases for each of the sliding and overturning modes of failure. This analysis
indicates that the optimal sampling location is always adjacent to the wall, while a sampling domain
length equal to the whole height of the wall is suggested to be considered. The present paper deals
with the “symmetrical” problem of soil under the passive state of stresses. Working in a similar
manner, 1879 passive state cases have been considered (also for each of the sliding and overturning
modes of failure) in a Random Finite Element Method (RFEM) analysis framework, where soil
properties are modeled as random fields while measurements are modeled by sampling from different
points of the field domain. The “actual” resultant earth passive pressure force (or moment) exerted by
the random soil on the retaining wall is compared against the respective “predicted” one calculated
using the soil property values sampled from the random field. Failure is considered to have occurred
when the derived “actual” force is smaller than the respective “predicted” force. This analysis clearly
indicates that the passive state constitutes a different problem, where the optimal sampling distance
from the wall is half the wall height. Regarding the depth of exploration, it was again found to be
the entire wall height. In addition, the present analysis shows that, the benefit from a targeted field
investigation is much greater than the benefit gained using statistical methods for obtaining cautious
estimates for the various soil properties; the latter refers to the “characteristic value”, a concept
commonly used in the Limit State analysis framework of Eurocode 7.

Keywords: probabilistic analysis; soil sampling location; Random Finite Element Method; scale of
fluctuation; passive earth pressure; optimal sampling location; characteristic value

1. Introduction

The inherent variability, systematic uncertainty and statistical uncertainty are the three main
sources of uncertainty regarding soil property values [1]. The inherent variability refers to the variability
that the soil properties exhibit by nature, even in seemingly homogenous soil media. Discrepancies
between in situ conditions and laboratory are related to systematic uncertainties [1–3]. Statistical
uncertainty is related to limited soil testing, i.e., to the fact that the soil mass, which is affected, is
much greater in volume than the soil mass tested in the field or in the lab. Regarding statistical
uncertainty, it is worth mentioning that current design codes (e.g., AASHTO [4] or EN 1997-2:2007 [5])
give some general recommendations (see also Appendix A in [6]) related to the extent of the subsurface
exploration and aiming at identifying possible unfavorable geological conditions.

The effect of soil sampling on the performance of geotechnical structures has been investigated, so
far, by the following researchers. Ching and Phoon [7] attempted to fully characterize the statistical
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uncertainty in the unknown trend function for the vertical spatial distribution of geotechnical site
investigation data. Fenton et al. [8] studied the effect of the type of trend removal and the number
of samples on residual uncertainty. Yang et al. [9,10] and Li et al. [11] studied the importance of
soil property sampling location in slope stability analysis. Jaksa et al. [12] and Christodoulou and
Pantelidis [13], on the other hand, studied the importance of soil property sampling location in footing’s
settlement analysis. Griffiths et al. [14] studied the effect of sampling on the reliability of earth pressure
analysis in the passive state based on the Random Finite Element Method (RFEM). Based on four
sampling locations, they drew the conclusion that a single sampling point located at an offset distance
equal to approximately one wall height from the wall results to lower probability of failure and that
this probability is reduced when additional sampling points are considered. Finally, in one of their
recent works, the authors [6] examined the effect of targeted field investigation on reducing statistical
uncertainty in active state analysis of earth retaining structures. The parametric analysis in question,
involving 2165 different cases for each of the sliding and overturning modes of failure, indicates that
the optimal sampling location is at zero distance from the wall, while the sampling domain length
should preferably be equal to the wall height. The present paper deals with the effect of targeted
field investigation on the reliability of earth retaining structures in passive state. This is done through
an extensive parametric analysis (1879 passive state cases have been considered in total for each of
the sliding and overturning modes of failure) using the RFEM method [15], properly considering soil
sampling in the analysis. Apparently, the present analysis refers to, e.g., sheet pile and bored pile walls,
retaining undisturbed soil (otherwise sampling makes no sense).

2. Parametric Analysis for Determining the Optimal Sampling Strategy

This paper examines in a RFEM framework the case of a wall retaining fully drained cohesionless
soil against passive failure. The REARTH2D program (freely available at http://www.engmath.dal.
ca/rfem) is used. As mentioned below, the program in question has been modified by the authors
to accommodate the needs of the present research. The REARTH2D program generates and maps
onto a finite element mesh the various spatially random soil properties (e.g., the friction angle); each
one of these random fields is fully described by its mean, standard deviation and scale of fluctuation.
For a specific set of material random fields, the program calculates both the wall reaction force and
overturning moment caused by the self-weight of soil (these are called “actual” forces and moments).
It also calculates the respective (“predicted”) force and moment based on Rankine’s [16] theory for
earth pressures using the mean of the values sampled from each soil property field. m realizations are
considered, where in each of these realizations a new set of random fields for c′, φ′, and γ is generated.
The “probability of failure” (pf) of the retaining wall is then calculated both for the sliding and the
overturning mode of failure; pf is defined by the fraction of the number of realizations that result in a
sliding or overturning failure over the total number of realizations. “Failure” is considered to have
occurred when the “actual” wall reaction force or overturning moment (value calculated using the
RFEM method i.e., considering that the soil is spatially random) is smaller than the respective (factored
or unfactored) predicted value referring to soil having spatially uniform properties sampled from the
RFEM random fields:

p f = P
[
Xp,RFEM <

Xp,Rankine

FS

]
or P
[
Xp,“actual” <

Xp,predicted

FS

]
(1)

where the symbol X denotes either the wall reaction force or the overturning moment (F and M
respectively). FS is the factor of safety considered in the analysis or, in Eurocode 7 [17] terms,
the model factor.

http://www.engmath.dal.ca/rfem
http://www.engmath.dal.ca/rfem
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The REARTH2D program was modified by the authors so as the “predicted” magnitudes to be
calculated using the finite element method (and not Rankine’s theory), while the mean of the values
sampled from each soil property field is also used. That is,

p f = P
[
Xp,RFEM <

Xp,FEM

FS

]
or P
[
Xp,“actual” <

Xp,predicted

FS

]
(2)

In the RFEM analysis below, the soil mass is discretized into a 60 by 34 mesh of eight-noded
quadrilateral elements (in the horizontal and vertical direction respectively); the length of the edge
of each element is equal to 0.1m (see Figure 1). A 24-element wall is extensively used below, which
hereafter is called the “reference wall”. For investigating the effect of wall height on the optimal
sampling strategy, wall heights ranging from H = 1.4 m to 2.9 m (i.e., 14 to 29 elements respectively)
were considered. The 60 elements in the horizontal direction were chosen so that any undesirable
boundary effect to be eliminated.
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Figure 1. Figure illustrating the 60 (H) by 34 (V) finite element mesh considered with a random field of
φ′ mapped onto it; light areas correspond to lower friction angles. The mapped random field is for
θ/H = 8.3 and COV of φ′ = 0.3. The soil is in the passive state.

E and ν was found not to have any influence on the optimal sampling strategy, thus, all figures
given below stand for any E and ν pair of values. Therefore, in the present analysis only φ′ and γ are
treated as random fields with µφ′ = 30◦, µγ = 20 kN/m3 and COV of φ′ and γ equal to 0.3. Throughout
the entire analysis, the values of ν and E were held spatially constant at ν = 0.3 and E = 105 kN/m2,
while various standard deviation and scale of fluctuation values of soil strength are examined. It is
noted that the soil considered is cohesionless, whilst both φ′ and γ are assumed to be log-normally
distributed [15,18–21]. Ko, for establishing the initial state of stresses, is also treated as random field as
being a pure function of φ′ (according to Jaky [22] Ko = 1 − sinφ′). Finally, a factor of safety FS equal to
1.25 is generally used in the analysis, although the effect of FS on the sampling strategy is also subject
matter of the present paper.

In the parametric analysis below both the sampling from a single point and sampling from domain
strategies are examined. Aiming at finding the sampling strategy that minimizes the statistical error
(called optimal sampling strategy), the following parameters are examined: the sampling depth (dp) or
the sampling domain length (dd) for the case of sampling from a single point and the case of sampling
from a domain, respectively (both measured from the soil surface; the latter rather refers to continuous
probing test data), the horizontal sampling distance (x) measured from the wall face, the scale of
fluctuation of soil (θ), the wall roughness (the wall is considered either perfectly smooth or perfectly
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rough), the height of the wall (H), the COV and mean value of φ′, the factor of safety value (FS), and the
anisotropy of soil mass (θh , θv). The symbol θ (that is, without subscript) denotes, hereafter, isotropic
conditions (θh = θv). The reduction of statistical error is quantified through the reduction in pf when
adopting different sampling scenario. Figure 2 illustrates examples of different sampling scenarios,
referring either to a single point (scenarios A and B) or to continuous probing tests (scenarios C and D).
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Figure 2. Examples of different sampling scenarios referring either to a single point (scenarios A and B)
or to continuous probing tests (scenarios C and D).

The optimal sampling point or domain will be identified by comparing the probability of failure
(pf) values derived by various sampling strategies. Because the present analysis deals with small
differences in pf values, the number of realizations was set to 3000 for obtaining stable results (see
Appendix A in the present paper). The element size was chosen to be half of the smallest scale of
fluctuation considered in this study (see [6,23]).

2.1. Sampling from a Single Point

2.1.1. Effect of Scale of Fluctuation (θ)

A number of pf − dp/H example curves have been drawn in Figure 3 for various θ/H and x/H
values both for the case of sliding and overturning mode of failure. From this figure, it is clear that
the optimal sampling distance from the wall in the passive state is 0.5H from the wall face, both for
sliding and overturning modes of failure; this stands for any θ value. It is also interesting that, there is
a worst case θ/H value, where pf becomes maximum (see Figure 4). From Figure 4, it is also inferred
that when θ is very small, pf does not depend on the sampling depth. However, pf value becomes
more dependent on the sampling depth as θ increases.
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Figure 3. pf − dp/H curves for various x/H and θ/H values for both the sliding (a,c,e) and overturning
modes of failure (b,d,f).
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Figure 4. pf − dp/H curves for x/H = 0.5 and various θ/H values for the (a) smooth sliding and (b)
smooth overturning mode of failure.

2.1.2. Effect of Wall Roughness

Comparing Figure 5 (perfectly rough wall) with Figure 4 (perfectly smooth wall) it is inferred
that the roughness of the wall has minor effect on the optimal sampling depth, in a manner that, in
smooth walls, the optimal sampling point appears to be slightly higher. In addition, it is observed
that the optimal sampling point appears to be higher for the overturning mode of failure (the same
happens in the case of smooth walls). Because the wall roughness was found by the authors not to
affect the optimal sampling distance, where again the half wall height (x/H = 0.5) is the best choice for
conducting field investigation, thus, curves were drawn only for this sampling distance (see Figure 5).
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Figure 5. pf versus dp/H example curves for x/H = 0.5 and various θ/H values (perfectly rough wall) for
the (a) sliding and (b) overturning mode of failure; to be compared with the case of perfectly smooth
wall (Figure 4).

2.1.3. Effect of Wall Height

In this respect, different wall heights, ranging from 1.4 to 2.9m with 0.5m interval, were considered.
From the pf − dp/H curves of Figure 6, it is obvious that, the wall height has only a minor influence on
the location of the optimal sampling point, mainly in the case only of the sliding wall.



Geosciences 2020, 10, 110 7 of 21Geosciences 2020, 12, x FOR PEER REVIEW 7 of 22 

 
Figure 6. fp - pd H  example curves for x H = 0.5, θ =20 m and for different wall heights, H, for 

the (a) sliding and (b) overturning modes of failure. 

2.1.4. Effect of COV of 'φ  

In this respect, it was found that the optimal sampling distance from the wall face is not affected 
by the COV of 'φ , where, again, a distance equal to a half wall height leads to smaller statistical error; 
five different COV values of 'φ have been considered, ranging from 0.1 to 0.5, with 0.1 interval. Thus, 
only the x 0.5H = case is presented here. From Figure 7, it is concluded that the COV of 'φ  has no 
influence on the optimal sampling depth; the same stands both for the case of sliding and overturning 
wall.  

2.1.5. Effect of 'φμ  value 

Three different 'φμ  values ( 'φμ = 20, 30, and 40°) were considered here for examining the effect 

of the mean value of 'φ  to the sampling strategy (the COV of 'φ  and γ were equal to 0.3 and 0, 
respectively). The analysis showed that the optimal horizontal sampling distance is for x 0.5H =
and it is independent of the 'φμ  value. Moreover, as shown in Figure 8, the optimal sampling depth 

is also independent of 'φμ  (something that stands both for the case of sliding and overturning modes 

of failure).  

2.1.6. Effect of the Factor of Safety ( )FS  

The optimal sampling distance from the wall face was found at x/H= 0.5 for any FS value; thus,
fp - pd H curves are given only for this value (see Figure 9). As expected, fp decreases as FS

increases. However, it is interesting that the positive effect of a targeted field investigation on the 
reduction of the statistical error is greater for greater FS  values.  

 
 

Figure 6. pf − dp/H example curves for x/H = 0.5, θ = 20 m and for different wall heights, H, for the (a)
sliding and (b) overturning modes of failure.

2.1.4. Effect of COV of φ′

In this respect, it was found that the optimal sampling distance from the wall face is not affected by
the COV of φ′, where, again, a distance equal to a half wall height leads to smaller statistical error; five
different COV values of φ′ have been considered, ranging from 0.1 to 0.5, with 0.1 interval. Thus, only
the x/H = 0.5 case is presented here. From Figure 7, it is concluded that the COV of φ′ has no influence
on the optimal sampling depth; the same stands both for the case of sliding and overturning wall.Geosciences 2020, 12, x FOR PEER REVIEW 8 of 22 
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Figure 7. pf − dp/H example curves for x/H = 0.5, θ/H = 2.08 and different COV of φ′ values for the (a)
sliding and (b) overturning modes of failure.

2.1.5. Effect of µφ′ value

Three different µφ′ values (µφ′ = 20, 30, and 40◦) were considered here for examining the effect
of the mean value of φ′ to the sampling strategy (the COV of φ′ and γ were equal to 0.3 and 0,
respectively). The analysis showed that the optimal horizontal sampling distance is for x/H = 0.5 and
it is independent of the µφ′ value. Moreover, as shown in Figure 8, the optimal sampling depth is
also independent of µφ′ (something that stands both for the case of sliding and overturning modes of
failure).
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2.1.7. Effect of Soil Anisotropy

Generally, soils appear to be more variable in the vertical direction than in the horizontal direction
and this is attributed to the natural deposition and the soil formation processes. Roughly, the scale of
fluctuation of soil in the vertical direction is 10 times smaller than the respective scale of fluctuation in
the horizontal direction [24–28]. Considering this, the effect of soil anisotropy on the optimal sampling
location is investigated herein comparing the θv/H = θh/H = 2.08 case with the θv/H = 2.08 and θh/H =

20.8 case. The “reference” wall-soil system is used, whilst the results are presented in Figure 10 in the
usual pf versus dp/H form for various x/H values. From this figure, it is concluded that the horizontal
distance plays, generally, no role in the statistical uncertainty, especially when x/H < 1. In addition,
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soil anisotropy seems not to affect the depth of the optimal sampling location, either in the case of the
sliding or overturning wall. However, anisotropic soils rather give smaller pf values (please compare
Figure 10a,b with Figure 3c,d, respectively).
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2.2. Sampling from a Domain

The “sampling from a domain” strategy may refer to continuous undisturbed sampling in the
field (followed by suitable laboratory tests for obtaining the required soil parameters) or to continuous
probing test data, such as those obtained from, e.g., the Cone Penetration Test or Standard Penetration
Test. In the analysis below, the length of the sampling domain is measured from the soil surface.
Virtual sampling is considered to take place with 0.1 length unit interval (in this respect, meters), as
each (square) element in the finite element mesh used has this edge length. The arithmetic mean of
the values sampled from each soil property random field is used in the finite element analysis (recall
Equation (2)). It is noted that, for all cases examined in this section, the x/H = 0.5 distance from the wall
was again found to be optimal. Thus, for keeping the length of the present paper in a logical length,
only this case is presented below.

2.2.1. Effect of Scale of fluctuation (θ)

From the pf versus dd/H charts of Figure 11 it is clear that the optimal horizontal sampling distance
from the wall is again for x/H = 0.5. Indeed, when θ is very small, a different sampling distance seems
not to greatly affect the statistical error. On the contrary, as θ increases the role of horizontal distance
becomes more and more significant. In the figure in question, x/H values ranging from 0 to 2 were
considered, whilst FS was set equal to 1.25 (recall Equation (2)). Furthermore, it is suggested that the
entire domain length at horizontal distance equal to half wall height from the wall be considered for
reducing the statistical error to a minimum possible level. It is also worth noting that if the sampling
domain length is extended below the lower point of the wall (i.e., dd/H > 1), the statistical error is not
greatly affected (the present analysis considered normalized depths dd/H up to 1.4). Finally, as shown
in Figure 12 (also observed in Figure 11), there is a worst-case theta (value giving greater pf values as
compared to the other θ values).
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Figure 11. fp - dd H  curves for various x H and H  values for both the sliding (a, c, e) and 
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Figure 11. pf − dd/H curves for various x/H and θ/H values for both the sliding (a,c,e) and overturning
modes of failure (b,d,f).
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2.2.2. Effect of Wall Roughness

As expected, the wall roughness affects the probability of failure however it has minor influence
on the optimal sampling domain length, where the entire wall height is suggested to be taken into
account (see Figure 13). Even greater sampling domain lengths have no influence in the reduction of
the statistical error.
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of failure. Additionally, θ/H = 8.3 and x/H = 0.5.

2.2.3. Effect of Wall Height

In this respect, four wall heights ranging from 1.4 to 2.9 m with 0.5 m interval, were considered.
From the pf − dd/H curves of Figure 14, it is clear that the wall height largely affects the statistical error
with the higher walls requiring greater sampling domain length, especially in the case of the sliding
wall. For both sliding and overturning walls, it is advisable that the whole domain length be taken
into account.
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Figure 14. pf − dd/H curves for x/H = 0.5, θ = 20 m and different wall heights for the (a) sliding and (b)
overturning modes of failure.

2.2.4. Effect of COV of φ′

As shown in Figure 15, the COV of φ′ has no influence on the sampling strategy, where again the
half wall height is the optimal sampling distance from the wall, whilst it is advisable that a domain
length equal to the wall height be considered. Five different COV values of φ′ were considered, ranging
from 0.1 to 0.5 with 0.1 interval. For the economy of space, only the x/H = 0.5 case is presented herein.
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Figure 15. pf − dd/H curves for x/H = 0.5, θ/H = 2.08 and various values for COV of φ′. Figure (a) refers
to the case of sliding wall, whilst figure (b) refers to the overturning wall.

2.2.5. Effect of the Factor of Safety (FS)

The analysis on the effect of FS on the sampling strategy did not reveal anything different from
what has been reported above, where the optimal sampling strategy refers to x/H = 0.5 and dd/H =

1. As expected, pf decreases as FS increases, however, the FS value has no influence on the optimal
sampling domain length (see Figure 16).
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and (b) overturning wall.

2.2.6. Effect of Soil Anisotropy

The anisotropic case was examined considering θh/H = 20.8 and θv/H = 2.08 (it is reminded that
the isotropic case has θh/H = θv/H = θ/H = 2.08; see Figure 11). As it is inferred from Figure 17, the soil
anisotropy has minor effect both on the probability of failure and the optimal sampling domain length.
For both cases (the sliding and overturning wall) the statistical error remains relatively constant for
horizontal sampling distances less than the wall height. By taking samples in distance greater than
that, the statistical error increases slightly.
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Figure 17. pf − dd/H curves for the case of the (a) sliding and (b) overturning wall considering anisotropic
soil (θh/H = 20.8 and θv/H = 2.08).

3. Discussion

3.1. Optimal Sampling Locations

From the above extended parametric analysis, it is concluded that the optimal offset distance from
the wall face for fully drained cohesionless soils is at half wall height, whilst the optimal sampling
depth (referring to a single sampling point) is greater than the 2/3 and 1/2 of the height of the wall for
the sliding and overturning modes of failure, respectively (the exact depth depends on the special
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variability of soil, i.e., the scale of fluctuation value). When a sampling domain is considered, the
authors suggest that a length equal to the whole height of the wall be considered.

3.2. The Importance of Targeted Field Investigation in Practice

The importance of the findings is illustrated through the examples given below. Three specific
random fields are considered, assuming that these represent in practice actual soil fields. These random
fields of φ′ are shown in Figures 1, 18 and 19 whilst their characteristics are given in Table 1. The soils
are cohesionless and fully drained. The reference wall and a factor of safety equal to unity are used in
all three examples (the value of FS is a matter of discussion in the next paragraph). Because the mean
and the COV value of the soil parameters does not affect the decision upon the sampling strategy, these
values where kept the same for all examples.
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Table 1. Summary of the soils’ characteristics used in the three examples (wall height H = 2.4 m).

Example Random
Field (s) Distribution µφ′ µγ COV θ/H Figure 1)

#1 φ′, γ Log-normal 30◦ 20 kN/m3 0.3 8.3 1
#2 φ′ Log-normal 30◦ 20 kN/m3 0.3 4.2 18
#3 φ′ Log-normal 30◦ 20 kN/m3 0.3 0.42 19

1) Figures showing the random fields of φ′.

For all three cases the predicted magnitudes (F and M) are compared against the actual ones
using the ratios Fpredicted/F”actual” and Mpredicted/M”actual”. The results are summarized in the charts of
Figures 20–22; Fpredicted/F”actual” and Mpredicted/M”actual” values are given for various x/H and dd/H values.
The relative difference Rd defined as Fpredicted/F”actual” − 1 and Mpredicted/M”actual” − 1 is also given in
each chart (see secondary vertical axis).
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Figure 22. Example #3: Fpredicted/F”actual”(a) and Mpredicted/M”actual” (b) vs. x/H curves for various dd/H
values and for both the sliding and overturning failure cases (see also Table 1 and Figure 19).

As shown in Figures 20–22, both Fpredicted/F”actual” and Mpredicted/M”actual” ratios are unity or very
close to unity for x/H = 0.5 and dd/H = 1, this is indicative of the success of the present analysis. It
should be noted that, any Fpredicted/F”actual” or Mpredicted/M”actual” value close or equal to unity for other
x/H values does not necessarily indicate optimal sampling location; this can also happen coincidentally
as the soil is random and may exhibit similar properties in other locations. From the same figures
it is also clear that, the increasing number of samples is not a precondition for reducing statistical
uncertainty; indeed, the opposite may occur (please compare the pf ≈ 0.015 value in Figure 3e for x/H =

0.5 and dp/H = 0.7 with the pf ≈ 0.18 value in Figure 11e for x/H = 2 and dd/H = 1 referring to a single
and 24 sampling points respectively). Such examples can also be found in the present section; please
compare the {x/H = 2.5, dd/H = 1} case with the {x/H = 0.5, dd/H = 0.25} case shown in Figure 22b, giving
Rd,M ≈ 0.52 and −0.04, respectively.

3.3. Designing with Load and Resistance Factor Design (LRFD) Codes

Eurocode 7 [17] aims to achieve geotechnical designs with an appropriate target reliability by
applying partial factors to characteristic values of geotechnical parameters. Model uncertainties and
dimensional variations are absorbed by applying “partial factors” to actions, material properties,
and/or resistances [29]. While Eurocode 7 uses characteristic values (cautious estimate of the mean of
a set of values) so as to take account of the inherent variability of the soil, the various North America
codes [4,30–32] use mean values for soil properties. The following statistical equation using 95%
confidence level is often adopted in practice for the calculation of the characteristic value [6,13,29,33]:

Xk = Xm −
ta;vs · Sd
√

n
(3)

The design value of a geotechnical parameter (Xd) derives from the respective characteristic value,
using the following equation [17]:

Xd = Xk/γM (4)

(all parameters in Equations (3) and (4) are defined in the notation list).
For discussing the effectiveness of the characteristic and mean value concept in reliability of

retaining structures under the passive state, two example charts were produced, referring to case #3
presented above; see Figure 23. In this figure the dd/H = 1 case can be directly compared with the
respective dd/H = 0.25 case.
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Figure 23. Fpredicted/F”actual” vs. x/H curves using both mean and characteristic values (solid and dashed
lines respectively) for FS = 1 and 1.25. Figure referring to the case of a sliding wall and to two sampling
domain cases (dd/H = 1 (a) and dd/H = 0.25 (b)). The reference wall was used. Soil characteristics are
shown in Table 1 (Example #3). Additionally, for this example, γM = γφ = 1.

From Figure 23, it is clear that, despite the conservatism of the characteristic values, the
characteristic value concept alone cannot effectively deal with the inherent variability of soils, and, thus,
it cannot guaranty a conservative enough engineering study (let alone the use of mean soil property
values). From the same figure, it is also clear that the benefit from a targeted field investigation is much
greater as compared to the benefit gained using characteristic values. It is even more interesting that a
factor of safety as high as 1.25 (recall Equation (2); model factor for Eurocode 7) does not necessarily
guarantee a safe design. Such a factor simply displaces downwards (that is, to the safe side) the
Fpredicted/F”actual” (or Mpredicted/M”actual”) versus x/H curves and as characteristically shown, its precise
value needs special consideration.

The inclusion of the “characteristic value” concept in the REARTH2D code was done by the authors.

4. Conclusions

The statistical uncertainty related to the soil property values in an earth-retaining project may be
significant, and, consequently, the probability of failure may also be very high. In the present paper the
case of a wall retaining a fully drained cohesionless soil against passive failure is examined, indicating
that the uncertainty in question can effectively be minimized only when targeted field investigation is
performed, that is when the number and the location of the sampling points are carefully selected.
And this because as samples are taken from a material field (i.e., the ground), which simultaneously is
a stress field (stresses caused by the self-weight of the soil and any external load), the location of the
optimal sampling points is affected by the coexistence of these two fields.

From the above extended parametric analysis, it is concluded that the optimal offset distance
from the wall face for cohesionless, fully drained soils is half wall height, whilst the optimal sampling
depth (referring to a single sampling point) is greater than the 2/3 and 1/2 of the height of the wall for
the sliding and overturning modes of failure, respectively (the exact depth depends on the special
variability of soil, i.e., the scale of fluctuation value). When a sampling domain is considered, the
authors suggest that a length equal to the whole height of the wall be considered. It is reminded that
the same sampling domain length was found for walls being in the active state; however, the optimal
sampling distance in the state in question is 0, i.e., in contact with the wall (please see the companion
paper [6] published by the authors).

In addition, it is concluded that, despite the use of conservative soil property values (use of
characteristic values), the characteristic value concept alone cannot effectively deal with the inherent
variability of soils and, thus, it cannot guaranty a conservative enough engineering study. Indeed, the
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benefit gained from a targeted field investigation is much greater as compared to the benefit gained
using characteristic values. Finally, the use of the model factor in a Load and Resistance Factor Design
(LRFD) also needs special consideration as, depending on the soil variability, it does not necessarily
guarantee a safe design.

Author Contributions: Conceptualization, L.P.; methodology, P.C. and L.P.; software, P.C.; validation, E.G.;
formal analysis, P.C.; writing—original draft preparation, P.C.; writing—review and editing, P.C., L.P. and E.G.;
visualization, P.C.; supervision, L.P. and E.G. All authors have read and agreed to the published version of
the manuscript
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Notation List

COV
coefficient of variation of a soil parameter e.g., COV(φ′) and COV(γ) for drained friction
angle and unit weight of soil respectively.

dd sampling domain length measured always from the uppermost point of the wall
dp depth of sampling point
E modulus of elasticity of soil
FS factor of safety
F resultant wall reaction force
h excavation depth
H wall height
K0 coefficient of earth pressure at rest
M resultant wall reaction moment
m number of realizations
n number of samples
pf probability of failure
Sd sample standard deviation
t embedded length of the support
ta;vs Student t factor for a confidence level of α% in the case of vs degrees of freedom
x horizontal distance from wall face
Xd design values of geotechnical parameters
Xk characteristic value
Xm sample mean
za investigation depth below the ground level
γ unit weight of soil
γφ partial factor for the friction of soil
γM partial material factor
γR model factor

θ
scale of fluctuation (also known as spatial correlation length); this symbol also replaces
the symbols θv and θh when θv = θh

θh horizontal scale of fluctuation
θv vertical scale of fluctuation
µγ mean unit weight of soil
µφ′ mean of drained friction angle
ν Poisson’s ratio of soil
φ′ drained friction angle



Geosciences 2020, 10, 110 19 of 21

Appendix A. Stability of Numerical Results (Number of Realizations Considered in the
RFEM Models)

As mentioned earlier, the number of realizations was set to 3000 for obtaining stable results. According to
Figure A1, this number of realizations is sufficient for the problem studied in this paper.Geosciences 2020, 12, x FOR PEER REVIEW 20 of 22 
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