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ABSTRACT  

Nanoindentation has evolved into a ubiquitous tool for the mechanical characterization of 

materials at small scales. Several mechanical metrics are routinely extracted, the most common 

of which are the elastic modulus and the hardness of the indented material. Perhaps, even more 

importantly than the capability for nanoscale mechanical characterization, is the fact that it 

provided experimentalists with an unprecedented access to fundamental material physics. This 

enabled a refined understanding of the underlying mechanisms that yield the macroscopic 

mechanical response of materials and enabled materials scientists and engineers in developing 

models and routes for tailor-made synthesis of materials for specific applications. This capability, 

however, triggered the uncontrolled utilization of nanoindentation in virtually all material 

systems: metals, ceramics, polymers, composites, biomaterials, thin films, etc. The initial 

framework of data analysis, however, was developed for metals and it is not necessarily suitable 

for other materials systems. The utilization of nanoindentation into more complex systems 

requires the incorporation of the peculiarities of the constitutive relations of the material 

characteristics and geometrical details into the analysis. 

This thesis deals with the computational (finite element) modeling of nanoindentation on a variety 

of emerging materials systems. The three material types studied herein are: (a) auxetic, (b) hard 

thin films, and (c) cohesive-frictional solids. Auxetics are materials that possess a negative 

Poisson’s ratio and exhibit the counter-intuitive response of expanding laterally when stretched. 

This intriguing response provides auxetic systems several augmented characteristics among of 

which is an enhancement in indentation resistance. Hard thin films are nowadays widely used as 

protective coatings from mechanical/contact loads or corrosive environments or for additional 

functionalities like sensing capabilities or biocompatibility. Cohesive-frictional materials are 

solids with a pressure-sensitive yield criterion. Several important materials fall within this 

category among them cement-based composites (the most widely used solids on earth), shales 

(the material in which the majority of hydrocarbon resources is stored) and bulk metallic glasses 

(one of the most promising advanced metals with enhanced strength and ductility characteristics). 

The focus of this thesis is twofold: On one hand it aims in deciphering the underlying physics of 

these materials systems when indented by rigid probes and on the other hand to develop the 

necessary framework for experimentalists to properly interpret the obtained data, plan their 

experimental protocol accordingly or develop strategies for material optimization. 

Keywords: nanoindentation; contact mechanics; finite element method; auxetics; thin films; 

cohesive-frictional materials 
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ΠΕΡΙΛΗΨΗ 

Η τεχνική της νανοδιείσδυσης ή νανοσκληρομέτρησης έχει εξελιχθεί σε ένα απαραίτητο εργαλείο 

μηχανικού χαρακτηρισμού υλικών σε μικρή κλίμακα. Με τη χρήση της συγκεκριμένης δοκιμής, 

μπορούν να προσδιοριστούν διάφορες μηχανικές ιδιότητες, οι συνηθέστερες εκ των οποίων είναι το 

μέτρο ελαστικότητας του Young και η σκληρότητα. Πέρα από τη δυνατότητα μηχανικού 

χαρακτηρισμού υλικών στη νανοκλίμακα, σημαντικότερο είναι το γεγονός ότι η συγκεκριμένη 

τεχνική παρέχει μία άνευ προηγουμένου πρόσβαση στη θεμελιώδη κατανόηση της φυσικής των 

στερεών υλικών. Το γεγονός αυτό επιτρέπει την ακριβέστερη κατανόηση των μηχανισμών στους 

οποίους εδράζει η μακροσκοπική μηχανική απόκριση των υλικών και δίδει τη δυνατότητα σε 

επιστήμονες και μηχανικούς υλικών στο να αναπτύξουν μοντέλα και διαδικασίες για στοχευμένη 

σύνθεση υλικών για συγκεκριμένες εφαρμογές. Η δυνατότητα αυτή πυροδότησε την ευρεία χρήση 

της τεχνικής νανοδιείσδυσης σε σχεδόν όλα τα συστήματα υλικών: μέταλλα, κεραμικά, πολυμερή, 

σύνθετα, βιοϋλικά, λεπτά υμένια, κλπ. Ωστόσο, πρέπει να επισημανθεί ότι ενώ το αρχικό πλαίσιο 

ανάλυσης δεδομένων αναπτύχθηκε για μέταλλα, αυτό δεν είναι απαραιτήτως κατάλληλο για άλλα 

συστήματα υλικών. Η χρήση της τεχνικής σε πιο πολύπλοκα συστήματα απαιτεί την ενσωμάτωση των 

ιδιαιτεροτήτων των καταστατικών εξισώσεων των υλικών και τις ιδιαιτερότητες των γεωμετρικών 

τους στοιχείων στην ανάλυση. 

Η παρούσα διατριβή εξετάζει την υπολογιστική μοντελοποίηση της νανοσκληρομέτρησης σε μια 

ποικιλία αναδυόμενων συστημάτων υλικών. Στόχο αποτελεί, αφενός η κατανόηση της φυσικής 

συγκεκριμένων συστημάτων όταν αυτά υπόκεινται σε φορτία επαφής και αφετέρου η ανάπτυξη του 

αναγκαίου πλαισίου για πειραματικούς ερευνητές για ορθή ερμηνεία των μηχανικών δεδομένων ή 

ακόμα και για σωστό προγραμματισμό του πειραματικού πρωτοκόλλου. Τα συστήματα που 

μελετήθηκαν περιλαμβάνουν: (α) αυξητικά υλικά, (β) σκληρά λεπτά υμένια, και (γ) υλικά με συνοχή 

και εσωτερική τριβή. Αυξητικά είναι τα υλικά που διαθέτουν αρνητικό λόγο Poisson και επιδεικνύουν 

την αντισυμβατική συμπεριφορά του να επεκτείνονται πλευρικά όταν εφελκύονται. Αυτή η 

ενδιαφέρουσα απόκριση τους προσδίδει βελτιωμένα χαρακτηριστικά εν σχέση με τα μη-αυξητικά 

υλικά, ανάμεσα των οποίων είναι και η ενισχυμένη αντίσταση στη διείσδυση. Τα σκληρά λεπτά υμένια 

χρησιμοποιούνται ευρέως ως προστατευτικές επικαλύψεις από μηχανικά φορτία ή διαβρωτικά 

περιβάλλοντα ή για πρόσθετες λειτουργίες, όπως ικανότητες αίσθησης και βιοσυμβατότητα. Τα υλικά 

με συνοχή και εσωτερική τριβή είναι στερεά με κριτήριο διαρροής εξαρτώμενο από την υδροστατική 

πίεση. Αρκετά σημαντικά υλικά εμπίπτουν στην κατηγορία αυτή, ανάμεσά τους τα υλικά με βάση το 

τσιμέντο (τα πιο ευρέως χρησιμοποιούμενα στερεά στη γη), σχιστόλιθοι (υλικό στο οποίο είναι 

αποθηκευμένη η πλειονότητα των υδρογονανθράκων) και μεταλλικοί ύαλοι (ένα από τα πιο 

υποσχόμενα προηγμένα μέταλλα με ενισχυμένη αντοχή όσο και ολκιμότητα). 

Λέξεις κλειδιά: νανοδιείσδυση; μηχανική επαφών; μέθοδος πεπερασμένων στοιχείων; αυξητικά 

υλικά; λεπτά υμένια; υλικά με συνοχή και εσωτερική τριβή 
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Chapter 1 

 

1 Introduction 

Instrumented indentation is widely used in measuring the mechanical properties of all 

types of materials. While it was initially developed for determining the elastic modulus 

and hardness of metals [1–3], it quickly evolved into a nanomechanical platform for 

characterizing many types of materials: ceramics where indentation is used for estimating 

the mechanical properties at low/high temperatures [4,5], polymers in which dynamic 

measurements are commonly used to obtain the dynamic moduli [6,7], composites in 

which indentation can provide nanomechanical maps in space with micrometer 

resolutions [8,9], and advanced materials like biomaterials, where fluid cell indentation 

can probe the mechanical properties of the sample in hydrated conditions [10]. 

The theoretical foundations for analyzing indentation data were laid by Hertz through his 

pioneering work on the contact between two elastic bodies [11]. Subsequently, Sneddon 

used the method initially proposed by Boussinnesq to extract a relationship between the 

load and displacement for axisymmetric indenters [12,13]. In 1970s, the indentation 

technique became very popular due to technological advancements and the development 

of instrumented nanoindentation platforms that were capable of inducing loads with sub-

mN resolution and monitoring displacements in the sub-nm regime. In parallel to 

technological advancements, many theoretical/computational studies were initiated to 

develop the analysis framework for the interpretation of nanoindentation data [1,14–16]. 

Most notably in 1992, the study of Oliver and Pharr [2] was established as a general 



3 

 

methodology for estimating the elastic modulus and hardness of materials at very small 

scales, bypassing the need for directly measuring the area of contact, that was traditionally 

performed post-indentation in hardness tests. The proposed framework makes the implicit 

assumption that the indented material is isotropic, bulk and homogeneous and the indenter 

is significantly stiffer than the indented material, such as indenter deformations are of 

secondary importance. Recent advancements in materials science synthesis and 

nanotechnology delivers novel material systems with complex microstructures and 

constitutive responses that need to be accounted for when nanoindentation is used. 

The overarching themes of this thesis are: first, the examination of proposed models of 

axisymmetric indenter into elastic half-space materials and their application on advanced 

systems by performing parametric studies via finite element modeling, and secondly, the 

quantification and development of protocols for experimentalists in order to obtain 

reliable measurements on such advanced systems. 

1.1 Problem Statement and Research Background 

During an indentation test a controlled load is applied through a diamond indenter on the 

surface of the sample under investigation. The applied load (𝑃) and resulting penetration 

depth (ℎ) are continuously monitored in the process (𝑃 − ℎ curves). Proper interpretation 

of nanomechanical experiments relies on accurate modeling the contact mechanics 

problem. The peculiarities of the indented materials’ response or the geometrical and 

mechanical properties of the used probe should be exclusively accounted for in the data 

analysis process. 

Through an inverse application of advanced models, the mechanical properties of the 

sample can be extracted. There are several analytical approaches for completing this step 

most of which have focused on the indentation modulus (𝐸𝑟) and hardness (𝐻) of the 

material: 

𝐸𝑟 =
√𝜋

2

𝑆

√𝐴𝑐

 (1.1) 

𝐻 =
𝑃max

𝐴𝑐
 (1.2) 
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where 𝑆 is the unloading slope at maximum depth (ℎmax), 𝑆 = 𝑑𝑃/𝑑ℎ|ℎmax
, and 𝐴𝑐 is the 

area of contact at maximum load (𝑃max). 𝐸𝑟 and 𝐻, under certain circumstances, can be 

converted to the elastic modulus [2,17] and strength characteristics [18–20] of the 

indented system. In the case of a rigid indenter 𝐸𝑟 relates to the plane stress modulus of 

the material: 

𝐸𝑟 =
𝐸

(1 − 𝜈2)
 (1.3) 

Directly or indirectly most analysis methods make use of the analytical solution of an 

axisymmetric indenter being pushed against a semi-infinite, linear elastic half-space. In 

fact, Equation (1.1) can be directly derived from the linear elastic solution [2,16] and it 

has proven to hold true for any indenter that can be described as a solid of revolution [21]. 

Impressively enough, the equation is still valid even if the material exhibits an elastic-

plastic response with the only required provision being that the area of contact is properly 

accounted for in the analysis [22]. In other words all plasticity phenomena are 

incorporated into the area of contact and provided that this is accurately captured, 

Equation (1.1) continues to hold. 

The methodologies that have been developed over the years are primarily valid for 

metallic materials and do not include the particular characteristics of other 

materials/geometries. Here, in this thesis, we investigate these issues through finite 

element analysis for the understanding and exploitation of nanoindentation testing. 

Analytical solutions are primarily restricted to the simple linear elastic domains and 

therefore preclude a direct interpretation of experimental data which usually includes 

highly non-linear phenomena, like extensive plasticity or time-dependent phenomena. 

The advent of computational methods, like finite element analysis provides an 

unprecedented opportunity for an in-depth investigation of all these complex phenomena 

and the generation of algorithms for data analysis and mechanical properties extraction. 

1.2 Research Objectives 

The major objective of this thesis is to resolve various open issues regarding 

nanoindentation testing using finite element method. More precisely: 
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Objective 1: Study the behavior of auxetic materials under indentation tests and 

investigate the validity of the existing analytical solutions. Auxetic materials compose a 

new class of materials that their response to tensile loading leads to an increase in volume. 

We aim to decode and understand this innovative response under various indentation 

characteristics (friction, various indenter angles, etc.). Moreover, correction factors have 

been proposed in the literature to account for the ill-posed boundary conditions assumed 

in the analytical solution. These studies, however, focused on the positive Poisson’s ratio 

regime and have neglected auxetic systems. Here, we use the finite element method to 

propose correction factors for the conical and spherical indentation response of elastic 

auxetic materials. Finally, we aim to investigate the influence of plastic strains in the shear 

strengthening mechanisms that auxetic materials exhibit. We ultimately want to define 

the conditions under which indentation hardness enhancement is displayed. 

Objective 2: Investigate the indentation response of coated systems by developing scaling 

relationships and analysis parameters for the extraction of thin film properties. A basic 

requirement to apply nanoindentation theory is that material is assumed to be 

homogeneous. In the case of thin films, where there is a strong interaction at the interface 

between the coating and the substrate, this statement is no longer valid. In order to 

measure the mechanical properties of the film only, a commonly used rule is to limit the 

maximum indentation depth to less than 10% of the film’s thickness. However, this 

empirical rule cannot be applied to very thin films, for which very low indentation depths 

are needed, due to current experimental resolutions. Through numerical modelling we 

investigate several experimental factors including the substrate characteristics, scaling 

parameters and the effect of elastic moduli mismatch on the overall indentation response. 

Finally, we propose experimental guidelines for the accurate predictions of coating’s 

properties. 

Objective 3: Develop a numerical framework that allows application of nanoindentation 

testing in cohesive-frictional materials. Such materials are characterized by a yield 

criterion that is pressure sensitive. The focus here, is to explore through nanoindentation 

simulations the link between hardness, cohesion and internal angle of friction. 

These three objectives provide a state-of-the-art motivation for modeling indentation-

based contact mechanics of advanced material systems. Their outcome can serve for the 



6 

 

quantitative modeling and analysis of non-linear material/geometries, or as a guide to 

experimentalists for developing rigorous testing and data analysis protocols. 

1.3 Thesis Outline 

This thesis is divided into five major parts. The scope, methodology and originality of 

this study are presented in the first part, Chapter 1. The second part of this thesis presents 

an overview of nanoindentation; Chapter 2 reviews the fundamental tools and analytical 

solutions of instrumented nanoindentation, which introduce the theoretical background to 

the reader for the upcoming sections while Chapter 3 focuses on the numerical modeling 

of indentation technique through dimensional analysis and finite element simulations. 

The third part of this thesis focuses on the indentation resistance of auxetic material 

systems. Chapter 4 introduces the reader to the physical origins of auxeticity, their unique 

characteristics and their potential applications, including some existing products in the 

market. In addition, a numerical study on a composite auxetic structure is performed as a 

case study to demonstrate the enhanced mechanical response that auxetic materials 

exhibit compared to their conventional counterparts. Chapter 5 presents a numerical study 

on the conical and spherical indentation on elastic auxetic materials. The effect of contact 

friction, cone geometry is evaluated in detail and correction factors are proposed that 

enhance the predictive capabilities of the analytical solution. Chapter 6 extends the 

indentation response to account for elastoplastic von-Mises auxetic materials, under 

frictionless and adhesive contact. 

The fourth part of this thesis deals with the indentation response of hard material systems: 

hard coatings and cohesive-frictional materials. Chapter 7 presents the experimental 

parameters and gives a state-of-the-art literature review about the indentation modeling 

of thin film systems. Finite element analysis of stiff coatings on soft substrates are 

performed in Chapter 8, where numerical data is validated and parametric analysis is 

performed. Chapter 9 deals with the indentation behavior of cohesive-frictional materials. 

The effect of cohesion and angle of friction is investigated in order to capture their 

combined response and a link between hardness and strength properties is proposed. 

Finally, Chapter 10 (fifth part) summarizes the main results and conclusions from this 

thesis and proposes future perspectives that are foreseen, backed with some preliminary 

results.  
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Chapter 2 

 

2 Indentation Mechanics 

Chapter 2 of this thesis presents the indentation mechanics and subsequent analysis on 

homogeneous, isotropic solids. The physics involved during an indentation process are 

directly linked to the continuum theory of contact mechanics. The analytical solutions of 

Hertz’s theory and the contact between an axisymmetric indenter and an elastic half space 

are presented in detail. In general, this Chapter will serve as a guide for the upcoming 

sections, by introducing several fundamental aspects of nanoindentation analysis. 

2.1 Introduction 

Instrumented indentation has been developed into a standardized tool for nano- and 

micro-mechanical characterization of materials [1–3,16,23,24]. It was initially introduced 

for sub-micron metallic material volumes but it has expanded its application range into 

studying virtually all classes of material systems: metals [25], ceramics [26], polymers 

[27–29] and composites [8,30–32]. 

This type of test consists of a controlled loading through an indenter tip of known 

properties and geometry by penetrating perpendicular into the surface of the sample under 

investigation. The advantage of this technique is that it can continuously record small 

loads (10-6 N) and penetrations (10-10 m) with high accuracy and precision. The analysis 

of indentation test relies on the conversion of the experimental reading of indenter load 

(𝑃) and penetration depth (ℎ), to mechanical metrics like hardness, elastic modulus, creep 
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modulus, energy dissipation, and more. The validity of these metrics depends largely 

upon the analysis procedure used to analyze the experimental data. Commercially 

available indentation instruments run automated analysis procedures and therefore the 

mechanical properties are directly provided to the users. At first glance, these numbers 

may be a good estimation regarding the response of indented material, however, routine 

analysis of indentation data can lead to significant errors. For accurate interpretation of 

results, one must understand the fundamental principles of contact mechanics. 

In this chapter, the general principles of contact mechanics (elastic and elastic-plastic) 

will be addressed within the concept of spherical and conical indentation and their link 

with experimental observations will be presented. 

2.2 Historical Background 

Indentation testing was initially developed for hardness measurements. The idea of these 

measurements was established by mineralogists in the form of scratch hardness. This 

method depends on the ability of a material to be scratched by or to scratch another 

material [18]. In 1812, the German mineralogist Frederich Mohs [33] selected ten mineral 

materials as standards and proposed an arbitrary hardness scale, from 1 (softer – talc) to 

10 (harder – diamond). Even though this hardness scale is nonlinear and dimensionless, 

it has been widely used by mineralogists. An alternative method which is based on the 

Mohs scale, consists of using a diamond stylus to scratch, under a predefined load, the 

surface of a material. Then, the hardness of the material is related with the size of the 

residual scratch imprint; the smaller the scratch the harder the material. However, this 

procedure is not suited for measuring the hardness of materials, due to the complication 

of the results; elastic, plastic and frictional properties of the surfaces. In nowadays, 

experimentalists use scratch tests to evaluate mainly the adhesion strength and friction 

coefficient of thin film systems. 

In 1900, the Swedish metallurgist Brinell [34] introduced the Brinell test, where the 

hardness of a material was defined by penetrating hard spherical balls (tungsten carbide 

and diamond) into metals. The imprint on metal’s surface was measured to extract the 

Brinell hardness number, by dividing the maximum indentation load with the area of the 

imprint. In 1908, Meyer expressed the indentation hardness as the ratio of the maximum 

applied force, to the projected area of contact, which is a useful normalized parameter 
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[35]. Beyond the use of spherical indenters, conical diamond indenters for hardness test 

were first introduced by Ludwick in 1908 [36]. Thereafter, a large variation of conical 

and pyramidal indenters has been introduced in the field due to their advantage of 

producing similar imprint impressions at different indentation depths (geometrical 

similarity), and also, that they produce faster plastic deformation inside the surface of the 

material of interest; Rockwell indenter – sphero-conical [37], Vickers indenter – four 

sided, square base pyramid, Berkovich indenter – three sided pyramid [38]. 

In contrast to the measurement of hardness which only requires knowledge of the 

maximum indentation load and the residual imprint after load removal, the evaluation of 

the material’s elastic modulus requires continuous information of the penetration depth 

during the test. In the 1970s, due to the mature knowledge of nanotechnology and 

microelectronics, depth-sensing indentation techniques were introduced that allowed a 

continuous control and recording of the indenter’s displacement into the material’s 

surface, during loading and unloading steps [14–16,39,40]. This development motivated 

the research community to identify techniques for the design and analysis of mechanical 

properties of materials at small volumes, such as thin films and nanocomposites. 

2.2.1 Indentation Testing 

A typical nanoindentation test consists of (at least) two phases: a loading and an unloading 

phase. To extract the mechanical properties of a material, the applied load 𝑃 and the 

resulting penetration depth ℎ are continuously recorded and represented in a 𝑃 − ℎ graph 

as illustrated in Figure 2-1. During the loading portion of the experiment, and depending 

on the indenter’s geometry, the material usually undergoes elastoplastic deformation. 

When load is removed the tested material attempts to regain its original form, which in 

most materials is hardly possible because of the plastic deformation. However, there is a 

degree of recovery and is achieved due to the recovery of internal elastic deformations. 

The beginning of the unloading portion of the 𝑃 − ℎ curve relates to the contact stiffness 

𝑆 = 𝑑𝑃/𝑑ℎ, which is an index of the resistance of material to the elastic deformation and 

leads on the estimation of the elastic modulus [2,13]. As shown in Figure 2-1, the net area 

which is enclosed by the experimental data symbolizes the plastic work 𝑊𝑝 (heat in plastic 

deformation and elastic stored energy due on residual stresses) and the area under 𝑃𝑚𝑎𝑥 
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and at the right of 𝑊𝑝 represents the elastic work 𝑊𝑒  (elastic recovery of the deformed 

surface). In purely elastic cases, loading and unloading paths lay on a single curve. 

 

Figure 2-1: Schematic illustration of a typical 𝑷 − 𝒉 response of an indented material. 

The area under the loading curve is the total work provided to the system 𝑊𝑡: 

𝑊𝑡 = ∫ 𝑃𝑙𝑜𝑎𝑑𝑖𝑛𝑔(ℎ)𝑑ℎ

ℎ𝑚𝑎𝑥

ℎ=0

;   𝑊𝑡 = 𝑊𝑝 + 𝑊𝑒 (2.1) 

From the above equation, one can define the plasticity index 𝜓 of a material, which 

characterizes the relative plastic/elastic behavior when it goes through external stresses 

and strains as: 

𝜓 =
𝑊𝑝

𝑊𝑝 + 𝑊𝑒
 (2.2) 

where 𝜓 = ∅ for a fully elastic behavior (𝑊𝑝 = 0) and 𝜓 = 1 for a fully plastic behavior 

(𝑊𝑝 = 0). 

The quality of nanoindentation data is strongly dependent on the load and displacement 

measurements. For practical considerations, any error that may derive from instrument 

calibrations, like thermal drift or frame compliance, must be considered and excluded 

from calculations. The experimentally employed methodology also depends on the 

physical mechanisms of the tested material. For polymers or other materials tested near 

their melting temperature, one must consider the influence of creep in the loading 
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response. Respectively, for a thin film system, one must exclude the influence of the 

substrate from the global response.  

The extraction of mechanical properties is achieved by applying continuum scale 

mechanical models (see Chapter 2.4) to derive mainly two quantities: indentation 

hardness 𝐻 and indentation modulus 𝐸∗ of the indented material: 

𝐻 =
𝑃𝑚𝑎𝑥

𝐴𝑐
 (2.3) 

𝐸∗ =
1

2

√𝜋

√𝐴𝑐

𝑑𝑃

𝑑ℎ
 (2.4) 

where 𝑃𝑚𝑎𝑥 is the maximum applied load and 𝐴𝑐 is the projected area of contact.  

All quantities required to determine 𝐻 and 𝐸𝑟 are directly obtained from the 𝑃 − ℎ curve, 

with the exception of the projected area of contact 𝐴𝑐, which either can be estimated using 

atomic force microscopy measurements of the residual imprint or can be extrapolated 

from the 𝑃 − ℎ curve using analytical techniques; this is detailed below. 

2.3 Geometric Characteristics of Indenters 

The most common indenters in nanoindentation tests are pyramidal, conical and spherical. 

These probes must be chosen with reference to the sample response. In practice, 

pyramidal indenters are preferred for thin films testing, since they produce a faster and 

more contained plastic response on the coatings, in contrast to spherical indenters, which 

are characterized by smooth transitions from elastic to plastic regimes. Furthermore, tips 

with sharp geometry can be used to investigate fracture toughness of coatings or 

employed in scratch tests. Despite the high stiffness of the probes (diamonds are 

commonly used), with daily use probes may lose their sharpness (increase of their tip 

radius), worn and deform on experiments in hard samples. The indentation characteristics 

of the most common probes are summarized in Table 2-1. 
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Table 2-1: Indentation characteristics for various indenter tips. 

Indenter 

type 

Projected contact 

area 

Semi angle 

𝜃 (deg) 

Effective angle 

𝜃 (deg) 

Intercept factor 

𝜀 

Sphere 𝐴 = 2𝜋𝑅ℎ𝑐 − 𝜋ℎ𝑐
2
 -- -- 1 

Berkovich 𝐴 = 3√3ℎ𝑐
2 tan2 𝜃 65.27° 70.3° 0.75 

Vickers 𝐴 = 4ℎ𝑐
2 tan2 𝜃 68° 70.3° 0.75 

Cone 𝐴 = 𝜋ℎ𝑐
2 tan2 𝑎 𝛼 𝛼 0.72 

2.3.1 Geometrical Similarity 

Conical and pyramidal indenters are characterized by the property of geometrical 

similarity; the ratio of the radius of circle of contact to the depth of penetration depth 𝑎/ℎ 

remains constant independently of indenter’s load, which results constant strain within 

the indented material. This behaviour is illustrated in Figure 2-2 (a) where von-Mises 

distribution and legend values for an elastic material remain constant independently of 

the indentation depth. Geometrical similarity remains unaffected from material properties 

as shown in Figure 2-2 (b), (d), where contour plots of equivalent plastic strains pressure 

distribution are plotted for elastoplastic materials of 𝐸/𝑌 = 400 and 𝐸/𝑌 = 40 in various 

indentation depths. In addition, hardness of bulk elastoplastic material – extracted from 

sharp indentation – doesn’t depend on the maximum load or the depth of indentation, if 

conditions of fully plastic zone under the tip are generated, see Figure 2-2 (c). 
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Figure 2-2: Evidence of geometric similarity via (a) elastic material simulations, and elastic-

perfect plastic material through (b) equivalent plastic strains, (c) hardness values, (d) pressure 

contours. 

On the other hand, during the loading of a spherical probe into a material, the radius of 

contact increases more rapidly than the resulting penetration depth, Figure 2-3 (a). In 

order to capture the geometric similarity (in the case of sphere) one must maintain a 

constant 𝑎/𝑅 where 𝑅 is the radius of the indenter. This quantity is called indentation 

strain and it will be the governing parameter for the spherical numerical analyses in this 

report. The dependence of geometrical similarity on indentation strain is captured in 

Figure 2-3, where indentation simulations have been applied on elastic material 𝐸 = 250 

GPa and 𝑣 = 0.2 using spheres of 𝑅 = 8.5, 10, 25 μm. Von-Mises stresses distribution is 

similar for all three cases, although their size ranges with the indentation strain; for 𝑅 = 

8.5, von-Mises stresses obtain their highest values. This response reflects on the 
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numerical 𝑃 − ℎ curves of the material, where the highest indentation resistance is again 

obtained for 𝑅 = 8.5, Figure 2-3 (b). 

By estimating a constant indentation strain 𝑎/𝑅 (regardless of the sphere size) and then 

calculating the hardness values, as shown in Figure 2-3(c), it is observed that hardness is 

strictly dependent on 𝑎/𝑅 which drives the response of spherical indentation and is 

independent from indentation depth and the size of sphere. 

 

Figure 2-3: (a) Generated von-Mises stresses of spherical indentation for three sphere radii 𝑹 = 

8.5, 10, 25 μm, (b) Load/displacement curves for under various 𝑹, (c) Hardness response as a 

function of indentation strain defines geometric similarity for spherical indenter. 

2.3.2 Effective Cone Angle 

The triangular pyramid Berkovich indenter is the most common tip for performing 

nanoindentation experiments, due to its geometry (Figure 2-4) which leads in high plastic 

strains and zones inside the sample and, from experimental point of view, it’s easier to 

measure the area of contact when the edges of the pyramid are readily detectable in the 
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impression. Therefore, it is suitable for indentations in metals, ceramics, super-hard 

materials and thin films. In addition, conical indenters can generate large plastic zones 

under the surface of contact too, however it is not so feasible to calculate the area of the 

impression. Another practical consideration is that pyramidal indenter is easier to be 

manufactured than conical. 

However, from analytical – computational point of view, conical indenters are 

axisymmetric and thus the indentation problem becomes two dimensional and easier to 

model. In respect to finite element analysis and the analytical solutions for axisymmetric 

indenters, pyramidal geometries are modeled as cones with equivalent effective angles 

such as to maintain the same projected area of contact with depth of penetration. It is 

observed from Table 2-1 that the projected area of contact of an ideal Berkovich indenter 

𝐴 = 24.56ℎ𝑐
2
, for a Vickers indenter 𝐴 = 24.5ℎ𝑐

2
 and for a conical indenter 𝐴 = 

𝜋ℎ𝑐
2 tan2 𝑎, which corresponds (for the two cases) in an equivalent angle 𝑎 of 70.3°. 

 

Figure 2-4: Scanning Electron Microscopy (SEM) image in the secondary electron’s mode of a 

triangular pyramid Berkovich indenter. Some impurities are observed on its surface which are 

due to debris and/or dust. 

2.4 Indentation Theory 

The analytical approach of solving an indentation problem goes back to 1881, where the 

German physicist Heinrich Hertz [11] studied the contact between elastic solids and 

introduced a linear elastic solution for the contact between two spheres. Then, in 1885, 

Boussinesq solved the problem of contact between two linearly elastic isotropic solids by 

200 μm 
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implementing methods of potential theory. Later, Sneddon proposed solutions of the 

axisymmetric Boussinesq problem, by solving the contact problem for rigid conical 

indentation with elastic half-space in 1948, and a general solution in 1965 for any 

arbitrary axisymmetric indenter [41].  

The importance of indentation techniques drastically changed after the technological 

advancements in 1970s, that led to the development of depth-sensing indentation tests 

[16,40]. By recording the applied load and indenter’s displacement into material surface, 

the elastic modulus of the indented material can be extrapolated by analyzing the slope of 

the unloading curve  𝑆 = 𝑑𝑃/𝑑ℎ. In 1992, Oliver and Pharr, published a methodology for 

analyzing indentation data and extracting mechanical characteristics of the indented 

material that circumvented the need for directly measuring the area of contact; this 

publication is currently one of the most cited in the field of materials science and 

engineering. Oliver and Pharr showed that there is a unique relationship between the 

elastic contact stiffness 𝑆, the projected area of contact 𝐴𝑐 and the indentation modulus 

𝐸∗, for all axisymmetric indenters [2]. What follows is a historical background and critical 

examination of the studies that contributed to the development of indentation analysis. 

2.4.1 Elastic Contact: Hertz Theory 

The basic analysis for extracting the elastic stiffness of materials from nanoindentation 

experiments is mainly based on Hertz theory, who while studying the optical interference 

between two glass lenses, he observed elasticity effects due to pressure forces. Thus, 

Hertz began developing his theory and in 1882 he studied the contact stresses between 

two elastic bodies of revolution. When the second body is considered to have an infinite 

radius (𝑅 = ∞), one can approach the indentation of a sphere into an elastic half-space 

[41].  

Hertz analytical solution has been based on the following assumptions: the surfaces are 

continuous and non-conforming (the area of contact is much smaller than the 

characteristic radius of the body), each body is considered as elastic half-space due to the 

small radius of curvature of the contacting bodies compared to the radius of the circle of 

contact, the bodies are in frictionless contact (no traction forces), the strains and stresses 

are small; the dimensions of each body are small in comparison with the radius of the 

circle of contact. Turning that assumptions into spherical indentation conditions, the 
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radius of the first body, reduces to 𝑅 = 𝑅𝑖 where 𝑅𝑖 is the indenter tip radius, as illustrated 

in Figure 2-5. 

 

Figure 2-5: Schematic of indentation contact between spherical indenter and material, where 𝒂 

is the radius of the circle of contact, 𝒉𝒎𝒂𝒙 is the maximum penetration depth, 𝑹 is the indenter 

tip radius, 𝒉𝒄 is the contact depth and 𝒉𝒂 is the depth of the circle of contact from the specimen 

free surface. 

The resulting stress and displacement distribution that is generated from the indentation 

contact are extremely important in reviewing the underlying physics that control their 

nanomechanical response. For the case of spherical indentation, the normal pressure 

distribution was given by Hertz as: 

𝜎𝑧

𝑝𝑚
= −

3

2
(1 −

𝑟2

𝑎2
)

1
2

, 𝑟 ≤ 𝑎 (2.5) 

where 𝑝𝑚 is the mean contact pressure, 𝑟 is defined as the radial distance and 𝑎 is the 

radius of circle of contact. From the above equation it can be concluded that at the center 

of contact, the normal pressure distribution maximizes its value, 𝜎𝑧 = 1.5𝑝𝑚, and is zero 

at the edge of contact radius, 𝑟 = 𝑎. This is graphically depicted in Figure 2-6. 

Regarding normal and radial displacements of points on the surface of contact between 

the two solid bodies, as a result of the above pressure distribution, Hertz showed that: 

𝑢𝑧 =
1 − 𝑣2

𝐸

3

2
𝑝𝑚

𝜋

4𝑎
(2𝑎2 − 𝑟2), 𝑟 ≤ 𝑎 (2.6) 

ℎ𝑚𝑎𝑥 

+ 

𝑅𝑖 

𝑎 

ℎ𝑐 

ℎ𝑎 
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𝑢𝑧 =
1 − 𝑣2

𝐸

3

2
𝑝𝑚

1

2𝑎
[(2𝑎2 − 𝑟2) sin−1

𝑎

𝑟
+ 𝑟2

𝑎

𝑟
(1 −

𝑎2

𝑟2
)

1/2

] , 𝑟 > 𝑎 (2.7) 

𝑢𝑟 = −
(1 − 2𝑣)(1 + 𝑣)

3𝐸

𝑎2

𝑟

3

2
𝑝𝑚 [1 − (1 −

𝑟2

𝑎2
)

3
2

] , 𝑟 ≤ 𝑎 (2.8) 

𝑢𝑟 = −
(1 − 2𝑣)(1 + 𝑣)

3𝐸

𝑎2

𝑟

3

2
𝑝𝑚, 𝑟 > 𝑎 (2.9) 

where 𝐸 is the elastic modulus of the indenter. 

 

Figure 2-6: Comparison of pressure profiles for sphere, cone and flat punch geometries with 

equal contact radius. 

Hertz’s analysis resulted in the following equations: 

𝑎 = [
3𝑃𝑅

4𝐸𝑟
]
1/3

 (2.10) 

ℎ = [(
3

4𝐸𝑟
)
2 𝑃2

𝑅
]

1/3

 (2.11) 

𝑝𝑚 =
𝑃

𝜋𝑎2
= (

4𝐸𝑟

3𝜋
)
𝑎

𝑅
 (2.12) 

where 𝑃 is the applied load, 𝑅 is the radius of the spherical indenter and ℎ corresponds to 

the axial distance. 𝐸𝑟 is the reduced (also termed combined) modulus of the indenter and 

the sample given by: 
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1

𝐸𝑟
=

(1 − 𝑣2)

𝐸
+

(1 − 𝑣𝑖
2)

𝐸𝑖
 (2.13) 

where 𝐸, 𝑣 and 𝐸𝑖, 𝑣𝑖 are the elastic modulus and Poisson’s ratio of the sample and the 

indenter respectively. Note that in the case, the indenter is much stiffer than the sample, 

𝐸𝑖 ≫ 𝐸, indenter is assumed to be rigid and that turns Equation (2.13) to: 

1

𝐸𝑟
≈

(1 − 𝑣2)

𝐸
 (2.14) 

Substituting Equation (2.10) into (2.11), results: 

ℎ =
𝑎2

𝑅
 (2.15) 

By assuming a rigid indenter, then ℎ = 𝑢𝑧|𝑟=0. For rigid and non-rigid indenters Hertz 

showed that the contact depth ℎ𝑐 is exactly one half of the maximum depth ℎ𝑚𝑎𝑥: 

ℎ𝑐 =
1

2
ℎ𝑚𝑎𝑥,   𝑢𝑧|𝑟=𝑎 =

1

2
𝑢𝑧|𝑟=𝑎 (2.16) 

2.4.2 Axisymmetric Rigid Indentation on an Elastic Half-Space  

The main focus of contact mechanics is the determination of size and exact shape of the 

contact area. Unlike classical mechanics problems, the contact zone is unknown so that 

areas where displacements (in the contact region), and those where forces (free surface) 

are prescribed are not known a priori. This renders the analysis intrinsically non-linear, 

since the surface boundary conditions must be formulated under restrictions of a point 𝑧 

that is either situated in the contact zone or in the stress-free area. The contact problem 

between a rigid axisymmetric indenter and an infinite half-space is shown in Figure 2-7 

and is described by the following set of equations, written in polar coordinates (𝜌, 𝜃, 𝑧): 

𝑑𝑖𝑣 𝜎 = 0 
(2.17) 

𝜎 = 𝐹(𝜀) 
(2.18) 

𝜀 =
1

2
(∇𝑢 + ∇𝑡𝑢) (2.19) 
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𝑃 = −∫ ∫ 𝜎𝑧𝑧(𝜌, 𝜃, 0)𝜌𝑑𝜌𝑑𝜃
2𝜋

𝜃=0

𝑎

𝜌=0

 
(2.20) 

𝑢𝑧(𝜌, 𝜃, 0) = −ℎ + 𝑓(𝜌), 𝜌 < 𝛼 
(2.21) 

𝜎𝜌𝑧(𝜌, 𝜃, 0) = 0, 𝜌 > 0 
(2.22) 

𝜎𝑧𝑧(𝜌, 𝜃, 0) = 0, 𝜌 > 𝑎 
(2.23) 

where 𝑃 is the applied load, in direction 𝑧, 𝑓(𝜌) defines the axi-symmetric shape of the 

indenter, and 𝑎 is the contact radius. Equation (2.17) is the static equilibrium condition 

(neglecting body forces), Equation (2.18) provides the stress-strain relation of the 

indented material (here linear isotropic elastic), Equation (2.19) links linearized strain to 

displacements and the remaining relations (Equations (2.20) - (2.23)) are the boundary 

conditions (similar with Hertz theory) for the total load (Equation (2.20)), the vertical 

displacement in the contact region (Equation (2.21)), the zero shear stress on the surface 

(Equation (2.22)) which includes the frictionless contact condition and the stress-free 

boundary condition outside the contact zone (Equation (2.23)). 

 

Figure 2-7: The contact problem between a rigid axisymmetric indenter and an infinite half-

space, where 𝑷 defines the applied load, 𝒉 the penetration depth, 𝒉𝒄 the contact depth, 𝑨𝒄 the 

projected area of contact, 𝒇(𝝆) the axi-symmetric shape of the indenter in the z direction. 

𝑃 

𝐴𝑐 
𝑧 

ℎ 
ℎ𝑐 
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The profiles of specific axisymmetric indenters (Equation (2.21)) are presented in Table 

2-2. 

Table 2-2: Vertical displacements of axisymmetric indenters (Equation (2.21)). 

Probe Type Vertical displacements 𝑢𝑧 

Flat punch 𝑢𝑧 = −ℎ, 𝑓(𝜌) = 0 

Spherical 𝑢𝑧 = −ℎ + 𝜌2/(2𝑅) 

Conical 𝑢𝑧 = −ℎ + 𝜌 cot 𝑎 

There are several ways of solving the above set of equations, the more traditional one 

being the method developed by Lee and Radok [42], and further formalized by Sneddon 

[13,43] which consists in performing on all problem equations two dimensional Fourier 

transforms in the directions of the surface coordinates 𝑥 and 𝑦. In the case of axi-

symmetry, this integral transform is called a Hankel transform on the polar coordinates 𝜌 

and 𝜃 which are transformed into a variable 𝜃 of dimension 𝐿−1. The area of contact is 

circular by symmetry and its projected radius 𝑎 is kept as an unknown. It turns out that 

the equations written with a new set of non-physical coordinates can be solved 

analytically in the transformed space. Finally, the integral transforms are performed 

backwards to return to the original problem. Following this procedure, the expressions 

for ℎ and 𝑃 for an isotropic half-space read: 

ℎ = 𝛼 ∫
𝑓′(𝜌)𝑑𝜌

√𝑎2 − 𝜌2

𝛼

𝜌=0

 
(2.24) 

𝑃 = 2
𝐸

1 − 𝜈2
∫

𝜌2𝑓′(𝜌)𝑑𝜌

√𝑎2 − 𝜌2

𝛼

𝜌=0

 
(2.25) 

where 𝑓 is any smooth convex function, and 𝑓′ stands for its derivative with respect to 𝜌. 

In respect of an axisymmetric indentation with a cone of semi-apex angle of 𝜃 Equations 

(2.24) and (2.25) provide explicit relations of depth and load as a function of the contact 

radius: 

ℎ =
𝜋

2

𝛼

tan𝜃
 

(2.26) 
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𝑃 =
𝜋

2

𝐸

1 − 𝜈2
tan 𝜃 ℎ2 (2.27) 

As expected from dimensional analysis, 𝑃 is scaled with ℎ2, which provides an interesting 

insight into the nonlinear nature of the contact problem: for each increment of load, both 

the area of contact and the depth of indentation increase. Similarly, 𝑎 and ℎ are linearly 

related and can define the contact depth as the distance measured on the 𝑧-axis between 

the indenter tip and the contact edge. From Equation (2.26) we obtain the following 

relation: 

ℎ𝑐 =
𝛼

tan 𝜃
=

2

𝜋
ℎ (2.28) 

Equation (2.28) suggests that the elastic indentation always produces sink-in. In fact, 

provided that the material remains purely elastic the contact depth to indentation depth 

ratio will always be a constant at ℎ𝑐/ℎ = 2/𝜋 = 0.64. Furthermore, if one rewrites 𝑃 and 

ℎ in Equations (2.26) and (2.27) as a function of the projected area of contact 𝛢𝑐 = 𝜋𝑎2, 

then one obtains: 

ℎ =
√𝜋

2

√𝐴𝑐

tan 𝜃
 (2.29) 

𝑃 =
1

2

𝐸

1 − 𝜈2

𝐴𝑐

tan 𝜃
 (2.30) 

Equation (2.30) suggests that the hardness of the material is constant and independent of 

the depth of penetration: 

𝐻 =
𝑃

𝐴𝑐
=

1

2 tan 𝜃

𝐸

1 − 𝜈2
 (2.31) 

The solution presented above implicitly relies on the restriction posed on vertical 

displacements at the contact interface described by Equation (2.21). The radial 

movements of the surfaces are neglected, leading to deformed surfaces that essentially 

‘penetrate’ the indenter during loading [44], resulting in inaccuracies on the predicted 

load and interfering with any experimental analysis protocol that relies on the above 

analysis. The accuracy of Equations (2.27), (2.28) and (2.31) will be numerically 

scrutinized in Chapter 4. 
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2.5 Analyzing Load – Displacement Curves 

The mode of deformation (elastic, plastic, fracture, phase transformation, viscous 

behaviour) during an indentation test can be extracted directly from the shape of 𝑃 − ℎ 

curve. An experimentalist must consider the estimated response of a material, for example 

the ratio between 𝐸/𝑌, temperature effects for polymer materials, indentation load for 

coating systems load profile, appropriate selection of indenter shape, in order to design a 

reliable indentation test. In addition, nowadays, through special set-up of indentation 

instruments, impact and friction tests can be applied, therefore prior understanding of the 

physics of an interested material, is a crucial factor to properly design characterization 

experiments. 

A typical 𝑃 − ℎ curve is shown in Figure 2-8, which represents the indentation response 

on quartz. Loading curve is described by Kick’s law as: 

𝑃 = 𝐶ℎ𝑚 (2.32) 

where 𝐶 is a constraint factor (a function of material’s properties and indenter geometry) 

and 𝑚 is a power law exponent, which has been shown to be constant and dependent only 

on indenter’s geometry (K.L. Johnson 1985): 𝑚 = 1 for flat punch, 𝑚 = 1.5 for parabolid 

of revolution and 𝑚 = 2 for conical geometry. 

 

Figure 2-8: Indentation test, 𝑷 − 𝒉 curve, on fused silica using Berkovich pyramidal indenter 

with a maximum load of 200 mN. Experimental data are being obtained from Nanotest Platform 

2 of Micromaterials Systems Ltd, in the Micro/Nano Mechanics of Materials lab at CUT. 
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From the unloading curve, the elastic modulus of material can be calculated, assuming 

the response to be purely elastic. For a conical indenter, Bulyshev et al. [16] proposed an 

equation which relates the slope at the beginning of the unloading 𝑆, the reduced modulus 

𝐸∗ and the projected area of contact 𝐴𝑐: 

𝑆 =
𝑑𝑃

𝑑ℎ
=

2

√𝜋
𝐸𝑟√𝐴𝑐 

(2.33) 

where 𝑆 is the experimentally measured stiffness of the upper portion of the unloading 

data. It has been proven that Equation (2.33) holds true for any indenter shape that can be 

described as a solid of revolution [21]. 

The contact stiffness 𝑆 and projected area of contact 𝐴𝑐 are always linked to the 

experimental parameters through the methodology proposed by Doerner and Nix [1] and 

later improved by Oliver and Pharr [2]. In the first work, the authors suggested that the 

initial part of unloading curve is almost linear based on the assumption that projected 

contact area remains unchanged during unloading. This statement is only true for flat 

punch indentation (𝑚 = 1) and in such cases the unloading data can be described through: 

𝑃 = 𝑆(ℎ − ℎ𝑐) (2.34) 

where ℎ𝑐 is the true contact depth. In the case of indentation testing on hard materials, 

where usually the obtained 𝑃 − ℎ curve is characterizing with large elastic recovery 

during unloading, the above equation failed to properly fit indentation data. Oliver and 

Pharr introduced another method which takes account the nonlinearity of unloading curve 

by experimental findings on hard metals and ceramics. 

2.6 Oliver and Pharr Method 

In Oliver and Pharr approach, the load-displacement data from unloading path is fitted to 

a power-law equation as: 

𝑃 = 𝐴(ℎ − ℎ𝑓)
𝑚 (2.35) 

where ℎ𝑓 is the final depth/imprint depth and is illustrated in Figure 2-8, (ℎ − ℎ𝑓) is the 

elastic displacement, 𝐴 and 𝑚 are fitting parameters and can be determined by least 

squares fittings. The exponent 𝑚 was experimentally found to vary in the range of 1.2 ≤

𝑚 ≤ 1.6 which demonstrates that the indenter behaves more like a paraboloid of 
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revolution (𝑚 = 1.5) due to “effective indenter shape”; for detailed exposition the reader 

is referred to the work of Oliver and Pharr (2004). Hence the contact stiffness is calculated 

by: 

𝑆 =
𝑑𝑃

𝑑ℎ
= 𝑚𝐴(ℎ𝑚𝑎𝑥 − ℎ𝑓)

𝑚−1 
(2.36) 

Furthermore, they utilized Sneddon’s solution (Sneddon 1965) of a rigid axisymmetric 

probe penetrating an elastic half-space, to propose a model for the calculation of elastic 

modulus and hardness by nanoindentation technique. The total penetration depth ℎ𝑚𝑎𝑥 

during loading is defined as: 

ℎ𝑚𝑎𝑥 = ℎ𝑐 + ℎ𝑠 (2.37) 

where ℎ𝑠 is the elastic recovery depth. It is in practice observed that ℎ𝑚𝑎𝑥 is 

experimentally measured and ℎ𝑠 must be calculated. Sneddon’s analysis (Sneddon 1965) 

for a conical indenter, suggests that ℎ𝑠 can be estimated through: 

ℎ𝑠 =
𝜋 − 2

𝜋
(ℎ𝑚𝑎𝑥 − ℎ𝑓) 

(2.38) 

and for a conical indenter: 

ℎ − ℎ𝑓 = 2
𝑃

𝑆
 

(2.39) 

Thus, ℎ𝑠 results as: 

ℎ𝑠 = 𝜀
𝑃𝑚𝑎𝑥

𝑆
 

(2.40) 

where 

𝜀 =
2

𝜋
(𝜋 − 2) 

(2.41) 

an intercept factor, which its values are given in  
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Table 2-1 for each indenter. The contact depth is computed by combining Equations 

(2.37) and (2.40): 

ℎ𝑐 = ℎ𝑚𝑎𝑥 − 𝜀
𝑃𝑚𝑎𝑥

𝑆
 

(2.42) 

The above equation implies that the contact depth is always smaller than the maximum 

depth which corresponds to sink-in behavior (Figure 2-9). The main assumption of the 

O&P method is that the deformed shape outside the area of contact is elastic. Although, 

in actual conditions, materials characterized by small values of work-hardening and high 

values of 𝐸/𝑌, exhibit pile-up phenomena ℎ𝑐 > ℎ𝑚𝑎𝑥, due to the softer material right 

next to contact. Consequently, under this behavior O&P approach overestimates the 

mechanical properties of materials, through the underestimation of the contact depth ℎ𝑐. 

 

Figure 2-9: Graphical representation of sink-in and pile up phenomena and SEM images which 

show residual imprints left on surfaces after Berkovich indentation. (Photiou et al. 2016). 

Oliver and Pharr expressed the contact area through an area function that relates the cross-

sectional area of the indenter at contact depth: 

𝐴𝑐 = 𝑓(ℎ𝑐) (2.43) 

Key player in analyzing nanoindentation data, is the accurate measurement of the 

projected contact area in order to determine the real mechanical properties of the samples. 

A major problem in nanoindentation testing is the limitation of direct measurement of the 
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area of contact due to the size of the residual imprint which is commonly not accessible 

by optical microscopes. Nowadays, in situ scanning electron microscopy indentation 

instruments have been developed, which allow a real-time monitoring of the contact area, 

although due to several requirements must be fulfilled that relate with the compatibility 

of SEM operating environment. 

There are several factors that lead to wrong calculation of the contact area; cracks, pile-

up, worn tips, complex material deformation, etc. Oliver and Pharr suggested a 

methodology to indirectly measure the area function of indenters for precise 

determination of their geometry. This involves calculating the contact stiffness over a 

range of indentation depths, using a reference material – in most cases quartz SiO2, which 

is known for its elastic isotropic behavior, and the independence of its mechanical 

properties with penetration depth. Using the measurements of 𝑆 and the known 𝐸 as 

inputs, one can solve Equation (2.3) as a function of 𝐴(ℎ𝑐), and therefore, for every 

indentation depth will be calculating the corresponding area of contact. Figure 2-10 (a), 

shows the experimentally obtained area function 𝐴(ℎ𝑐) for a Berkovich indenter and a 

best-fitted 5th order polynomial function. Figure 2-10 (b) shows the deviations of an ideal 

geometry with the actual calculated through the calibrations process. Significant errors, 

especially at low depths, could be incorporated into the analysis if this calibration is 

disregarded. 

 

Figure 2-10: (a) Diamond area function of a Berkovich indenter generated through multi-depth 

indentations on quartz together with a 5th order polynomial fit, (b) percentage error deviation 

between the ideal and actual Berkovich geometry. 
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Usually experimentalists, due to the daily use of such instruments, obtain properties of 

indented materials, which are completely dependent on the user defined area function 

calibration and are not based on the understanding of the contact mechanics. This is the 

main reason that the O&P methodology has become so common, and that the research 

community attempts to adapt the approach to different deformation mechanisms; thin 

films, viscoelastic materials. 

Since 1992, the advances in understanding of indentation mechanics, mainly through 

finite element simulations have improved the accuracy of the current methodology. In 

most cases the improvements are incorporated into multiplying correction factors that are 

inserted into Equations (2.3) and (2.4). For example, by applying finite element 

simulations King suggested correction factors 𝛽 which account for the treatment of non-

circular indenters as axisymmetric ones [45]. 

2.7 Chapter Summary 

This chapter introduces the reader to the field of contact mechanics, a prerequisite for 

understanding the physical mechanisms at stake when a diamond indenter comes in 

contact with a material’s surface during a nanoindentation test in order to access its 

mechanical properties. A historical background of the technique is presented and the 

underlying mechanical principles that allow converting indentation data into meaningful 

mechanical properties are outlined. The important concepts of experimental 𝑃 − ℎ curves, 

self-similarity, and indentation strain are also shown and will be of significance in the 

developments of later chapters. The Oliver and Pharr methodology is described and 

critically examined, especially with respect to pile-up and sink-in phenomena. 
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Chapter 3 

 

3 Finite Element Method in 

Nanoindentation Analysis 

Finite element analysis is the primary tool that is extensively utilized within this thesis in 

addressing the indentation response of several advanced material systems. This chapter, 

therefore, serves as an introductory material to the finite element method that introduces 

the basic concepts of the technique and its application to nanoindentation testing. 

3.1 Finite Element Modeling: Nonlinear Analysis 

Finite element modeling (FEM) is a numerical technique for finding approximate 

solutions to boundary value problems of partial differential equations. FEM has been 

recognized in many engineering fields as it can solve complex and multi-physics 

engineering problems: solid mechanics, heat transfer, fluid dynamics and 

electromagnetism, to name a few. The finite element method consists of assuming the 

piecewise continuous function for the solution by minimizing the error between the real 

and the approximate solution. The accuracy of approximation depends on the 

combination of trial functions. The idea of FEM is to discretize the entire domain into 

simple subdomains, called finite elements, and then to apply the approximation solution 

(interpolating functions) on the element size. The finite elements relate to adjacent 



31 

 

elements by sharing their nodes, thus adjacent elements have the same solution value at 

common nodes. The response of each element is expressed in terms of finite number of 

degrees of freedom characterized as the value of unknown functions, at a set of nodal 

points. Then, by assembling the collection of all element matrices, the response of the 

global matrix for the entire domain can be approximately computed. Boundary conditions 

are imposed, and a system of equations is obtained in a set of algebraic equations. Finally, 

additional computations are performed at selected elements based on the post-processing 

application. 

Many phenomena in engineering exhibit non-linear responses, for example the relation 

between applied load and deflection of a beam that is fixed in one face. If in a structural 

system, relationships along displacements, strains and stresses are linear, then this system 

is defined as linear system. In case one of them is not linear, then the whole structure 

becomes non-linear. From a fundamental point of view finite element analysis results in 

a matrix equation that describes the behavior of several structural finite elements: 

[𝐹] = [𝐾] ∙ [𝑑] 
(3.1) 

where [𝐹] is the known vector of nodal loads, [𝐾] is the known stiffness matrix and 

depends on the geometry, material properties and boundary conditions – restraints, and 

[𝑑] is the unknown vector of nodal displacements. Linear systems can be solved using 

linear equations in the form of Equation (3.1) due that the stiffness matrix [𝐾] never 

changes while the model is deforming. On the other hand, for nonlinear systems, an 

applied load alters significantly the corresponding stiffness [𝐾]. As a result, an iterative 

solution process is forced for the continuous restructuring of [𝐾], which increases the 

computational time in contrast, with the linear systems is which their analysis readily 

follows. 

Non-linear systems can include up to three sources of nonlinearity: material nonlinearity, 

geometric nonlinearity and boundary nonlinearity which are represented in a 

comprehensive flowchart, Figure 3-1. In the case of material nonlinearity, material 

properties relate to the level of deformation/strain, in contrast to a linear material model 

in which the stress is proportional to strain. Some material models that tend to nonlinear 

behaviors are elastoplastic materials (von-Mises, Tresca, Mohr-Coulomb, Drucker-

Prager, work-hardening models), hyperelastic (Blatz-Ko, Mooney-Rivlin, Ogden), 
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viscoelastic, viscoplastic, creep, superelastic (i.e., nitinol response), etc. Geometric 

nonlinearity refers to cases where large deformations take place or in cases where model’s 

shape change, and both result in changes to the stiffness matrix. In simple words, 

nonlinearity in geometry occurs in cases where the kinematic relationships (displacement, 

strains) are non-linearly dependent. 

Finally, boundary nonlinearities occur when the imposed displacements or forces 

(boundary conditions) depend on the deformations of the structure and change during the 

analysis. Referring to Equation (3.1), the process of FEA is to solve the equation for the 

unknown displacements in the domain of the given boundary conditions. In such cases 

the boundary conditions also become unknowns to the problem. Contact problems are the 

most common applications of boundary nonlinearities. During an indentation test, when 

an indenter is in contact with a material, the contact boundary increases with material’s 

deformation, resulting to a non-linear dependency between displacement and load. 

 

Figure 3-1: Flowchart of nonlinearity categories and their causes [46]. 

3.2 FEM of Nanoindentation Technique 

The major limitation of analytical approaches in the nanoindentation technique is the 
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they don’t take account of the complex behavior that arises from material elastoplasticity, 

non-linear geometry, composite systems, anisotropic material response, time-dependent 

material response, and more. For this reason, FEM has become a useful tool for capturing 

and understanding the indentation contact. Furthermore, numerical simulations provide 

useful insights into the mechanics of contact which cannot be predicted or calculated in 

experiments. Such metrics include the stress and strain distribution within the indented 

material (or probe), size/shape/extent of plastic zones, elastic and plastic energies, 

reaction forces, and more. 

The general concept of finite element modeling of nanoindentation technique is to define 

the mechanical properties of both the indenter and material as input parameters and then 

obtain a numerical load-displacement curve. As a result, comparison can be made 

between computational and experimental data. If the two curves are identical, the 

comparison can be very helpful in evaluating the estimation method of contact area, or 

the interpretation of the numerical results may further yield information which is not 

readily available through experiments. 

Several finite element studies that are considered milestones within the indentation 

mechanics field are reported below: 

• King showed that the assimilation of three-sided (Berkovich) and four-sided 

(Vickers) pyramidal indenters with an equivalent cone with a semi-apex angle that 

preserves the contact area function is accurate within 1–3% [47]. 

• Bhattacharya and Nix estimated the hardness at various points on the loading curve 

for bulk and thin film material systems [48]. 

• Larsson et al., studied Berkovich indentation on elastic and elastoplastic solids and 

their numerical results were in excellent agreement with experimental findings [49]. 

• Bolshalkov et al., studied material behavior during elastic-plastic indentation to 

quantify the influence of residual stresses on the indentation response [50,51]. 

• Many authors [44,52–54] have proposed correction factors to account for the radial 

displacements of the indented material which have been neglected in Sneddon’s 

analysis. 

• Dao et al. and Chollacoop et al. developed both forward and reverse algorithms to 

estimate the yield strength and hardening exponent of the indented material, 𝜎𝑦 and 

𝑛, utilizing the concept of representative stress and strain [55]. 
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• Cheng and Cheng employed dimensional analysis and resulted in several 

dimensionless ratios that control the indentation response; the interdependencies of 

these dimensionless components has been subsequently studied using finite element 

modeling [56]. 

• Feng et al., provided a closed-form analytical expression for the stress field around 

elastoplastic materials, through numerical conical indentations [57]. 

• Vandamme et al., extracted the viscoelastic material response under conical 

indentation [29]. 

• Sarris and Constantinides, estimated elastic and plastic material properties for the 

conical indentation response of elasto-plastic materials of the Mohr-Coulomb type 

[58]. 

• Many authors have studied the indentation response of coating systems due to the 

combined response between thin film and substrate [59–61]. 

Finite element simulations will be widely used in this thesis to explore indentation 

mechanics in advanced material systems and to propose guideline procedures for the 

appropriate design and analysis of experiments. 

3.3 Dimensional Analysis 

Dimensional analysis is a powerful tool in the indentation field, both for experimentalists 

(for enhancing the design of experiment) and for modelers (for carefully selecting the 

range of values for parametric analysis). Here we will introduce various dimensionless 

sets that will enable the study of elastic and elastic-plastic materials from conical 

indentations. Generally speaking, the scope of dimensional analysis is to reduce the 

number of variables in a problem by enforcing dimensional homogeneity. Although this 

technique is primarily employed in fluid mechanics, it is a basic tool that can be used in 

all branches of engineering. The central theorem of dimensional analysis is the 

Buckingham Π theorem from which one selects the appropriate variables, the problem 

can be further reduced into dimensionless parameters significantly reducing the 

complexity of the probelm. This is further illustrated below. 
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3.3.1 Elastic Contact 

For the case of elastic contact indentation, let’s consider a 3D rigid conical indenter of 

semi cone angle 𝜃 indenting an elastic homogeneous solid. The contact is assumed 

frictionless and the surface of the solid is smooth. Now we need to select all the variables 

involved at the contact of the loaded indenter in the surface of the specimen. The load [𝑃] 

is chosen as a dependent variable, while Young’s modulus [𝐸], Poisson’s ratio [𝑣], 

penetration depth [ℎ] and indenter’s semi angle [𝜃] as independent variables. 

Thus: 

𝑃 = 𝑓(𝐸, 𝑣, ℎ, 𝜃) 
(3.2) 

Dependent quantities in this case are stress [𝜎] and strain [𝜀] inside the sample. Therefore, 

as independent dimensions are chosen pressure and length. Applying Π theorem: 

Π1 = [𝐸]𝑎[ℎ]𝑏[𝑃] = 𝜎0𝜀0 

where dimensions of 𝑃 = 𝑁 = 𝜎𝜀2 

Π1 = [𝜎]𝑎[𝜀]𝑏[𝜎𝜀2] = 𝜎0𝜀0 

𝜎: 𝑎 + 1 = 0 => 𝑎 = −1 

𝜀: 𝑏 + 2 = 0 => 𝑏 = −2 

Π1 = [𝐸]−1[ℎ]−2[𝑃] => Π1 =
𝑃

𝐸ℎ2
 

Therefore: 

𝑃

𝐸ℎ2
= 𝛱1(𝑣, 𝜃) 

(3.3) 

Equation (3.3) demonstrates that conical indenter’s force 𝑃 is proportional to the square 

of indenter’s displacement ℎ and that the dimensionless number 𝑃/𝐸ℎ2 is independent of 

the penetration depth, ℎ. In fact, for a given semi-apex angle 𝜃, which for Berkovich 

indenter equals 70.3°, it is only function of Poisson’s ratio 𝑣.  
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3.3.2 Elastic-Plastic Contact 

Dimensional analysis of a conical axisymmetric indenter with an elastic–perfectly plastic 

solid (von-Mises), requires in addition to the elastic case the consideration of the 𝐸/𝑌 

ratio which corresponds to an “elasticity/plasticity index”. 

𝑃

𝐸ℎ2
= 𝛱2 (

𝐸

𝑌
, 𝑣, 𝜃) (3.4) 

Similarly, the dimensionless number 𝑃/𝐸ℎ2 is independent of the penetration depth ℎ, 

although, for a given semi-apex angle 𝜃, it is function of 𝐸/𝑌 ratio and Poisson’s ratio 𝑣. 

Similar dimensional analysis, gives information about the contact depth ℎ𝑐: 

ℎ𝑐

ℎ
= 𝛱3 (

𝐸

𝑌
, 𝑣, 𝜃) (3.5) 

where it is obvious that the contact depth ℎ𝑐 is proportional to the penetration depth ℎ and 

that the dimensionless number ℎ𝑐/ℎ is a function of 𝐸/𝑌 and the Poisson’s ratio 𝑣. In 

practice, when ℎ𝑐/ℎ is bigger than 1, pile-up phenomena occur, otherwise sink-in 

prevails. 

During the unloading phase the load 𝑃 also depends on the maximum indentation depth 

ℎ𝑚𝑎𝑥, thus: 

𝑃 = 𝑓𝑢𝑛𝑙𝑜𝑎𝑑𝑖𝑛𝑔(𝐸, 𝑌, 𝑣, ℎ, 𝜃, ℎ𝑚𝑎𝑥) 
(3.6) 

Dimensional analysis yields: 

𝑃

𝐸ℎ2
= 𝛱4 (

𝐸

𝑌
,

ℎ

ℎ𝑚𝑎𝑥
, 𝑣, 𝜃) (3.7) 

The derivative of Equation (3.7) with respect to indentation depth ℎ, results to the slope 

of the initial unloading curve, at ℎ = ℎ𝑚𝑎𝑥 as: 

1

𝐸ℎ𝑚𝑎𝑥

d𝑃

dℎ
|
ℎ=ℎ𝑚𝑎𝑥

= 𝛱5 (
𝐸

𝑌
, 𝑣, 𝜃) (3.8) 

It is readily understood that the contact stiffness is a function, among other parameters, 

of the maximum indentation depth; a stiffening process takes place as the contact area 

between the indenter and the indented material increases. 
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3.3.3 Work of Indentation 

As mentioned in Chapter 2 the net area which is enclosed by the experimental data 

symbolizes the plastic work 𝑊𝑝 and the area under 𝑃𝑚𝑎𝑥 and in the right of 𝑊𝑝 represents 

the elastic work 𝑊𝑒 (elastic recovery of the deformed surface). Therefore, the area under 

the loading curve is the total work 𝑊𝑡 = 𝑊𝑝 + 𝑊𝑒. Integrating that equation in the range 

of 0 to ℎ𝑚𝑎𝑥 yields: 

𝑊𝑡 = ∫ 𝑃 dh
ℎ𝑚𝑎𝑥

0

=
𝐸ℎ𝑚𝑎𝑥

3

3
Π1 (

𝑌

𝐸
, 𝑣, 𝜃) (3.9) 

It results that the total work is proportional to ℎ𝑚𝑎𝑥
3 . Now, integrating load equation 

during unloading (in the range of ℎ𝑓 to ℎ𝑚𝑎𝑥), the elastic work can be observed as: 

𝑊𝑒 = ∫ 𝑃 dℎ
ℎ𝑚𝑎𝑥

ℎ𝑓

=
𝐸ℎ𝑚𝑎𝑥

3

3
Π6 (

𝑌

𝐸
, 𝑣, 𝜃) (3.10) 

which is also proportional to ℎ𝑚𝑎𝑥
3 . 

By calculating the ratio of plastic to total work, it can be seen that: 

𝑊𝑡 − 𝑊𝑒

𝑊𝑡
= 1 − 3

Π6(𝑌/𝐸, 𝑣, 𝜃)

Π1(𝑌/𝐸, 𝑣, 𝜃)
 (3.11) 

Cheng and Cheng [62] investigated the abovementioned correlation through finite 

element simulations and they resulted in a relationship between 𝑊𝑝/𝑊𝑡 and ℎ𝑓/ℎ𝑚 for 

indenters with various angles. In conclusion, it becomes apparent that dimensional 

analysis yields a set of dimensionless ratios that reduces the number of free variables and 

contributes to the potential of simulating the indentation process and quantifying new 

relationships. 

3.4 General Description of Numerical Model 

In this thesis, finite element simulations were conducted using the commercially 

available software package ABAQUS [63] of Dassault Systèmes. For computational 

efficiency, pyramidal indenter geometries are modeled as cones with half-apex angle of 

θ=70.3° (see Chapter 2.3.2), to convert the indentation problem into 2D axi-symmetric, 

Figure 3-2. This conical angle ensures the same projected area of contact vs. contact 
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depth relation (𝛢𝑐 = 𝑓(ℎ𝑐)) as in Vickers and Berkovich pyramidal indenters which are 

commonly employed in experimental investigations. Previous numerical studies by King 

[45] showed that the assimilation of three-sided (Berkovich) and four-sided (Vickers) 

pyramidal indenters with a cone of equivalent semi-apex angle is accurate within 1-3%. 

 

Figure 3-2: Schematic illustration of the general geometry modelled in this thesis. 

The indenter is assumed to be rigid, which is a reasonable assumption given that most 

indenters are made out of diamond which has an elastic modulus that is much stiffer than 

most indented materials. Rigid indenter is always modeled as analytical rigid surface in 

2D conditions. The only parameters that need to be defined for rigid surfaces are any 

translations and rotations of a single node which is stated as reference node and 

manipulates the behavior of the rigid surface. Therefore, the use of rigid surfaces is 

numerically effective since there is no need to calculate additional stresses and strains 

within the indenter. 

Details of the model geometry are shown in Figure 3-3. The ‘semi–infinite’ half space is 

modeled as a 101×101 μm2 domain characterized for elastic materials by Young’s 

modulus (𝐸) and Poisson’s ratio (𝑣), for elastic-perfect plastic materials (von-Mises) by 

𝐸, 𝑣 and yield stress (𝑌) and for cohesive-frictional materials by 𝐸, 𝑣, 𝑐 and 𝜑. The 

indentation simulations were restricted to depths below 1 μm, much smaller than the 

simulated domain such as to avoid any boundary effects. The continuum space is 

discretized using 4–node axisymmetric, isoparametric elements (CAX4–full integration).  
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Figure 3-3: Details of (a) 2-dimensional axisymmetric finite element model of the conical 

indentation problem and characteristics of boundary conditions and mesh, (b) a portion of the 

finite element mesh that is near to the tip of indenter, cone’s effective angle and location of 

reference point. 
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The element size was continuously refined in five successive regions as approaching the 

indenter contact region for greater accuracy. A mesh sensitivity analysis was performed 

to ensure that the simulations results were insensitive to the mesh size (convergence 

study). 

The contact detection was defined between the analytic rigid surface for the probe and an 

element-based surface for the contacting material, ensuring an accurate calculation of 

contact stresses at each node. The contact between them introduces moving boundary 

conditions which are often discontinuous and the contact to be solved, requires iterations 

for updating the model stiffness at every load increment. The contact formulation includes 

the use of a constrained enforcement method for the pair surfaces of the master (indenter) 

–slave (sample) and accounts for finite strain, rotations and sliding. This direct method of 

Lagrange multipliers attempts to strictly enforce a given pressure-overclosure behavior 

per constraint. Lagrange multipliers can add to the computational cost but also protect 

against numerical errors related to ill-conditioning that can occur if high contact stiffness 

is in effect. Any Lagrange multipliers associated with contact, are present only for active 

contact constraints so the number of equations will change as the contact status changes. 

By using this method, Lagrange multipliers are automatically selected based on the 

calculated stiffness. For nonlinear problems in ABAQUS, Newton-Raphson methodology 

is used to gain solutions for the incremental displacement by iteratively solving the 

linearized equation. 

It is assumed that the loading rate is slow enough such as static friction can securely model 

the interface response. Simulations proceeded in two steps: the indenter was firstly 

subjected to a ramped vertical displacement, followed by an indenter retraction to the 

original position which corresponded to complete unloading at zero load. During this 

process the lower edge of the material was constrained vertically. Axisymmetric 

boundary conditions were used along the symmetry axis beneath the indenter region [64]. 

3.5 Procedure for Calculating the Area of Contact 

For the appropriate calculation of hardness and elastic modulus, one needs to measure 

very precisely the projected area of contact, 𝐴𝑐. Experimentally, 𝐴𝑐 can be explored either 

directly through the usage of a microscope instrument; optical for microindentation 

measurements and scanning electron microscope or atomic force microscope for 
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nanoindentation measurements [65]. Indirect techniques are based mainly on the readings 

of penetration depth, contact depth and indenter geometry [2,3]. In extreme situations like 

roughness and pile-up, these techniques may not be effective and lead to inaccurate 

mechanical properties estimation. 

On the other hand, in finite element simulations, the procedure for the calculation of 

projected area of contact is more straight-forward. In most cases, the contact area is 

determined using the contour at maximum load, as illustrated in Figure 3-4, based on the 

coordinates of the last contact node. The vertical distance from point 1 to point 2 defines 

the contact depth ℎ𝑐, while the horizontal distance the contact radius 𝑎. Hence, element 

size in the contact region must be fine enough, in order to minimize contact area 

measurements with errors less than 2-3%. 

 

Figure 3-4: Numerical determination of projected contact area; vertical distance from point 1 to 

point 2 defines 𝒉𝒄 and horizontal distance the contact radius 𝒂. 

A recently study [66] proposed that contact radius must be determined in the location 

where the contact pressure drops to zero [13]. Usually, in numerical indentation studies, 

contact pressure of the last contact node is non-zero. Thus, they suggest the estimation of 

the last contact node, from extrapolation value, for which the contact pressure results to 

zero. In Figure 3-5, the contact pressure distribution is plotted as function of radial 

distance for an elastic material with 𝐸 = 200 GPa and 𝑣 = 0.3, based on deformed and 

undeformed coordinates. Both curves are in an excellent agreement and they result for a 

1 

2 
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contact radius of 380 nm (undeformed) and 362.3 nm (deformed). In comparison with the 

procedure that is described in Figure 3-4, the contact radius results at 357.2 nm, which is 

closed with the previous value (deviation 1.4%). In addition, in the study of Lee et al., 

the ratio between minimum element size over maximum penetration depth was set at 

𝑒/ℎ𝑚𝑎𝑥 = 0.1, while in our studies 𝑒/ℎ𝑚𝑎𝑥 = 0.05 – 0.025. Therefore, it is safe to follow 

either procedure for the numerical estimation of contact radius. 

 

Figure 3-5: Numerical pressure distribution along radial direction for material with 𝑬 = 200 GPa 

and 𝒗 = 0.3. Blue line represents the undeformed radial distance while black line the deformed 

radial distance.  

3.6 Comparison Between Experiment and Simulation 

As a benchmark on the accuracy of finite element simulations predictions can be 

contrasted against experimental results. As illustrated in the flowchart of Figure 3-6, it is 

of great interest to evaluate the numerical results with respect to experimental 

measurements. The purpose of this procedure is to obtain two identical 𝑃 − ℎ curves, 

experimental and numerical, and then through simulations to obtain useful information 

regarding stress and strain distributions, plastic zones, energies, etc. Hence, once the 

experimental load/displacement curve has been extracted, indentation parameters can be 

obtained; maximum indentation load 𝑃𝑚𝑎𝑥, maximum penetration depth ℎ𝑚𝑎𝑥, contact 

stiffness 𝑆 = 𝑑𝑃/𝑑ℎ, contact depth ℎ𝑐, hardness 𝐻, elastic modulus 𝐸 and yield stress 𝑌 

based on the methodology that is described in Chapter 2. Then, information (𝐸, 𝑣, ℎ𝑚𝑎𝑥) 
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will be used as input data in order to structure the mechanical and geometrical response 

of the finite element model. Now, computational post-processing analysis yields a 

numerical 𝑃 − ℎ response of the material, which must be compared and evaluated with 

the experimental one. If the two curves are in perfect agreement, then crucial results can 

be extracted based on numerical observations, or parametric studies can be designed 

based on specific targets. Otherwise, the numerical model should be re-evaluated and 

refined. 

 

Figure 3-6: Flowchart diagram for the evaluation of a numerical model based on experimental 

measurements. 

Figure 3-7 shows the comparison between the numerical (solid line) to experimental 

(dashed line) load – displacement results on fused silica, for the case of Berkovich 

indentation which is assimilated as cone of semi-angle 70.3⁰ for simulation purposes. The 

experimental results of the elastic modulus have been used as inputs for the finite element 

model set up, where the yield stress of numerical material was estimated at 𝑌 = 𝐻/1.9 
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[57]. For the loading portion of 𝑃 − ℎ curves, experimental and finite element results are 

nearly parallel with a small offset between them. However, this is not noteworthy since 

both curves result in the same maximum load value, where the hardness is extracted. 

For the unloading portion, both results are laying on a single curve which gives the same 

contact stiffness value. The two curves start to deviate as they approach the horizontal 

axis, but this deviation has minimal effect on the indentation analysis procedure. 

 

Figure 3-7: Load–displacement curves for sharp indentation on fused silica. 

3.7 Effect of Plasticity on Indentation Response 

The effect of generated plastic zones and material indentation response has been studied 

by “designing” elastic and elastic-perfectly-plastic materials. With the term perfect 

plasticity, we refer to a material that follows the von-Mises yield criterion and does not 

exhibit and hardening response beyond yielding. The von Mises criterion characterizes 

most metals and is described by: 

𝜎𝑒𝑓𝑓 = √
(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2

2
 

(3.12) 

where 𝜎𝑒𝑓𝑓 is the von-Mises stress and 𝜎1, 𝜎2, 𝜎3 are the three principal stresses at a point. 

Yielding occurs when 𝜎𝑒𝑓𝑓 = 𝑌. 

0

20

40

60

80

100

0 200 400 600 800

L
o
a
d
, 

P
[m

N
]

Indentation depth, h [nm]

FEA

Experiment



45 

 

 

Figure 3-8: Contour plots in the fully loaded state for elastic and elastic-perfectly-plastic material 

with 𝑬 = 200 GPa, 𝒗 = 0.3 and 𝒀 = 500 MPa, where (a) shows von Mises stress distribution inside 

the elastic material; von Mises (b) and equivalent plastic strains (c) inside the elastic-perfectly-

plastic material, accordingly. 

Figure 3-8 (a)-(b) illustrate the generated von-Mises distributions under conical 

indentation for an elastic material with 𝐸 = 200 GPa and 𝑣 = 0.3 and an elastic-perfect-

(a) 

(b) 

(c) 
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plastic material with 𝐸 = 200 GPa, 𝑣 = 0.3 and 𝑌 = 500 MPa, accordingly. Von-Mises 

stresses of elastic material are three order of magnitudes higher than that of the elastic-

perfectly-plastic material. The reason is that elastic materials exhibit larger indentation 

resistance, they are stiffer in contrast to elastoplastic materials, where the domain factor 

cannot exceed the yield stress. In addition, this can be obtained from the extend of the 

stressed regions as indicated in from the stress distributions in both cases. In Figure 3-8 

(c), the equivalent plastic strain distribution is illustrated, which highlights that plastic 

flow extends through the whole contact region and subsequently shifts the material’s 

surface upwards and around the tip. 

The differences in the indentation resistance between the two cases can be better 

demonstrated on a 𝑃 − ℎ graph as presented in Figure 3-9 (a). Loading and unloading 

portions of the elastic material lay on a single curve, since there are no permanent 

deformations and all energy is recovered upon unloading. For that reason, elastic material 

exhibits larger indentation resistance with respect to an elastoplastic material which tends 

to dissipate energy once the yield criterion is satisfied, subsequently resulting in 

permanent plastic deformations. Figure 3-9 (b) demonstrates that elastic material 

response is accompanied by sink-in deformation of the material’s surface, in contrast to 

the elastic-plastic material which tends to increase the contact area by displacing material 

around the tip, leading to pile-up phenomena. 

 

Figure 3-9: Post processing numerical analysis of (a) load – displacement curves and (b) profile 

imprints, for elastic and elastic-perfect plastic material with 𝑬 = 200 GPa, 𝒗 = 0.3 and 𝒀 = 500 

MPa. 
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3.7.1 Indentation Imprint – Pile up Phenomena 

As a preliminary discussion on the pile-up phenomenon, several materials have been 

studied, in order to link the 𝐸/𝑌 ratio with sink-in or pile-up. Finite element simulations 

for conical indentation of elastic-plastic materials (Table 3-1) were performed and their 

𝑃 − ℎ responses, contact areas and surface profiles have been analyzed and extracted. 

Table 3-1: Input data for various elasto-plastic materials. 

Material 𝑣 [-] 𝐸 [GPa] 𝑌 [MPa] 𝐸/𝑌 

Silver 0.37 71 55 1,291 

6061 Aluminum alloy 0.33 69 62.05 1,112 

AISI 1045 Carbon Steel 0.29 205 530 387 

Ti6Al4V 0.34 113.8 880 129 

PTFE 0.46 1.1 20 55 

Silicon 0.28 190 7000 27 

Fused Silica 0.17 72 4500 16 

Figure 3-10(a) shows the results of dimensional group 𝛱3 for a large span of 𝐸/𝑌. For 

values of 𝐸/𝑌 > 100, the material surfaces display pile-up phenomena and this 

phenomenon further enhances as 𝐸/𝑌 increases. Results from the Oliver and Pharr 

methodology, Equation (2.42), are plotted against numerical findings, where both are in 

excellent agreement for materials that sink-in. For materials that exhibit pile-up response 

the Oliver and Pharr methodology is unable to accurately capture the contact area, 

potentially leading to inaccurate estimation of mechanical metrics like 𝐸 and 𝐻. 
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Figure 3-10: (a) Normalized contact depth for various 𝑬/𝒀 materials. (b) Computational surface 

profiles at a state of fully load for silicon and aluminum materials. 

Low 𝐸/𝑌 materials, correspond to hard and highly elastic materials such as silicon, in 

which the generated plastic zones are small and all major deformation of the indented 

material is primarily elastic, therefore such materials exhibit sink-in response, Figure 3-10 

(b). In the case of high 𝐸/𝑌 −ratio (low indentation resistance) such as aluminum, the 

plastic zone is significantly extended and so the volume of the indented material around 

the contact, will tend to move the surface upward (pile-up). 

3.8 Chapter Summary 

This chapter dealt with numerical modeling of nanoindentation using the finite element 

method. The details of the numerical model have been presented and the procedure of 

extracting the projected area of contact has been analyzed. Dimensional analysis was 

performed in order to identify the major dimensionless factors of indentation testing. 

Indicative numerical studies of elastic and elastoplastic materials have been presented and 

the accuracy of the methodology has been proven against experimental data. Furthermore, 

the Oliver and Pharr methodology has been contrasted for a range of elastic-plastic von-

Mises materials; pile-up phenomena tend to kick-in for 𝐸/𝑌 > 100 and within this domain 

the O&P methodology gets inaccurate. The results presented in this chapter advocate 

towards the use of FEM in indentation testing for understanding the physical mechanisms 

and supporting the meaningful analysis of experimental data. 
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Chapter 4 

 

4 Auxetic Materials and Structures 

Given the recent advances in materials synthesis and processing, a lot of enhanced 

materials with interesting microstructures and enhanced properties have been developed 

over the last years. Auxetic materials is a class of emerging solids having negative 

Poisson’s ratio. These novel materials are gaining increasing interest in the scientific and 

technical sectors due to their attractive mechanical response. In contract to conventional 

materials (𝑣 > 0), auxetics exhibit enhanced indentation resistance, fracture toughness, 

impact resistance and uncommon mechanical response. These superior properties 

established auxetics as candidate materials for a broad range of applications, mainly in 

the biomedical and defense sectors. In this chapter we review the historical background 

of auxetic materials and structures, their relationship with microstructural architectures, 

synthesis routes and potential applications. Finally, we explore a computational study of 

a honeycomb auxetic and composite structure to motivate the research work that follows 

in Chapters 5 and 6. 

4.1 Introduction 

When conventional materials are stretched in one direction they tend to become thinner 

in the perpendicular directions. This characteristic behavior of the material is governed 

by one of the fundamental mechanical properties of materials; the Poisson’s ratio, which 
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for a conventional material possesses a positive value (𝑣>0). However, 

thermodynamically the material is not restricted to have only positive 𝜈 and negative 

values may also occur, meaning that the will undergo lateral expansion when stretch 

longitudinally. Materials that fall into this category have been termed auxetics, derived 

from the Greek word Αυξητικός meaning to increase. 

 

Figure 4-1: Tension behavior of materials under miotic (𝒗>0) and auxetic (𝒗<0) response. 

Natural auxetic materials do exist; for example many cubic metals, arsenic, cadmium and 

a-cristobalite, and many biological materials (several tendons and tissues) have been 

found to be auxetic. Moreover, a wide range of other materials have been produced with 

tailored microstructural patterns to exhibit auxeticity, covering all major classes of 

materials. All those materials are of interest due to their interesting response under load 

and because they enhance other material properties, such as indentation resistance, 

volumetric strain energy dissipation, fracture toughness, porosity variation when 

stretched or compressed, enhanced energy absorption and different deformation pattern 

while bending. In the subsequent review, auxetic structures are discussed followed by a 

material summary and a brief discussion about the mechanical response of such materials. 

4.2 What is Poisson’s Ratio? 

Generally speaking Poisson’s ratio is the property of materials to expand or contract in 

directions perpendicular to the directions of compression or tension, respectively noted 

with 𝑣. Siméon Denis Poisson defined the ratio between transverse strain 𝜀𝑡 to 

longitudinal strain 𝜀𝑙 in the elastic loading direction as: 

-1 -0.5 0.5 0 

Miotic Response 𝑣 >0 Auxetic Response 𝑣 <0 
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𝑣 = −
𝜀𝑡

𝜀𝑙
 (4.1) 

The negative sign was inserted to account for the fact that most materials exhibit an 

opposing response, ending with a positive material constant 𝑣. French mathematician 

Augustin-Louis Cauchy proved theoretically that in order to characterize the elastic 

response of isotropic materials, one needs to define two independent moduli of elasticity. 

Hence, Poisson’s ratio can differ from material to material. In the case of isotropic 

materials, 𝑣 can be expressed in relation to bulk (𝐾) and shear (𝐺) modulus: 

𝑣 =
3𝐾 − 2𝐺

2(3𝐾 + 𝐺)
 (4.2) 

It can be concluded from above equation that when 𝐾/𝐺 approaches 0, 𝑣 → -1 and when 

𝐾/𝐺 >>0, 𝑣 → 0.5. In Figure 4-2 the whole thermodynamically possible span range of 

Poisson’s ratio is illustrated as a function of the ratio 𝐾/𝐺. For most well-known solids, 

such as metals, ceramics and polymers, 0.25 < 𝑣 < 0.35. Rubbery materials undergo shear 

deformation but resist volumetric deformation, thus 𝐾 >> 𝐺 and 0.4 < 𝑣 < 0.5. Auxetic 

materials with 𝑣 ≈ -1 exhibit opposite behavior to rubbery materials; they resist shear 

deformation and undergo volumetric deformation, hence 𝐾 << 𝐺. 

 

Figure 4-2: Span range of Poisson’s ratio 𝒗 as a function of the ratio between bulk and shear 

moduli for a wide range of isotropic classes of materials [67]. 
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4.3 Auxetic Materials 

The first experimental observation of a negative Poisson’s ratio response was first 

reported by Voight in 1887, when he estimated the Poisson’s ratio of pyrites as 𝑣 ≈ -0.14. 

Nevertheless, the real interest in materials exhibiting negative Poisson’s ratio (NPR) 

started 100 years later, when Lakes reported a re-entrant structure by permanently 

buckling the ribs of conventional hexagonal foam cells inward. In 1991, the term 

“auxetic” was introduced by Evans [68], referring to their response to expand laterally 

upon longitudinal tension. 

Auxetic materials can be found in nature such as single crystals of a-cristobalite [69–72], 

pyrite [73], cubic elemental metals [74], zeolites [75–77], cadmium [78] and arsenic [79]. 

These materials demonstrate auxetic response when loaded in certain directions. In 

addition, many biological materials have been reported for their auxetic nature which is 

attributed to their fibrillar structures or other microstrucral architectures; these include 

cancellous bones [80], cow teat skin [81], cat skin [82], salamander skin [83] and 

membranes found in cytoskeleton of red blood cells [84]. 

In general, auxeticity is driven by the deformation mechanisms of specific structures, 

either microstructural or geometrical structures, such as rib hinging, bending, stretching 

and rotating. It has been found that the Poisson’s ratio of auxetic materials is a scale 

independent property, from molecular level to macroscale, and depends entirely to the 

deformation mechanism. For example, identical rotational mechanism causes the auxetic 

response in zeolites (nanometer scale) and polymeric foams (millimeter scale). 

This uncommon deformation pattern in combination with the ability to design a structural 

material with negative Poisson’s ratio attracted the interest of the research community 

and led the development of auxetic metamaterials. As illustrated in Figure 4-3, the number 

of publications per year on the topic has increased to 230 in the last 30 years, which proves 

that auxetic materials and structures are an emerging class of materials with significant 

scientific interest. In addition to their novel deformation response, auxetic materials 

exhibit enhanced mechanical properties in contrast with their conventional counterparts, 

like increased shear modulus, indentation resistance, impact resistance, fracture 

toughness, acoustic damping, energy absorption. 
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Figure 4-3: Number of publications on the topic of auxetics per year since 1990. Data extracted 

from Scopus search engine. 

4.4 Types of Auxetic Structures 

For manufacturing purposes, one must consider the internal structure of an auxetic 

material and its deformation mechanism, in order to “design” the macrostructure by 

tailoring the mechanical properties. The most common microstructures of cellular 

auxetics, which their deformation mechanism response drives the negative Poisson’s 

ratio, are designated into re-entrant, chiral and rotating polygon units. Regardless of their 

different structure, Poisson’s ratio is dominated by changes in internal areas. All these 

structures expand under tension (internal areas expand), while under compressive load, 

their internal areas tend to enclose. These microstructural effects are responsible for the 

macroscopically observed negative Poisson’s ratio response. 

4.4.1 Re-entrant Structures 

The first re-entrant cellular structure was proposed by Gibson and Ashby in the form of 

honeycombs [85]. Re-entrants have been used widely to study the controlled mechanisms 

of auxetic effect. A variety of re-entrant structures can be found either in 3D or in 2D, 

and are formed by hexagonal, star shape, or arrowhead face cells, Figure 4-4. When these 

structures are subject to uniaxial tensile load, the cell ribs tend to increase (moving 

outward), resulting in the auxetic effect.  
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Figure 4-4: Schematic of re-entrant auxetic structures: (a) 3D auxetic cell, 2D (b) hexagonal, (c) 

star shape, (d) arrowhead face cells. 

4.4.2 Chiral Structures 

In 1991, Lakes proved that a non-centrosymmetric, chiral structure can produce a 

negative Poisson’s ratio response [86]. As illustrated in Figure 4-5, the unit cell of this 

structure can be defined from a central node with six tangentially attached ribs/ligaments. 

When uniaxial load is applied, the nodes rotate accompanied by flexure of the ligaments, 

which rises the auxetic response in the transverse direction. With chiral structures, 

Poisson’s ratio close to -1 can be obtained. 

 

Figure 4-5: Typical chiral structure where the unit cell is highlighted by dotted lines. 

4.4.3 Rotating Polygon Structures 

Grima and Evans [87] presented a new structure that can achieve auxetic response, by 

involving the rotation of rigid squares joined with hinges at their vertices, Figure 4-6. 

Many authors extended the square geometry of this rotating mechanism to other polygon 

geometries in order to capture auxeticity: rotating tetrahedral [71], triangles [88–90], 

rectangles [91] and rhombi [92]. Furthermore, it has been proven that this is the dominant 

(a) (b) (c) (d) 
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mechanism of the auxetic response of nature materials, such as zeolite and a-cristobalite. 

[93,94]. 

 

Figure 4-6:Rotating squares for auxetic behavior where (a) represents the relaxed struture and 

(b) the structure under horizontal tension load in which exhibits an auxetic response. 

4.5 Novel Properties of Auxetic Structures 

This counter-intuitive behavior described above is associated with several other beneficial 

effects and unique properties. The understanding of the physical mechanisms that drive 

their macroscopic response is crucial for the development of new and improved auxetic 

structures. 

4.5.1 Indentation Hardness 

During indentation on an auxetic material, the area under contact tends to densify in te 

longitudinal and transverse directions due to the compressive load that is generated at 

contact. Hence, this behavior leads to an increased indentation resistance, compared to 

the behavior of a conventional material, Figure 4-7 (a). By substituting Equation (2.27) 

in (2.3), one can derive that hardness scales as: 

𝐻 ∝ [
𝐸

1 − 𝑣2
]
𝑥

 (4.3) 

where 𝑥 is a constant that depends on indenter’s shape; for cone 𝑥=1 and for sphere 𝑥=2/3. 

Since for isotropic materials 𝑣 extends from -1 to +0.5, as 𝑣 moves closer to -1, the 

hardness of the material approaches infinity. This theoretical behavior of the normalized 

elastic hardness at 𝐻/𝐻𝑣=0 is plotted in Figure 4-7 (b) for conical and spherical indenters, 

for various Poisson’s ratio, and the deviation between the two curves is due to the 

indenter’s geometrical profile and the resulting stress distribution. Under conical 

20° 50° 90° 
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indentation, materials with 𝑣 = −0.9 exhibit a fivefold increase of their hardness, in 

contrast to a threefold increase for the case of sphere.  

 

Figure 4-7: (a) Illustration of indentation resistance of conventional and auxetic materials, (b) 

evolution of normalized elastic indentation hardness 𝑯/𝑯𝒗=𝟎 as function of 𝒗. 

A series of experimental studies have been reported in the literature; Alderson et al. [95] 

performed spherical indentation on ultra-high molecular weight polyethylene 

(UHMWPE) foams and resulted to an increase of indentation resistance by a factor of 2 

on changing Poisson’s ratio value from 0 to -0.6. Chan and Evans [96] studied the 

response of polyurethane hexagonal (conventional) and re-entrant (auxetic) foams under 

spherical and cylindrical indenters, where they noted that for auxetics, the contact area 

increases due to their densifying mechanism in contrast with conventional material. 

It should be emphasized that results presented in the above studies are affected by the 

microstructural architecture which can lead to significant amounts of anisotropy and 

plastic deformation. Materials with high porosities, like the foams described above, can 

change their mechanical response due to volumetric change ratio under pressure. When 

an auxetic foam is under compression, its elastic modulus increases with the increase in 

of densification. Furthermore, as the Poisson’s ratio approaches -1, the shear modulus 

approaches infinity, therefore materials become highly compressible (enlargement of 

density), but difficult to shear – anti-rubber material. 

𝑃1 𝑃1 

Auxetic Response Miotic Response 

(a) (b) 
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4.6 Applications of Auxetics 

The only limitation of man-made auxetic materials is their association with increased 

porosity. Auxetics are, therefore, not yet ideal for structural applications, except if a 

pioneering new nanostructure would be fabricated, that through the incorporation of 

molecular entities would cause the macroscale response of material to be auxetic. 

Taking advantage of the novel behavior of auxetic materials, a range of applications are 

suitable, from sports to medical field. Auxetic materials have the potential to be used in 

sports applications, for example; safety helmets, pads, gloves and mats due to their 

enhanced impact resistance and energy absorption for lighter components. In addition, 

auxetic products have been released in the sports sector by Under Armour [97] which 

developed apparel and shoes with auxetic skins to aid conformability and comfort, and 

Nike [98,99] which includes an architecture closed cell foam outsole with auxetic 

structure, Figure 4-8. 

 

Figure 4-8: Registered patents related with auxetic products from Under Armour and Nike: (a) 

front view of apparel, (b) perspective and side view of a cap, (c) outer surface of an embodiment 

of a sole structure, (d) side view of footwear, including auxetic arrangements. 

(a) (b) 

(c) (d) 
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Auxetic systems of re-entrant structures or rotating polygons can offer a wide range of 

pore size and as a result, applications in filters as shown in Figure 4-9. Their unique pore-

opening characteristics under deformation improve filter performance from macro to 

nano-scale. At the molecular level, auxetic polymeric materials could serve as excellent 

solution for drug-release and sensor applications [100–102]. 

A big effort in the field of auxetics is their usage in the biomedical field. Many authors 

studied the performance of auxetics for oesophageal stents [103,104], angioplasty stents 

[105,106] and annuloplasty rings [107]. The results are promising, due mainly to the 

ability of the material/strutcure to expand when stretched along with synclastic behavior 

and enhanced stiffness which minimize the generated stresses. 

  

Figure 4-9: Smart filter application mechanisms by (a) re-entrant structures and (b) rotating 

rhombi network structures. 

4.7 Numerical Response of Composites Plates in Re-entrant Structures 

Auxetic cellular structures are highly recommended in the area of light-weight 

applications, due to their ability in achieving high stiffness and large surface to volume 

ratio. This property motivated the research community to the fabrication of auxetic 

composites, in order to combine the desirable auxeticity with additional beneficial 

properties of other materials. Auxetic material are used either as matrix structures in 

laminated composites due to their synclastic curvature properties, or as fiber 

reinforcements, in order to reduce the cracks between matrix and fiber. In this chapter, 

we suggest a design for composite plate with auxetic core, based on numerical results. 

The commercial software SolidWorks has been adopted to design the structure and 

(a) (b) 
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perform the finite element analysis (FEA) of 3D re-entrant auxetic unit cell, auxetic 

structure and composite structure. 

4.7.1 FEA on Re-entrant Honeycomb 

An implicit finite element model for the validation design of re-entrant honeycomb plate 

has been built. In Figure 4-10, the unit cell of the auxetic structure is illustrated while the 

full size of structure is defined with 4 x 5 representative cells. 

 

Figure 4-10: Model of unit cell of re-entrant honeycomb auxetic and the lattice of 4 x5 unit cells. 

Parabolic tetrahedral solid elements have been used to construct the shape of the unit cell 

as shown in Figure 4-11(a). Detailed boundary conditions were established to calculate 

the auxetic response of the unit cell and re-entrant honeycomb structure. As shown in 

Figure 4-11(b) the tension of unit cell along the 𝑦 direction has been modeled by 

displacement control condition. Nodes at the bottom surface of unit cell have been fixed 

along three directions, while nodes at rear face have been imposed at 𝛥𝑧 = 0. In Figure 

4-11(c), the boundary conditions of the re-entrant structure capture similar conditions 

with unit cell, except from the tension condition, where here an applied pressure has been 

imposed on the nodes at the top surface. A linear elastic material was chosen to 

characterize the response of the honeycomb with 𝐸 = 210 GPa and 𝑣 = 0.28. In addition, 

reference points have been defined in the models to extract average values of generated 

𝒙 

𝒚 
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stresses, strains and displacements, to calculate the uniaxial behavior of the material and 

the Poisson’s ratio. 

 

Figure 4-11: Numerical simulation models: (a) mesh model of unit cell, (b) displacement driven 

and boundary conditions used in unit cell, (c) load driven and boundary conditions used in 

honeycomb structure. 

In Figure 4-12 the results of the simulated unit cell are presented. The maximum axial 

stresses are generated at four concave angles as expected. From Figure 4-12(b), which 

shows the corresponding axial displacements 𝑢𝑦, the lateral dimensions of the material 

expand rather than shrink, in response to the applied tensile load, which is characteristic 

of the auxetic behavior. Furthermore, as mentioned above, the Poisson’s ratio is not scale-

dependent, therefore although the material at molecular lever is characterized by a 

positive 𝑣, the response of the structure at macroscale, supports a negative 𝑣, due to its 

deformation mechanism. Figure 4-12(c), (d) demonstrate the observed strains in 𝜀𝑥 and 

𝜀𝑦 directions, accordingly. Analysis of these results and the slope between 𝜀𝑥/𝜀𝑦 results 

in the Poisson’s ratio of the unit cell. 

(a) (b) (c) 

fixed b.c. fixed b.c. 

𝑢𝑦 = 1.5 500 MPa 
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Figure 4-12: Elastic FEA results of the response of axial: (a) stresses, (b) displacements, (c) 

strains and (d) lateral strains. 

Regarding the response of the honeycomb structure (Figure 4-13), results underlying 

auxetic response when tensile pressure is applied at the top face of the struts in 𝑦-

direction. 

 

Figure 4-13: Strain field of the re-entract honeycomb structure. FEA results support the overall 

auxetic behavior when pressure is applied in 𝒚-direction. 

(a) 

(c) 

(b) 

(d) 

(a) (b) 
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4.7.2 FEA on Sandwich Plate with Auxetic Matrix 

Considering a sandwich plate with auxetic matrix, which has three layers of materials as 

illustrated in Figure 4-14. Top and bottom layers are elastic isotropic polymer material 

with 𝐸 = 172 MPa and 𝑣 = 0.439. The matrix material has a re-entrant honeycomb 

structure with 𝐸 = 210 GPa and 𝑣 = 0.28. The total thickness of the sandwich plate is 7 

mm; ℎ1, ℎ3 = 1 mm and ℎ2 = 5 mm. 

 

Figure 4-14: (a) CAD model of sandwich plate structure, and (b) discretization of composite 

structure. 

Parabolic tetrahedral solid elements have been used to construct the shape of the 

composite unit cell and to characterize the interface between auxetic and plate materials, 

as depicted in Figure 4-15(a). Tension of unit cell was modeled by displacement control 

condition along the positive 𝑦-direction. Nodes at the bottom surface of unit cell have 

been fixed along three directions. For calculation purposes, we modeled only the half 

thickness (3.5 mm) and therefore we imposed symmetry conditions at the front face of 

the structure. Again, reference points have been defined in the models to extract average 

values of generated stresses, strains and displacements, to calculate the uniaxial behavior 

of the composite and the Poisson’s ratio. A mesh sensitivity analysis was carried out to 

ensure that the numerical solutions are mesh-independent. 

The numerical response of the resulting axial displacements is shown in Figure 4-15(b). 

It is obvious that the elastic moduli mismatch discrepancy (𝐸𝑎𝑢𝑥/𝐸𝑝𝑙𝑎𝑡𝑒 = 1220) affects 

the overall behavior of the structure. In addition, it seems that the composite structure 

exhibits an auxetic response under the current conditions. 

(a) (b) 

𝒛 

𝒙 

𝒚 

Auxetic matrix 

Top outer layer 

Bottom outer layer 

ℎ1 

ℎ2 

ℎ3 
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Figure 4-15: (a) Mesh model and boundary conditions of composite’s unit cell, (b) computational 

axial strain results of composite structure. 

Data in Figure 4-16(a) present the calculated axial stresses as a function of the axial 

strains. Auxetic curve exhibits a stiffening behavior in contrast to the plate’s curve. That 

was expected, because of their moduli mismatch. Composite curve located between them 

and its slope, corresponds to 𝐸 = 1.25 GPa. Figure 4-16(b) presents the transverse strain 

over the longitudinal strain in order to investigate the response of their Poisson’s ratio. A 

linear fit was applied to the data (𝑅 = 0.997 – 0.9993) and their Poisson’s ratio was 

calculated as: re-entrant structure 𝑣 = -0.77 and composite structure 𝑣 = -0.66. 

 

Figure 4-16: Numerical results of 3D auxetic and composite unit cells under uniaxial tensile tests: 

(a) nominal stress vs. nominal strain curve, (b) calculated lateral strain over axial strain for 

extracting Poisson’s ratio value. 

(a) (b) 

(a) (b) 
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4.8 Chapter Summary 

This chapter provided a brief review on auxetic materials and structures, including natural 

and man-made systems. It becomes apparent that auxetic response yields a superior 

mechanical response compared to their non-auxetic counterparts. Most of the synthesized 

auxetic structures are characterized by a significant amount of porosity, due to materials 

design purposes. Auxetics are an emerging class of materials with potential applications 

in the biomedical and sports industries. From a computational point of view, we have 

performed 3D finite element simulations in a sandwich auxetic panel and the numerical 

results demonstrate its superior mechanical response and motivate the need for future 

optimization studies that could lead to the design of new protective systems. 
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Chapter 5 

 

5 Elastic Indentation Resistance of Auxetic 

Materials 

This Chapter deals with the indentation resistance of auxetic materials. It has been 

reported in the literature that auxetic materials exhibit an enhanced indentation resistance, 

the origins of which have not been properly addressed. We here use the finite element 

method in order to investigate the origins and quantify this enhanced resistance. 

Furthermore, the theoretical solution that was presented in Section 2.4.2 of a rigid 

axisymmetric probe penetrating into a semi-infinite linear elastic half-space, becomes 

increasingly inaccurate for elastic indentations on auxetic materials (𝜈 < 0). We here 

correct the analytical solution for the entire possible span of Poisson’s ratios. 

5.1 Introduction 

Several finite element studies [50,55,108–110] have pointed out that computational 

results deliver consistently higher values of the modulus of elasticity when calculated 

through Equation (2.33). A detailed analysis by Hay et al. [44] in their, by now, classic 

paper of 1999 has deciphered the origins of this discrepancy which has its roots on an 

inaccurate boundary condition used in the formulation of the mathematical problem that 

has been analytically solved. Through finite element modeling they have quantified this 
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uncertainty and they have formulated analytical approximations for a correction factor 𝛾 

for Equation (2.33) based on simple modifications of Sneddon’s solution, which proved 

to be a function of the Poisson’s ratio of the material (𝜈) and the cone semi apex angle 

(𝜃): 

𝛾 = 1 +
(1 − 2𝜈)

4(1 − 𝜈) tan 𝜃
 (5.1) 

𝛾 = 𝜋

𝜋
4 + 0.15483073 cot 𝜃 (1 − 2𝜈)/4(1 − 𝜈) 

(
𝜋
2 − 0.83119312 cot 𝜃 (1 − 2𝜈)/4(1 − 𝜈))

2 
(5.2) 

Equation (5.1) is best suited for cube-corner indenters whereas Equation (5.2) for 

Berkovich/Vicker-type geometries. While correction factors have already been proposed 

[44,53,54], the majority of studies (with a few recent analytical exceptions [111,112]) 

have concentrated in the positive Poisson’s ratio regime and have neglected an exciting 

and developing class of materials: the auxetic systems. 

The aim of this particular study is twofold: on one side we aim to quantify the increased 

indentation resistance reported in the literature when indenting auxetic materials and 

identify through computational simulations the mechanisms that lead to this particular 

response. On the other hand, we aim to deal with the discrepancy caused by the existing 

analytical solution when indenting auxetic materials and extract correction factors that 

will eliminate any inaccuracies and will correct the analytical solution for the entire 

possible span of Poisson’s ratios. 

5.2 Finite Element Model 

Two-dimensional axisymmetric finite element simulations are performed to investigate 

the elastic indentation response of cones and spheres on materials with various Poisson’s 

ratios, with emphasis being placed on auxeticity. For the case of conical indentation, the 

indenter was modeled as a rigid cone with half-apex angle of θ=70.3°. This conical angle 

ensures the same contact depth vs. projected area of contact relation (𝛢𝑐 = 𝑓(ℎ𝑐)) as in 

Vickers and Berkovich pyramidal indenters which are commonly employed in 

experimental investigations. Previous numerical studies by King [45] showed that the 

assimilation of three- (Berkovich) and four-sided (Vickers) pyramidal indenters with a 

cone of equivalent semi-apex angle is accurate within 1-3%. Details of the model 
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geometry are shown in (Figure 5-1(a)). The ‘semi–infinite’ half space is modeled as a 

101×101 μm2 domain. The indentation simulations were restricted to depths below 500 

nm, much smaller than the domain such as to avoid any boundary effects. The continuum 

space is discretized using 4–node axisymmetric, isoparametric elements (CAX4–full 

integration). 

In the case of spherical indentation four indenter geometries were considered in order to 

cover a broad range of indentation strains; 5 μm, 8.5 μm, 10 μm, 25 μm and 50 μm. The 

‘semi–infinite’ half space is modeled as a 101 × 101 mm2
 domain (see Figure 5-1(b)). All 

studies were performed to the same indentation depth, ℎ𝑚𝑎𝑥 = 100 μm, which is much 

smaller than the domain such as to avoid any boundary effects. The continuum space is 

represented by 4-node axisymmetric, CAX4 isoparametric elements.  
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Figure 5-1: Schematic of the geometry modeled in this study with details of the mesh used for 

(a) conical and (b) spherical indentation. 
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The element size on both case studies was continuously refined in five successive regions 

as approaching the indenter contact region for greater accuracy. A mesh sensitivity 

analysis was performed to ensure that the simulation results were insensitive to the mesh 

size. Roller boundary conditions were applied on the axis of symmetry and fixed 

boundary conditions on the bottom surface of specimen. Frictional effects in the indenter–

material interface were included in the analysis through an isotropic Coulomb model, in 

which the local shear stress 𝜏𝑐 is related to the local normal pressure 𝑝𝑐 through 𝜏𝑐 = 𝜇𝑝𝑐 

where 𝜇 is the friction coefficient between the indenter and the surface. We assume that 

the loading rate is slow enough such as static friction can securely model the interface 

response. Simulations proceeded in two steps: the indenter was firstly subjected to a 

ramped vertical displacement, followed by an indenter retraction to the original position 

which corresponded to complete unloading at zero load. During this process the lower 

edge of the material was constrained vertically. Axisymmetric boundary conditions were 

used along the symmetry axis beneath the indenter region [64]. 

5.3 Conical Indentation Resistance 

Figure 5-2 shows the evolution of simulated 𝑃 − ℎ responses for materials with an elastic 

modulus arbitrarily set to 𝐸 = 100 GPa and various Poisson’s ratios. The computational 

results suggest that the indentation resistance increases when 𝜈 ≠ 0. While a small 

increase is observed for positive Poisson’s ratio the resistance of the material significantly 

increases as the Poisson’s ratio moves into the negative regime (Figure 2(b)). 

In order to better quantify the influence of 𝜈 on the material’s ability to resist penetration 

we have calculated the elastic hardness of the material in the whole possible span of 𝜈, 

−1 ≤ 𝜈 ≤ 0.5. The physical meaning of hardness for elastic materials signifies their 

ability to resist penetration by a probe and relates to the average pressure generated 

beneath the indenter tip. 
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Figure 5-2: Conical indentation computational force-depth (P-h) responses for materials with 

E=100 GPa and v in the (a) positive (0 to 0.5) and (b) negative (-1 to 0) regime.  

Data in Figure 5-3 corresponds to the normalized results by the hardness for 𝜈 = 0 such 

as to present the relative amplification factor that the material experiences compared to 

the value at 𝜈 = 0. Consistent with 𝑃 − ℎ responses, the minimum possible resistance to 

penetration is provided for 𝜈 = 0 and hardness increases for any deviation. The maximum 

within the positive regime is obtained for incompressible materials 𝜈 = 0.5, 𝛨/𝛨𝜈=0 =

1.17 (numerical results). Of particular interest is the rapid amplification of hardness 

observed into the negative regime (auxetic materials) for which a sevenfold enhancement 

for the lowest 𝜈 simulated in this study (𝛨/𝛨𝜈=0 = 7.13 for 𝜈 = −0.9) is observed. The 

ability of the material to enhance its resistance to penetration is consistent with the 

experimental observations reported in [92, 113]. Before proceeding with a quantitative 

comparison between theory, simulations and experiments a few words on the nature of 

the indentation response of auxetic systems is due. In search of the physical mechanisms 

that lead to this amplified response we have investigated the interdependence of the elastic 

constants, the stress distributions beneath the indenter, and the contact depth evolution 

with Poisson’s ratio. 
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Figure 5-3: Normalized hardness for various Poisson’s ratios on conical indentation. 

Figure 5-4 assists the interpretation of the previously reported results by plotting the 

evolution of the three elastic constants (𝛫, 𝐺,𝐸𝑟) as a function of 𝜈. The relations between 

𝐾, 𝐺 and 𝜈 are given by classical elasticity theory: 

𝐺 =
𝐸

2(1 + 𝜈)
;       𝐾 =

𝐸

3(1 − 2𝜈)
 (5.3) 

The analytical solution (Equation (2.30)) suggests that the plane stress modulus, 𝐸𝑟 =

𝐸/(1 − 𝜈2), controls the indentation resistance of the material. It is evident that 𝐸𝑟 

experiences a minimum at 𝜈 = 0 and increases for all other values. The increase is more 

significant in the negative Poisson’s ratio domain especially for values of 𝜈 < −0.5, 

below which 𝐸𝑟 approaches the response of the shear modulus and together, thereafter, 

asymptotically increase to infinity as 𝜈 approaches −1. The transition to low 𝜈 values can 

therefore be interpreted as a shear-stiffening mechanism that also has implications on the 

indentation response. The limiting responses of the elastic constants are summarized 

below: 

𝜈 → 0.5:  𝐺 →
𝐸

3
, 𝐾 → ∞,𝐸𝑟 →

4

3
𝐸 (5.4) 

𝜈 → −1:  𝐺 ≈ 𝐸𝑟 → ∞,𝐾 →
𝐸

9
 (5.5) 
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Figure 5-4: Evolution of elastic material constants as a function of the Poisson’s ratio (𝑬 = 100 

GPa). 

Figure 5-5 shows the von Mises stress – which relates to the distortional energy of the 

material – profiles for the various Poisson’s ratio materials. It appears that as 𝜈 reduces 

the resistance to penetration increases. This is manifested in (a) an increase in the absolute 

values of stresses generated within the indented material and (b) an increase in the normal 

stresses generated on the tip surface. These observations are consistent with the increase 

of maximum force required to penetrate lower Poisson’s ratio materials to the same depth 

as observed in the simulated 𝑃 − ℎ responses (see Figure 5-2). 
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Figure 5-5: Von-Mises stress-profiles for the various Poisson’s ratios (ν=0.5, 0.4, 0.2, 0, -0.2, -

0.4, -0.6, -0.8, -0.9). The elastic modulus of the material is kept constant at 𝑬=100 GPa. 

Figure 5-6 indicates the numerically estimated contact depth normalized by the maximum 

indentation depth (here constant at ℎ = 500 nm) for the various Poisson’s ratio materials. 
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For positive Poisson’s ratio materials ℎ𝑐/ℎmax appears to be relatively constant and in 

close agreement with theoretical prediction ℎ𝑐/ℎmax = 2/𝜋 = 0.64 (to two decimal 

places). The response assumes identical values to the theoretical prediction as the material 

approaches an incompressible system (ν=0.5). In that particular case the physical problem 

converges to the assumed boundary conditions of the analytical solution. It is interesting 

to observe that as the Poisson’s ratio moves into the negative regime (auxetic response) 

the normalized contact depth reduces, reaching a value of ℎ𝑐/ℎmax =0.57 for 𝜈 =-0.9. 

This response which cannot be captured analytically due to the ill-posed boundary 

condition can probably be attributed to the tendency of the material to ‘shrink’ (reduce its 

volume) under the high compressive stresses generated by the tip, with a subsequent 

reduction in the contact area. This reduction of contact depth, and subsequently contact 

area, is in part responsible for the increased hardness observed in the negative Poisson’s 

ratio regime. 

 

Figure 5-6: Normalized contact depth for various Poisson’s ratios. 
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The simulated 𝑃 − ℎ responses presented in Figure 5-2 can also be predicted by the 
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increases as the Poisson’s ratio decreases. This phenomenon has firstly been reported by 

Hay et al [44] in the positive Poisson’s ratio regime and has been attributed to the ill-

posed boundary conditions of the analytical problem formulation which results in a 

deformed material surface shape that penetrates into the indenter. In this section we 

compute the correction factor for the whole possible span of Poisson’s ratios and we also 

investigate the effect of friction and indenter angles. 

 

Figure 5-7: Analytical and computational force-depth (P-h) responses for materials with E=100 

GPa and v in the range of 0.5 to -1. 

It is interesting to note that the error observed in the load is constant throughout the depth 

of indentation suggesting that a multiplicative correction factor on Sneddon’s equation 

will resolve the observed discrepancy. From a materials perspective it appears that the 

correction factor is independent of the elastic modulus of the material. We have checked 
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the correction factor for three different elastic moduli, E=10 GPa, 100 GPa, 500 GPa, 

with nearly identical results. The most notable influence comes from the Poisson’s ratio 

of the material (Figure 5-8). As 𝜈 reduces the discrepancy between the numerical results 

and the analytical solution increases, with higher deviations observed in the negative 

Poisson’s ratio regime with values reaching up to 23% for the lowest possible 𝜈 that has 

been simulated in this study (𝜈 = −0.9). For positive 𝜈 the error is contained below 10% 

with the results between theory and simulations to converge when 𝜈 → 0.5 

(incompressible media). The numerical results of Hay et al [44] and Poon et al [53] and 

the analytical formulation proposed by Hay et al are also presented in Figure 5-8 and 

compare favorably with our simulations, with the observed deviations being within 1% 

and could be potentially attributed to numerical details between the different studies.  

 

Figure 5-8: Correction factor for various Poisson’s ratios. 
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mostly unaffected to the contact friction. A similar response is observed on the correction 
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Mossakovskii in 1954 (see references in [114]) who has later extended his solution to 

parabolic and spherical punches [115]. The geometry of cone, that pertains to our case, 

has been tackled by Spence [116]. More recently, building on the early mathematical 

developments of Mossakovksii, the results of adhesive (non-slip) indentation have been 

generalized to any probe that can be described by a monomial shape by Borodich and 

Keer, their results of which have been presented in a series of papers [17,114]. They 

concluded that the results on adhesive conical indentation on a semi-infinite half space 

are similar to the frictionless case but with a correction factor 𝛾𝑎𝑑 that is introduced in 

the relation between the contact stiffness and the elastic modulus of the material (Equation 

(2.28)): 

𝑆 =
𝑑𝑃

𝑑ℎ
= 𝛾𝑎𝑑

2𝐸

1 − 𝜈2

√𝐴𝑐

√𝜋
 

(5.6) 

where 𝛾𝑎𝑑 is the correction factor for the case of adhesive (no-slip) contact of a rigid 

probe [114]: 

𝛾𝑎𝑑 =
(1 − 𝜈) ln(3 − 4𝜈)

1 − 2𝜈
 (5.7) 

Equation (5.7), which is included in Figure 5-9 compares well with the simulated results 

suggesting that the actual deformed geometry is much closer to the assumed boundary 

condition of the analytical solution resulting in significantly reduced discrepancies 

compared to the frictionless case. 

In the case of spherical indentation the first studies of adhesive contact have been 

performed by Mossakovskii [115] and Spence [116]. Subsequentlty, a general result 

between adhesive contact of arbitrary curved axisymmetric convex indenters and elastic 

isotropic materials has been proposed by Borodich and Keer [114,117]: 

dℎ

d𝑃
=

1

2𝛾𝑎𝑑𝑎𝐸∗
 (5.8) 

where 𝛾𝑎𝑑 is the correction factor and for the case of no-slip contact for a rigid 

axisymmetric indenter results in Equation (5.7). 
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Figure 5-9: (a) P-h curves for three different coefficients of friction: 𝝁 = 0, 0.5, 1. Inset represents 

a magnified region on the highest load/depth area. (b) The dependency of the correction factor on 

the Poisson’s ratio is computed for three different coefficients of friction: 𝝁 = 0, 0.5, 1. Solid lines 

represent polynomial fits. 
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5.3.3 Effect of indenter angle 

Results on the correction factor for three different indenter geometries (θ=60°, 70.3°, 80°) 

are plotted in Figure 5-10(a). The results of Hay et al [44] for positive 𝜈 are also included 

for comparison. The data collected in this study is in excellent agreement with previously 

published results confirming the accuracy of the simulations. Furthermore, the data 

extends the correction factor into the negative regime in which the discrepancy becomes 

more severe. Overall, it appears that 𝛾 decreases with decreasing cone angle and/or 

increasing 𝜈. All of the geometries converge to the theoretical solution for 𝜈 = 0.5. The 

correction factor also vanishes as the cone angle approaches 90° consistent with the 

boundary condition of the analytical solution in which radial displacements are 

eliminated. The stress profiles for 𝜈 = −0.2 and three different indenter geometries are 

shown in Figure 5-10(b) to 11(d). Since the load scales with the area of contact, blunt 

indenters, in which the area˗to˗depth scaling relation is more rapid, tend to offer more 

resistance to penetration. This however is accompanied with a load˗spreading over a 

larger area and a subsequent smoothing/reduction of the stress distribution/intensity over 

the indenter-material contact region. 
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Figure 5-10: The dependency of the correction factor on the Poisson’s ratio is computed for three 

different cone half-apex angles: θ=60°, 70.3°, 80°. Solid lines represent polynomial fits. 

5.3.4 Polynomial Correction Functions 

The assumptions incorporated in the analytical solutions of a rigid axisymmetric probe 

being pushed against a semi-infinite linear elastic half-space become increasingly 

inaccurate for elastic indentations on auxetic materials (𝜈 < 0). The linear elastic solution 

for load (Equation (2.27)), contact stiffness (Equation (2.28)) and elastic hardness 

(Equation (2.31)) that form the basis for many experimental data analysis can be corrected 

to account for the effect of Poisson’s ratio, contact angle and contact friction. The 

polynomial correction functions 𝛾 = 𝑓(𝜈) calculated in this study and which can serve 

eliminate errors in experimental investigations are summarized in Table 5-1. 
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Table 5-1: Best fit polynomials for Poisson’s ratio dependency of the correction factor γ. 

Cone semi-apex angle, 𝜽 [⁰] Friction Coefficient, μ [-] Polynomial Fit 

70.3 0 γ=1.1070-0.1821ν-0.0306ν2; R2=0.9996 

70.3 0.5 γ=1.1231-0.2106ν-0.0406ν2; R2=0.9995 

70.3 1 γ=1.1240-0.2145ν-0.0369ν2; R2=0.9994 

80 0 γ=1.0629-0.0842ν-0.0357ν2; R2=0.9960 

60 0 γ=1.1633-0.3033ν-0.0396ν2; R2=0.9998 

5.4 Spherical Indentation Resistance 

The previous sections of this chapter dealt with conical indentation. The remaining part 

of this chapter will be devoted to spherical indentation on elastic auxetic materials. Hay 

and Wolff [52] suggested a correction factor 𝛾 for the case of spherical indentation based 

on analytical and numerical results. Later on, Collin et al. [118] based on experimental 

data suggested a method for determining contact radius changes during loading for 𝑎/𝑅 

< 0.25. In 2012, Collin [119] proposed a correction factor, based on numerical results for 

the estimation of contact radius during the unloading process. 

Due to the breakdown of self-similarity (see Chapter 2.3.1) the indentation response with 

spherical indenters is rather more complex. In fact, for spherical indentation a correction 

factor 𝛾 depends on Poisson’s ratio value and on the value of 𝑎/𝑅. It must be noted that 

during loading of a spherical indenter, it’s radius 𝑅 increases faster than the penetration 

depth ℎ. Dimensional analysis suggests that the loading portion of the curve will be a 

function of 𝑎/𝑅 in order to characterize constant imposed strain inside the material.  

𝑃

𝐸ℎ2
= 𝛱11 (

𝑎

𝑅
, 𝑣) (5.9) 

The load profile from Hertz’s analysis, Equation (2.12) yields [52]: 

𝑃 = 𝛾
4

3
𝐸∗√𝑅ℎ3/2 (5.10) 

𝛾 = 1 +
2

3𝜋
(
1 − 2𝑣

1 − 𝑣
)
𝑎

𝑅
 (5.11) 
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The accuracy of the above equation will be studied and evaluated for the indentation 

response of elastic auxetic materials. 

 

Figure 5-11: The zero effect of indenter size on correction factor. 

The restriction on the boundary conditions of the vertical displacements on analytical 

solution, which allows the line of contact to be moved radially inwards, to “permeate” the 

indenter, is illustrated in Figure 5-12. For the case where a linear elastic material having 

a Poisson’s ratio of 𝑣 = 0.5, numerical and analytical results are in excellent agreement, 

due that there is no influence of radial displacement (incompressibility). As the Poisson’s 

ratio decreases, the current limitation on the boundary conditions becomes significant and 

deviates from the real response of indented material. 
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Figure 5-12: Effect of radial displacements on analytical solution for various Poisson’s ratio 

values.  

Numerical load (𝑃) displacement (ℎ) curves for conventional and auxetic materials are 

plotted in Figure 5-13. As evident, the materials tend to increase their indentation 

resistance, as their Poisson’s ratio deviates from zero. The indentation resistance 

enhancement is more significant in the negative domain of Poisson’s ratios, where a 

maximum of 6-fold increase is obtained for 𝑣 = -0.9, which again underscores the unique 

mechanical behavior of auxetic materials. A similar response has been reported earlier 

for conical indenters and the origins of this enhancement has been traced to the shear 
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stiffening mechanism that takes place for low 𝑣 values and to the reduction of the contact 

area [120]. 

 

Figure 5-13: Computational force-depth (P-h) responses for materials with 𝑬=250 MPa and 𝒗 in 

the (a) positive (0 to 0.5) and (b) negative (-0.9 to 0) regime and for indenter’s radius 1000 μm. 
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Figure 5-14: Von-Mises stress-profiles for the various Poisson’s ratios (𝝂 = 0.5, 0.4, 0.2, 0, -0.2, 

-0.5, -0.7, -0.9). The elastic modulus of the material is kept constant at 𝑬=250 MPa. 

Figure 5-14 (a) shows the resulting von-Mises stresses that are generated within the 

material when the indenter is at maximum penetration depth, for the whole span of 

simulated Poisson’s ratio materials. The stress values support the observation of an 

increased indentation resistance as the Poisson’s ratio reduces. In addition, as the 

Poisson’s ratio moves into its negative regime, the stresses tend to extent to the upper 

surface of the material, which is linked to the need of auxetics to reduce their lateral 

dimension – shrinking behavior, when they are subject to axial compressive stresses, 

subsequently activating a larger volume of the material. Figure 5-14 (b) and (c) present 

the corresponding computational and analytical normal stresses, which are generated in 

𝜈 = 0 

𝜈 = −0.2 𝜈 = −0.5 𝜈 = −0.7 𝜈 = −0.9 

𝜈 = 0.2 𝜈 = 0.4 𝜈 = 0.5 

(a) 

(b) (c) 
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the indenter-material interface at maximum penetration depth. The computational results 

are in excellent agreement with the analytical solution suggesting that Equation (2.5) can 

be used with high accuracy in estimating the contact pressure distribution for the whole 

thermodynamically possible Poisson’s ratio range. 

As expected, any reduction of the contact area mirrors on the contact depth between the 

indenter and material, as shown in Figure 5-15(a), where the extracted deformation 

profiles of the above simulations at maximum indentation depth are plotted. It is evident 

that as the Poisson’s ratio reduces the deviation from the analytical solution increases. 

Figure 5-15(b) quantifies this area reduction in terms of the effect of indentation strain on 

the ratio ℎ𝑐/ℎ𝑚𝑎𝑥, for all Poisson’s ratio values tested herein. The analytical solution, 

Equation (2.16), suggests that ℎ𝑐/ℎ𝑚𝑎𝑥 is constant and equals to 0.5. Nevertheless, this 

value is only verified for 𝑣 = 0.5 and decreases as the Poisson’s ratio reduces. The effect 

of large indentation strains coupled with the effect of shear stiffening at low 𝑣, 

“magnifies” the deviation from theoretical solution up to 20% for 𝑎/𝑅=0.55 and 𝑣=-0.9.  

 

Figure 5-15: (a) Surface profiles at maximum depth of penetration and (B) normalized contact 

depth for various Poisson’s ratios. 

The combined actions of shear stiffening, contact area reduction and large indentation 

strains can be better demonstrated on the elastic hardness of auxetic materials. In 

nanoindentation technique, hardness is related with the mean pressure beneath the full 

load of indenter when it encounters the material: 
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𝛨 =
𝑃𝑚𝑎𝑥

𝐴𝑐
 (5.12) 

In general, 𝐻 describes the resistance to the indenter generated by the indented material 

and Equation (5.12) outlines that hardness is not exactly a pure property of a material, but 

a combined quantity of various mechanical properties (Equation (5.10)) and of 

geometrical properties, where the indenter’s geometry plays a dominant role 

(subsequently 𝐴𝑐). If we substitute Equation (5.10) into Equation (5.12) results in: 

𝛨 =
𝑃𝑚𝑎𝑥

1/3

𝜋
[
3

4
(
1 − 𝑣2

𝐸
)𝑅]

−2/3

 
(5.13) 

Therefore, for constant indentation conditions; 𝛦, 𝑅, 𝑃𝑚𝑎𝑥 or ℎ𝑚𝑎𝑥, hardness is 

proportional to 𝑣 in the form:  

𝛨 ∝ (1 − 𝑣2)−2/3 (5.14) 

The evolution of Equation (5.14) is illustrated in Figure 5-16, where normalized hardness 

at 𝑣 = 0 is plotted for the investigated span of Poisson’s ratio (-0.9 < 𝑣 < 0.5). Hardness 

reaches a 3-fold enhancement at 𝑣 = -0.9 and in general tends to increase as 𝑣 moves into 

its negative regime. At this point, it must be noted that Equation (5.14) excludes any effect 

of the imposed indentation strain during the loading step of the indenter. Yoffe [121] 

showed that Hertz’s Equation (5.10) is accurate for 𝑎/𝑅 < 0.1 and starts to deviates as 

𝑎/𝑅 → 0.2 and for 𝑣 ≤ 0.3. The numerical results of this study concern indentation strains 

in the order of ~0.15 < 𝑎/𝑅 < 0.55. Numerical data and theory exhibit similar evolution 

of their hardness which corresponds to the shear stiffening mechanism that governs in 

lower Poisson’s ratio values. In addition, for constant Poisson’s ratio values the numerical 

data show a discrepancy between different 𝑎/𝑅 values, reaching a maximum discrepancy 

of 23% for 𝑣 = -0.9, where this phenomenon can be attributed to the increase of the 

imposed indentation strain inside the material. Furthermore, experimental results of 

Alderson et al. [95] which were performed with a spherical indenter are illustrated in 

Figure 5-16 and are in good agreement with our numerical curve of 𝑎/𝑅 = 0.55. 
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Figure 5-16: Normalized hardness at 𝒗 = 0, for the whole span of Poisson’s ratio. 

5.5 Correction factor for the Analytical Solution 

The analytical solution of Hertz, Equation (2.12), has been evaluated on the numerical 

𝑃 − ℎ responses illustrated in Figure 5-17. Computational and analytical results are in 

excellent agreement when 𝑣 = 0.5, incompressible material, where there is no any 

influence of radial displacement. As the Poisson’s ratio reduces, the curves start to 

deviate, reaching an error of 36% for the lowest 𝑣 of this study, which is related with the 

ill-posed boundary conditions of analytical solution.  

0

1

2

3

4

5

6

7

8

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5

N
o
rm

a
liz

e
d
 H

a
rd

n
e
s
s
, 

H
/H

v
=

0
[-

]

Poisson's Ratio, v [-]

a/R = 0.14

a/R = 0.22

a/R = 0.3

a/R = 0.41

a/R = 0.55

Experiments

Theory



90 

 

 

Figure 5-17: Evolution of numerical 𝑷 − 𝒉 responses in contrast with Hertz equation. 

In spherical indentation, the error between analytical and numerical curve is not constant 

through the loading profile, as in the case of conical indentation. The computed values of 

𝛾 indicate the coexistence of two independent parameters; Poisson’s ratio and indentation 

strain (𝑎/𝑅). Figure 5-18 presents the computational correction factor of the current study 

with regards to the analytical expression of Equation (5.10). The two-data compare 

favorably with errors less than 6%. Moreover, it can be observed that while the Poisson’s 
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ratio decreases, the computational results increase more rapidly their slope, with respect 

to the analytical curves, which relates to the shear stiffening response of auxetic materials. 

 

Figure 5-18: Correction factor 𝜸 for various Poisson’s ratio as evolution of scaling factor 𝒂/𝑹. 

5.6 Effect of Friction 

Conditions of fully adhesive contact between spherical indenter and auxetic materials 

have also been simulated (𝜇 = 1) in our study. The presence of friction shifts the 𝑃 − ℎ 

curve response of an auxetic material (𝐸 = 250 MPa, 𝑣 = -0.5) compared to frictionless 

contact, upwards to a maximum of 5.7%. This small increase is arising from a further 
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reduction of the contact area and from the increase of von-Mises stresses during the 

indentation, as observed in Figure 5-19. 

Equation (5.8) is analogous to the Hertz-type contact, 𝜇 = 0 (Equation (2.33)), and differs 

by a factor that depends entirely on Poisson’s ratio. A no-slip contact means that there are 

no radial displacements during the loading, as analytical theory predicts, and analytical-

numerical results starts to converge on a single curve for the case of conical indenters 

[122]. Although, in spherical indentation, the imposed indentation strain has been 

excluded from the analysis, therefore Equation (2.33) hold true only for low indentation 

strains, 𝑎/𝑅 < 0.1.  

 

Figure 5-19: (a) 𝑷 − 𝒉 curve for two different coefficients of friction: 𝝁 = 0, 1, with input 

parameters: 𝑬 = 250 𝐌𝐏𝐚, 𝒗 = -0.5 and 𝑹 = 10 𝛍𝐦, (b) surface profiles at maximum depth of 

penetration depth for frictionless and adhesive simulations and (c) corresponding von-Mises 

stresses. 
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Figure 5-20: Correction factor 𝜸 of adhesive indentation for various Poisson’s ratio as evolution 

of scaling factor 𝒂/𝑹. 

Comparable results have been extracted on the response of correction factor for adhesive 

contact, where an increase of 2-6% is observed, in comparison to frictionless contact. 

However, Figure 5-20 illustrates that friction is more significant for low 𝑎/𝑅 ratio and as 

𝑎/𝑅 increases any friction effects start to become negligible, due to large strains that are 

generated throughout the indenter’s penetration. 
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5.7 Concluding Remarks 

Enhanced indentation resistance offered by auxetic systems can be traced to (a) the shear 

stiffening response which leads to increased required load for penetration and (b) the 

reduced area of contact that leads to higher stresses beneath the indenter tip. A literature 

search on available experimental indentation data on auxetic materials revealed a limited 

number of publications on the subject, all of which have used cylindrical or spherical 

indenters to probe the material. Strictly speaking, hardness is not a material property but 

rather a snapshot of material properties; it therefore depends on many factors among them 

the geometry of the tip. One should, therefore, not expect that the hardness of the material 

obtained with a spherical tip would correspond to the hardness of the material obtained 

with a conical tip. Nevertheless, theoretical solutions for both geometries exist that 

provide estimates of the amplification of elastic hardness as a function of the Poisson’s 

ratio: 
𝐻

𝐻𝜈=0
= (1 − 𝜈2)−1 for cones and 

𝐻

𝐻𝜈=0
= (1 − 𝜈2)−2/3 for spheres.  

 

Figure 5-21: Theoretical, numerical and experimental results of normalized hardness for various 

Poisson’s ratio materials. 

The theoretical discrepancy between the hardness amplifications obtained by the two 

geometries is expected to increase as 𝜈 moves away from 𝜈 = 0: for positive -0.5<

𝜈 <0.5 the maximum error is contained within ± 9% (due to symmetry), for 𝜈 = -0.6 it 

grows to 14% and for 𝜈 =-0.8 to 30%. Given the relatively small discrepancies 

(maximum of 14%) predicted within -0.6< 𝜈 <0.5 we decided to present the 
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experimental data from spherical indentation and contrast them to the numerical results 

computed in this study, having in mind in parallel the limitations presented above. 

Alderson et al [95] performed spherical indentation data on auxetic polyethylene. The 

auxetic materials consisted of microporous ultra-high molecular weight polyethylene 

(UHMWPE) that have been fabricated through a three-stage thermal route [95]. Materials 

with Poisson’s ratios down to -0.8 have been synthesized and tested under spherical (5mm 

diameter ball) indentation. Results with axial loads of 25, 50, 100 and 200 N have been 

presented. It was reported that high values of axial loads led to non-linear phenomena 

caused by large strains, plasticity and anisotropy. We here include the data collected with 

25 N axial load which ensures the elastic response of the system. Experimental data, 

theoretical predictions and numerical simulations are plotted in Figure 5-21. It is 

interesting to note that the experimental data shows a hardness enhancement higher than 

the theoretical predictions of both conical and spherical indentation approaching the 

numerically simulated response. While this observation is encouraging regarding the 

validity of our results, additional experiments are required in order to confirm this scaling 

relation.  

5.8 Chapter Summary 

The linear elastic analytical solution of an axisymmetric probe indenting a semi-infinite 

half-space forms the backbone of most indentation data analysis protocols. It has been 

noted in the literature that the theoretical solution relies on a boundary condition that is 

ill-posed which leads to discrepancies from the actual response that depends, among other 

parameters, on the Poisson’s ratio of the indented material. While correction factors have 

been proposed, prior studies have concentrated on the positive Poisson’s ratio regime and 

have neglected an exciting and developing class of materials: the auxetic systems. The 

finite element method is used to simulate the conical and spherical indentation response 

of elastic materials with Poisson’s ratios covering the whole thermodynamically possible 

range, -1 ≤ 𝜈 ≤ 0.5. Consistent with theoretical predictions, the indentation resistance and 

hardness of auxetic materials is enhanced compared to their non-auxetic counterparts. 

The stress profiles and contact details are systematically analyzed and the increase in 

resistance is traced to the shear stiffening and the reduction of contact area compared to 

conventional materials. Furthermore, it is shown that the analytical linear elastic solution 
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falls short in accurately describing the indentation response, especially for negative 

Poisson’s ratio materials. In contrast to the theoretical prediction, the contact area reduces 

as the Poisson’s ratio increases resulting in increased required force to penetrate the 

material and an enhanced pressure distribution beneath the indenter. The analytical 

solution is corrected for the whole 𝜈 range and best fit polynomials are proposed for ease-

of-use (conical indentation). The effects of contact-friction, indenter cone-angle and 

plasticity are also studied and quantified. 

In the specific case of spherical indentation, the imposed indentation strain 𝑎/𝑅 

dominates the response of auxetic materials and yields to enhanced indentation resistance, 

in contrast to the response of conventional materials. Spherical indentation experiments 

depend entirely on the size of 𝑎/𝑅, regardless of sphere’s size or maximum penetration 

depth. In addition, for adhesive indentation contact, material’s response remains mostly 

unaffected (up to 6%). Finally, the boundary conditions that used to derive the elastic 

characteristics of indentation contact, proved to be inaccurate, and therefore, for the 

precise analysis of indentation experiments on auxetic materials, ones have to apply 

corrections on Hertz’s equation. 
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Chapter 6 

 

6 Effect of Plasticity on Conical and 

Spherical Indentation 

In Chapter 5 we focused on the elastic numerical indentation resistance of auxetic 

materials. We showed that elastic auxetic materials undergo shear stiffening mechanisms, 

especially for 𝑣 < -0.5. Also, during an indentation test, auxetics are being densified due 

to the generated compressive stresses which result to a contact area reduction. The 

combination of these two mechanisms, leads to an indentation enhancement by a factor 

of 1-6, which depend on indenter geometry and 𝑣. It is unclear however whether these 

benefits are retained when the material behaves elastoplastically. In this Chapter, the 

conical and spherical indentation response of elastic-perfectly plastic materials (of the 

von-Mises type) is computationally investigated. The effect of plastic work, contact 

friction and indenter shape on the overall response is quantified. 

6.1 Finite Element Model 

Two-dimensional axisymmetric finite element simulations are performed to investigate 

the elastic-plastic indentation response of cones and spheres on materials with various 𝑣 

and 𝐸/𝑌 ratios, with emphasis being placed on auxeticity. Details of the model are given 
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in Chapter 5.2. The indenter is modeled as a rigid cone with half-apex angle of 𝜃 = 60°, 

70.3°, 80° and as a rigid sphere with radius of 250 μm. 

It has been noted in the literature [95,113] from experimental results, that plasticity may 

influence the indentation resistance of auxetic materials and that hardness enhancement 

may become less significant but the mechanism and extent have not been investigated in 

detail. We here quantify the effect of plasticity through elasto-plastic finite element 

simulations. With reference to Figure 5-1 we have performed elastic-plastic simulations 

using both conical and spherical probes. Plasticity was modeled using the von Mises 

criterion, here expressed with respect to principal stresses: 

𝜎𝑦 = √
1

2
[(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2] 

(6.1) 

Numerical details of the simulated materials are presented in Table 6-1. Dimensional 

analysis of an axisymmetric indenter with an elastic – perfectly plastic solid, requires in 

addition to the elastic case the consideration of the 𝐸/𝑌 ratio which corresponds to an 

“elasticity/plasticity index”. Dimensional analysis of von-Mises material suggests that the 

loading curves under conical and spherical indenter are correspondingly functions of: 

𝛲 = 𝛦ℎ2 ∏(
𝐸

𝑌
, 𝑣, 𝜃) (6.2) 

𝛲 = 𝛦ℎ2 ∏ (
𝐸

𝑌
,
𝑎

𝑅
, 𝑣)

𝑠𝑝ℎ𝑒𝑟𝑒
 (6.3) 
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Table 6-1: Material properties used for the numerical simulations of conical and spherical 

(𝑅 = 250 μm) indentation. 

𝜃 [⁰] 𝐸/𝑌 [-] 𝐸 [GPa] 𝑣 [-] 𝑌 [GPa] ℎ𝑚𝑎𝑥 [μm] 𝜇 [-] 

70.3, 60, 80 0.25 100 0 400 0.5 0, 1 

70.3, 60, 80 0.25 100 -0.2 400 0.5 0, 1 

70.3, 60, 80 0.25 100 -0.5 400 0.5 0, 1 

70.3, 60, 80 0.25 100 -0.7 400 0.5 0, 1 

70.3, 60, 80 0.25 100 -0.9 400 0.5 0, 1 

70.3, 60, 80 2.5 100 0 40 0.5 0, 1 

70.3, 60, 80 2.5 100 -0.2 40 0.5 0, 1 

70.3, 60, 80 2.5 100 -0.5 40 0.5 0, 1 

70.3, 60, 80 2.5 100 -0.7 40 0.5 0, 1 

70.3, 60, 80 2.5 100 -0.9 40 0.5 0, 1 

70.3, 60, 80 25 100 0 4 0.5 0, 1 

70.3, 60, 80 25 100 -0.2 4 0.5 0, 1 

70.3, 60, 80 25 100 -0.5 4 0.5 0, 1 

70.3, 60, 80 25 100 -0.7 4 0.5 0, 1 

70.3, 60, 80 25 100 -0.9 4 0.5 0, 1 

70.3, 60, 80 250 100 0 0.4 0.5 0, 1 

70.3, 60, 80 250 100 -0.2 0.4 0.5 0, 1 

70.3, 60, 80 250 100 -0.5 0.4 0.5 0, 1 

70.3, 60, 80 250 100 -0.7 0.4 0.5 0, 1 

70.3, 60, 80 250 100 -0.9 0.4 0.5 0, 1 

 

6.2 Load – Displacement Curves of von-Mises Auxetic Materials 

Figure 6-1 shows the evolution of numerical 𝑃 − ℎ responses for a 70.3˚ conical indenter 

(Berkovich equivalent) and for materials with various 𝑣, 𝐸/𝑌 ratios. For 𝐸/𝑌 = 0.25 (see 

Figure 6-1 (a)), it is observed that the indentation resistance increases significantly as the 

Poisson’s ratio decreases (𝑣 →-1) which is consistent with elastic results presented in 

Chapter 5 [122]. This mechanism is manifested in an increased contact stresses, hence 

material with 𝑣 = -0.9 is demonstrating a significant resistance to penetration. As a result, 
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the stresses beneath the probe exceed its yield point value, which leads to an elastoplastic 

response, in contrast with materials where 𝑣 > -0.9, exhibiting fully elastic responses. 

Figure 6-1 (b) presents numerical results of 𝐸/𝑌 = 2.5, where the presence of elastoplastic 

zone is more pronounced in contrast with 𝐸/𝑌 = 0.25. A similar response with respect to 

an increased indentation resistance is illustrated but not as enhanced as before. In fact, ss 

the 𝐸/𝑌 ratio increases, numerical materials exhibit elastic-plastic behavior (Figure 6-1 

(b) and (c)) where for 𝐸/𝑌 = 25, the plastic region seems to dominate the responses. The 

shear stiffening mechanism begins to weaken, since the increase of indentation resistance 

as the 𝑣 decreases is almost unaffected in contrast with 𝐸/𝑌 = 0.25, 2.5. For 𝐸/𝑌 = 250 

all responses are characterized by fully plastic zones with minor differences in the 

indentation responses, among materials with different Poisson’s ratios. In addition, the 

magnitude of indentation resistance decreases as 𝑣 increases which leads to an inverse 

response Therefore, it seems that the shear stiffening mechanism is highly depended on 

the elastoplastic response of auxetic materials. To further quantify this observation the 

effect of plasticity is quantified in the following analysis. 
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Figure 6-1: Resulting load-displacement curves obtained by elasto-plastic FE simulations with 

70.3 cone indenter: (a) 𝑬/𝒀=0.25, (b) 𝑬/𝒀=2.5, (c) 𝑬/𝒀=25, (d) 𝑬/𝒀=250. 

Figure 6-2 illustrates the evolution of plasticity index 𝑊𝑝/𝑊𝑡 with 𝑣. Materials of 𝐸/𝑌 = 

0.25 primarily show an elastic response, except for the case of 𝑣 = -0.9 where the material 

undergoes minor elastoplasticity. Thereafter, as 𝐸/𝑌 increases, the extend of the plastic 

zone inside the contact area increases significantly. Furthermore, for a fully plastic solid 

𝐸/𝑌 = 250, the relation of plasticity index for -0.9 ≤ 𝑣 ≤ 0 reaches a plateau, suggesting 

that irrespective of ν the material response is primarily plastic. 
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Figure 6-2: Plasticity index for various Poisson’s ratio materials, under conical 70.3˚ indentation. 

The findings of plasticity index can be evaluated in Figure 6-3, which captures the von-

Mises stress (distortion energy) and equivalent plastic strain profiles for various 𝑣 and 

𝐸/𝑌 solids at maximum indentation depth. For the case of 𝐸/𝑌 = 2.5 the generated plastic 

strains grow under the indenter tip and progress through the whole area of contact as 𝑣 

decreases. The size of von-Mises stresses increase in magnitude and demonstrate profiles 

that tend to push the tip back when the Poisson’s ratio approaches its lowest possible 

value, 𝑣 → -1. These two observations support the shear stiffening mechanism and the 

tendency of an auxetic solid to densify which leads to a decrease of the contact area [122]. 

For the case of 𝐸/𝑌 = 25 (see Figure 6-3 (b)) the plastic zone domain covers the whole 

surface of contact. The von-Mises stress profiles tend to spread in a larger area, 

eliminating the shear stiffening mechanism. For solids with 𝐸/𝑌 = 250 the plastic strains 

cover (and extend beyond) the whole contact zone which support the results of numerical 

𝑃 − ℎ responses (Figure 6-1). Profiles of von-Mises stresses diverge from previous ones, 

which enhance the observation that the shear stiffening mechanism weakens with the 

existence of plastic deformation inside auxetic indented materials. 
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Figure 6-3: Evolution of resulting von-Mises stresses and equivalent plastic strains at maximum 

penetration depth of solids with (a) 𝑬/𝒀 = 2.5, (b) 𝑬/𝒀 = 25 and (c) 𝑬/𝒀 = 250. 

6.3 Effect of Indenter’s shape 

Normalized numerical 𝑃 − ℎ curves for four different indenter geometries (cones with 𝜃 

= 60˚, 70.3 ˚, 80˚ and sphere with 𝑅 = 250 μm) on solids with 𝐸/𝑌 = 2.5 and 𝑣 = -0.7 are 

presented in Figure 6-4 (a). The data shown suggest that for spherical indentation the solid 

response is primarily elastic while for conical indentation the response is elastoplastic, 

with the degree of plasticity to increase as the cone angle decreases. This transition is 

quantified through the plasticity index which is presented in Figure 6-4 (b); it is evident 

that large plastic strains are attributed to low 𝑣 and low 𝜃 values. 
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Figure 6-4: (a) Effect of indenter’s shape on normalized 𝑷 − 𝒉 curves for materials with constant 

𝑬/𝒀=2.5 and 𝒗=-0.7, (b) resulting indentation work. 

Similar responses are obtained for the cases of 𝐸/𝑌 = 25 and 250 which are summarized 

in Figure 6-5. Analogously for all 𝐸/𝑌, the plasticity index deviates similarly with 𝑣 but 

the extend of deviation is much more pronounced for low 𝐸/𝑌 ratios. Therefore, the shear 

stiffening mechanism is eliminated as plasticity kicks-in and dominates the contact 

response. 

 

Figure 6-5: Plasticity index over Poisson’s ratio of solids with (a) 𝑬/𝒀=25 and (b) 𝑬/𝒀=250. 
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Many authors tried to relate energy-based parameters to the hardness of materials [123–

125]. Cheng and Cheng based on a scaling approach proposed a relationship between the 

ratio of elastic work to total work and the ratio of hardness to elastic modulus [56]. Jha et 

al., used the finite element method to relate the energy constants with indenter’s geometry 

and indentation response of materials [126]. Lawn and Howes [127] correlated the elastic 

recoveries of several ceramic material as a function of indentation based energies as: 

𝑊𝑝

𝑊𝑡
= 1 −

[
 
 
 
 1 − 3 (

ℎ𝑝

ℎ𝑚𝑎𝑥
)
2

+ 2(
ℎ𝑝

ℎ𝑚𝑎𝑥
)
3

1 − (
ℎ𝑝

ℎ𝑚𝑎𝑥
)
2

]
 
 
 
 

 

(6.4) 

Results on the plasticity index for three different indenter geometries (𝜃 = 60°, 70.3°, 80°) 

are presented in Figure 6-6. The equation of Lawn and Howes (Equation (6.4)) is also 

included for comparison. The data collected in this study is in excellent agreement with 

the analytical equation confirming the accuracy of the simulations and the universality of 

the relationship of the plasticity index with ℎ𝑓/ℎ𝑚𝑎𝑥 which appears to be independent of 

indenter angle and mechanical properties [62]. 

 

Figure 6-6: Plasticity index as function of 𝒉𝒇/𝒉𝒎𝒂𝒙. 
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6.4 Adhesive Elastoplastic Contact 

The contact friction between indenters (both cones and sphere) and indented auxetic 

materials has been simulated at two different friction coefficient values: 𝜇 = 0, 1. Figure 

6-7 suggests that the plasticity index response remains mostly unaffected to the contact 

friction. The presence of friction shifts the curves lightly upwards with the maximum 

observed deviation being on the order of 8% for a solid with 𝐸/𝑌 = 2.5, 𝑣 = -0.5 under 

conical indentation (𝜃 = 60), in plasticity index values (0.35) which it can be considered 

satisfactory. 

 

Figure 6-7: Effect of frictionless and adhesive contact for solids of various 𝒗 and (a) 𝑬/𝒀=2.5 

and (b) 𝑬/𝒀=25. 
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6.5 Indentation Hardness of von-Mises Auxetic Materials 

 

Figure 6-8: Normalized indentation hardness evolution as function of 𝒗, for (a) sphere, (b) 80 

cone, (c) 70.3 cone and (d) 60 cone indentation test. 

Indentation resistance is related with the indentation hardness of materials. In Chapter 5, 

we have presented the enhancement in indentation hardness responses for elastic auxetic 

materials which led to amplification factors of 5.5 to 7. As shown in Figure 6-8, hardness 

enhancement is directly dependent to Poisson’s ratio value and indenter’s shape. For 

spherical indentation (constant indentation strain: 𝑎/𝑅 = 0.14), the hardness value 

increases by a factor of 5.5, while for conical indentation (𝜃 = 60) hardness reaches a 12-
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fold increase for 𝑣 = -0.9 materials, as compared to the equivalent 𝑣 = 0 material. On the 

other hand, for the case of elastoplastic auxetic materials, it is obvious that any existence 

of plastic deformation starts to weaken this advanced characteristics and for high 

plasticity indices values, materials even begin to soften. Hence, any enhancement on 

hardness, depends entirely on ensuring the elastic response of the auxetic 

material/structure. The detrimental effects of plasticity on this particular property of 

auxetic materials are also apparent in the case of spherical indentation, suggesting that 

the effect is independent of probe geometrical characteristics. 

Figure 6-9 shows contour plots of the plastic strains resulting in conical indentation for 

three materials with different 𝐸/𝑌-ratio. One can observe that as the 𝐸/𝑌-ratio increases, 

plastic strains inside the material increase too and extend parallel to the probe surface 

subsequently leading to pile-up phenomena, which is another evidence of high percentage 

of plasticity within the material. 

 

Figure 6-9: Plastic strains-profiles for various 𝑬/𝒀 ratios (4, 40, 400). The Poisson’s ratio of the 

material is kept constant at 𝒗 = 0. 

6.6 Chapter Summary 

The effect of elastoplasticity on the indentation response of auxetic systems has been 

investigated and quantified. The indentation hardness enhancements reported in Chapter 

5 for elastic auxetic materials are suppressed as plasticity of the indented material 

initiates. As the E/Y ratio increases the material tends to behave more plastically, the 

extend of plastic deformations become more pronounced and the indentation hardness 

enhancements are suppressed. An energy approach has been implemented in order to 

capture the ratio of plasticity index based on various Poisson’s ratios, indenter geometries 

and adhesive/frictionless conditions. It is shown that as the material goes into full 

plasticity the auxetic material can even demonstrate a softening response, regardless of 
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the Poisson’s ratio value. The dominant factor in the whole response appears to be the 

percentage of plastic work. Therefore, for applications where the mechanical auxetic 

materials are used as protective systems from indentation penetrations one needs to ensure 

that the material behaves primarily elastic in order to harness its full potential. This can 

be achieved in several ways, one of which is sandwiching the auxetic structure between 

two additional protective layers, as the panel geometry simulated in Chapter 4. 
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Chapter 7 

 

7 Critical Review on Coating Systems 

Over the past years, technological and industrial advances have led to the creation of more 

sophisticated synthesis techniques among them technologies for controlled and 

reproducible thin film deposition. Owning to their geometrical characteristics, in which 

the thickness of the film is usually much smaller than the other planar dimensions, thin 

film properties often differ when compared with their bulk counterparts; the investigation 

of their mechanical properties, therefore, becomes imperative. Thin films, nowadays, find 

applications in various sectors, ranging from magnetic information storage systems to 

coatings on biomedical implants [128,129]. With the rapid growth of thin film 

technology, a pressing need was created for quantitatively probing their mechanical 

properties. The study of the mechanical properties of thin films is of utmost importance, 

as possible underestimation of the mechanics, could lead to premature failures with all 

subsequent consequences. Nanoindentation is the most widely used method to determine 

the mechanical properties of materials at the submicron regimes. Recent advances allow 

load and deformation monitoring with nanoscale accuracy and precision. Using advanced 

models, the experimental data can be analyzed and converted to mechanical metrics like 

hardness, elastic modulus, creep modulus, energy dissipation and more [3,17,21,130]. 

The evaluation of the mechanical properties of coatings, however, is challenging owing 

to the complex interactions that take place between the film, substrate and their interface. 
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This chapter is devoted to the critical evaluation of the most prominent models for 

investigating the elastic modulus of thin films that could be found in the literature. After a 

screening of the existing literature models, the ones that are based on solid theory and 

reasoning are tested under variable conditions such as the mismatch ratio of the elastic moduli 

of the film to substrate (soft films on hard substrates and hard films on soft substrates), the 

film thickness, and the Poisson’s ratio of the film and substrate. 

7.1 Response of Coated Systems 

Coating systems can be divided in four main categories: soft films on hard substrates (i.e. 

biomedical and electrical applications), hard on soft (protective and tribological 

applications), soft on soft (polymer coatings) and hard on hard (optical anti-reflection 

coatings). The proper characterization of these complex systems requires a thorough 

understanding of the corresponding properties of the coating-substrate, and the details of 

their interface. 

Trends of experimental 𝑃 − ℎ curves on coated systems reflect the cumulative 

mechanical response of the coating and the substrate. This relation varies and is also 

dependent on the interface between the two materials. Particularly in the case of hard 

coatings on soft substrates, there is a possibility that the substrate deforms plastically 

before the coating does. In such a scenario, the thin film will bent downwards due to the 

plastic deformation of the substrate, which will eventually result into compressive stresses 

in the film, potentially causing vertical cracks in the film. Also, if the substrate is 

characterized by a great level of work hardening, then the formation of the cracks will be 

stronger due to the interaction of two hard materials (Figure 7-1 (a)). 

Turning to the case of soft coatings on hard substrates, there is a probability that the 

coating will deform plastically. Being “locked” between a very hard indenter and a hard 

substrate, it will tend to extrude from the edge, leading to pile-up phenomena and 

potentially to the delamination of the coating from the substrate (Figure 7-1 (b)). 
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Figure 7-1: Physical mechanicsms in nanoindentation technique, corresponding on (a) hard on 

soft systems, and (b) soft on hard system [131]. 

We recall that the most widely used model for the evaluation of indentation data is the 

Oliver and Pharr approach [2]. A basic requirement in applying this method is that the 

sample is homogeneous and semi-infinite, meaning that the sample dimensions are much 

larger than the indentation depth. In the case of thin films the indentation depths could be 

comparable to the film thickness and subsequently there could be strong interactions at 

the interface between the coating and the substrate; thus the previous assumption of 

homogeneity is no longer valid. 

To remedy this problem and measure “film-only” properties, Buckle [132] has 

empirically suggested restricting the depth of indentation to a small percentage of film’s 

thickness such as to avoid any substrate interaction. In fact, it has been experimentally 

shown that for very low indentations, compared with the thickness of the film – less than 

10%, the indenter doesn’t ‘feel’ the substrate, thus accessing film-only properties. It was 

soon understood that this “rule of thumb” has no physical basis, especially for materials 

with high elastic modulus mismatch ratio; it was further appreciated that this model could 

potentially lead to erroneous results. Furthermore, there are cases where the deposited 

film is very thin, and therefore challenging for current experimental resolutions to achieve 

depths of penetration less than 10% of the film’s thickness. 

When the indenter penetrates into the coating’s surface, the elastic regime extends into 

the substrate, especially if the coating is very thin. In the case of hard coatings on soft 

substrates, since substrate can yield in penetration depths, smaller than coating’s 
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thickness, it is obvious that using the 10% rule can result in significant errors. An 

indentation example is shown in Figure 7-2, where the indenter penetrates a hard and stiff 

coating (𝐻 = 25 GPa, 𝐸 = 500 GPa, 𝑣 = 0.35) that covers a softer substrate (𝐻 = 5 GPa, 

𝐸 = 100 GPa, 𝑣 = 0.25). It is observed that the plastic strains are extended in the substrate 

even when the indentation depth is only a limited fraction of the film thickness and 

plasticity within the film is contained and has not traversed the whole of the film. A 

similar behavior is obtained even when the elastic modulus mismatch ratio is very small 

(𝐸𝑓/𝐸𝑠 > 0.3). 

 

Figure 7-2: Finite element simulation of a hard coating on softer substrate. At penetration depth 

which corresponds on the 15% coating’s thickness, we take significant errors in the measurement 

of coating’s properties. 

In order to model the substrate effect, Saha and Nix [133] based on Joslin’s and Oliver’s 

analysis [134] suggested some characteristics that are experimentally accessible. 

According to Equation (2.33) the experimental contact stiffness (𝑆) can be related to 

contact area (𝐴𝑐) and indentation modulus (𝐸𝑟) as: 

𝑆 = 𝛽
2

√𝜋
𝐸𝑟√𝐴𝑐 (7.1) 

where 𝛽 is the correction factor based on indenter’s geometry. The combination of 

Equation (2.30) and Equation (7.1) yields: 

𝑃

𝑆2
=

1

𝛽2

𝜋

4

𝐻

𝐸𝑟
2 (7.2) 

coating 
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It becomes apparent that 𝑃/𝑆2 should be constant for a homogeneous material (Figure 

7-3) since 𝐻, 𝐸𝑟 and 𝛽 are constants. 

 

Figure 7-3: Plot of 𝑷/𝑺𝟐 of fused silica as a function of indentation depth, which is constant in 

all the range [135]. 

In contrast, in coating–substrate systems, the response of 𝑃/𝑆2 is different, due to the 

substrate’s influence. From 𝑃/𝑆2 vs. indentation depth curves one can examine which 

property (𝐻 or 𝐸𝑟) is more affected by the substrate. Since 𝑃/𝑆2 is proportional to 

hardness 𝐻 and inversely proportional to 𝐸𝑟
2, Saha and Nix [135] studied the response of 

Al coatings on four different substrates (aluminium, glass, sapphire, silicon) as shown in 

Figure 7-4. Studying each case separately, Al-Al has the same response as quartz (Figure 

7-3) since is a homogeneous material. Now, regarding their moduli of elasticity, inasmuch 

𝑃/𝑆2 is inversely proportional to 𝐸𝑟
2, the response of the systems in ascending scale is: 

Al-Sapphire, Al-Silicon, Al-Aluminium and Al-Glass. Nanoindentation depths up to 500 

nm (coating thicknesses) seem to have a turning point, except for the system Al-

Aluminium, due to the influence of substrate’s hardness. This can be understood if we 

compare Al-Aluminium with Al-Glass. Although they demonstrate the same values up 

until 500 nm, then because glass is harder than aluminium, it has an ascending trend. As 

a result, in the case of soft on hard, substrate’s hardness influences the measurements on 

indentation test, only when the penetration depths are in the order of film’s thickness. In 

the case of Al-Sapphire and Al-Silicon the trend of the curves is continuously ascending 

due to the fact of the stiffer substrate. 
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In summary, the influence of substrate must be considered. It has been shown that the 

substrate’s elastic modulus influences the experimental measurements even at small 

penetration depths (compared to film thickness), in contrast to substrate’s hardness which 

in the case of soft on hard has a negligible influence on the global response, unless the 

penetration depth is on the order of coating thickness. 

 

Figure 7-4: 𝑷/𝑺𝟐 of Al films as a function of indentation depth for four different substrate 

materials [135]. 

7.2 Models for the Evaluation of Elastic Modulus on Coatings 

An important parameter on the indentation of thin films is the radius of contact 𝑎. Conical 

and pyramidal indenters are characterized be self-similarity, which means that the ratio 

between the circle of contact and depth of penetration 𝑎/ℎ remains constant, irrespective 

of the he applied load increases. Because of that, in the case of thin films, the variable 

that has the significant control of indentation responses, is either 𝑎/𝑡 or ℎ/𝑡. For this 

reason, there was a need to accurately model the indentation on a coated substrate such 

as to provide the ability to analyze in a quantitative manner all the parameters affecting 

the response. The most prominent parameters that need to be included are the elastic 

moduli (𝐸) for the two materials, their Poison’s ratio (𝑣), and the film thickness (𝑡). 

Many models have been suggested in the literature, some of which have been generated 

after experimental and theoretical studies [1,136], other through analytical solutions 

[59,60,137–139], or with the help of finite elements methods [47,48,61,140,141]. In the 
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following sections the models are separated based on the mathematical nature of the 

resulting equations, these being weighted (a) exponential functions and (b) analytical 

functions. A third category is also included in this section which relates to equations 

resulting from computational modeling techniques, in particular the finite element 

method. 

In most cases the following scaling formula is applied: 

𝐸𝑒𝑞 = 𝐸𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 + (𝐸𝑓𝑖𝑙𝑚 − 𝐸𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒) 𝛷(𝑥) (7.3) 

where 𝛷 is a weight function that relates to the elastic moduli mismatch, the contact radius 

𝑎, the thickness of the film 𝑡 and the indentation depth ℎ. When 𝛷 reaches 1, corresponds 

to small indentation depths (𝑎/𝑡 → 0) and when 𝛷 reaches 0, corresponds to large 

indentation depths (𝑎/𝑡 → ∞). 

7.2.1 Weighted Exponential Functions 

Doerner and Nix [1], Menĉík et al. [136] and Antunes et al. [141] proposed empirical 

exponential functions, based on their experimental data to determine the elastic modulus 

of thin films (Vickers – Doerner and Nix, Antunes et al., Berkovich – Menĉík et al.). 

These are concisely presented as follows: 

Doerner and Nix model: 

|1/𝐸𝑒𝑞
∗ − 1/𝐸𝑓

∗|

|1/𝐸𝑓
∗ − 1/𝐸𝑠

∗|
= 𝑒(−𝑎1

𝑡
ℎ
)
 (7.4) 

Menĉík et al. model: 

|1/𝐸𝑒𝑞
∗ − 1/𝐸𝑠

∗|

|1/𝐸𝑓
∗ − 1/𝐸𝑠

∗|
= 𝑒(−𝑎2

ℎ
𝑡
)
 (7.5) 

Menĉík et al. model: 

|1/𝐸𝑒𝑞
∗ − 1/𝐸𝑠

∗|

|1/𝐸𝑓
∗ − 1/𝐸𝑠

∗|
= 𝑒(−𝑎3

ℎ
𝑡
)
 (7.6) 

Antunes et al. model: 

|𝐸𝑒𝑞
∗ − 𝐸𝑓

∗|

|𝐸𝑓
∗ − 𝐸𝑠

∗|
= 𝑒(−𝑎4

𝑡
ℎ
)
 (7.7) 
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where 𝐸∗ is the reduced modulus of sample, 𝐸𝑓
∗ is the reduced modulus of film, 𝐸𝑠

∗ is 

the reduced modulus of substrate, ℎ is the penetration depth, 𝑡 is the film thickness, 𝛼1,2,3,4 

are empirical fitting constants. 

Basically, they represented the system, as two springs in series (coating and substrate) 

with a weight function which relates the influence of the substrate to the indentation 

depth. During the process of applying those models in fittings of experimental data, using 

the least square method as criterion, the values of unknown constant 𝑎 vary depending on 

data. Thus, for the appropriate use of those models, since they don’t have any physical 

importance, as they are empirical in origin, the link between 𝐸𝑓
∗ and 𝑎 must be studied in 

further detail. 

7.2.2 Analytical Functions 

Gao et al [60] introduced a weight function to determine the elastic modulus of thin films. 

Their approximation was based on the analytical solution of the contact of a rigid 

cylindrical punch indenter and an elastic half space. By using an innovative method, they 

devised a first order perturbation theory to derive closed-form elastic solutions, for the 

stiffness’s contact on a coated substrate. Their function presented as: 

|𝐸𝑒𝑞
∗ − 𝐸𝑠

∗|

|𝐸𝑓
∗ − 𝐸𝑠

∗|
= 𝛷 ≡

2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑡

𝑎
) +

1

2𝜋(1 − 𝜈)
[(1 − 2𝜈)

𝑡

𝑎
𝑙𝑛 (1 + (

𝛼

𝑡
)

2

) −

𝛼
𝑡

1 + (
𝛼
𝑡
)

2 ] (7.8) 

where 𝛷 = weight function, 𝛼 = contact radius, 𝑣 = samples Poisson’s ratio. According 

to the authors, Equation (7.8) provides good predictions for materials that have elastic 

moduli mismatch ratio less than 2, because their perturbation analysis was based on a 

reference homogeneous body, which yields their perturbation results, in a 

nonhomogeneous body, characterized by a variation of its elastic modulus in 

indentation’s depth direction (two materials, whose mechanical properties don’t differ 

widely). 

Jung et al. based on Hu’s and Lawn’s analysis [142] on spherical indentation, they 

introduced empirical power-law functions [139] to evaluate hardness and elastic modulus 

on soft films on hard substrates and vice versa, as: 
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𝐸𝑒𝑞 = 𝐸𝑠 (
𝐸𝑓

𝐸𝑠
)
1/[1+𝐴(ℎ/𝑡)𝐶]

 (7.9) 

𝐻 = 𝐻𝑠 (
𝐻𝑓

𝐻𝑠
)
1/[1+𝐵(ℎ/𝑡)𝐷]

 (7.10) 

where 𝐴, 𝐵, 𝐶, 𝐷 are adjustable coefficients. Although these simple functions 

demonstrated good agreement on their experimental data, they have excluded important 

parameters for more “complex” systems: the interaction of Poisson’s ratio and the elastic-

plastic zones which will yield in significant changes on the values of 𝐴, 𝐵, 𝐶, 𝐷. 

Another model, which is based on a different weight function, is the model proposed by 

Perriot and Barthel [59]. Based on an analytical methodology for integral formulation of 

the elastic contact between an axisymmetric indenter and a coated substrate, they 

introduced a new weight function to determine the elastic behavior of a coated system. 

Firstly, they used the results of Li’s and Chou’s [143] where, by linear elasticity (Hankel 

transformations) they introduce a relation between the applied normal stress at the surface 

of the thin film and the normal displacement. Then, due to the fact that they couldn’t 

inverse the problem (from stress-strain to load-displacement) because of the boundary 

conditions of indentation technique, they used auxiliary fields (Fourier transforms of the 

Hankel transforms) and they resulted to an integral equation [144]. Thereafter, they 

applied their equation to an algorithm and given a contact radius 𝑎, they introduced force 

to extract nanoindentation response, in conditions of cone, spherical and flat punch rigid 

indenters, in frictionless contact with a semi-infinite substrate. They concluded that a 

sigmoidal behavior is observed in all cases, but the response of 𝐸𝑒𝑞 is different, depending 

on the indenter. More specifically, conical and spherical indentation are similar except in 

high mismatch ratios. Subsequently, for cone indentations, and by changing the mismatch 

ratio of elastic moduli, they showed that the sigmoidal behavior exists, irrespective of the 

kind of the system, hard on soft or soft on hard. The only parameter that is altered is the 

transition from the first plateau to the second one. In the case of soft on hard, the transition 

point is shifted towards larger values of 𝑎/𝑡 (see Figure 7-5). 

By comparing this result, with Gao’s et al. function [60], it is observed that they match 

until mismatch ratios smaller than 2; for bigger mismatch ratios Gao’s function is unable 

to capture the elastic response of the coated system. As mentioned previously, Gao et al. 
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based their analysis on a homogeneous material, but because on indentation testing, the 

strains under the contact, are distributed inhomogeneously, with consequence the system 

to be considered as an inhomogeneous. 

 

Figure 7-5: Sigmoidal behavior of 𝑬𝒒
∗ as function of 𝒂/𝒕 for various mismatch ratio; 0.5, 0.9, 

1.1, 1.2, compared with Gao et al. function [59]. 

Continuing from the previous observation, in the case of soft on hard, the film will absorb 

greater strain than the substrate, which leads to larger contact radius, shifting the transition 

curve to larger 𝑎/𝑡 ratios (Figure 7-5). This phenomenon becomes more pronounced with 

increasing elastic moduli mismatch. 

After observing that their theory agrees with Gao’s results, they introduce an empirical 

function, in order to expand Gao’s function in larger moduli mismatches: 

𝐸𝑒𝑞
∗ = 𝐸𝑓

∗ +
(𝐸𝑠

∗ − 𝐸𝑓
∗)

1 + (
𝑡𝑥0

𝛼 )
𝑛  (7.11) 

where  

𝑥0 = 𝑒
−0.093+0.792∙𝑙𝑜𝑔(

𝐸𝑠
∗

𝐸𝑓
∗)+0.05∙[𝑙𝑜𝑔(

𝐸𝑠
∗

𝐸𝑓
∗)]

2

 
(7.12) 

𝑥0 is related with the position of transition’s range. It corresponds to the exact value of 

𝑎/𝑡 for which 𝐸𝑒𝑞
∗ = (𝐸𝑓

∗ + 𝐸𝑠
∗)/2. The adjustable constant 𝑛, corresponds to the width 

of the transition range and is between 1.06 − 1.32 for various moduli mismatch ratios. 
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7.2.3 Finite Element Analysis 

Clifford and Seah [61] used finite element analysis (FEA) to determine the effect of the 

Poisson’s ratio between stiff substrates and more compliant coatings. Their motivation 

for generating this more complex model was the discrepancy existing in the literature 

between most equations and the shape of experimentally observed curves. Most of the 

proposed equations contain steep transition gradients which led to low or high elastic 

modulus fitting values. The new model which has been developed through FEA, assumes 

that the system is perfectly bonded, and that the penetration occurs by a spherical indenter. 

The equation is given by: 

𝐸𝑒𝑞
∗ = 𝐸𝑓

∗ + (𝐸𝑠
∗ − 𝐸𝑓

∗)(
𝑃 (

𝑧
𝑧0

)
𝑛

1 + 𝑃 (
𝑧
𝑧0

)
𝑛) (7.13) 

where 

𝑧

𝑧0
=

𝛼

𝑡
(
𝐸𝑓

∗

𝐸𝑠
∗)

𝑚

(
1 − 𝐵𝑠𝜈𝑠

2

1 − 𝐵𝑓𝜈𝑓
2) (7.14) 

𝛼 =
2ℎ

𝜋
𝑡𝑎𝑛(65,3°) (7.15) 

𝑚 = 2/3, 𝐵𝑠 = 0.22, 𝐵𝑓 = 1.92, 𝑃 = 2.25, 𝑛 = 1.5 are fitting parameters. 

7.2.4 Critical Comparison of Models 

In this section the response of the proposed models to thin film coating systems is 

critically evaluated for various input variables. Summarizing the previous models, due to 

the lack of physical significance on exponential and power-law functions, they excluded 

from the process of comparison. Although their fittings, in any experimental data, are 

characterized by high values of R-square, however their fitting parameters cannot be 

controlled and they vary over a wide range, depending on the testing system. In some 

cases of soft on hard, because of the nature of exponential, these models have the inability 

to reach the plateau on very small indentation depths, resulting to coatings to have 

negative values in their moduli of elasticity. Furthermore, they don’t count the effect of 

moduli mismatch and Poisson’s ratio.  
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Figure 7-6: Modelling the 𝑬𝒆𝒒 contribution as a function of indentation stress field [23]. 

As shown in Figure 7-6, the four exponential functions, as well as Gao’s et al. function 

[60], assume that the coating-substrate system operates under the influence of two springs 

in series. Thus, the substrate’s effect begins at small percentages of penetration depth as 

compared with the coating’s thickness. Nevertheless, in nanoindentation experiments, the 

compressive stress fields are not only in the normal direction with the indenter, but also 

act in all directions where the surface is in contact with the indenter [59]. As a result, the 

stress distribution under the contact can’t be characterized with accuracy from the above 

models, so a further study must take place. 

We concentrate our discussion on the three most promising models which include the 

physical mechanisms and behavior during nanoindentation experiments: (a) Gao et al., 

(b) Perriot and Barthel, and (c) Clifford and Seah. In what follows, a sensitivity analysis 

of the models to various controlling variables is presented. We first compare the three 

models in conditions of which the substrate is almost twice as stiff as the coating. The 

explicit parameters for this simulation and the results are shown in Figure 7-7 (a). 
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Figure 7-7: Results of the three models under conditions of (a), (c) soft films on hard substrates, 

(b), (d) hard films on soft substrates, for the evaluation of film’s elastic modulus. 

Perriot’s and Barthel’s model start the transition range at the same time with Clifford’s 

and Seah’s model, but then the reaction of Perriot and Barthel, is slower than Clifford and 

Seah, since they don’t account the influence between Poisson’s ratio. Gao’s et al. model, 

shows quicker response of the transition range – because of the low sensitivity in the 

modulus mismatch- as compared with the other two models but during transition range, 

it seems that exhibit similar response with that of Perriot’s and Barthel’s model. Overall, 

however, the three models are in relatively close agreement for this particular mismatch 

ratio. 

As a second comparison, we investigate the response of hard coatings resting on soft 

substrates. The same mismatch ratio as previously is used, but now reversed. The 

parameters of this simulation and the results are shown in Figure 7-7 (b). In this 

comparison, all the models have the same behavior expect at the time that they reach the 

second plateau. Clifford and Seah model, has the quickest response in contrast to the other 
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two models while the Gao’s et al. exhibits the slowest response. Based on the previous 

result, this behavior is expected because of Poisson’s ratio, between coating and substrate. 

The previous two scenarios concentrated on moduli mismatch ratios which were restricted 

within 0.5 to 2. The third comparison relates to conditions that the mismatch ratios of 

elastic modulus between coating and substrate are large. This comparison is separated in 

two parts: mismatch ratio 𝐸𝑠/𝐸𝑓 = 5 and mismatch ratio 𝐸𝑠/𝐸𝑓 = 1/5. The parameters and 

results of these simulations are shown in Figure 7-7 (c) and Figure 7-7 (d) respectively. 

From Figure 7-7 (c), the three models don’t have the same ratio in the transition range, 

since all models have different behaviors. From Figure 7-7 (d), the Perriot and Barthel 

model, behaves the same as the Clifford’s and Seah’s model, with the only difference is 

on the beginning of the transition range. 

 

Figure 7-8: Behavior of proposed models to evaluate the elastic modulus of films as a function 

of 𝒂/𝒕. Experimental data extracted from [135,136]. 
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From these four comparisons, the models of Perriot and Barthel and Clifford and Seah 

exhibit more stable and representative responses for all considered situations. When the 

mismatch ratio is low the models have similar responses but when the mismatch ratio is 

high, the model of Gao et al., doesn’t show the same behavior as the other models. The 

reason that the Gao’s model fails to response rightly in complicated situations, is because 

of the nature of their weight function; Equation (7.8) excludes the parameter (𝐸𝑓/𝐸𝑠), thus 

the function remains constant for all considered ratios. In order to conclude on the validity 

of the models in real conditions, they should be contrasted to literature experimental data 

as shown below in Figure 7-8 while details on the data is presented in Table 7-1. 

The models have been examined under circumstances where the elastic moduli between 

coating and substrate vary. In Figure 7-8 (a) the elastic moduli ratio (thin film/substrate) 

~1.5, in Figure 7-8 (b) ~4, in Figure 7-8 (c) ~2 and in Figure 7-8 (d) with ~0.5. In most 

of cases, the models exhibit high values of R-square. Gao’s et al. model, demonstrates 

the poorest response on cases where the elastic-moduli mismatch ratio reaches the value 

of 4, as expected. Perriot and Barthel function, can’t calculate the elastic modulus of 

(TbFe+Fe) on Silicon, because of the interaction between the Poisson’s ratios. As 

summarized in Table 7-1, Clifford and Seah model, demonstrates the most accurate 

fittings in all cases which is due to their five fitting parameters which gives more 

independent behavior on the initial shape of sigmoidal curve, without however any 

physical basis. 

Table 7-1: Experimental parameters and results extracted from Figure 7-8. 

Samples Film 𝑡  𝐸𝑠𝑢𝑏  𝑣𝑓𝑖𝑙𝑚  𝑣𝑠𝑢𝑏  𝐸𝑓  Gao 𝐸𝑓  Perriot 𝐸𝑓  Clifford 

Tungsten on Silicon  

[133] 

0.64 μm 174 GPa 0.25 0.25 300 GPa 

R2 : 0.8713 

315.2 GPa 

R2 : 0.8843 

380.6 GPa 

R2 : 0.9929 

Tungsten on Glass  

[133] 

0.5 μm 65 GPa 0.25 0.25 186.9 GPa 

R2 : 0.8202 

254.1 GPa 

R2 : 0.9871 

273.1 GPa 

R2 : 0.9954 

TbFe+Fe on Glass 

[136] 

1.2 μm 65 GPa 0.24 0.3 110.1 GPa 

R2 : 0.8431 

114.5 GPa 

R2 : 0.8475 

134.6 GPa 

R2 : 0.9291 

TbFe+Fe on Silicon 

[136] 

1.2 μm 174 GPa 0.2 0.3 128.7 GPa 

R2 : 0.8653 

138 GPa 

R2 : 0.6972 

107.6 GPa 

R2 : 0.8919 
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What one expects and that is not be supported by the above fittings, is that the elastic 

moduli of the films where to be equal, regardless of the substrate material. The erroneous 

observation leads to various conclusions, which are analyzed at the end of this chapter. 

Another significant observation, is based on the fitting results, which differ significantly 

from the reference values [141] of the elastic moduli of films; 𝐸Tung = 410 GPa, 𝐸TbFe+Fe 

= 130 GPa. 

7.3 ISO 14577-4 

Given the large available selection of models and the inadequacy of a single model to 

accurately capture the mechanical response of a wide variety of systems we have resorted 

to the recently published international standard for guidance. The proposed methodology 

of ISO 2016 [145] suggests a linear fitting over a region in low depths, where the substrate 

influence is restricted to small contributions. The ISO requires that all calibrations are 

performed a priori for accurate mechanical measurements. Undoubtedly, this 

methodology is based on empirical knowledge, without detailed mechanical modeling of 

the physical mechanisms, but provides accurate results even in complex material systems 

(coatings, multilayers), by circumventing the non-linear substrate-film interaction 

regime. Furthermore, as ISO suggested, for more accurate data interpretations, finite 

element simulations must be applied, especially in materials with non-linear constitutive 

relationships. 

7.4 Chapter Summary 

Many of the literature equations for determining the elastic modulus and hardness of thin 

films through nanoindentation have been presented in this chapter. The best models with 

the most promising responses, according to our analysis and the work of other researchers, 

have been examined in detail and analyzed in various parametric conditions. Although 

some have their basis on analytical and computational results, in a lot of circumstances 

they fall short to accurately and confidently reflect experimental data. 

Firstly, this can be due to the fact of roughness on the surfaces of the tested samples. The 

presence of roughness can affect the precise measurement of the area of contact. Another 

parameter can be the adhesion between the coating and substrate, where in all cases, is 

assumed as perfect. Owing to 𝑌/𝐸 mismatch or work hardening exponents, the coating 
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may be subject to delamination processes or in mechanisms which are currently excluded 

from existing models (cracking, piling-up). The contact which is considered as 

frictionless and the indenter as rigid, drives in significant errors, especially in cases of 

stiff coatings. Moreover, the above models don’t take into account the microstructure of 

the systems, either if they are characterized by porosity, density fluctuations, internal 

stresses or bluntness of the indenter. Furthermore, material parameters, such as elasto-

plasticity, viscoelasticity, viscoplasticity, work-hardening behaviors can affect the 

indentation response. Lastly, errors can occur from experimental conditions; calibrations, 

thermal drift, noise. A more extensive study is therefore required (Chapter 8) in order to 

computationally quantify the effect of several parameters such as to probe their 

contribution on the overall mechanical response. 
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Chapter 8 

 

8 Numerical Evaluation of Hard Coated 

Systems 

As it was discussed in Chapter 7, experimental data on coated systems requires the 

nanoindentation depth to remain at a small percentage of the film thickness (usually 

<10%) in order to avoid coating-substrate interactions and enable the usage of traditional 

bulk materials indentation analysis. With the advent of nanoscale film deposition 

technologies, the restriction of nanoindentation data into very small depths interferes with 

instrument’s resolution and manufacturing capabilities of the used probe. Therefore, the 

only option that is left is the precise modelling of the nanoindentation process in order to 

interpret in a quantitative way the experimental force-displacement (𝑃 − ℎ) curves on 

coated systems. The composite response depends on the elastic and plastic properties of 

the coating and substrate material as well as the nature of the interface. In this study, the 

finite element method is employed to investigate the indentation response of coated 

systems. The critical parameters for nanoindentation testing are identified and simulated 

with the aim to propose improvements of the testing protocols to experimentalists such 

as to either (a) define testing parameters that circumvent the substrate effect or (b) 

interpret the indentation data in a way that quantitatively accounts for substrate 

contributions. 
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Most models and experimental data (described in Chapter 7) exhibit a “sigmoidal” profile 

of the composite (or equivalent) modulus of the film/substrate system that is strongly 

dependent on film thickness and indentation depth or contact radius size, Figure 8-1. The 

aim of the current study is to examine the proposed models under numerical indentation 

simulations by varying the elastic moduli mismatch and mechanical response of systems 

(elastic and elasto-plastic). In addition, we aim to quantify the region of allowable use of 

the Oliver and Pharr method [2,3] for thin film systems, for rigorous and accurate 

experimental measurements. 

 

Figure 8-1: Graphical representation of the sigmoidal curve that coating systems exhibit during 

nanoindentation testing. 

8.1 Finite Element Model 

Two-dimensional axisymmetric finite element simulations are performed to investigate 

the mechanical response of coating systems under conical, 𝜃 = 70.3⁰ indentation. Details 

of the model geometry are shown in Figure 8-2(a). The ‘semi–infinite’ half space is 

modeled as a 101×101 μm2 domain. The indentation simulations were restricted to depths 

much smaller than the domain such as to avoid any boundary effects. The continuum 

space is discretized using 4–node axisymmetric, isoparametric elements (CAX4–full 

integration). The interface between coating and substrate is defined as being perfectly 

bonded, which means that there is no delamination or slippage. Two identical finite 

element models have been structured, in order to account two different coating 

thicknesses: 500 nm and 1000 nm. The element size was continuously refined in five 
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successive regions as approaching the indenter contact region for greater accuracy, Figure 

8-2(b). 

 

Figure 8-2: (a) Representation of finite element model of coating systems, (b) top portion of finite 

element mesh showing the details of cone’s geometry and film thickness. 
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A mesh sensitivity analysis was performed to ensure that the simulations results were 

insensitive to the mesh size. Roller boundary conditions were applied on the axis of 

symmetry and fixed boundary conditions on the bottom surface of specimen. We assume 

that the loading rate is slow enough such as static friction can securely model the interface 

response. Simulations proceeded in two steps: the indenter was firstly subjected to a 

ramped vertical displacement, followed by an indenter retraction to the original position 

which corresponded to complete unloading at zero load. During this process the lower 

edge of the material was constrained vertically. Axisymmetric boundary conditions were 

used along the symmetry axis beneath the indenter region [64]. 

8.2 Indentation Scale Factor for Coating Systems 

Numerical parametric studies are being performed and the effect of film thickness and 

substrate characteristics are quantified on the composite indentation response. An 

important parameter on the indentation of thin films is the radius of contact 𝑎. Conical 

and pyramidal indenters are characterized by self-similarity, which means that the ratio 

between the circle of contact and depth of penetration 𝑎/ℎ remains constant, irrespective 

of the magnitude of the applied load. In line with dimensional analysis, the scaling 

parameter that controls the overall indentation response is either 𝑎/𝑡 or ℎ/𝑡. Therefore, a 

set of elastic and elastic-perfect plastic simulations have been performed in order to study 

their effect (Table 8-1). The mechanical properties of titanium material have been selected 

to simulate the response of coatings and quartz properties to account for the response of 

the substrate. 

Table 8-1: Input characteristics for the computational analysis of coated systems. 

Model Name 𝐸𝑓 [GPa] 𝐸𝑠 [GPa] 𝑣𝑓 [-] 𝑣𝑠 [-] 𝑌𝑓 [GPa] 𝑌𝑠 [GPa] 𝑡𝑓 [nm] 

N1 115 72 0.32 0.17 - - 500 

N2 115 72 0.32 0.17 - - 1000 

N3 115 72 0.32 0.17 1.2 3.95 500 

N4 115 72 0.32 0.17 1.2 3.95 1000 

Prior to the analysis of composite thin film systems, we have extracted the 𝑃 − ℎ response 

of their bulk counterparts, for benchmarking purposes. The elastic indentation resistance 

of titanium is higher than that of quartz, Figure 8-3 (a), which relates to the fact that the 
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elastic modulus of titanium is higher. Initially assuming a purely elastic response for both 

materials (titanium on quartz substrate), we observe a fast transition from the film to the 

substrate response which remains almost unchanged from ℎ = 1500nm onwards (the 

deviation from the substrate response). When the plastic dissipation capacity of the 

materials (von-Mises yield law) is taken into consideration, then the response changes 

drastically. This relates to the fact that the yield stress of titanium is lower than that of 

quartz which causes a flipping in order for the 𝑃 − ℎ elastoplastic responses of the bulk 

counterparts. When the plasticity of the materials are considered, the composite response 

starts as identical with the softer titanium film indentation response and gradually stiffens 

(as ℎ~1200nm) until it converges to the substrate response (ℎ~2600nm), see Figure 8-3 

(b). It is therefore evident that the behavior of the coated system is load (and subsequently 

depth) dependent; for low values the titanium properties dominate the response and as the 

load increases, the mechanical response of quartz (substrate) becomes apparent. An 

interesting metric characteristic is that for a film of 1000 nm in thickness the indenter 

“feels” substrate-only properties at a depth of 3× its size. 

 

Figure 8-3: Load – displacement responses of simulated titanium coating on quartz titanium for 

(a) elastic and (b) elastoplastic materials. Their bulk indentation responses are plotted for 

comparison (only the loading portion of curves is plotted). 

Figure 8-4 presents the evolution of equivalent modulus with respect to the two 

dimensionless characteristics. It is obvious that the function 𝑎/𝑡 spans the data to a larger 

range than the ℎ/𝑡, and also appears to be the main ratio that scales the composite 

response and hence it can be used throughout the remaining studies. Before proceeding it 
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is noteworthy to state that the data scale on a single universal curve irrespective of the 

film thickness or the material’s elastic or elastoplastic response. 

 

Figure 8-4: Computational results of equivalent modulus as a function of scaling factors (a) 𝒉/𝒕, 

(b) 𝒂/𝒕. 

Figure 8-5 shows the evolution of the equivalent elastic modulus in comparison to 

Equation (7.11). The effect of film thickness and substrate characteristics are quantified 

on the indentation response. As expected, for small depths the properties of the film are 

recovered whereas for large indentation depths (compared to the film thickness) the 

properties of the substrate dominate. 

 

Figure 8-5: Computationally response of hard material on soft substrate. The analytical solution 

of Perriot and Barthel is illustrated for comparison, Equation (7.11). 
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It is noted that the computational data cannot approach accurately the sigmoidal analytical 

solution at the substrate plateau. Even in the case of elastic indentation, which 

corresponds completely to the constitutive relations used in the P&B analysis, the 

numerical results exhibit a stiffer behavior (10-15%) as the 𝑎/𝑡 ratio increases. As it was 

mentioned in Section 7.2.4, the most crucial parameter in indentation of thin films is the 

extrapolation of the coating’s properties as 𝑎/𝑡 → 0. The deviation of the models that 

have been suggested in the literature becomes significant in the initial region of the 

sigmoidal curve and therefore a more careful numerical study is required. In order to 

perform such studies, a new finite element model was created (Figure 8-6), which aims 

for indentation in very low depths; the overall size of the material domain has become 

smaller, while the minimum element size was set to 5 nm, in order to gain high resolution 

in small penetration depths. 
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Figure 8-6: (a) Finite element model that targets low indentation depths, (b) portion of the finite 

element model that describes mesh distribution and size of fine element. 
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Furthermore, a set of six layers were created with ideal bonding parameters, in order to 

have the potentials either for varying the thickness of the coating from 50 nm to 1000 nm, 

or for flexibility in developing multilayer systems, Figure 8-7. 

 

Figure 8-7: Finite element model which takes account multiple layers to be served as different 

coating thicknesses. 

This refined numerical model is identical as that described in Section 2 except from the 

total size and material properties. In the current study, except from the effect of low 

indentation depths and film thickness, the effect of elastic moduli mismatch in coating 

systems was also examined. Details about the input data are provided in Table 8-2, where 

elastic and elastic-perfect plastic simulations have been performed with the moduli 

mismatches to be defined for the first group at 𝐸𝑓/𝐸𝑠 = 1.6 and for the second group at 

𝐸𝑓/𝐸𝑠 = 5. 

Table 8-2: Material properties used to study the effect of moduli mismatch. 

Model Name 𝐸𝑓 [GPa] 𝐸𝑠 [GPa] 𝑣𝑓 [-] 𝑣𝑠 [-] 𝑌𝑓 [GPa] 𝑌𝑠 [GPa] 𝑡𝑓 [nm] 

A1, A2 115 72 0.32 0.17 - - 500, 1000 

A3, A4 115 72 0.32 0.17 1.2 3.95 500, 1000 

B1, B2 250 50 0.30 0.25 - - 500, 1000 

B3, B4 250 50 0.30 0.25 5 2 500, 1000 

50 nm 
100 nm 
150 nm 
200 nm 

500 nm 

1000 nm 
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8.3 Parametric Analysis on Film Indentation 

8.3.1 Effect of Moduli Mismatch 

 

Figure 8-8: Load vs indentation depth curves for coating systems with a fixed elastic mismathch 

of (a) 1.6 and (b) 5. 

Numerical 𝑃 − ℎ responses for indentation on the coating system with 𝐸𝑓/𝐸𝑠 = 1.6 is 

illustrated in Figure 8-8(a). The response of the bulk counterparts is plotted with black 

lines for reference. Computational results suggest that the elastic indentation resistance 
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decreases as the film becomes thinner. This behavior is attributed to the substrate effect, 

since for a fixed indentation depth, thinner coatings will exhibit earlier the substrate 

contribution on the composite modulus response. For the case of elastic-perfectly plastic 

simulations the resistance of the system significantly decreases, because of the generated 

plastic deformations inside the materials. Due to the fact that the selected maximum 

penetration depth (150 nm) is much lower than the coating thicknesses and that their 

modulus mismatch is low, the 𝑃 − ℎ curves for the two films (500 nm and 1000 nm) are 

almost identical. In Figure 8-8 (b) a similar response on indentation resistance with 

systems with 𝐸𝑓/𝐸𝑠 = 5 is observed. Here the substrate effect, is even more significant 

due to the large contrast between the elastic moduli, therefore the elastic resistance of 

coating with thickness of 500 nm is much lower than that of 1000 nm. Regarding, von-

Mises materials the large mismatch ratio plays a dominant role even in relatively small 

indentation depths. 
 

ℎ𝑚𝑎𝑥 = 25 nm ℎ𝑚𝑎𝑥 = 50 nm ℎ𝑚𝑎𝑥 = 100 nm ℎ𝑚𝑎𝑥 = 150 nm ℎ𝑚𝑎𝑥 = 200 nm 
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Figure 8-9: von-Mises stress profiles for elastic and elastic-perfect plastic coating systems by 

varying the maximum penetration depth.  

Figure 8-9 captures the von-Mises stress profiles at maximum indentation load for elastic 

and elasto-plastic coatings. As the depth of penetration increases the generated von Mises 

stresses propagate into the system. Furthermore, comparing their responses, von Mises 

stresses are distributed in a larger area under elastoplastic simulations due to the generated 

plastic flow which is associated with a higher depth of penetration. Associating the 
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contour plot values regarding elastic and elastoplastic responses, it is obvious that elastic 

material systems exhibit higher von-Mises stresses, due to their high indentation 

resistance. 

 

Figure 8-10: Normalized contact depth as a fuction of maximum indentation depth for various 

coating systems with fixed 𝑬𝒇/𝑬𝒔 = 1.6. 

As it was noted in Chapter 2.6 the Oliver and Pharr methodology for calculating the 

projected area of contact, neglects any pile-up phenomena [2,3]. Therefore, it is crucial 

to overcome such limitations, which for bulk materials can occur when the ratio between 

𝐸/𝑌 [108,109] becomes high, while for thin film systems mainly appears when dealing 

with soft films on hard substrates [146,147]. Any appearance of pile-up leads to an 

underestimation of the projected contact area as estimated through the O&P method; in 

fact the estimated contact depth will always be ℎ𝑐 < ℎ𝑚𝑎𝑥. For coatings of 𝐸𝑓/𝐸𝑠 = 1.6, it 

is shown in Figure 8-10 that numerical elastic-plastic systems exhibit pile-up phenomena 

and for this reason there is an average deviation of 15% between extracted results and 

O&P method. For elastic simulations, all the systems exhibit sink-in phenomena and the 

values of normalized contact depth are in perfect agreement with O&P methodology. 
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Figure 8-11: Normalized contact depth as a fuction of maximum indentation depth for various 

coating systems with fixed 𝑬𝒇/𝑬𝒔 = 5. 

For thin film systems with 𝐸𝑓/𝐸𝑠 = 5, both elastic and elastic-perfect plastic materials 

exhibit sink-in behaviour, Figure 8-11. With respect to the Oliver and Pharr method, the 

deviation between the calculated values remains under 10% for extreme values and as a 

result this is an additional verification that their methodology is accurate when materials 

deform either elastically or in a sink-in fashion. 

8.3.2 Evaluation of Numerical Results in Sigmoidal Behaviors 

Moving on the second part of this study, we here present in Figure 8-12 the calculated 

composite modulus with respect to 𝑎/𝑡 for 𝐸𝑓/𝐸𝑠 = 1.6. Numerical results replicate the 

sigmoidal response that was proposed in the literature [59–61]. Elastic and elastoplastic 

simulations converge to one single behaviour, underlying the strong dependence on 𝑎/𝑡. 

The recommended equation of Perriot and Barthel [59] has been used in this report for 

critical comparison with our finite element simulations. The results of numerical data and 

analytical equation are in good agreement, except at the zone where the substrate effect 

is very significant – for high indentation depths. In that zone, numerical results seem to 

exhibit a stiffening behaviour due to the large stresses generated at film’s elements. 
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Figure 8-12: Numerical results of equivalent modulus against scaling factor 𝒂/𝒕 for fixed elastic 

moduli mismatch equals 1.6. The proposed equation of Perriot and Barthel is plotted for 

comparison [59]. 

 

Figure 8-13: Numerical results of equivalent modulus against scaling factor 𝒂/𝒕 for fixed elastic 

moduli mismatch equals 5. The proposed equation of Perriot and Barthel is plotted for comparison 

[59]. 

Similar response is shown for 𝐸𝑓/𝐸𝑠 = 5, Figure 8-13. Here, data of the final plateau 

where is the substrate’s domain region, have been excluded from the analysis. Although 
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that the moduli mismatch increases, the sigmoidal behaviour between different types of 

coated systems remains. It must be stated that initial and final values of sigmoidal curve 

are higher than that of input values (𝐸𝑓 = 250 GPa, 𝐸𝑠 = 50 GPa) due that reduced modulus 

equals is a combination between elastic modulus and Poisson’s ratio, as stated in Equation 

(2.14). 

8.3.3 Effect of a Soft Layer Between Coating and Substrate 

To the best of our knowledge, the effect of element stiffening when performing numerical 

simulations on thin films has not been reported in the literature. Due to limitations of ideal 

bonding between coating and substrate, when indentation depth approaches or exceeds 

coating’s thickness, numerical results will always be affected by the stiffening of 

compressive elements. This study may be regarded as being of minor importance due that 

the focus in thin film characterization is the extraction of film’s only mechanical 

properties. Nevertheless, this could provide guidelines to future numerical studies for 

determining their technical input information. Thus, to study this effect, based on the 

finite element model with the multilayer’s features, we have structured two different 

elastic models as illustrated in Figure 8-14. First model corresponds to an elastic stiff 

coating of 150 nm thickness which lays on a softer substrate, while the second model 

assumes the same conditions with an addition of an elastic thin interlayer with thickness 

of 50 nm and an elastic modulus of 90% softer than coating’s modulus. 

 

Figure 8-14: Design of numerical models to stufy the effect of a soft intermediate layer, (a) 

original model without layer, (b) new proposed model with an intermediate layer of 50 nm 

thickness. 

𝐸 = 72 GPa, 𝑣 = 0.17 

𝐸 = 150 GPa, 𝑣 = 0.32, 𝑡 = 150 nm 𝐸 = 150 GPa, 𝑣 = 0.32, 𝑡 = 150 nm 

𝐸 = 15 GPa, 𝑣 = 0.32, 𝑡 = 50 nm 

𝐸 = 72 GPa, 𝑣 = 0.17 
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Both models have been indented to a maximum depth of 250 nm which corresponds to 

almost 2x coating’s thickness. Figure 8-15 shows the von-Mises stresses for each system, 

where the system with the interlayer exhibits lower values in contrast with the single 

layer. Analysis results concluded that for the case of stiff coating on soft substrate the 

equivalent modulus is 91.91 GPa with 𝑎/𝑡 = 2.8, where for the case of soft interlayer 

between them, 𝐸𝑒𝑞 = 78.31 GPa with 𝑎/𝑡 = 2.92. In addition, we performed numerical 

analysis on an elastic bulk material with properties of that of substrate, in order to contrast 

them with the response of thin film systems, since of the high penetration depth, the 

indentation responses must be similar. The analysis yields to an 𝐸𝑟 = 77.19 GPa which is 

very closed with response of soft interlayer. Furthermore, we completed additional 

simulations for the case of stiff coating to account its response at various 𝑎/𝑡 ratios. 

Results show that for 𝑎/𝑡 = 2.3, 𝐸𝑒𝑞 = 91.95 GPa, where for 𝑎/𝑡 = 3.3, 𝐸𝑒𝑞 = 89.56 GPa, 

which underlies the large dependency of element stiffening. 

` 

Figure 8-15: von-Mises contour plots for coating system of (a) one layer with thickness of 150 

nm, and (b) two layers with thicknesses of 150 nm and 50 nm respectively. 

In summary, the addition of a soft interlayer between a stiff coating on soft substrate 

improves the numerical results in high indentation depths. Although, this soft interlayer 

must be as thin as possible, in order to have contribution in the “relaxing” mechanism and 

that not affects the mechanical response of the original system. 

8.3.4 Guidance to Design for Experiments Methods 

Finally, in order to better illustrate the relation between elastic mismatch and substrate 

effect, the composite modulus have been normalized for both cases (𝐸𝑓/𝐸𝑠 = 1.6, 5) in 

(a) (b) 
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respect to the scaling factor 𝑎/𝑡, see Figure 8-16. It appears that as the mismatch on elastic 

moduli increases, the transition from initial to final plateau, initiates at lower indentation 

depths. If the O&P method would be used to analyse experimental data on coated systems, 

and for the case where the percentage error would be restricted to less than 10%, then it 

can concluded as a general rule that for 𝐸𝑓/𝐸𝑠 = 1.6, maximum indentation depth must 

be kept under 𝑎/𝑡 <0.5, while for 𝐸𝑓/𝐸𝑠 = 5, 𝑎/𝑡 < 0.08 and naturally this restriction will 

become more stringent as the moduli mismatch ratio increases.  

 

Figure 8-16: Normalized equivalent modulus for a large span of 𝒂/𝒕. Blue lines are indicating 

the limit factor of 10% deviation from thin film’s elastic modulus. 

8.4 Nanoindentation on Hydrogenated Amorphous Carbon Film 

As an application of the FEM model developed herein we have performed a combined 

experimental numerical investigation in which thin films have been deposited and 

characterized using a nanoindenter; the experimental data analysis was performed using 

both analytical and numerical tools. 

For very thin films, the restrictions posed by Figure 8-16 might not be experimentally 

tractable and one is therefore left with the only possibility of concurrently treating the 

experimental data with computational feedback such as to extract film-only properties. 

Such an approach is proposed and experimentally verified below on a coated system 

composed of a hydrogenated amorphous carbon thin film on a silicon substrate. The 
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deposition conditions, characterization process and the proposed coupled 

computational/experimental methodology for extracting the film’s properties follow. 

8.4.1 a-C:H Thin Film Deposition 

Hydrogenated amorphous carbon (a-C:H) films were deposited using a plasma enhanced 

chemical vapor deposition (PECVD) system. A schematic of the deposition chamber 

which is installed at the Research Unit for Nanostructured Materials Systems is presented 

in Figure 8-17 (a). PECVD was enabled through radio frequency (RF) ion-beam 

technology, a diagram of which is presented in Figure 8-17 (b). The ion beam source has 

an external RF antenna that spirals around the plasma tube in the form of a coil. The RF 

waves emitted by the antenna enter the transparent plasma tube to ionize the gas 

introduced therein to produce charged ions. The main chamber of the system was pumped 

down to 10−8 mbar (basic pressure) using a roughing and a turbo-molecular pump. The 

energetic carbon/hydrogen ions generated from this gas-cracking process (methane (CH4) 

was used in this study) were accelerated towards the substrate by a voltage applied on a 

grid located between the plasma source and the substrate material. The voltage applied 

on the grid related to the kinetic energy of the ions. The transportation of ions from the 

source to the substrate occurs in line of sight conditions and a working pressure of 

approximately 10−3 mbar, the exact value of which depends on the total gas flow within 

the discharge tube. The accelerated ion species were deposited on the substrate material 

to grow hydrogenated amorphous carbon (a − C:H) films. The ion beam arrived at an 

incidence angle of 30° to the substrate which was located 22 cm away from the ion beam. 
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Figure 8-17: (a) Schematic of the hybrid PECVD/PVD system used within this study; Details of 

(b) the ion source and (c) the deposited film. 

8.4.2 Thin Film Characterization 

8.4.2.1 X-ray reflectivity 

An X-ray diffractometer (Rigaku Ultima IV) was used to measure the specular X-ray 

reflectivity of the deposited film. The diffractometer was equipped with a Cu tube, 

operated at 40 kV accelerating voltage and 40 mA emission current. The incidence X-ray 

beam was collimated into a parallel beam with a 0.03 divergence and additionally 

monochromatized to Cu Ka (λ=0.15419 nm) by a curved multilayer mirror. Density and 

thickness values of the thin films were extracted by fitting the respective experimental 

data to the theoretical reflectivity calculated using Parratt’s formalism [148–150]. 

8.4.2.2 Raman spectroscopy 

The microstructural details of a − C:H were probed using Raman spectroscopy. This 

characterization method was employed in order to access the bond characteristics of the 

deposited a − C: H films and indirectly link the information with sp2/sp3 configurations, 

and hydrogen content (i.e., through 𝐼𝐷/𝐼𝐺 and FWHM(G)) [151]. Raman data were 

collected by a confocal LabRAM from HORIBA Jobin Yvon equipped with a CCD 

detector and 1800 grooves/mm grating. It is equipped with an Olympus BX41 microscope 
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(10X, 15X, 40X, 50X and 100X). The 441.1 nm excitation laser beam was provided by a 

Helium-Cadmium laser. The laser power incident on the sample was 3-4 mW and the 

accumulation time 15-20 min for each spectrum. 

8.4.2.3 Atomic force microscopy 

Atomic force microscopy (AFM) was used to quantify the roughness of the resulting 

films. All measurements were performed in semi-contact mode using a scanning probe 

microscope (Ntegra Prima, NT-MDT) equipped with an NT-MDT cantilever (NSG10) 

having a mean force constant of 11.8 N/m and a tip nominal radius of 6 nm. Images of 

3 μm × 3 μm and 256 × 256 data density were collected and subsequently software-

analyzed for quantifying the root mean square (RMS) roughness of the deposited a − C:H 

surfaces. 

8.4.2.4 Nanomechanical testing 

The nanomechanical response of the deposited a − C:H films was tested on an 

instrumented nanoindentation platform (Micro Materials Ltd, UK) in a load-unload 

(single depth) mode using a diamond tip of the Berkovich type. During the indentation 

process the applied load (𝑃) and corresponding depth of penetration (ℎ) were 

continuously monitored with nanoscale accuracy – 100 nN for load and 0.1 nm for 

displacement. The specimens were probed using a maximum load of 0.5 mN; a 60 s dwell 

time was introduced at 90% of unloading force in order to collect data for thermal drift 

corrections. Ten indents (𝑃 − ℎ curves) at various locations on the film surface were 

collected, ensuring reproducibility. 

8.4.3 Results and Discussion 

Hydrogenated amorphous carbon films of 125 nm (confirmed through XRR reflectivity 

data) in thickness were deposited on silicon substrates. The root mean square roughness 

of the films was calculated through AFM scans (Figure 8-18(a)) at 0.4 ± 0.1 nm. The 

Raman spectra of the a-C:H are presented in Figure 8-18(b) and exhibit the characteristics 

of amorphous carbon. The cumulative response was deconvoluted to the D-band 

(~1350 cm−1) and G-band (~1550 cm−1) contributions using Gaussian fits. Several 

important metrics, including the location of the G peak, the intensity ratio of D over G 

peaks (𝐼𝐷/𝐼𝐺) and the full width at half maximum of the G Peak (FWHM (G)) were 
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extracted. In general, the D peak is due to the vibration of sp2 rings and the G peak to the 

resonance of the sp2 atoms organized in both rings and chains. Subsequently, the higher 

the 𝐼𝐷/𝐼𝐺 ratio the higher the sp2 clustering within an a − C:H sample. The intensity ratio 

of a − C:H yields a value of 𝐼𝐷/𝐼𝐺 = 0.45. Empirical relations obtained from 

experimental data on a large collection of data on hydrogenated amorphous carbon films 

suggest that this intensity ratio is inversely related to both hydrogen content [151] and 

(indirectly through the Tauc gap) sp3 hybridization state [152]. A comparison of this 

experimentally obtained value with literature data suggests that the a − C:H film 

synthesized within this study consists of a hydrogen content of 20-25 at.% and an sp3 

content of approximately 50 at.%. An a − C:H film with such characteristics is commonly 

referred to as diamond-like a − C:H (DLCH) with density values that vary between 

1.5 g/cm3 to 1.8 g/cm3 and high sp3 bonds (up to 70 at.%), a significant percentage of 

which are hydrogenated terminated [153,154]. Indeed, our a − C: H matrix with a density 

of 1.7 g/cm3 (measured through XRR), hydrogen content of ~25 at.% and sp3 content of 

~50 at.% falls within the DLCH category [151]. The FWHM(G) probes the structural 

disorder of the sp2 clustering in amorphous carbon material [152,155]. A lower 

FWHM(G) value denotes an a − C:H  with less unstrained sp2 clustering, whereas a 

higher FWHM(G) value suggests a material with an increased disordering in bond lengths 

and angles for the sp2 clusters. FWHM(G), 𝐼𝐷/𝐼𝐺 and G peak position are all consistent 

with literature results for such films [156–158]. 

 

Figure 8-18: (a) AFM image and (b) raman spectra of the deposited a-C:H film. 
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The mechanical response of the deposited film was measured using nanoindentation at 

0.5 mN which resulted in maximum indentation depths of 34-38 nm (very good 

repeatability). Since the global response at such depths is affected by both the film and 

the substrate one cannot directly extract the film properties. A comparison of FEM 

simulation results will be performed in order to identify the optimal film properties that 

better reflect the experimental data. Before proceeding with such an endeavor two 

preliminary studies are required to tackle such a problem: (a) a parametric analysis on the 

effect of the mechanical properties of the film (𝐸 and 𝑌) on the overall 𝑃 − ℎ response is 

needed that will aid the fitting process, and (b) the exact geometrical characteristics of 

the used probe are required as this might affect the 𝑃 − ℎ responses at such small scales 

(sub-50 nm indents). 

8.4.3.1 Effect of 𝑬𝒇 and 𝒀𝒇 on 𝑷 − 𝒉 response 

A series of simulations were performed for investigating the effect of 𝐸 and 𝑌 on the 

overall response at such small depths and the results are presented in Figure 8-19. The 

effect of 𝐸𝑓  is shown in Figure 8-19 (a) and appears to affect both the unloading slope and 

peak load, whereas the effect of 𝑌𝑓 is minimally affecting the unloading slope and 

primarily affects the peak load. These observations allow one to partly decouple the fitting 

process by concentrating primarily on the unloading slope for identifying the elastic 

modulus of the film and subsequently quantifying the yield strength based on the peak 

load resistance of the system. This will be explored in the fitting analysis that will follow. 

 

Figure 8-19: Effect of (a) elastic modulus of the film and (b) the yield strength of the film on the 

simulated 𝑷 − 𝒉 response of the layered system, where 𝒗𝒇 = 0.15, 𝒀𝒇 = 6.53 GPa, 𝒕 = 150 nm, 

𝑬𝒔 = 169.4 GPa, 𝒗𝒔 = 0.278 and 𝒀𝒔 = 7 GPa. 
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8.4.3.2 Effect of Tip Roundness on 𝑷 − 𝒉 response 

Before proceeding with the fitting process, we wanted to investigate the sensitivity of the 

results on the exact geometrical details of the tip, due to the very small indentation depths 

used herein. It is reported in the literature that commercial Berkovich indenters while 

nominally sharp may contain some bluntness at their very tip that could be approximated 

with a sphere. We have therefore performed a series of simulations assuming a 

conospherical geometry rather than a perfect conical geometry, in which the radius of the 

sphere is systematically altered (𝑅 = 100 nm, 200 nm and 500 nm). The simulated 𝑃 − ℎ 

results for three different conospheres are shown in Figure 8-20 (a) and the resulting stress 

and plastic strain fields distributions in Figure 8-20 (b). Interestingly the exact details of 

the local bluntness can have a significant impact in the overall response; the higher the 

local radius the higher the indentation resistance that is generated during penetration. This 

response can be attributed to the more rapid evolution of the contact area with depth 

expected for a conospherical geometry as compared with an ideal sharp cone. 

Furthermore, the increased radius leads to an increase in the stress distribution and an 

extention of the plastic strain fields that might even extend beyond the film domain and 

tranfer into the substrate. 

 

Figure 8-20: (a) Effect of of the local tip radious (a conosphreical indenter is assumed) on the 

simulated 𝑷 − 𝒉 response of the layered system, where 𝑬𝒇 = 100 GPa, 𝒗𝒇 = 0.17, 𝒀𝒇 = 8 GPa, 𝒕 

= 100 nm, 𝑬𝒔 = 169 GPa, 𝒗𝒔 = 0.278 and 𝒀𝒔 = 7 GPa. (b) Resulting stress and plastic strain fields 

for the various consopherical indenters considered herein (𝑹 = 100 nm, 200 nm and 500 nm). 
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Following the above analysis, it was found imperative to account for the potentially 

present local bluntness of the probe used in these experiments and avoid the propagation 

of any errors into the fitting process. Therefore, the exact area function of the indenter 

was obtained by performing a series of multi-depth indents on a material with known 

elastic modulus (quartz) and back calculating the area of contact using Equation (2.33). 

The experimental data of the area of contact with contact depth together with theoretical 

area function of the perfect cone are presented in Figure 8-21(a). It is obvious that the 

perfect conical geometry approaches the experimental results at higher indentation depths 

(h>100nm) and for small indentation depths a significant deviation exists which is 

attributed to the non-ideal geometry. In order to quantify the local tip bluntness, the 

experimental data at contact depths less than 30 nm were best-fitted to the ideal spherical 

area function (Figure 8-21(b)) with the resulting radius been 301 nm. It is apparent that 

the spherical geometry quantifies well the area function below ℎ = 30 nm, and the 

optimized conospherical geometry is in excellent agreement with experimental data over 

the whole ℎ = 0-150 nm range (Figure 8-21(a)). For all subsequent calculations therefore 

the conospherical geometry is used. 

 

Figure 8-21: (a) Theoretical equations (for perfect sphere and perfect cone) and experimental 

data on the area function of indenter used in this study. (b) Best-fitted spherical equation 

(R~300nm) on the sub-30nm experimental data. 
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experimental is minimized. Within this process the parametric analysis presented above 

used for guiding, meaning that the unloading portion of the curve is first fitted and 

subsequently maximum depth is optimized by varying the yield strength of the film. The 

results of this optimization process are presented in Figure 8-22 (a) and the film 

mechanical properties that yielded this response are 𝐸𝑓 = 100 GPa and 𝑌𝑓 = 8 GPa. 

These properties are close to what is expected for hydrogenated amorphous carbon films 

of such compositions (sp3 and H content) and verify the proposed methodology as 

alternative means for extracting mechanical properties of low dimensional materials. 

Furthermore, through this numerical methodology, one can obtain useful mechanical 

information (stress, strain, energy data) that are not available in experiments; Figure 

8-22(b) illustrates the von Mises and plastic strain distribution within the a-C:H/Si system 

for ℎ𝑚𝑎𝑥 = 33.5 nm, the correspondence 𝑃 − ℎ curve is affected by the substrate’s 

plasticity. 

 

Figure 8-22: (a)Simulated vs experimental 𝑷 − 𝒉 curves on the a-C:H film. (b) Contour plots of 

generated von-Mises stresses and equivalent plastic strains at maximum penetration depth. 

8.5 Chapter Summary 
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system and depending on the moduli mismatch, the surface may exhibit pile-up 

phenomena, which may subsequently lead to an overestimation of the calculated 

mechanical properties of the projected area of contact is calculated using the Oliver and 

Pharr methodology [2,3]. In addition, numerical modelling is able to capture the 

sigmoidal behaviour on composite modulus, which is independent from material 

properties, film thickness and elastic moduli mismatch; a universal curve. Finally, for 

ulttra thin films a combined experimental-computation methodology is proposed for 

extracting the mechanical properties of the films which has been demonstrated on a 

hydrogenated amorphous carbon film deposited on silicon substrate. The importance of 

tip blunting has been noted and should be included in such type of analyses.  
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Chapter 9 

 

9 Indentation Response of Cohesive 

Frictional Materials 

Pressure-sensitive materials like cement-based composites, soils, shales, and bulk 

metallic glasses have been reported to exhibit enhanced indentation hardness compared 

to their pressure-insensitive counterparts. While nanoindentation experiments on these 

materials have been reported in the literature a detailed analysis framework that takes into 

consideration the peculiarities of their complex mechanical response has not been 

developed in full. This chapter attempts to contribute towards this end by presenting 

numerical results of indentation on cohesive-frictional materials, modeled using the 

Mohr-Coulomb yield criterion. Its’ ultimate focus is to explore through nanoindentation 

simulations the link between hardness of cohesive-frictional materials and strength 

properties. Dimensional analysis will be employed for the understanding of all governing 

parameters of these materials, while parametric studies will be performed by varying the 

cohesion and frictional angle. 
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9.1 Introductory Remarks 

9.1.1 Cohesive-Frictional Materials 

Tabor [159], suggested a relationship between hardness over yield strength 𝐻/𝑌 = 3 in a 

fully plastic contact, which corresponds to materials with high ratio of 𝐸/𝑌 such as 

metals. For materials with low 𝐸/𝑌, like ceramics, this ratio is lower at 𝐻/𝑌 = 1.5 – 2, 

[57,160], which relates to the fact that microcracking might be generated during loading 

that shifts the 𝐻/𝑌 ratio at lower values than those of full plasticity. The value of 𝐻/𝑌 is 

commonly used as a rule-of-thumb, either for experimental purposes; extraction of stress–

strain curve from indentation data, or computationally; definition of yield point for input 

parameter to finite element model. Many authors, however, have highlighted that this 

ratio can drive analysis to inaccurate results for various materials systems like amorphous 

metallic glasses [161], work-hardening materials [56], cement-based materials 

[30,162,163] and rigid plastic solids with and without contact friction [164,165]. 

Specially, for cohesive-frictional materials (soils, shales, amorphous metals, concrete) the 

ratio between hardness and compressive strength can reach values on the order of 𝐻/𝑌𝑐 ≈ 

10-30. Thus, the focus of this study is to explore the effect of cohesive strength and 

frictional angle of Mohr-Coulomb materials under numerical conical indentation 

simulations and identify their relationship with indentation hardness. 

The accurate estimation of the indentation response of those materials is of great 

importance due to their wide applicability in structural applications. For example, 

imprecise measurement of the mechanical response of rocks, may lead to failure of 

drilling wells in oil and gas industry. The major difference between pressure insensitive 

and cohesive-frictional materials is that the latter class exhibits a shear strength that scales 

with the hydrostatic pressure of the material; the higher the compressive hydrostatic 

pressure, the higher its shear strength. A specific characteristic of cohesive-frictional 

materials is that usually in compression tests exhibit plastic deformation, while in tensile 

tests display brittle behavior. Hence, due to their large hydrostatic compression strength, 

nanoindentation testing is the most suitable technique for characterizing the mechanical 

properties of these materials. Advanced modeling needs to take place in order to capture 

the mechanical response of cohesive-frictional materials. Some experimental and 

numerical indentation studies [19,20,166–170] have been performed to correlate the 
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cohesive-frictional strength parameters with indentation hardness, and evaluate 

computational results with experimental data to obtain scaling relations. Finite element 

modeling on cohesive-frictional materials showed that the Mohr-Coulomb criterion could 

accurately represent their indentation response. A special material that is assumed to 

comply with the Mohr-Coulomb yield criterion is the ultrastructure of bone [171–173]. 

9.1.2 Dimensional Analysis 

Before proceeding to the numerical analysis and given that hardness is the key parameter 

of the current study, dimensional analysis of conical indentation on a Mohr-Coulomb 

material will help us develop meaningful expressions. We recall that indentation hardness 

is defined as the ratio between maximum indentation load 𝑃 over the projected area of 

contact 𝐴𝑐 and these two dependent quantities can be expressed as: 

𝑃 = 𝑓(𝐸, 𝑣, 𝑐, 𝜃, 𝜑) (9.1) 

𝛢𝑐 = 𝑓(𝐸, 𝑣, 𝑐, 𝜃, 𝜑) (9.2) 

where 𝐸, 𝑣, 𝑐, 𝜑 represent the elastoplastic properties of the cohesive frictional material 

and 𝜃 the half-apex angle of the conical indenter, which for the case of Berkovich equals 

to 70.32°. From Buckingham Π theorem analysis, Equations (9.1) and (9.2) result in the 

following two dimensionless relations: 

𝑃

𝑐ℎ2
= 𝛱7 (

𝐸

𝑐
, 𝑣, 𝜃, 𝜑) 

(9.3) 

𝐴𝑐

ℎ2
= 𝛱8 (

𝐸

𝑐
, 𝑣, 𝜃, 𝜑) 

(9.4) 

and subsequently, the ratio between them defines another dimensionless relation; the 

hardness to cohesion ratio: 

𝐻

𝑐
=

𝛱7

𝛱8
= 𝛱9 (

𝐸

𝑐
, 𝑣, 𝜃, 𝜑) 

(9.5) 

In 2006, Ganneau et al. [19], observed that there is strong dependence between 𝐻/𝑐 ratio 

and cone indenter semi-angle 𝜃 which due to internal friction angle 𝜑 variations. 

Therefore, they proposed a dual-indentation procedure based on computational yield 

design theorems (fully plastic, 𝐸/𝑐 → ∞) and on the relation between 𝐻/𝑐 and two 
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hardness measurements for Berkovich (𝜃 = 70.32⁰) and Corner Cube (𝜃 = 42.28⁰) 

indenters. 

 

Figure 9-1: Upper bound solutions for 𝑯/𝒄 ratio for two conical indenter geometries: Berkovich 

and Cube Corner (data from [19]). 

Figure 9-1 illustrates the relation that the 𝐻/𝑐 obtains as a function of the angle of friction 

for these two conical indenter angles. It should be noted that for small friction angles, the 

two curves converge to the value for a Tresca material, given by Tabor as 𝐻/𝑐 = 2𝐻/𝑌 ≈ 

5.6. The practical result from the above procedure, is that indentation testing can assess 

the cohesive-frictional properties of a material provided experiments with two indenters 

are performed. It becomes apparent that the ratio of the hardness values obtained by two 

different indenters, here Berkovich and Cube Corner, becomes a unique function of the 

angle of friction: 

𝐻𝐵

𝐻𝐶𝐶
=

𝛱9(𝜑, 𝜃 = 70.320)

𝛱9(𝜑, 𝜃 = 42.280)
 

(9.6) 

The numerically calculated dependency of this ratio to the angle of friction is presented 

in Figure 9-2. It is obvious that the ratio of hardnesses gives access to the internal friction 

angle of a material through the results presented in Figure 9-2 and the higher the 

discrepancy in hardness between the two indenters the higher the angle of friction. Once 

the angle of friction is estimated, the cohesion value can be readily calculated by 

substituting the friction angle to a single 𝐻/𝑐 curve shown in Figure 9-1. While this 

methodology has been proven practical and important, the curves presented in Figure 9-1 
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and Figure 9-2, neglect the elastic component of the material by assuming fully plastic 

yield approach. Thus, in the current study we will employ the finite element analysis to 

quantify the effect of elasticity on the overall response. 

 

Figure 9-2: Hardness ratio (Berkovich/Cube Corner) as a function of internal friction angle(data 

from [19]). 

9.2 Finite Element Model 

9.2.1 Geometry and Mesh Details 

Two-dimensional axisymmetric finite element simulations are performed to investigate 

the elastic-plastic indentation response of cone on cohesive-frictional materials with 

various cohesion and friction angle values. For the case of conical indentation, the 

indenter was modeled as a rigid cone with half-apex angle of θ=70.3°. The geometrical 

details of the finite element model used in this study are the same as the one described in 

Chapter 3.4. The indentation simulations were restricted to depths up to 939 nm, in order 

to avoid any boundary effects. The continuum space is discretized using 4–node 

axisymmetric, isoparametric elements (CAX4–full integration). 

Roller boundary conditions were applied on the axis of symmetry and fixed boundary 

conditions on the bottom surface of specimen. We assume that the loading rate is slow 

enough such as static friction can securely model the interface response. Simulations 

proceeded in two steps: the indenter was firstly subjected to a ramped vertical 

displacement, followed by an indenter retraction to the original position which 
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corresponded to complete unloading at zero load. During this process the lower edge of 

the material was constrained vertically. Axisymmetric boundary conditions were used 

along the symmetry axis beneath the indenter region [64]. 

9.2.2 Mohr-Coulomb Yield Criterion 

Materials that display pressure-sensitive plastic behavior can be numerically approached 

by the Mohr-Coulomb (MC) yield criterion, in which the relation between critical shear 

strength 𝜏 and normal strength 𝜎 that defines the pressure-sensitive yield surface is: 

𝜏 = 𝑐 − 𝜎 tan𝜑 (9.7) 

where 𝑐 is the cohesion of the material and 𝜑 is the material angle of friction. Figure 9-3 

illustrates major yield criteria based on their pressure sensitivity. Tresca and von-Mises 

criteria used for modeling crystalline metals, which are pressure-insensitive materials. 

Both criteria are represented by prisms along the hydrostatic pressure axis, where Tresca 

yield criterion is illustrated by a hexagon prism and von-Mises by cylindrical prism (both 

open on the hydrostatic axis). On the other hand, Mohr-Coulomb and Drucker-Prager 

criteria, used for the characterization of pressure-sensitive materials, exhibit a shear 

strength that scales with hydrostatic pressure. Both criteria are represented by cones along 

the hydrostatic pressure axis, where Mohr-Coulomb is generated by an irregular hexagon 

and Drucker-Prager by a circle. The location of the point where the Mohr’s circle touches 

the failure envelope line is defined by the angle 2𝜃. 

In addition, the angle 2𝜃 relates to the frictional angle 𝜑 through: 

𝜑 = 2𝛽 −
𝜋

2
 (9.8) 

The Mohr-Coulomb criterion can be rearranged and stated as a function of the principal 

stresses: 

𝜎1 = 2𝑐
cos𝜑

1 − sin𝜑
+ 𝜎3

1 + sin𝜑

1 − sin𝜑
 

(9.9) 

where the second term of Equation (9.9) represents the compressive yield strength of a 

Mohr-Coulomb material 𝑌𝑐: 

𝑌𝑐 = 2𝑐
cos𝜑

1 − sin𝜑
 (9.10) 
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For the case of 𝜑 = 0⁰, the Mohr-Coulomb criterion reduces to the Tresca criterion, for 

which Equation (9.10) predicts that 𝑌𝑐 = 2𝑐. 

 

Figure 9-3: Yield criteria in the principal stresses space [174] where (a) represents pressure 

independent materials; Tresca and von-Mises, (b) represents pressure-sensitive materials; Mohr-

Coulomb and Drucker-Prager. 

The isotropic form of the Mohr-Coulomb material model is controlled via elastic modulus 

𝐸, Poisson’s ratio 𝑣, cohesion strength 𝑐 and friction angle 𝜑. By varying those properties 

we have generated parametric studies from the finite element simulations, to correlate the 

strength of cohesive-frictional materials with hardness values. Generally speaking, 

through compression testing and via stress-strain curves, the elastic modulus and the yield 

strength of materials can be calculated. Hence, for this study, the compressive yield 

strength 𝑌𝑐 and Poisson’s ratio 𝑣, are assumed to be constant for all numerical studies, in 

order to investigate how cohesion and friction angle affect the mechanical response of a 

Mohr-Coulomb material. By setting the initial values of 𝑌𝑐 = 5 GPa, 𝑣 = 0.17 (based on 

nanoindentation data for fused quartz) and 𝜑 = 0°-30°, and by solving Equation (9.10), 

the reduced cohesion values have been calculated for each friction angle such as to 

maintain the same yield strength value, Figure 9-4. 

(a) (b) 
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Figure 9-4: Estimation of reduced cohesion for constant compressive yield strength 𝒀𝒄 = 5. 

Table 9-1 summarizes the numerical simulations performed in the current study. Please 

note that selected values may seems unnatural due to their high values, but they scale 

down due to the self-similarity of conical indentation testing. 

  

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30

C
o
h
e
s
io

n
, 

c
[G

P
a
]

Friction angle, φ [⁰]



163 

 

Table 9-1: Material properties used for the finite element simulations. 

Model Name 𝑐 [GPa] 𝜑 [⁰] 𝛦 [GPa] 𝑣 [-] 𝐸/𝑐 [-] 

A: 28.8      

A1 2.50 0 72 0.17 28.8 

A2 2.29 5 72 0.17 31.44 

A3 2.10 10 72 0.17 34.29 

A4 1.92 15 72 0.17 37.5 

A5 1.75 20 72 0.17 41.14 

A6 1.59 25 72 0.17 45.28 

B: 72      

B1 2.50 0 180 0.17 72.0 

B2 2.29 5 180 0.17 78.6 

B3 2.10 10 180 0.17 85.71 

B4 1.92 15 180 0.17 93.75 

B5 1.75 20 180 0.17 102.86 

B6 1.59 25 180 0.17 113.21 

C: 288      

C1 2.50 0 720 0.17 288.0 

C2 2.29 5 720 0.17 314.41 

C3 2.10 10 720 0.17 342.86 

C4 1.92 15 720 0.17 375.0 

C5 1.75 20 720 0.17 411.43 

C6 1.59 25 720 0.17 452.83 

D: 2880      

D1 2.50 0 7200 0.17 2880.0 

D2 2.29 5 7200 0.17 3144.10 

D3 2.10 10 7200 0.17 3428.57 

9.3 Model Validation 

Prior to presenting any parametric analysis results the model was benchmarked against 

experimental data in order to confirm its accuracy and ability to realistically capture the 
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physical response of cohesive-frictional systems. Two benchmarking schemes were used 

that are presented next. 

9.3.1 Benchmark 1: Convergence to the Von-Mises response 

Experimental results on fused quartz are plotted against numerical results in Figure 9-5. 

The derived response of material with 𝜑 = 0 approaches the response of experimental 

findings and this can be stand as a verification – convergence study, of the finite element 

model and the selected input values of material’s properties. 

 

Figure 9-5: Convergence study for estimating input values of Load – displacement response for 

sharp indentation on fused silica, where the dashed line represents the results of experimental and 

solid lines indicates the results of numerical findings. 

9.3.2 Benchmark 2: Indentation Bulk Metallic Glass 

The equilibrium state of a metal is reached when located in its lowest energy state 

structure and practically is characterized by polycrystallization instead of single crystals, 

due to varying grain sizes and shapes. A special family of metals, bulk metallic glasses – 

amorphous alloys, are materials characterised by the absence of crystal structures due to 

extreme cooling rates from their liquid phase. As a result, grain boundaries and 

dislocations that are essential in crystalline materials, do not exist and bulk metallic 

glasses exhibit superior mechanical properties such as: strength-to-weight ratio, large 

elastic deformation capacity, anti-corrosion resistance and high fracture toughness which 
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considered them today as emerging structural candidates. The first metallic glass was 

made in 1960 from a binary metallic alloy Au80Si20 by cooling rates of over 105 K/s 

[175,176]. At that time, metallic glasses could only be hundreds of microns thick which 

was too thin for practical applications. In the early 1980s, it was found that the alloying 

procedure of metals with varying atomic size, reduces the cooling rate and therefore bulk 

metallic glasses could be formed in larger scales. As a result, amorphous metal alloys 

became a topic of considerable research for structural and sport equipment applications. 

Experimental results of Berkovich indentation data on a commercially available bulk 

metallic glass Zr41.25Ti13.75Cu12.5Ni10Be22.5 (nominal composition in at.%) [169] are 

illustrated in Figure 9-6 (a). In the current study, we examined the response of the current 

material under finite element analysis, by assuming either the von-Mises or Mohr-

Coulomb criteria and the results are also superimposed in Figure 9-6 (a). Both materials 

were constructed with equal 𝐸 = 96 GPa, 𝑣 = 0.36, 𝑌-𝑐 = 834 MPa and 𝜑 = 7.4⁰ for Mohr-

Coulomb material. It is obvious, that MC model can predict experimental data with high 

accuracy which confirms its ability to simulate effectively cohesive-frictional material, in 

contrast with the von-Mises model. The effect of frictional angle plays a major role in the 

indentation response of a material, since it is influenced by the normal stress and can 

increases the indentation resistance significantly, here in a factor of 2. Moreover, this 

increased resistance is demonstrated in Figure 9-6 (b) - (c), where von-Mises material 

exhibits “softer” response against MC material, due that its surface which is in contact 

with indenter has been covered by a fully plastic zone. 
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Figure 9-6: (a) Indentation response of bulk metallic glasses, where numerical results of Mohr-

Coulomb materials are in excellent agreement with data from literature [169]. In contrast, the 

effect of frictional angle is demonstrated in terms of (b) stress, where von-Mises material exhibit 

decreased resistance and in terms of (c) strain, where a fully plastic zone under the contact with 

conical indenter was predicted for a von-Mises material. 
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9.4 Numerical Results on Cohesive-Frictional Materials 

9.4.1 𝑷 − 𝒉 responses 

Numerical 𝑃 − ℎ curves were extracted from finite element simulations for a cohesive-

frictional material with a series of 𝑐 − 𝜑 combinations as shown in Table 9-1. Figure 9-7 

(a) illustrates the results of A:28.8 group including the experimental data on quartz. It is 

obvious that any increase of the internal angle of friction leads to an increased resistance 

to penetration; i.e. cohesive-frictional material shows an enhanced hardness response. If 

one looks at the stress distributions within the indented materials it becomes apparent that 

the stress zones increases as 𝜑 increases. In addition, larger applied loads are required to 

overcome the internal friction of a material and generate plastic deformations. As a result, 

while 𝜑 increases, materials exhibit more elastic deformation, and this can be obtained 

from the trend of the residual final depth ℎ𝑓 which shifts towards the origin for higher 𝜑. 

Similar, and more enhanced behaviour is extracted for the second group B: 72, Figure 9-7 

(b), for which the indentation resistance enhancement is more obvious, due to the higher 

mismatch between elastic modulus 𝐸 and cohesion 𝑐. As this ratio increases, numerical 

materials undergo larger plastic deformations and subsequently a higher percentage of the 

work done is dissipated. 

Figure 9-8 presents the computational curves for the larger 𝐸/𝑐 ratios. In both figures a 

“wavy” loading curve is obtained, which correlates with the larger 𝐸/𝑐 mismatch. This 

is a numerical characteristic which takes place during the loading phase. Every element 

that meets the rigid indenter, rapidly undergoes plastic deformation, due to the high 

contact pressure. In addition, Figure 9-8 (b), underlies that each material exhibit fully 

plastic behavior due that the unloading portion is almost perpendicular with the horizontal 

plane, suggesting that this category of materials approaches the response of the elastic-

perfectly plastic solids. 
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Figure 9-7: Resulting load versus indentation depth curves of simulated data on systems where 

(a) 𝑬/𝒄 = 28, (b) 𝑬/𝒄 = 72, by varying the friction’s angle value 𝝋. 
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Figure 9-8: Resulting load versus indentation depth curves of simulated data on systems where 

(a) 𝑬/𝒄 = 288, (b) 𝑬/𝒄 = 2880, by varying the friction’s angle value 𝝋. 
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microscope. Exporting the contact area for materials that exhibit high elastic recovery 

may lead to overestimated mechanical properties values. Furthermore, analytical 

approaches have been suggested in the literature, while the one proposed by Oliver and 

Pharr [2] is the most popular and can capture the area of contact with high precision, 

assuming that sink-in response takes place. Figure 9-9 illustrates the deformation profiles 

of the indented materials for all numerical groups. The contact depth ℎ𝑐, which is defined 

as the vertical distance from maximum penetration depth ℎ𝑚𝑎𝑥 until the point the 

material’s surface is in contact with the indenter, tends to increase as 𝐸/𝑐 increases. The 

first two groups exhibit sink-in behaviour, while in the last two groups, the material 

beneath cone turns to pile-up for all internal friction angles. The deviation between 

deformed curves for each group, is attributed to the elastic-plastic deformation which is 

driven by the value of friction angle. 

 

Figure 9-9: Deformation profiles in fully loaded configuration for all simulated groups. 
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Figure 9-10 shows the displacement profiles for the unloaded configuration of all 

numerical studies. Here, the elastic recovery is very distinct for the first two groups of 

𝐸/𝑐 materials. Again, as the internal friction angle increases, elastic deformation is the 

dominant phase of material’s behaviour. This elastic work, as it can be observed from 

Figure 9-10 (a)-(b), by following the trend of imprint, aims to cause a curved profile 

response as friction angle increases. As a result, the surface that is close to the contact 

area, tends to pile up after the retraction of indenter to its initial position. This behaviour 

implies plastic deformation during unloading phase which has not been mentioned earlier 

in the literature and will be examined later. 

 

Figure 9-10: Deformation profiles in fully unloaded configuration for all simulated groups. 
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As 𝐸/𝑐 increases, Figure 9-10 (c)-(d), pile-up exists which corresponds to large plastic 

deformation. Although for materials with 𝐸/𝑐 = 288 exhibit combined elastic-plastic 

deformation, since they show elastic recovery depending on friction angle value. For the 

case of 𝐸/𝑐 = 2880 the undeformed profiles are identical except from the value of contact 

depth, which relates to the deviation of applied load and friction angle. That response 

indicates fully plastic deformation. 

We have proved in Section 3.7.1, by applying Equation (3.5) that a von-Mises material 

with mismatch ratio of 𝐸/𝑌 > 100, displays pile-up phenomena and in such cases the use 

of the Oliver and Pharr methodology is not recommended, due to the underestimation of 

the contact depth and the projected area values. Similar dimensional analysis as Equation 

(3.5) for cohesive-frictional material results: 

ℎ𝑐

ℎ
= 𝛱10 (

𝑐

𝐸
, 𝜑, 𝑣, 𝜃) (9.11) 

Figure 9-11 (a) shows the numerical results of dimensional group 𝛱10 as a function of 

internal friction angle. Furthermore, results from Equation (2.42) are plotted against 

numerical findings, where both are in excellent agreement since material exhibit sink-in 

behaviour, for 𝑐/𝐸 > 0.1. As this ratio decreases (which corresponds to values larger than 

𝐸/𝑐 = 250), the contact depth is higher than the maximum depth. Inside the indented 

material, large plastic zones are generated and as a result material volume around contact 

tends to move outside the contact surface, resulting in pile-up phenomena. Under these 

conditions, Equation (2.42) fails to obtain the true contact depth, which has its origin on 

an elastic contact problem formulation. 

The effect of accurate contact depth is illustrated in Figure 9-11 (b), where the error in 

estimating the projected contact area is plotted for a range of 𝑐/𝐸 mismatches. The Oliver 

and Pharr methodology is in good agreement with computational results for values of 

𝑐/𝐸 > 0.01. For pile-up behaviour, the deviation between the two methodologies is 

significant (up to 65%) and for this case where experimentalists use O&P procedure, they 

overestimate the indentation hardness and modulus of indented material. 
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Figure 9-11: (a) Contact depth as obtained using numerical techniques and Oliver and Pharr 

method for all simulated groups. (b) Error in contact error estimation between the two methods. 

For 𝒄/𝑬 < 0.01 the percentage error in the estimation of projected contact area ranges from 15 – 

65%.  

As described in Chapter 2, although Equation (2.4) has been derived for conical indenters 

on linear elastic materials, it can be accurately use for any axisymmetric indenter and 

even elasto-plastic materials (Von-Mises type) provided the area of contact is properly 

accounted for [3,22]. The validity of the equation in the case of cohesive-frictional 

materials has not been tested. Rearranging Equation (2.4) it can result in a general 
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relationship between elastic modulus 𝐸, Poisson’s ratio 𝑣, contact radius 𝑎, at maximum 

indentation depth ℎ𝑚𝑎𝑥 (assuming rigid indenter): 

1 − 𝑣2

𝐸𝑎

𝑑𝑃

𝑑ℎ
|
ℎ=ℎ𝑚𝑎𝑥

= 2 (9.12) 

Cheng and Cheng [109] through finite element simulations on work hardening materials 

under conical indentation (𝜃 = 68⁰) shown that Equation (9.12) remains constant and 

equals to 2.16 over a wide range of 𝑌/𝐸, strain-hardening exponents and pile-up 

phenomena. This greater than 2.0 value, can be credited to the wrong semi-angle 𝜃 used 

in their calculations. Figure 9-12 illustrates the numerical indentation response of 

Equation (9.12) as a function of 𝑐/𝐸 for cohesive-frictional materials. Impressively, the 

dimensionless parameter appears to be independent from the cohesion-to-stiffness ratio, 

the internal friction angle and unaffected from pile-up or sink-in phenomena, suggesting 

that Equation (2.4) is a universal equation of indentation analysis that continue to hold 

true even for cohesive-frictional materials. 

 

Figure 9-12: Numerical results of frictionless conical indentation on an elasto-plastic cohesive-

frictional material. The dimensionless parameter [(𝟏 − 𝒗𝟐)/𝑬𝒂]𝒅𝑷/𝒅𝒉, appears to be 

independent of the cohesion-to-stiffness 𝒄/𝑬, the friction angle 𝝋 and piling-up or sinking-in 

phenomena. 
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9.4.3 Work of Indentation 

The mechanical response of indented materials can also be estimated from the 

information contained in the 𝑃 − ℎ curve, without the need of calculating the projected 

area of contact [134,177,178]. The area under the loading curve defines the total work 

done during indentation testing 𝑊𝑡, which is the result of absorbed energies by elastic and 

plastic deformations; 𝑊𝑒 and 𝑊𝑝, see Chapter 3.3.3. By applying dimensional analysis, 

Cheng et al. [56,62] proposed a linear relationship between the ratio of hardness to 

modulus 𝐻/𝐸∗ and the ratio of plasticity index (𝑊𝑝/𝑊𝑡). Through finite element 

simulations they have shown that this linear correlation accounts for a wide range of 𝑌/𝐸, 

Poisson’s ratio and strain-hardening exponents. In Figure 9-13, computational results of 

Mohr-Coulomb materials for friction angles of 0⁰ and 5⁰ and a variety of 𝐸/𝑐 exhibit this 

linear relationship between 𝐻/𝐸∗ (an index of tribological behaviour) and plasticity 

index. 

 

Figure 9-13: Numerical relationship between 𝑯/𝑬* and [1-𝑾𝒆𝒍/𝑾𝒕] for internal frictional 

angles 𝝋 = 0⁰, 5⁰ and various 𝑬/𝒄, for cohesive-frictional material. 

Although, while internal friction angle increases, there is a linear deviation trend (10 ≤

𝜑 ≤ 25) that is independent from the mismatch between elastic modulus-to-cohesion 

ratio, Figure 9-14 (a). Therefore, the response of material which are characterized by a 

high-pressure sensitivity response, must be considered and analysed with all other 

parameters that may affect its behaviour, before trying to extract their mechanical 
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properties from energy-based methods. This behaviour is better illustrated in Figure 9-14 

(b), where the evolution of plasticity index is plotted with respect of frictional angles. For 

𝜑 ≥ 10, it seems that the generated plastic zone during indentation contact is eliminating 

due that elastic response is the dominant phase of such material. Furthermore, as 𝐸/𝑐 

decreases this behaviour becomes more aggressive. 

 

Figure 9-14: (a) Numerical correlation between 𝑯/𝑬* and [1-𝑾𝒆𝒍/𝑾𝒕] for various 𝑬/𝒄 

cohesive-frictional materials. (b) Evolution of plasticity index for a wide range of frictional 

angles. 
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depth ℎ𝑚𝑎𝑥. They have shown that their computational results are independent of indenter 

geometry 𝜃 and mechanical properties. It has been proved in Chapter 6.3 that this relation 

is also valid for auxetic materials by applying finite element simulations under three 

different indenter geometries. In Figure 9-15, results on this relationship are plotted for a 

wide range of 𝐸/𝑐. In addition, Equation (6.4) which has been proposed by Lawn and 

Howes [127] is in great agreement with the numerical results. Hence, plasticity index over 

ℎ𝑓/ℎ𝑚𝑎𝑥 is independent of elastic-to-cohesion ratio, internal friction angle, pile-up or 

sink-in phenomena. 

 

Figure 9-15: Plasticity index as a fuction of dimensionless parameter 𝒉𝒇/𝒉𝒎𝒂𝒙 for cohesive 

frictional materials. 
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mechanical properties. As 𝐸/𝑐 increases, plastic strains are generated inside the indented 

material and the hardness-to-cohesion is dependent extremely on friction angle value. For 

𝐸/𝑐= 72 the hardness-to-cohesion enhancement equals to 3.0 from 𝜑 = 0°-25°. This 
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enhancement in 𝐻/𝑐 is increasing as 𝐸/𝑐 increases; for 𝐸/𝑐 = 288, 𝐻/𝑐 = 3.65 from 𝜑 = 

0⁰ - 25⁰. In addition, if ones focuses on individual frictional angles, he/she will observe 

that the discrepancy between 𝐻/𝑐 is increasing with the increase of frictional angle. As 

the material becomes more plastic, i.e., large 𝐸/𝑐, the divergence on hardness-to-

cohesion is minimized due that the plasticity index of indentation data is approaching 

unity, 𝑊𝑝/𝑊𝑡 → 1. Furthermore, comparing results of this study with Ganneau et al. 

results, it is noticeable that while 𝐸/𝑐 increases, numerical results are approaching the 

results of yield design (fully plastic). For friction angles up to 10⁰ the two methodologies 

are in excellent agreement and for 𝜑 > 10⁰, where due to high friction angles, the strength 

of materials is increasing significant, the two methodologies start to deviate. 

 

Figure 9-16: Solutions for the hardness-to-cohesion ratio of Mohr-Coulomb elastic-plastic 

materials for a wide range of internal friction angles. 

At this point, we want to state again that through an indentation test, the elastic modulus 

of material is extracted from the slope of unloading curve at maximum indentation depth, 

due that the retraction of indenter is always assumed to be elastic. Although, as mentioned 

in Figure 9-10 the unloading curve of materials with relatively low 𝐸/𝑐 mismatches, 

seems to exhibit plastic deformations. For that reason, the plasticity dissipation energy 

has been extracted during indentation simulations, Figure 9-17. At low profile values 

(initial contact) the plastic dissipation is zero, due that early contact is elastic. While the 

penetration depth increases towards its maximum predefined value (corresponds to value 

1 in numerical profile) the plastic dissipation increases too. Now, for numerical profiles 
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from 1 -2 which describe the unloading portion, one is expecting that the plastic zone 

inside the material will be constant, as performed in Figure 9-17 (b), for material of 𝐸/𝑐 

= 2880 and 𝜑 = 5. However, for low 𝐸/𝑐 ratios, Figure 9-17 (a), the plastic dissipation 

during unloading increases linearly until the complete retraction of the indenter, at a value 

of ~1.4 in numerical profile. 

 

Figure 9-17: Evolution of numerical plastic dissipation response during numerical profile; 0 – 1 

corresponds to loading profile at maximum indentation depth, 1 – 2 links the unloading profile, 

for cohesive-frictional materials (a) 𝑬/𝒄 = 72 and 𝝋 = 5, (b) 𝑬/𝒄 = 2880 and 𝝋 = 5. 
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In order to better capture this behavior, the plastic zone boundaries were derived from 

computational solutions, in which equivalent plastic strains for a Mohr-Coulomb material 

are defined as: 

𝜀𝑝𝑙 =
1

𝑐
∫𝜎 : 𝑑𝜀𝑝𝑙 (9.13) 

Figure 9-18 displays the equivalent plastic strains that are generated in the material of 

𝐸/𝑐 = 72 and 𝜑 = 5. The maximum value of 𝜀𝑝𝑙 contour legend, has been downgraded in 

order to enhance its sensitivity on lower values in order to investigate any changes in 

distribution during unloading step. Figure 9-18 (a) states the plastic strains shape at fully 

indentation load. In Figure 9-18 (b) (c) (d), indenter has been retracted at 40%, 80% and 

100%, respectively. Although the major distribution under the area of contact remains 

virtually unaffected, plastic equivalent strains are generated near the contact radius and 

expand until full unloading is achieved. This can be explained, that during unloading, the 

large strain energy that is imposed during indenter’s penetration, drives material response 

in regions near to contact area to be deformed plastically. 

 

Figure 9-18: Equivalent plastic strain-profiles for 𝑬/𝒄 = 72 and 𝝋 = 5. The maximum contour 

value was downgraded in order to show the effect of generated strains during unloading; (a) fully 

loaded condition, (b) retraction of 40%, (c) retraction of 80%, (d) fully unloaded condition. 
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9.5 Chapter Summary 

Numerical data presented in this chapter provides quantitate links between indentation 

hardness and strength properties of cohesive-frictional materials. Compressive yield 

strength was kept constant for all numerical studies in order to investigate the influences 

on cohesion and frictional angles for a large span of 𝐸/𝑐 ratio. Dimensional analysis 

yielded characteristic relationships of this class of materials regarding indentation 

analysis; dimensionless parameter [(1 − 𝑣2)/𝐸𝑎]𝑑𝑃/𝑑ℎ appears to be independent of 𝑐, 

𝜑 and pile-up or sink-in phenomena, plasticity index maintains its relationship with 

ℎ𝑓/ℎ𝑚𝑎𝑥 as for elastic and von-Mises materials. The results of hardness-to-cohesion ratio 

for a wide range of frictional angles are in excellent agreement with results from literature. 

In addition, through this study we captured the elastoplastic response of this parameter in 

order to understand the mechanisms based on the plasticity extend inside the material. 

This technique holds great promise for performing similar numerical studies under Cube 

Corner indentation and then combining both results for extracting the cohesion and 

friction-angle of Mohr-Coulomb materials. Finally, numerical data suggest that plastic 

deformation can even occur during unloading which is something that has been 

overlooked in the literature and could be significant in certain circumstances; this 

phenomenon was attributed to the plastic flow that might occur after the redistribution of 

strain energy upon unloading. 

  



182 

 

 

 

 

 

 

 

 

 

 

Part V 

V CONCLUSIONS AND 

PERSPECTIVES 

 

  



183 

 

 

 

 

Chapter 10 

 

10 Concluding Remarks 

The aim of this thesis was to explore and resolve various open issues regarding 

nanoindentation testing using finite element modeling. Furthermore, it aimed in obtaining 

contact mechanics relationships for the understanding and modeling of the indentation 

response of several emerging material systems. This chapter summarizes the main results 

and contributions that resulted from this study. Based on these results, some future 

research perspectives are proposed, and preliminary numerical results are presented. 

10.1 Summary of Results 

Finite element studies of nanoindentation on advanced material systems have revealed 

several contact mechanics relationships and aimed the thorough understanding of 

underlying physics at stake in each system. Numerical models have been tailored and 

utilized over several parametric studies and a variety of material responses in order to 

propose protocols to experimentalists for design of experiments and investigate the 

indentation response, to introduce new methodologies and correction factors for the 

accurate calculation of mechanical properties. The most important results are summarized 

below by topic: 
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10.1.1 Auxetic Materials 

• Through numerical modeling we have shown that the increase in indentation 

resistance can be traced to the shear stiffening and the reduction of that contact 

area that auxetic materials exhibit when compared to conventional materials. 

• The rapid amplification of hardness observed into the negative regime (auxetic 

materials) for which a seven-fold enhancement for the lowest 𝑣 simulated in this 

study (𝛨𝜈= -0.9/𝛨𝜈=0= 7.13) is observed under conical indentation of 𝜃 = 70.3⁰, 

while for spherical indentation a maximum six-fold increase was extracted at 𝑣 = 

-0.9. 

• Adhesive indentation contact in both cases (cone, sphere) leads to a minor increase 

of the indentation resistance of auxetic materials due to the decrease of area of 

contact, while the decrease of indenter’s angle up to 𝜃 = 60⁰ results to a 12-fold 

enhancement of hardness for material with 𝑣 = -0.9. 

• For elastoplastic auxetic materials, any existence of plastic deformation starts to 

weaken this advanced characteristic and for high plasticity index values, materials 

undergo softening. Hence, any enhancement on hardness, depends entirely on the 

elastic response of auxetic materials and needs to be maintained under various 

loading conditions if one is to ensure these enhanced characteristics. 

• In order to analyze indentation experiments on auxetic materials one must correct 

the analytical solution with the proposed correction factors. 

10.1.2 Coating Systems 

• A critical literature review showed that indentation data on coating systems is 

required to cover the first plateau of sigmoidal curve in order to eliminate any 

misleading fitting on film’s extrapolated properties. 

• Finite element studies on hard coatings show that plastic deformations during 

indentation experiments eliminate the resistance of these systems. 

• Pile-up phenomena may appear for various moduli mismatches, which can lead 

to overestimation of the mechanical properties for the case of the projected contact 

area as extracted by the Oliver and Pharr methodology. 

• Computational results on the indentation of coated systems suggest that the 

sigmoidal behaviour of composite moduli (coating and substrate) scales with 𝑎/𝑡 
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in a universal fashion and independently from material properties, film thickness 

and elastic moduli mismatch. 

• For the analysis through the Oliver and Pharr methodology of indentation data on 

thin films, ones must calculate the allowable region based on the moduli mismatch 

as proposed in Figure 8-16. 

• A combined numerical-experimental methodology is proposed for calculating the 

mechanical properties of thin films (demonstrated on an a-C:H/Si system). The 

exact details of the indenter geometry can play a pivotal role in the response and 

should be included in the analysis when sub-50 nm indents are considered.  

10.1.3 Cohesive-Frictional Materials 

• Computational results provide indentation relationships between hardness and 

strength properties of cohesive-frictional materials. 

• Combined parametric studies of cohesion and frictional angles have been 

performed by letting the compressive yield strength of materials constant through 

all studies. 

• Dimensional analysis lead to characteristics indentation relationships which are in 

excellent agreement with literature. 

• Effect of pile-up phenomena have been examined and quantified for Mohr-

Coulomb materials. 

• The results of hardness-to-cohesion ratio for a wide range of frictional angles are 

in excellent agreement with results from literature.  

• Numerical elastoplastic response of hardness-to-cohesion has been studied in 

order to quantify the effect of the size of plastic region inside the material. 

• Finally, numerical data exhibit plastic deformation during unloading path and that 

behavior is attributed to plastic flow response after the release of strain energy for 

low 𝐸/𝑐 ratios. 

10.2 Future Perspectives 

Several ideas have been generated through the implementation of this thesis that will 

serve as the basis for future investigations. Some of those are separately discussed below: 
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10.2.1 Computational Fracture Mechanics on Coating Applications 

A parameter of investigation can be the adhesion between coating and substrate, where 

in almost all cases in literature, it is assumed to be perfectly bonded [48,179–181]. Owing 

to 𝑌/𝐸 mismatch or work hardening exponents, the coating may subject to delamination 

process or in mechanisms where excluded in existing models (cracking, piling-up). As 

well as the contact which is considered as frictionless and the indenter as rigid, drives in 

significant errors, in cases of stiff coatings. Hence frictional effects in the indenter–

material interface can be included in the analysis through an isotropic Coulomb model. 

As future work, one can introduce fracture elements between the interface of the thin film 

and substrate. As a result, delamination processes can be investigated and compared to 

experimental results (Figure 10-1). 

 

Figure 10-1: SEM images of secondary electron mode show cracks on the surface of (a) titanium 

alloy, (b) pure niobium, films on silicon substrates, due on indenter’s load.  

10.2.2 Super Hard Materials/Films 

During indentation on very hard materials the response might be influenced by the 

mechanical characteristics of the indenter. In the majority of nanoindentation tests a 

diamond indenter is used which for most practical applications can be safely considered 

as rigid and any deformation could be neglected during the analysis. In cases of very hard 

materials (𝐻 > 30 GPa) the elastic and in some cases plastic characteristics of the 

diamond probe should be included in the analysis.  

(a) (b) 

50 μm 100 μm 
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It has been reported in the literature that hard materials with mechanical properties in the 

order of elastic modulus of 550 GPa and of hardness of 60-100 GPa [182–186] have been 

synthesized and characterized. These “innovative” materials turned the attention of 

research community into the synthesis technique and also to their mechanical analysis. A 

critical review paper, that was published in 2012 [187] states a variety of errors that could 

have been performed in analysis. According to Fischer-Cripps, their major errors derived 

from; values of instrument compliance and initial penetration depth, fixed value for the 

power law exponent in 𝑃 − ℎ curves, correlation of Knoop hardness with Martens 

hardness, the value of area of contact and arbitrary constraint factor (𝐶 ≡ 𝐻/𝜎𝑦). 

The assumption of rigid indenter when it penetrates into superhard materials may also 

lead to miscalculated mechanical properties. The effect of indenter’s deformation is a 

major key, to be able to characterize material’s properties. We here relax this assumption 

and perform preliminary parametric analysis of the indentation process using the 

diamond’s mechanical characteristics. Hence, we developed a numerical axisymmetric 

model (Figure 10-2), CAX4 elements, with the potential of a deformable indenter. The 

‘semi–infinite’ half space is modeled as a 101×101 μm2 domain. 

 

Figure 10-2: Finite element model for the study of supehard materials, in where indenter is 

modeled as axisymmetric deformable solid with semi angle 70.3°. 

In Figure 10-3, we present our preliminary results for elastic indenter (𝐸 = 1141 GPa, 𝑣 

= 0.07) and elastic-perfectly plastic materials (𝐸 = 500 GPa, 𝑣 = 0.3, 𝑌 = 0.5, 1 GPa). 

Axis of symmetry 

19.7° 
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Simulations were performed in a displacement driven approach until the maximum 

predefined depth is reached. As shown in Figure 10-3 a material with 𝑌 = 1 GPa results 

in minimum penetration depth than other material. This attributes to the elastic 

deformation that indenter materials undergo, Figure 10-3 (b). Although for these selected 

values indenter’s deformation may assumed as minimal, for larger yield stresses values 

would play a significant role in the overall indentation response of superhard materials. 

As future study, we want to apply parametric studies through various indented materials; 

auxetics, cohesive-frictional materials and evaluate Hertz’s Equation (2.13) in such 

extreme cases. 

 

Figure 10-3: Primary 𝑷 − 𝒉 results on superhard materials for deformable indenter where (a) 

corresponds to the response of von-Mises materials and (b) to the indentation response of conical 

indenters. 

10.2.3 Auxetic Structures for Biomedical Applications 

 

Figure 10-4: (a) Conventional stent structure, (b) auxetic honeycomb stent structure, which were 

design in SolidWorks software, Dassault Systemes. 
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From an application perspective, one can study the numerical strength of auxetic 

structures and design a tailored structure for stent applications, see Figure 10-4. A stent 

is a small medical structure comprising an expandable mesh-like tubular geometry. As 

mentioned in Chapter 5, auxetic materials have the ability to contract under compressive 

stresses and to expand laterally under tension. Therefore, not only auxetic stents will 

enhance the mechanical properties of conventional stents but will also minimize any 

tissue adhesion damage. 

10.2.4 Numerical response of cohesive-frictional materials under Cube 

Corner indentation 

Dual indentation approach that has been developed by Ganneau et al., [19] it is 

implemented in many studies for extracting experimentally the mechanical properties of 

pressure-sensitive materials. In this thesis, we have performed numerical indentation 

studies by assuming the geometry of a Berkovich indenter (Chapter 9). Hence, in order 

to provide practical knowledge to experimentalists, similar studies must be performed 

with Cube Corner indenter, to extract new hardness-to-cohesion curves that can deliver 

the elastoplastic behavior and mechanical properties (𝑐, 𝜑) of Mohr-Coulomb materials. 

10.3 Concluding Remarks 

We have presented in this thesis a numerical approach for assessing the mechanical 

properties of advanced materials under nanoindentation simulations. We have calculated 

the existence of crucial scale parameters that must lead the indentation response of 

corresponding systems. Furthermore, we proposed correction factors or methods for 

eliminating any inaccuracies and correct the elastic theory based on the behavior of those 

structures. It is our hope that results of this thesis will contribute to the field of small scale 

mechanical testing and form the basis for further developments in the fields of 

instrumented indentation, auxetic materials testing and design, thin film mechanics and 

testing of cohesive-frictional materials, ultimately leading to new and tailored-made 

optimized materials/structures. 
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APPENDIX A Sample Input File 

This is a general description of an input file, that used on this thesis for modelling 

nanoindentation technique: 

A1. Mesh Generation 

** Mesh definition 

*Node, nset=komvoi 

Node number, x-coordinate, y-coordinate 

… 

*node, nset=ref_point (definition of reference point for rigid surface – 

indenter) 

Node number, x-coordinate, y-coordinate 

*Element, type=CAX4, ELSET= indented material [definition of element family] 

Element number, node 1, node 2, node 3, node 4 

… 

*Solid section, elset=indented material, material=halfspace, controls=HGC 

*Section controls, Name=HGC, HOURGLASS=stiffness 

 

A2. Materials 

**Material Property Definition 

**elastic properties 

*ELASTIC 

<Emod>, <pois> 

**yielding properties 

**von Mises 

*plastic 

*<ys> 

**Mohr Coulomb material 

*Mohr coulomb 

<Phi>, <Psi> 

*Mohr coulomb hardening 

<c> 

 

A3. Boundary Conditions 

**Axisymmetric condition for the side elements dx=0 

*Boundary 
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side elements, 1 

** Boundary for the restriction of indenter dx=0 and drz=0 

*Boundary 

reference node assigned name, 1 

reference node assigned name, 6 

** Fixed condition for the bottom elements dx=0 and dy =0 

*Boundary 

bottom elements, 1, 2 

** 

 

A4. Contact Definition 

** definition of the elements that may be in contact with rigid analytical 

surface of indenter 

*… 

*Surface, type=ELEMENT, name=target 

Name of the contact elements 

*Surface, type=segments, name=indenter 

start, coordinates x, y 

line, coordinates x, y 

** if indenter is sphere, then the command is circle instead of line 

*RIGID BODY, REF NODE=name of reference node, ANALYTICAL SURFACE=indenter 

*CONTACT PAIR, INTERACTION=ROUGH 

target, indenter 

*SURFACE INTERACTION, NAME=ROUGH 

**Definition of friction contact between indenter and material 

*friction 

<fric> 

 

A5. Definition of loading step 

*Step, name=Step-1, nlgeom=YES, inc=10000, UNSYMM=YES 

punch 

*Static 

**Definition of time steps; initial increment, minimum increment and maximum 

increment 

0.000015, 1., 1e-05, 0.005 

*BOUNDARY 

Reference node location, <penetration> 

** where penetration defines the maximum indentation depth 
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*controls,parameters=field 

0.05,0.1 

**output print information 

*Restart, write, frequency=1,overlay 

*PRINT,CONTACT=YES 

*CONTACT CONTROLS, FRICTION ONSET=DELAY 

*CONTACT PRINT, SLAVE=target 

*NODE PRINT, FREQUENCY=1 

U 

*OUTPUT, FIELD,F REQUENCY=1 

*NODE OUTPUT 

U 

*node output, nset=bottom elements 

RF 

*node output, nset=reference point 

U 

*ELEMENT OUTPUT 

S 

PEEQ 

*OUTPUT, HISTORY, FREQUENCY=10 

*CONTACT OUTPUT, nset = contact elements 

*ENERGY OUTPUT, VARIABLE=PRESELECT 

*End Step 

 

A6. Definition of unloading step  

*Step, name=Step-2, nlgeom=YES, inc=1000, UNSYMM=YES 

return to original position 

*Static 

0.00015, 1., 1e-05, 0.005 

*BOUNDARY, OP = MOD 

Reference node location, 0.0 

**output print information 

*Restart, write, frequency=1,overlay 

*PRINT,CONTACT=YES 

*CONTACT CONTROLS, FRICTION ONSET=DELAY 

*CONTACT PRINT, SLAVE=target 

*NODE PRINT, FREQUENCY=1 

U 
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*OUTPUT, FIELD, FREQUENCY=1 

*NODE OUTPUT 

U 

*node output, nset=bottom elements 

RF 

*node output, nset=reference point 

U 

*ELEMENT OUTPUT 

S 

PEEQ 

*OUTPUT, HISTORY, FREQUENCY=10 

*CONTACT OUTPUT, nset = contact elements 

*ENERGY OUTPUT, VARIABLE=PRESELECT 

*End Step 
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APPENDIX B Mesh Information 

The region area beneath the indenter experiences large strain distribution and numerically 

speaking is the most important parameter that need to be defined. This region should be 

meshed fine enough to capture the mechanical response of the contact and to obtain 

accurate generated distribution of stresses and strains inside the material. In addition, a 

coarser mesh must be used further away from the indenter tip in order to reduce the 

computational time. A mesh sensitivity study should be performed to determine the 

appropriate size and number of elements. A variety of mesh sensitivity studies have been 

proposed in the literature [188–190], where they either compare the load-displacement 

curves for different element sizes, or they study pile-up changes by increasing the number 

of elements in the contact region.  

In this thesis, two mesh sensitivity analysis were carried out; the first by minimizing the 

element size near to the area of contact, to investigate the desired size that captures the 

indentation response within minimal computational time and high accuracy of results. As 

illustrated in Figure B-1, the value of maximum indentation load is kept constant for 

element size values smaller than 200 nm. Furthermore, in our case we wanted to compare 

numerical results with experiments of ℎ𝑚𝑎𝑥 = 500 nm, and thus we have set the minimum 

element size to 50 nm in order to collect enough data for analyzing 𝑃 - ℎ curves. 

 

Figure B-1: Convergence study by minimizing the element size near to the area of contact. 

Material was modeled as elastic-perfect plastic; 𝐸 = 115 GPa, 𝑣 = 0.32, 𝑌 = 500 MPa. 
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The second convergence study was performed by comparing the variation of load-

displacement curves for different element sizes as shown in Figure B-2. While the two 

numerical models characterized be a deviation of 10 regarding their element size, both 

exhibit identical indentation response; the deviation of the maximum indentation load is 

lower that 3% and the deviation of the resulting elastic modulus of the material is lower 

than 1%, which verify the accuracy of our finite element results. Here, it must be stated 

that the minimum element size in nanoindentation simulations must be related with the 

maximum indentation depth. As was explained in Chapter 8.3.3, in cases of elastic or 

elastic-perfect plastic materials, surface materials may undergo numerical stiffening in 

large indentation depths and therefore larger element sizes must be used in that case. 

 

Figure B-2: Mesh sensitivity study to investigate the effect in 𝑃 − ℎ curves. 

Furthermore, we have studied the influence of mesh refinement on two different 

numerical models (see Figure 3-3 – bulk model and Figure 8-2 – coating model) with the 

same minimum element size and different partition pattern, through the numerical 

indentation response of an elastic auxetic material with 𝐸 = 100 GPa and 𝑣 = -0.9. 

Analysis results are presented in Table B-1 where illustrate that the two models are in 

excellent agreement in relation with their contact response. Hence, for numerical 

efficiency purposes (memory and computational time) we have chosen the bulk model. 
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Table B-1: Analysis results of the two numerical models. 

Model 𝑃𝑚𝑎𝑥  [N] 𝑃 [%] ℎ𝑐 [μm] ℎ𝑐 [%] 𝛾 [-] 𝛾 [%] Size [GB] Time [s] 

Bulk 0.5316 
1.36 

0.2978 
0.05 

1.121 
1.13 

0.475 545 

Coating 0.5245 0.2979 1.108 3.5 4227 

 

Table B-2 summarizes mesh information regarding the three different finite element 

models that have been used in this thesis. 

Table B-2: Technical information of numerical models. 

Model Total Nodes Total Elements Minimum Element Size Average CPU Time [s] 

Bulk 7352 7142 50 400 

Coating 55722 54625 50 1900 

Multilayer 32030 30970 5 1400 
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