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Abstract 

 

Global efforts aiming to shift towards de-carbonization give rise to remarkable challenges 

for power systems and their operators. Modern power systems need to deal with the uncertain 

and volatile behavior of their components (especially, renewable energy generation); this 

necessitates the use of increased operating reserves. To ameliorate this expensive 

requirement, intelligent systems for determining appropriate unit commitment schedules 

have risen as a promising solution. This is especially the case for weak power systems with 

low dispatching flexibility and high dependency on imported fossil fuels.  

With the fast-paced changing technologies in the context of sustainable development, new 

approaches and concepts are needed to cope with the variability and uncertainty affecting 

generation, transmission and load demand. The main challenge remains in developing 

technologies that can efficiently make use of the available renewable resources. Among 

them, electrical energy storage constitutes a potential candidate capable of regulating the 

power generation to match the loads via time-shifting. Optimally planned, such facilities can 

meet the increasing requirement of reserves to manage the variability and uncertainty of 

renewable energy sources whilst improving the system operation efficiency and economics. 

In this thesis, we present a novel Lagrange Relaxation method with constraints, considering 

the impact of variable renewable energy sources. Our proposed approach successfully deals 

with identical generating units found in isolated power systems, enabling the realistic 

determination of the optimal electricity storage size based on actual data. In addition, we 

introduce a radically novel paradigm for addressing the optimal unit commitment problem, 

that is capable of accounting for the largely unaddressed challenge of the uncertain and 

volatile behavior of modern power systems. Our innovative solution leverages state-of-the-

art developments in the field of uncertainty-aware machine learning models, namely 

Bayesian optimization. This framework enables the effective discovery of the best possible 

configuration of a volatile system with uncertain and unknown dynamics in the least possible 

number of trials, and without the need of introducing restrictive prior assumptions.  

Developing a deep understanding of the different electricity storage principles and their 

applications, we develop an innovative model able to distinguish the power-related and 

energy-related cost components and integrate complex features such as the round-trip 



 
  

 

 

efficiency, depth of discharge, self-discharge rate, etc. We evaluate the impact of intermittent 

renewable energy sources on total production cost, by making use of annual data regarding 

the isolated power system of the island of Cyprus. Once electrical energy storage is identified 

as an approach enhancing flexibility and reliability, we formulate and evaluate the selected 

facilities via a life-cycle cost analysis, based on the most realistic characteristics and cost 

metrics found in the literature. The derived simulation results showed that improvements 

exist in profitable return credits when storage was integrated.  

 

Keywords: renewable energy generation, weak power systems, electrical energy storage, 

machine learning models, Bayesian optimization, life-cycle cost analysis. 
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1. Introduction and Motivation 

The challenge for modern power generation systems is to meet the growing electricity 

demand, providing uninterruptible and high-quality supply. For several years now, this 

requirement is fulfilled mostly by using fossil fuels due to them being characterized by two 

critical advantages. First, their concentrated energy can be transported through various 

means (rail, road or pipelines) where is to be used, and remains stored as long as needed. 

The second characteristic has to do with the output of the traditional production methods 

which is easy to adjust according to the power requirements. However, the introduction of 

greenhouse gas emissions (GHG) into the atmosphere, due to the continuous burning of 

fossil fuels, poses a serious threat to the global environment and consequent climate change 

[1][2]. In addition, the growing energy demand has imposed the increase of conventional 

fuel prices which are declining, thus exposing national economies which are dependent on 

their import. To allow for ameliorating climate change over the long-term horizon, while 

reducing  the dependence on the diminishing fossil fuel reserves, energy sources must meet 

the requirements of being emission-free and renewable in the forthcoming years [3][4][5]. 

On the contrary, renewable energy sources (RES) turn out to be inadequate for power 

generation due to their intermittent and unpredictable potential availability. Electricity 

demand varies seasonally and fluctuates during the day and as a result, the need to increase 

the share of RES and gradually replace conventional sources remains a formidable challenge. 

Even the conventional coal or nuclear plants cannot quickly change their power output and 

in order to co-operate with renewables, significant investment in fast-response gas turbine 

generation is needed. To deal with such a critical concern, the focus should be turned into 

alternative sources which increase the flexibility in modern power systems. 

Because electric power is consumed the instant it is produced, generation is carefully 

timed so that it occurs at the same time it is demanded. Traditional storage usually occurs at 

the fuel level by storing water behind dams, natural gas in fields and pipelines, and in coal 

piles. Peaks and troughs in demand can be anticipated and satisfied by increasing or 

decreasing fuel injection at fairly short notice. Systems that can be scheduled and dispatched 

to contribute in generation are referred to as dispatchable; this is in contrast to renewables 

which are strictly correlated to imperfectly predictable and uncontrollable weather 

conditions. Load curves for a typical electricity grid are presented in Figure 1. 
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Figure 1: Load curves for typical electricity grid [6]. 

 

The demand profile is usually steady and pretty known, following daily, weekly and 

seasonal patterns. Base load, which represents the amount of energy that is produced at any 

time, is typically covered by plants possessing long start-up times and relatively low 

operating and fuel costs (e.g. nuclear, hydroelectric, HFO). Easier to start-up and faster-

producing power plants, such as coal, with moderate operating costs are employed for 

serving the intermediate load. Unexpected increases in electricity demand outside of the 

daily road-map are accommodated by using peak load plants such as gas turbines power 

plants which are able of providing faster response in the range of seconds to a few minutes 

[7].   

With high levels of RES penetration in future power systems, there has been a 

growing need to evaluate their impact on power system operations. Rises in demand do not 

necessarily correspond to rises in RES generation. Technologies range from the traditional 

wind turbines, solar panels, hydroelectric, biomass and geothermal systems to emerging tidal 
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and wave generators, whose stochastic output is reflected to the residual load. Figure 2 

illustrates a daily generation stems from wind and solar PV versus demand. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Monthly wind and solar PV generation versus demand [6]. 

The net or residual load represents the demand that must be supplied by the 

conventional generation fleet if all the renewable electricity is to be introduced into power 

network. As a result, the residual load variations may fluctuate far more widely than the 

demand curve requiring increased flexibility from generation units. Conventional generators 

have many attributes that affect their relative contribution to meeting net load, the most 

important of which are: 

• Minimum and maximum output ratings 

• Capital, fuel, and operation and maintenance (O&M) costs 

• Start-up and shut-down costs 

• Ramp rate capability  

• Minimum up and down times 

• Energy conversion efficiency at different output levels (heat rate) 

• Inertia or rotating mass 
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• GHG emissions 

The precise balance between generation and demand must be guaranteed throughout 

the time for the frequency to be maintained within stability levels of 50 or 60Hz, depending 

on the country’s standards. Power generators and auxiliary equipment are designed to 

operate within specific ratings and thus, deviations higher than ±10% of the nominal value 

may cause load shedding, a generator to trip or even a whole system collapse. Unit 

commitment (UC) is one of the key problems of generation scheduling. UC defines a method 

which determines which generating units to be committed during each interval of a short-

term scheduling period of some hours, a day or a week, considering all attributes affecting 

their operation. The sub-problem which deals with the economic allocation of the total load 

among the committed generation units is called Economic Dispatch (EC). Further attributes 

constrained UC are spinning reserve, fuel reserve margins and transmission lines capacity 

and losses. The optimal UC problem is, thus, defined as the allocation of the power output 

to the generators to minimize the cost of operating all generators.    

A typical hourly loading of units is realized in Figure 3. Based on the aforementioned 

principles, units 1 and 2 are assigned as base load generators, units 3-5 operate for 

intermediate load while unit 6 represents a gas turbine power plant intended for meeting the 

peak variations.    

 

Figure 3: Typical hourly loading of units [6]. 
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Spinning reserve can be provided by operating and synchronized plants. It must be 

qualified throughout the period considering minimum up and down times, ramp rates and 

the maximum energy not served in case of a generator lost. For the online generation units, 

this fraction is estimated by the subtraction of the actual loading of each unit from the 

maximum-possible output capability. A further problem occurs when high renewable 

potential is available during low-demand/off-peak periods. The maximum share of RES fed 

to the grid is constrained by the minimum generation capacity of the conventional units being 

committed. As the penetration of variable RES increases, it is more than usual for utilities to 

over-schedule and keep the plants partially loaded, to avoid curtailment. This implies 

uneconomic dispatch due to increased start-up costs, operation at inefficient output and 

increases in capital and O&M costs. 

Transmission system operators (TSOs) are responsible for ensuring system security and 

stability against the variability and uncertainty of both generation and demand, while 

maintaining a satisfactory level of reliability at a reasonable cost. Among the various sources 

able to provide such flexibility and optionality, a diverse range of electrical energy storage 

(EES) approaches is available. EES technologies find ready application in various sectors, 

attracting increasing interest for power grid operations that provide regulation, contingency 

and management reserves [8]. The term of storage refers to a wide variety of technologies 

and potential applications and hence, can be confusing as it occasionally acts as increased 

demand or generator [9][10].  

Modern power systems could not exist without the many forms of electricity storage 

that can be integrated at different levels of the power chain. The value analysis of EES is 

therefore complicated by the fact that it can provide multiple benefits at one time such as 

arbitrage, balancing and reserve power sources, voltage and frequency control, investment 

deferral, cost management and load shaping and levelling. Global efforts aiming to shift 

towards intermittent renewable sources, reducing gaseous emissions and reliance on fossil 

fuels, force the whole energy system to dramatic changes. Large-scale RES connected to the 

grid, highly distributed variable generation, growing penetration of plug-in hybrid electric 

vehicles (PHEVs) and EVs, and requirements for demand response, constitute some of the 

most important, opening a wider field of applications which will certainly call for active 

participation of EES and provide additional value [11][12][13][14]. Of vital importance are 

also for micro grid (AC or DC) and smart grid systems which are expected to thrive in the 



 
  

 

6 
 

future, opening the pathway of a test environment for EES topology, model and device study 

[15].  

 

1.1. Thesis Motivation 

Since electricity is crucial to the development, progress and overall lifestyle in the global 

economy, improvements in both renewable and storage technologies are continuously 

needed for the grid to accommodate the ever-increasing variable sources. However, for 

increased penetrations, energy storage also for non-renewables may be essential for a 

transition to a sustainable energy production. 

Although much research has been elaborated during the last decades on UC, 

revolutionizing the existing power system is operated, there has not yet been a 

comprehensive analysis considering the best strategies for EES integration, also evaluating 

their impact on future power systems. The majority of the literature has identified the 

utilization of EES as a source of flexibility and optionality, concentrating on either individual 

stationary applications or by distinguishing them into categories by scale, time of response 

or storage duration. None of these research works has considered to form an effective 

algorithmic suit for enabling the whole range of benefits potentially offered by EES (such as 

RES integration, emissions avoidance, power plants cost savings, asset deferral, etc.). This 

is the reason why the subject of this Ph.D. thesis forms an interesting problem for further 

research. Specifically, this thesis targets the exploration of both conventional mathematical 

optimization schemes, as well as bleeding-edge, data-driven inference approaches from the 

field of machine learning, and namely Bayesian optimization. Both these directions 

constitute an innovative paradigm which holds huge promise for revolutionizing the field.  

In the following chapters, we provide some basic theory of Mathematical and 

Bayesian Optimization as well as the concepts for optimal UC. The different operational and 

technical constraints of power systems and their influence on the energy sector are also 

analyzed. Moreover, we present the general concept and idea of robust UC formulation in 

the presence of renewable generation and a discussion about different studies regarding the 

design and management of such problems, in terms of energy reliability and production-cost 

minimization. In addition, we introduce the principles of EES technologies along with the 

main requirements and conditions of their distinguished applications across the power chain. 
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Based on the most realistic technical data and cost metrics, we demonstrate our approach 

performed in a real-world scenario concerning an isolated power system. Finally, we present 

our findings derived from a life-cycle cost analysis. 

 

1.2. Thesis Outline 

This thesis is divided into two distinct research sections which are eventually combined to 

deliver a comprehensive solution to scientific community. The first consists of four chapters, 

(Chapters 2-5) with a focus on new methods for solving the constrained problem of unit 

commitment. The second research area is related to the technological development, 

application and overall performance of electricity storage systems participating in potential 

power system operations and contains two chapters, namely Chapter 6 and Chapter 7. 

Chapter 8 presents the combined solution proposed for a representative isolated power 

system where both research areas are modelled and explored in detail.  

The contents for each of the remaining eight chapters are outlined as follows: 

Chapter 2 provides the operating principles relating to electricity generation that will be 

presented in later chapters of this PhD thesis. All-important attributes are discussed along 

with their governing equations and theoretical background of each particular aspect. In 

Chapter 3, the introduction to the crucial problem of unit commitment is presented, as well 

as the most representative research work with valuable examples. Their advantages and 

disadvantages compared to their contribution as solution approaches to the problem are also 

summarized. Chapter 4 presents our innovative work and first reported, regarding the 

double decomposition approach proposed for a solution to the unit commitment. The chapter 

concludes that both the performance and overall costs are greatly improved in power systems 

consisting of identical generating units. A first-ever data-driven for optimal unit 

commitment, namely Bayesian optimization, is introduced in Chapter 5. The experimental 

results show that Bayesian optimization based on Gaussian Process enables finding better 

optimal solutions with less computational costs.  

The following chapters focus on the main characteristics of the state-of-the-art EES 

technologies, the requirements and preferences of their most realistic applications and 

different ways by which they can be modelled. Chapter 6 deals with electricity storage 

technologies providing a comprehensive review and guide to the information extensively 

published in the literature. The most important technologies are discussed along with the 
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most realistic smart-grid applications found in modern power systems. The chapter provides 

all necessary metrics for a complete formulation and modelling of electricity storage 

facilities. In Chapter 7, we examine for the first time the decomposition of cost relating to 

different electricity storage systems to express the energy-related and power-related 

components. The latter are considered to be very crucial and are ranked on the basis of a 

novel multi-criteria decision method, which normalizes conventional criteria to account for 

the selection of the appropriate electrical energy storage system for a specific application. 

We finally assess the application of electricity storage to replace the deficit of spinning 

reserve in Chapter 8. As an internal optimization task, electrical storage is included in the 

algorithm developed for a real-world isolated and autonomous power system with high 

renewable energy contribution. Based on the most realistic characteristics and cost metrics 

found in the literature, the results showed that improvements (in terms of cost credits and 

maximum renewable energy penetration) exist through the optimal sizing and operation 

strategy of the storage medium. 

The thesis concludes with Chapter 9; remarks regarding the work presented in this 

thesis are included. In addition, we elaborate on future trends and directions to facilitate 

forthcoming researchers to deal with our topics. 
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2. Power system optimization principles 

Before we start to review and discuss the literature it is necessary to develop a deep 

understanding of the methodologies that are further mentioned in this dissertation. This 

chapter introduces techniques of power system optimisation. Specifically, topics to be 

addressed include power generation characteristics, economic dispatch and methods of 

solution, the unit commitment problem and optimization with constraints [16]. 

 

2.1. Power generation characteristics 

Power systems are networks consisting of devices that generate, transmit and distribute 

electricity to consuming centers such as industry, commerce, households and so on. Power 

plants usually tend to be located at sites with access to water for cooling purposes and where 

noise and emissions are not disturbing issues. Once it is produced, electrical power is 

transported to the loads via electrical grids. Such grids consist of high voltage transmission 

lines and network coupling and voltage transformation substations. A simplified 

configuration of a power system is shown in Figure 4. 

 

 

 

Figure 4: A simplified configuration of a power system [6]. 

 

To reduce the energy losses over long distances, various transmission grid types exist, 

utilizing different voltage levels. The voltage generated is transformed into higher levels 

(110, 132, 138, 220, 345, 400, 500 or 750kV) via generator step-up transformers. Near urban 
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areas the medium voltage (between 1 and 100kV) is converted in transmission substations 

to carry the electrical energy to primary customers or to distribution transformers in order to 

be further decreased and supply secondary customers at low voltage in the range of 120-

400V. 

In contrast to radial low-voltage portion, the medium-voltage part of distribution 

networks usually has a weakly meshed network structure, though it is radially operated. This 

type of operation provides possibilities for network reconfiguration; consists in modifying 

the network topology by operating remotely controlled sectionalizing switches to close 

normally open and/or open normally closed lines, whilst retaining the radial operation of the 

network. Such reconfigurations can be done for different purposes, like to redirect the power 

flows or to improve other performance indices [17]. In the case of high voltage, the 

transmission networks are designed to form a ring in order to offer the above merits and 

qualify the N-1 criterion. In such cases, it is more than usual to consider a single-bus model 

for generation scheduling purposes.  

The efficient and optimum economic operation and planning of electric power 

generation systems have always occupied an important position in the electric power 

industry. Fundamental to the economic operating problem is the set of input–output 

characteristics of a thermal power generation unit. The typical configuration of a boiler-

turbine-generator unit sketched in Figure 5 reveals the terms of gross and net output.  

 

 

 

 

 

 

 

 

 

Figure 5: A typical configuration of a boiler-turbine-generator unit [16]. 
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As can be observed, the electrical output of each chain set is connected not only to 

the electric power network, but also to the auxiliary power system which consumes a fraction 

of the gross output for the auxiliary requirements of boiler feed pumps, fans, condenser 

circulating water pumps, and so on. Gross input represents the heat (H) or cost (F) rate 

usually measured in million Btu per hour (MBtu/h) or dollars per hour ($/h) respectively, 

whereas the net output is the electrical power output available to the electric utility system 

(P) measured in MW. These data may be obtained from either design calculations or heat 

rate tests. Figure 6 shows the input-output characteristic of a generating unit.  

Minimum load limitations are generally caused by fuel combustion stability and 

inherent design constraints. The data obtained, can be fitted by polynomial curves. A 

characteristic widely used in economic dispatching of a unit is the incremental heat or cost 

rate depending on the input. Heat rate function can be converted into the cost function (F) 

by multiplying it by the equivalent fuel cost (fc) in terms of $/Btu. The slope (or derivative) 

of the resulting curve (ΔF/ΔP) will be then the incremental cost. 

 

 

 

 

 

 

 

 

 

 

Figure 6: Input-output curve of a generating unit [16]. 

 

The last important characteristic of a thermal unit is the unit net heat rate which is 

evaluated by dividing H with P. It is inversely proportional to efficiency and represents the 

heat input needed for a kilowatt-hour of output produced. The net heat rate of H/P versus P 

for a steam turbine generator is depicted in Figure 7. 
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Figure 7: Net heat rate characteristic of a steam turbine generator unit [16]. 

 

 Generally, the strategies pursued in most power system optimization tasks require 

this model to function similarly for all types of thermal generating units. These include steam 

generators, gas turbines, combined cycle and internal combustion engines. Based on Rankine 

Cycle, a steam turbine consists of the following components: 1) The boiler where the 

combustion is realized by heating the water until it is steamed, 2) The turbine which is driven 

by the exhaust of the steam which is then liquefied, and 3) The condenser which leads the 

hot water to the boiler for reheating and vaporization. On the other hand, gas turbine is 

comprised by a burner where the combustion takes place and the exhaust gases are conducted 

to the turbine. After being exhausted driving the turbine, the super-heated gases are released 

into the atmosphere completing a Brayton Cycle.  

 Combined-cycle generating units differ in that they must take into account the heat-

rate curves of both individual gas-turbines and the boiler, according to the operation mode 

(e.g. 1+1, 2+1, …, N+1). Such an arrangement can be realized based on the following Figure 

where a 4+4+1 configuration is illustrated. G/T refers to the gas turbine, HRSG is used to 

represent each individual heat-recovery steam generator whereas T defines the steam turbine 

of the plant. It is apparent that the plant efficiency characteristics depend on the number of 

G/Ts in operation. 
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Figure 8: Combined cycle configuration [16]. 

 

2.2. The Economic Dispatch problem 

For a complete understanding of the economic dispatch problem formulation, a system of N 

thermal-generating units is assumed to be connected to a single bus serving a received 

electrical load Pload in MW. Fi represents the cost rate input to each unit in $/h while Pi is the 

electrical power output generated by that particular unit in MW. The essential constraint on 

the operation of this system is that the sum of the power outputs must equal to the load 

demand. The problem is to minimize FT subject to this constraint.    

Objective function: 

Minimize  

𝐹𝑇 = 𝐹1 + 𝐹2 +⋯+ 𝐹𝑁 =∑𝐹𝑖(𝑃𝑖)

𝑁

𝑖=1

                                                   (2.1) 

     

subject to      
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𝛷 = 0 = 𝑃𝑙𝑜𝑎𝑑 −∑𝑃𝑖

𝑁

𝑖=1

                                                                    (2.2) 

Adding the constraint function to the objective after multiplying the first by an undetermined 

multiplier λ, we obtain Lagrange Function shown in Equation 2.3. 

ℒ = 𝐹𝑇 + 𝜆𝛷                                                                                (2.3) 

By taking the first derivative of Equation 2.3 and setting the derivatives equal to 0 results in: 

𝜕ℒ

𝜕𝑃𝑖
=
𝑑𝐹𝑖(𝑃𝑖)

𝑑𝑃𝑖
− 𝜆 = 0                                                         (2.4) 

 

Consequently, the necessary condition for the existence of a minimum cost of operation for 

the thermal power system is that all the unit incremental cost rates must be equal to the 

undetermined value λ.  

 

2.2.1 Mathematical statements 

To incorporate the thermal constraints of minimum and maximum power output of each 

generating unit, the following conditions must be qualified: 

{
  
 

  
 
𝑑𝐹𝑖
𝑑𝑃𝑖

= 𝜆       𝑓𝑜𝑟       𝑃𝑖,𝑚𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑖,𝑚𝑎𝑥

𝑑𝐹𝑖
𝑑𝑃𝑖

≤ 𝜆       𝑓𝑜𝑟       𝑃𝑖 = 𝑃𝑖,𝑚𝑎𝑥                

𝑑𝐹𝑖
𝑑𝑃𝑖

≥ 𝜆       𝑓𝑜𝑟       𝑃𝑖 = 𝑃𝑖,𝑚𝑖𝑛                 

                                    (2.5) 

 

Solving the Equation 2.4 subject to constraint of Equation 2.2, a value for Lagrange 

Multiplier λ is defined. The problem must be reformulated in case where one or more units 

are not within limits. The power output of these units is set to the maximum and minimum 

accordingly and new values of λ must be defined. This method follows a continuous 

procedure of finding new λ until the mathematical statements of Equation 2.5 are satisfied. 

The procedure becomes much less useable when there are many generators because of the 

need of finding the exact combination of units at upper and lower limits to get the final 

solution. 



 
  

 

15 
 

2.2.2 Lambda iteration method 

Lambda iteration is another approach to accomplish the same objective as done with 

mathematical statements. It is based on the development of an analytical function for the 

power output as a function of the incremental cost rate which is stored and used to establish 

the output of each individual unit. The value of λ is adjusted up/down until the sum of the 

generator output meets the load to be supplied. In contrast to other constraint satisfaction 

problems where a stopping criterion could be the counting of iterations and stopping when 

a maximum number is exceeded, in the presence of coupled constraints the only appropriate 

rule is to find a proper operating point within a specified power balance tolerance, |𝜀|. A 

flow diagram explaining the concept of lambda iteration method is shown in Figure 9.    

At the first iteration λ is arbitrarily set to a value. The power outputs are calculated 

and set according to their minimum and maximum operating limits. Then they are summed 

up and if the total power is too low λ must be increased whereas if the total power is too high 

λ must be decreased. This procedure converges very rapidly for this specific type of 

optimization problems and guarantees a global optimum when dealing with convex unit cost 

functions (marginal cost functions non-decreasing).  

 

Figure 9: Economic dispatch by the lambda iteration method [16]. 
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2.2.3 Binary search 

This is another useful lambda iteration algorithm which avoids oscillations and always 

succeeds in finding the optimum economic dispatch. First, the incremental cost at the 

minimum and maximum output for each generator must be calculated. Next λmin and λmax 

are defined as follows:  

λmin = min(λ1,min + λ2,min +⋯+ λN,min)                                    (2.6) 

λmax = max(λ1,max + λ2,max +⋯+ λN,max)                                  (2.7) 

  

The procedure starts with λ = λmin and continuous with binary search of λ values using 

Equations 2.8 and 2.9, and the statements formed below.  

𝛥𝜆 =
𝜆𝑚𝑎𝑥 − 𝜆𝑚𝑖𝑛

2
                                                                   (2.8) 

𝜆𝑖 = 𝜆𝑚𝑖𝑛 + 𝛥𝜆                                                                     (2.9) 

 

Table 1. Mathematical statements for the binary search method. 

- If ∑𝑃𝑖

𝑁

𝑖=1

> 𝑃𝑙𝑜𝑎𝑑 lambda must be reduced: 

  𝛥𝜆 =
Δ𝜆

2
 

  𝜆𝑖+1 = 𝜆𝑖 − 𝛥𝜆 

- If ∑𝑃𝑖

𝑁

𝑖=1

< 𝑃𝑙𝑜𝑎𝑑 lambda must be increased: 

  𝛥𝜆 =
Δ𝜆

2
 

  𝜆𝑖+1 = 𝜆𝑖 + 𝛥𝜆 

- If 𝑎𝑏𝑠 {∑𝑃𝑖

𝑁

𝑖=1

− 𝑃𝑙𝑜𝑎𝑑}   ≤ tolerance algorithm is converged. 
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Note that when the generator outputs are calculated for a specific λ value and diverged from 

limits, they are just set to their maximum or minimum value accordingly. 

 

 2.2.4 Dynamic programming 

Equal incremental cost methodologies examined previously, cannot be used when non-

convex input-output curves are to be used. The reason can be explained through the help of 

the following figure. As can be observed from Figure 10, there are multiple values of power 

output for any given value of incremental cost. Dynamic programming gives a solution to 

economic dispatch as an allocation problem, an approach that generates a set of outputs at 

discrete points for an entire range of load values rather than calculate a single optimum set 

of power outputs for a specific total load demanded. 

 

 

 

Figure 10: A typical example of a non-convex input-output curve [6]. 

 

As can be observed from Figure 10, there are multiple values of power output for 

any given value of incremental cost. Dynamic programming gives a solution to economic 

dispatch as an allocation problem, an approach that generates a set of outputs at discrete 

points for an entire range of load values rather than calculate a single optimum set of power 

outputs for a specific total load demanded.  
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The procedure starts by scheduling the first two units. The objective is to minimize 

a new cost function developed (Equation 2.10) while moving from P2, min to P2, max with 

constant step.  

𝑓2 = 𝐹1(𝐷 − 𝑃2) + 𝐹2(𝑃2)                                                (2.10) 

 

Variable D represents the load to be supplied by scheduled units and varies similarly 

in the same step (e.g. 25MW) with P2. The cost for serving each value of D (minimum f2) 

need to be saved along with D and power output of unit 2 (P2) for each load level. The next 

step involves the minimization of a new cost function derived as follows: 

𝑓3 = 𝑓2(𝐷 − 𝑃3) + 𝐹3(𝑃3)                                              (2.11) 

 

Similarly, the next unit is scheduled on-line and moving from P3, min to P3, max a new 

function is developed using the values of minimized f2 stored before. The new data set (f3, 

D, P3) is saved and the process is repeated until the last unit is scheduled in supply. The final 

function to be minimized will be then: 

𝑓𝑁 = 𝐹𝑁−1(𝐷 − 𝑃𝑁) + 𝐹𝑁(𝑃𝑁)                                              (2.12) 

 

2.2.5 Composite cost function 

Composite cost function constitutes a useful approach in studying problems dealt with large 

numbers of generating units. The idea of grouping is quite important especially in power 

systems that consist of several generating units which are identical for security and 

maintenance purposes. Additionally, this technique facilitates power plants that developed 

to meet common needs such as the same type of loads (base, intermediate or peak load).  

Scope of this method is to pre-allocate the supposed load to a single generator, in 

which the characteristics concerning all individual units that compose it, have been 

integrated, to form a composite cost curve. After the development of an analytical function 

for each generator as a function of the incremental cost rate, the total fuel consumption and 

total power output from all units are calculated based on the following equations. 

𝑃𝑆 = 𝑃1 + 𝑃2 +⋯+ 𝑃𝑁                                                   (2.13) 
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𝐹𝑆(𝑃𝑆) = 𝐹1(𝑃1) + 𝐹2(𝑃2) + ⋯+ 𝐹𝑁(𝑃𝑁)                                  (2.14) 

 

The increment λ is adjusted from the specified λmin to λmax defined in Equations 2.6 

and 2.7 respectively, and the power outputs are set according to the limits. The overall 

concept of composite generator unit is depicted in Figure 11. 

Although the minimum cost is achieved for each load demand, the utilization of 

composite functions entails the loss of useful information about the individual units.  

 

 

 

 

 

 

 

 

 

 

Figure 11: Composite generator unit [16]. 

 

2.2.6 Base point and participation factors 

Aiming to move the generators from one economically optimum schedule to another without 

running a completely new economic dispatch, this method assumes that each generator 

“participates” with a proportional fraction in reasonably small load changes. Base point 

represents the given optimum schedule of power outputs denoted as Pbase-i. To examine the 

participation factors (the change in load) for each unit, let’s refer to the incremental cost 

curve illustrated in Figure 12. A small change of ΔPi in power output Pi implies a variation 

from λ to λ+Δλ which can be approached by the second derivative as follows: 

 

𝛥𝜆𝑖 ≅ 𝐹𝑖
′′𝛥𝑃𝑖                                                            (2.15) 
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Figure 12: Incremental cost curve example [16]. 

 

As a result, for a total change in generation of ΔPD the participation factor for each 

generating unit can be found from Equation 2.17. 

𝛥𝑃𝐷 = 𝛥𝑃1 + 𝛥𝑃2 +⋯+ 𝛥𝑃𝑁                                               (2.16) 

(
Δ𝑃𝑖
Δ𝑃𝐷

) =
(1/𝐹𝑖

′′)

∑(𝐹𝑖
′′)
                                                          (2.17) 

 

The new optimal schedule is given using Equation 2.18. This scheme is extremely useful in 

computer implementations where the execution time for the economic dispatch is short. 

 

𝑃𝑛𝑒𝑤−𝑖 = 𝑃𝑏𝑎𝑠𝑒−𝑖 + (
Δ𝑃𝑖
Δ𝑃𝐷

) Δ𝑃𝐷                                              (2.18) 

 

2.3. The principles of Unit Commitment 

Unit commitment is one of the key and high-priority problems of generation and production 

scheduling systems. It determines both the combination of available generating units to be 

committed and scheduling of their respective power output to meet the forecasted demand, 

dealing with the operating, transmission, fuel, security and environmental constraints during 

each interval of a short-term scheduling period (from 24h of a day to 168h of a week). In 

contrast to economic dispatch where it is assumed that all units are already connected to the 

system, unit commitment assumes that the generating units are available, and the appropriate 
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subsets must be selected in order to provide the minimum operating cost. UC is more difficult 

to solve mathematically since it involves integer variables (generating units being either on 

or off) constituting a more complex procedure which considers the ED as a subproblem to 

the solution. 

Several solution methods have been proposed during the last decades and classified 

into heuristic and mathematical programming. Most methods have been improved and more 

recently, metaheuristic approaches have been widely used. However, to achieve a spherical 

view of UC decision problem the selected methods to be further investigated in this chapter 

regard priority-list schemes and dynamic programming. The rest of the methods adding 

value to the literature will be discussed in Chapter 3.3 of literature review.  

 

2.3.1 Priority list 

The simplest method consists of creating a priority list of units to determine which generators 

to first drop or start as a function of a system load with the load varying throughout the time. 

The need to obtain a start-up (or shutdown) rule is addressed by making use of incremental 

cost of each generating unit. This numeric value coincides at the point of minimum average 

cost, i.e. close to full load. As a result, it can be expressed based on the full-load average 

production cost. Once λi values are defined, the generators are put in an ascending order 

according to their incremental cost λ. By simply incorporating the upper and lower bounds 

of the generating units the priority list is developed as shown in the following Table: 

 

Table 2. Typical formulation of the priority-list approach. 

λi λi* Pi*, min Pi*, max Combination 

λ1 λ1* P1*, min P1*, max 1 

λ2 λ2* P1*, min+ P2*, min P1*, max+ P2*, max 1 + 2 

. . P1*, min+ P2*, min+ … P1*, max+ P2*, max+ … 1 + 2 + ... 

λΝ λΝ* P1*, min+ P2*, min+ …+ PN*, min P1*, max+ P2*, max+ …+ PN*, max 1 + 2 + ... + N 
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The values of λ-star correspond to the ascending units from the most economical to 

the worst (λ1* is the smallest value and λΝ* is the largest value). As the load goes up within 

the limits listed in columns 3 and 4, the appropriated units will be committed or continue 

running whereas they will be de-committed when the load goes back down following the 

same order.  

Although this scheme ignores the constraints of minimum up/down time, start-up 

cost, ramp rates and others, various enhancements can be made by grouping of units to 

ensure a reliable operation via dynamic programming. 

 

2.3.2 Dynamic programming 

The dynamic programming in general involves the search over several commitment states 

that must be tested in each time interval. For N available generators and M time-periods there 

are (2N-1)M possible combinations. Although some of these combinations are rejected 

instantly because they are found infeasible, a large number of feasible states will always 

exist even for an average size utility. Hence, many hybrid methods have been proposed to 

give some sort of simplification.  

As an example, priority-based dynamic programming, allows the units to be 

committed by priority considering the constraints of ramp-rates, minimum up/down times, 

start-up costs and so on. Decomposing the problem into sub-problems, the optimal solution 

is given recursively, step-by-step. A simplified diagram of dynamic programming steps for 

a single unit is shown in Figure 13. 

 

 

 

 

 

Figure 13: DP steps for a single unit [16]. 
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3. Literature on Unit Commitment 

Day-ahead scheduling of electricity generation is a crucial and challenging optimization 

problem in current power systems. Variability and uncertainty in net load caused by 

increasing penetration of renewable generation (RG) have motivated the study of alternative 

approaches that increase flexibility without affecting the stable operation of conventional 

power plants [18].  

The UC problem is a large-scale, complex, dynamic and restricted non-linear 

mathematical optimization problem with both integer and continuous variables. Load curve 

serves as an input data to the problem while the output is the commitment status and 

generation dispatch of various generating units satisfying system-wide and unit-specific 

constraints defined below [19]. Due to the non-convex nature of the UC objective, the exact 

solution can be obtained only by complete enumeration, leading research endeavours in 

search of efficient, near-optimal solutions with decreased computation time requirements 

[20]. 

 

3.1. Unit Commitment: Objective 

Besides achieving minimum total production cost, the generation schedule must satisfy a 

large set of different technical and operational constraints. The total production cost (TPC) 

of a power system consisting of traditional thermal units is mainly the cost of fuel (CF) 

[21][22], start-up (CSU) and shut-down (CSD) costs [23][24][25], maintenance cost (CM) [26], 

emission cost (CE) [27], and cost of energy not served (CENS) [28]. By denoting the number 

of generating units with N and the number of periods with T, a formulation for the UC 

problem is as follows: 

min∑{∑{[𝐹𝑖(𝑃𝑖
𝑡) + 𝐸𝑖(𝑃𝑖

𝑡) + 𝐶𝑀𝑖

𝑡 + (1 − 𝑈𝑖
𝑡−1)𝐶𝑆𝑈𝑖

𝑡 ]

𝑁

𝑖=1

𝑇

𝑡=1

𝑈𝑖
𝑡 + (1 − 𝑈𝑖

𝑡)𝐶𝑆𝐷𝑖
𝑡 𝑈𝑖

𝑡−1} + 𝐶𝐸𝑁𝑆
𝑡 }   (3.1) 

 

The discrete variable Ui
t, determines the on-off states of generating units, taking the 

value “1” if the ith unit is on-line at the particular time t or “0” if the unit is off-line according 

to Equation 3.2. 

𝑈𝑖
𝑡 ∈ {1,0}                                                                  (3.2) 
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The thermal fuel cost Fi(Pi
t) depends on the production level of each unit and is expressed 

by a second order (quadratic) function as follows: 

𝐹𝑖(𝑃𝑖
𝑡) = 𝑎𝑖 + 𝑏𝑖. 𝑃𝑖

𝑡 + 𝑐𝑖. (𝑃𝑖
𝑡)2                                           (3.3) 

 

where, ai, bi and ci are positive fuel cost coefficients derived from the processing of the 

specific fuel cost and heat rate curve of each generating unit [21][22]. The maintenance costs 

that do not change as a function of plant output are expressed via fixed costs (CfM) per kW-

month or kW-year unit, while the variable costs (CvM) represent the maintenance costs that 

change as a function of energy output (measured per unit of MWh) [26]. The variable 

maintenance cost consists of two components, namely the base (CBM) and incremental 

maintenance cost (CIM), formulated by the next equation.  

𝐶𝑣𝑀𝑖

𝑡 = 𝐶𝐵𝑀𝑖
+ 𝐶𝐼𝑀𝑖

. 𝑃𝑖
𝑡                                                                  (3.4) 

 

The formulation of the start-up cost can be represented by Equation 3.5.  

𝐶𝑆𝑈𝑖
𝑡 = 𝛼𝑖 + 𝛽𝑖. (1 − 𝑒

−
𝛵
𝜏𝑖)                                                   (3.5) 

        

where αi represents a fixed cost including crew and maintenance expenses, βi is the 

equivalent cold-start cost, τi is the unit thermal time constant while T refers to the duration 

in hours the unit was cooled. The start-up cost is warmth-dependent, corresponding to the 

hot, warm or cold condition of each generating unit, defined by the time that the unit has 

been off-loaded until start up [23]. Consequently, it can vary from a small value if the unit 

was only turned off recently to a maximum “cold-start” value.  

𝐶𝑆𝑈𝑖
𝑡 = {

𝐻𝑆𝑈𝑖     , 𝑖𝑓 𝑀𝐷𝑖 ≤ 𝑇𝑖 ≤ 𝑀𝐷𝑖 + 𝑡𝑖,𝑐𝑜𝑙𝑑
𝐶𝑆𝑈𝑖     , 𝑖𝑓 𝑇𝑖 > 𝑀𝐷𝑖 + 𝑡𝑖,𝑐𝑜𝑙𝑑                

                                 (3.6) 

 

where ti,cold is the cold start time of the ith unit and MDi is the minimum down time of the 

ith unit which is explained below.  

On the contrary, the shut-down cost is usually a constant or at least time-independent 

value for each thermal unit, and thus it is usually considered 0 for all generating units and 



 
  

 

25 
 

excluded from the objective function. Otherwise, it could be described as a function of power 

output by Equation 3.7 (where ki is the incremental shut-down cost).  

𝐶𝑆𝐷𝑖
𝑡 = 𝑘𝑖. 𝑃𝑖

𝑡                                                                   (3.7) 

 

In addition, since the conventional thermal units assumed for generation are coal-fired, a 

quadratic function can be considered for the emission curve as follows: 

 𝐸𝑖(𝑃𝑖
𝑡) = 𝛼𝑐𝑖 + 𝛽𝑐𝑖 . 𝑃𝑖

𝑡 + 𝛾𝑐𝑖. (𝑃𝑖
𝑡)2                                           (3.8) 

 

where αci, βci and γci are the CO2 emission coefficients of unit i processed to define the 

emission cost Ei(Pi
t). Since these coefficients may contradict with the fuel cost coefficients, 

in problems where they appear together their objectives are typically weighted such that: 

min∑∑[𝑤𝐹𝐹𝑖(𝑃𝑖
𝑡) + 𝑤𝐸𝐸𝑖(𝑃𝑖

𝑡)]

𝑁

𝑖=1

𝑇

𝑡=1

                                                 (3.9) 

subject to 

𝑤𝐹 + 𝑤𝐸 = 1                                                            (3.10) 

 

In this case, the optimization task is able to treat dependent objectives as independent scalar 

values which are normalized in each class to add up to 1. Finally, the energy not served 

parameter consists of two cost components. From the reliability perspective, the first 

component has to do with the unbalance between production and demand. From the security 

perspective, a second component is defined to penalize for the reserve not served. The 

mentioned components are represented by Equations (3.11) and (3.12) respectively.  

𝐶𝐸𝑁𝑆
𝑡 = 𝑐𝑒𝑛𝑠 {𝑃𝑙𝑜𝑎𝑑

𝑡 −∑𝑃𝑖
𝑡

𝑁

𝑖=1

}                                            (3.11) 

𝐶𝑅𝑁𝑆
𝑡 = 𝑐𝑟𝑛𝑠 {𝑆𝑅

𝑡 − [∑𝑃𝑖,𝑚𝑎𝑥
𝑡

𝑁

𝑖=1

− 𝑃𝑙𝑜𝑎𝑑
𝑡 ]}                                  (3.12) 

Where Pt
i,max denotes the maximum possible output of each generator being synchronized, 

Pt
load is the load demand to be satisfied and SRt constitutes the spinning reserve requirements 

for system security purposes. (Note that: the component that must be considered less by the 
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objective function is weighted with a greater wx, whereas a more preferable component is 

multiplied by a smaller weight). 

 

3.2. Unit Commitment: Constraints 

The constraints that must be satisfied throughout the optimization process of the UC problem 

are: 

1. System power balance. Considering the contribution of renewable generation (Pt
RES) 

normally treated as negative load, the sum of the power produced from all committed 

units must meet the net load demand (Pt
netD) along with transmission loss (Pt

loss) at each 

time-interval. 

∑𝑃𝑖
𝑡

𝑁

𝑖=1

= 𝑃𝑛𝑒𝑡𝐷
𝑡 + 𝑃𝑙𝑜𝑠𝑠

𝑡                                                    (3.13) 

𝑃𝑛𝑒𝑡𝐷
𝑡 = 𝑃𝐷

𝑡 − 𝑃𝑅𝐸𝑆
𝑡                                                        (3.14) 

  

Transmission loss depends on line parameters, bus voltages and power flow, 

requiring complex computations to be determined [29]. To consider the shape and 

characteristics of the transmission network, three levels of approximation do exist. The 

single bus model entirely disregards the network aspects, considering the demand 

satisfied as soon as the total production is approximately equal to the total consumption. 

Using a simplified version of Kirchhoff law, the DC model takes into account the 

network structure including the capacity of transmission links, whereas highly nonlinear 

and nonconvex constraints stem from the full version of Kirchhoff law used in AC 

models [29]. 

 

2. Spinning reserve. The power margins must be guaranteed based on the maximum 

ramping capacity (Pt
i,max-cap) of each unit rather than the maximum operating limit 

(Pt
i,max).  

∑𝑃𝑖,max _𝑐𝑎𝑝
𝑡

𝑁

𝑖=1

≥ 𝑃𝑛𝑒𝑡𝐷
𝑡 + 𝑆𝑅𝑡                                          (3.15) 
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3. Generator capacity limits. The maximal and minimal rated power that force the 

generating units to operate within their boundaries. 

𝑃𝑖,min
𝑡 . 𝑈𝑖

𝑡 ≤ 𝑃𝑖
𝑡 ≤ 𝑃𝑖,max

𝑡 . 𝑈𝑖
𝑡                                           (3.16) 

 

4. Minimum up (MUi) and down times (MDi). The predefined minimum amount of time 

needed before a generator can change its status. If tu and td represent the time a unit has 

started-up or shut-down respectively, then it can change its status satisfying the following 

conditions.  

𝑈𝑖
𝑡 = 0 ⇾ 1     𝑖𝑓     ∑ 𝑈𝑖

𝑡

𝑡−1

𝑡=𝑡𝑑

≥ 𝑀𝐷𝑖                                       (3.17) 

𝑈𝑖
𝑡 = 1 ⇾ 0     𝑖𝑓     ∑ 𝑈𝑖

𝑡

𝑡−1

𝑡=𝑡𝑢

≥ 𝑀𝑈𝑖                                      (3.18) 

 

5. Ramp up/down rates. For each generating unit, the change of its power output between 

adjacent hours is restricted by the ramp-up (RUi) and ramp-down (RDi) rates according 

to Equations (14) and (15) respectively [30].  

𝑃𝑖
𝑡 − 𝑃𝑖

𝑡−1 ≤ 𝑅𝑈𝑖,     𝑖𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠                       (3.19) 

𝑃𝑖
𝑡−1 − 𝑃𝑖

𝑡 ≤ 𝑅𝐷𝑖,     𝑖𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑠                       (3.20) 

 

6. Unit status restrictions. Three possible states can be observed in this category, namely 

the must-run, must-out and run at fixed-MW output units. Must-run units are committed 

online during certain interval of operation on the basis of operating reliability and/or 

economic considerations. Must-out characterizes the units which are unavailable for 

commitment, subjected to forced outages, maintenance or other unforeseen problems 

[22]. Finally, some units may be subject to technical or other constraints (e.g. limited 

fuel), that require them to operate at a specified, fixed power output. 
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∀𝑡 ∈ 𝒯

{
 
 

 
 
𝑈𝑗
𝑡 = 1   , 𝑖𝑓 𝑗𝑡ℎ 𝑢𝑛𝑖𝑡 𝑚𝑢𝑠𝑡 𝑟𝑢𝑛                                                                 

𝑈𝑗
𝑡 = 0   , 𝑖𝑓 𝑗𝑡ℎ 𝑢𝑛𝑖𝑡 𝑚𝑢𝑠𝑡 𝑜𝑢𝑡                                                                  

𝑃𝑗
𝑡 = {

0               𝑖𝑓 𝑈𝑗
𝑡 = 0 

𝑃𝑗,𝑐𝑜𝑛𝑠𝑡.   𝑖𝑓 𝑈𝑗
𝑡 = 1

, 𝑖𝑓 𝑗𝑡ℎ 𝑢𝑛𝑖𝑡 𝑚𝑢𝑠𝑡 𝑟𝑢𝑛 𝑎𝑡 𝑓𝑖𝑥𝑒𝑑 −𝑀𝑊

           (3.21) 

 

7. Initial unit states. At the beginning of the scheduling period, the initial unit conditions 

must be properly considered. These may include the on-off status of each generator unit, 

the real-valued power output, the time duration from the last up or down and so on. 

Otherwise, the optimization procedure may lead to wrong decisions regarding the on-off 

status of the generating units. This constitutes a usual phenomenon especially observed 

at the beginning of a forward-programming approach which typically forces the units 

with the lowest start-up cost to get on-line. Once the load demand during the first time-

slot is quite low (e.g. at 00:00), the power output of each proposed to be committed unit 

is proportionally low enough such that its start-up cost (SUi) to be comparable with its 

operating cost (F(Pi)). In some cases, the parameters of MU and MD are set to negative 

integer values to prevent such units from getting online. 

 

8. Plant crew constraints. Apart from the minimum up and down times needed, crew size 

(number of operators available) is another feature restricting the actions to be performed 

in a specific plant. Crew constraints pertain the number of units that can simultaneously 

start-up or shut-down [21]. A further constraint pertaining the simultaneous start-up of 

multiple generators is the maximum steam generation which is strictly dependent on the 

maximum ratings of water feed-pumps supplying the boilers.  

 

9. Transmission constraints. The thermal rate and contingency limitations affect the 

maximum transmission capacity of individual transmission tie lines connecting power 

plants situated at different places and consumers [30]. 

 

3.3. Unit Commitment: Related work 

In recent years, extensive research is made around the concept of optimal UC exploring the 

efficacy of deterministic and stochastic programming. In this chapter, the scientific work 

related to the problem stated for this Ph.D. thesis is presented. Some recent approaches are 

discussed, and some comparisons are made regarding their performance and weaknesses. 
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The UC problem has commonly been formulated as a non-convex, nonlinear and 

mixed-integer optimization problem with constraints. In [31], a detailed explanation and 

comparison of the methods broadly used is presented. A more realistic view of the wide 

range of UC techniques is provided in [32], where the methods are classified into heuristic, 

mathematical and meta-heuristic, while an introduction to hybrid approaches is also 

included. The selected examples are representative in relation to the year they were 

published, illustrating the progress around the UC optimization task and the embedded 

constraints imposed by the continuous evolution of power systems.  

Tao Li and Mohammad Shahidehpour [33], provided a price-based UC via 

Lagrangian Relaxation and Mixed Integer Programming. The contribution of combined-

cycle units was considered for the first time along with 54 thermal units and cascaded-hydro 

plants. Although a globally optimal solution was guaranteed at reasonable computational 

time and memory requirement, the constraints incorporated were limited to thermal and load 

balance, and no transmission constraints were taken into account. In [34], the transmission 

constraints are included and addressed together with the constraints relating to co-generation 

of heat and power (CHP) plants. The scheduling and planning coordination are addressed 

via a dynamic programming-based algorithm with the assumption that large-scale RES are 

used to satisfy heat demand. Therefore, heat, power and demand must be considered 

simultaneously, and thus more sophisticated methods must be developed. 

Aiming to offer the flexibility needed in the presence of variable energy sources, the 

authors in [35] proposed to control the demand by electric water heaters incorporating a 

physically based aggregate model of the population in the day-ahead UC. Peak load shifting 

in municipal utilities has been achieved through a large controllable temperature range. The 

related work may be extended to consider other electric loads with energy storage such as 

electric vehicles, space heating and cooling loads. The approach in [35] considered no 

uncertainty and variability of RES participation. A similar work found in [36], proposes a 

daily UC that utilizes interruptible load to deal with the increased uncertainty due to wind 

power. Both load and wind are treated as uncertainty sources and are assumed to follow 

normal distribution and the UC problem is effectively solved by the adoption of a hybrid 

Lagrange Relaxation-Dynamic Programming algorithm. The interruptible load is not 

considered in the objective function and thus, if a lack of spinning reserve occurs, the 

reliability of the system may be at risk.  
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Ilia G. Marneris et al. [37], introduce the terms of deterministic and stochastic unit 

commitment, with focus on the determination, allocation and deployment of reserves. The 

UC model formulated constitutes a Mixed Integer Linear Programming approach and is 

divided into two stages. The first stage involves the day-ahead scheduling (hourly 

deterministic unit commitment) and the second is based on real-time dispatch and UC which 

addresses the intra-hourly forecast errors (uncertainty) and system ramping requirements 

(variability). Although several constraints have been included (start-up and –down costs, 

load shedding and wind spillage cost, ramp rates along with the minimum up/down times) 

the transmission network constraints are neglected. Once the proposed approach deals with 

real-time estimates, the development of decomposition techniques is essential to help 

reducing the execution times of UC solution. 

A new co-evolutionary paradigm of multi-agent systems is presented in [27]. The 

uncertainties of load, solar and wind power are taken into account and assumed subject to 

the normal distribution. A 10-unit system with standard input data of power plants, emission 

coefficients and load demand, considering plug-in hybrid electric vehicles (PHEVs), wind 

and solar, is tested by adaptive decomposition and compared with Genetic Algorithm and 

Lagrangian Relaxation. According to the results, the operational cost and emission under the 

proposed cooperative co-evolution algorithm are the lowest. However, the investigation 

assumes that PHEVs utilize the maximum amount of RES. In this work neither the EES 

devices used in vehicles nor their main attributes (such as cycle efficiency, depth of 

discharge, self-discharge rate, etc.) are mentioned.  

In a similar work [38], the researchers proposed a new computational framework to 

integrate the scenario based on renewable generation and flexible charging and discharging 

of plug-in electric vehicles (PEV). A new multi-zone sampling approach was proposed to 

generate scenarios of intermittent renewable generation and the problem was solved through 

a hybrid topology of combined particle swarm optimization, self-adaptive differential 

evolution and lambda iteration method. According to the results, the charging/discharging 

scenario of PEVs has shown to be capable of significantly reducing the total and average 

power cost comparing with no PEVs or PEVs charging only case. Nevertheless, the 

information regarding the kind of EES technology used in vehicles was not included.  

Among the state-of-the-art approaches for solving constrained, NP-hard optimization 

problems are also Genetic Algorithms (GAs). A solution to the UC problem via GA is 
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proposed in [39]. Relying on natural selection processes that imitates biological evolution, 

GA produces a population of points and recommends the best point as an optimal solution 

to the next iteration. In contrast to classical algorithms which generate a single point at each 

iteration and select the next point based on deterministic computation, GA repeatedly 

modifies a population of solutions to progressively lead to an optimal solution using random 

number generators. Hence, it constitutes a heuristic technique for optimization capable of 

minimizing the burden of computational time as well as the number of function evaluations 

needed.  

The main steps comprising the optimization process include the initial population 

generation, its evaluation, selection of the best candidate, crossover and mutation. This 

procedure is repeated until convergence. The general criterion for convergence is ‘a no 

change in the solution for n generations’ [40]. Thus, the exploitation of best solutions via the 

exploration of new regions guarantees a large search space which heuristically provides a 

high-quality solution. Although GA allows for the constraints to be easily integrated, the 

randomness with which the transitions are made add concerns about the quality of solution. 

In addition, according to the type of random number generators used, these algorithms may 

converge to different values at the end of each optimization season.  

Finally, a very recent work found in [41], studies the unit commitment problem 

considering pumped storage and renewable energy via a novel heuristic algorithm called the 

Binary Artificial Sheep Algorithm (BASA). The proposed BASA performs better than 

traditional metaheuristics in solving UC and the results demonstrate that the equivalent 

increase in load fluctuation and operating costs of thermal units, due to increased RES 

forecast error, can effectively be counterbalanced by the deployment of pumped-hydro 

energy storage. Although several scenarios of forecast error levels in combination with 

different system constraints are investigated, EES is not properly addressed. It is well-known 

that PHES requires special site conditions the most essential of which are the availability of 

technically suitable locations with access to water. Thus, it cannot be considered as a viable 

option able to deal with the flexibility needed in modern power systems. Moreover, other 

special features regarding the storage losses are missing from the simulation. Finally, for the 

optimal EES size to be determined, larger representative periods are needed (e.g., yearly 

simulation). 
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Recent expansion of intermittent RG and price-responsive demand participation 

posed new challenges to the UC formulation and solution, and hence the application of 

stochastic programming has been widely reported. The various approaches broadly used can 

be divided into mathematical, heuristic, meta-heuristic and hybrid. Ranging from classical 

mathematical to hybrid meta-heuristic, the most important methods are categorized as: 

Dynamic Programming, Priority List, Lagrangian Relaxation, Mixed-Integer Linear 

Programming, Quadratic Programming, Stochastic Programming, Branch-and-Bound, 

Simulated Annealing, Genetic Algorithm, Tabu Search, Ant Colony, Particle Swarm 

Optimization, Fuzzy Logic, Artificial Neural Network, Decision Tree and other hybrid 

techniques [41][42]. Despite numerous research efforts to improve the UC process, a perfect 

method guaranteeing a global optimum has not existed yet.  

In general, heuristic methods are non-rigorous, empirical methods that make UC 

decisions based on pre-calculated priority list and incorporate the operating constraints 

heuristically. Although they are flexible (allowing practical operating constraints to be 

integrated) and require moderate computational memory and running time, the optimal 

solution cannot be guaranteed especially in large-scale power systems where even the 

magnitude of their sub-optimality cannot be estimated. Aiming to employ more rigorous 

methods generating more economical solutions, meta-heuristic approaches have been 

proposed in the expense of large computational efforts requirement. Both categories require 

great experience relating to the whole power system´s behaviour for their confident design 

and implementation. However, they include randomness and use stochastic approach in 

moving from one solution to another, compared to mathematical techniques which follow 

deterministic transition rules. 

 

3.4. Unit Commitment: Open challenges 

As presented in the previous chapter, lot of research has been performed on the problem of 

minimizing the costs associated with electricity production, whilst increasing the 

contribution of variable RES. Most works are focused on alternative approaches to enhance 

the penetration of RES through mathematical optimization or rule-based algorithms. Such 

techniques showed that different appliances can be scheduled in different times and the load 
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can be shifted with the aid of storage, based on both the renewable generation and load 

demand profiles.  

Despite these advances, the vast majority of the existing approaches rely on heuristic 

or rules-based systems, which suffer from glaring drawbacks, as outlined in the previous 

chapters. Most importantly, their limited scalability to large systems, their unacceptable 

reliance on heuristic thresholds, which are both close to impossible to correctly determine 

and of limited generalization value, and their reliance on strong and hard to update 

assumptions, undermine their effectiveness in anything more serious than simplistic 

simulation environments. 

Mathematical optimization constitutes a more promising approach allowing the 

constraints to easily be added. Priority-list schemes are fast and rely on committing 

generation-units based on the order of increasing operating cost. Dynamic programming 

suffers from the curse of dimensionality calling for some simplification techniques and 

opening a special field of hybridization. Due to its ability to overcome the difficulty of non-

convexity and non-linearity of large-scale systems, a global optimum (if any exists) can be 

achieved. Lagrangian relaxation can be easily modified to model characteristics of specific 

utilities. It is capable of incorporating unit constraints separately and coupling constraints by 

just defining a respective Lagrangian multiplier which is adjoined into the objective function 

of the relaxed problem. Although it may be the most attractive for large systems, only a near 

optimal feasible solution can be expected. Another weakness regards the sensitivity problem 

which may cause unnecessary commitments of some units. 

However, the lack of a single model able to, simultaneously, minimize the production 

cost based on fossil fuel prices and the energy grid congestion, maximize the share of RES, 

the overall efficiency and reliability, remains a challenge. Consequently, one major priority 

of this thesis concentrates on devising a mathematical optimization technique able to achieve 

the above-mentioned targets using actual or forecasted generation inputs from variable RES 

and responsive load demand.  

This research direction is both novel and with the potential of reaping important 

benefits for future power systems, while utilizing a paradigm of proven feasibility, namely 

mathematical optimization. However, it is also the case that this conventional paradigm 

suffers from a set of limitations; these include: 1) They require that the practitioners postulate 

specific assumptions regarding the functional form of the initial unit states, the predefined 



 
  

 

34 
 

power output for the committed plants and the priority-based order of starting-ups. 

Apparently, under such a paradigm, the effectiveness of the optimization method 

unacceptably relies heavily on the quality of these assumptions. 2) They are well-known for 

their proneness to get trapped into poor local optima, also depending on the adopted 

initialization strategy. This renders coming up with a good initialization strategy a major 

burden to the practitioners.  

Based on this motivation, this thesis also considers an alternative, ground-breaking 

research direction that may open new research avenues in the field. Specifically, we explore 

whether the bleeding-edge advances in data-driven inference and machine learning can be 

exploited so as to attack the shortcomings of currently used mathematical optimization 

paradigms. We posit that appropriate exploitation of carefully selected and crafted inference 

techniques may represent the needed innovative component for achieving a leap-forward in 

the performance of UC in the power systems of the future. 

Our considered solution relies on the framework of Bayesian optimization (BO) [43]. 

This is a machine learning-driven optimization paradigm that uniquely allows to obviate the 

need of simulating the stochastic behavior of UC components, especially renewable 

generation (RG) systems, by relying on coarse, heuristic, and therefore approximate 

assumptions of the underlying distributions. This way, it holds huge promise in the effort of 

generating reliable estimates of the magnitude of their expected variation; this is achieved 

by using a data-driven Bayesian regression technique that allows for uncertainty-aware 

prediction, namely Gaussian processes (GPs) [44]. Crucially, BO uses the GP-derived 

uncertainty estimates to guide an indicate iterative optimization process, which aims at 

obtaining the globally optimal UC setup in the least possible number of iterations (trials).  

We elaborate on the main principles of BO in Chapter 4. 

Finally, it is our strong belief that for our research to be completed, a methodology 

is needed for evaluating and comparing EES technologies with different cost structures in 

potential grid applications, distinguishing their power-related and capacity-related costs. 

Aiming to apply the same evaluation method to all cases, we seek for an algorithm which 

incorporates the initial project cost, storage replacement cost, fixed and variable O&M costs 

over the life of an EES facility. Once the costs of the subsystems comprising the whole 

facility are defined, the calculation of life-cycle cost ascribed to the present value in terms 

of the power rating ($/kW) will constitute a quick and useful metric for EES facility owners 

to compare between technologies that may possess different characteristics. 
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In the following, we elaborate on the envisaged methodological solution that we will 

adopt in the context of both the research directions outlined in this chapter. We will 

commence with a detailed account of the proposed mathematical optimization solution. 

Subsequently, we will proceed to introduce the main principles and rationale of BO and we 

will further provide the main innovative components that constitute our ground-breaking 

solution.  
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4. Mathematical optimization solution 

In contrast to economic dispatch (ED) where it is assumed that all units are already connected 

to the system, UC assumes that the generating units are available and appropriate subsets 

must be selected to provide the minimum operating cost. While integer variables are 

involved, UC is more difficult to solve mathematically as it constitutes a more complex 

procedure which considers the ED as a subproblem to the solution. In the following, we 

present the framework of a mathematical approach based on dual optimization, the so-called 

Lagrange Relaxation (LR). Initially, we demonstrate a traditional formulation and assess its 

performance on a power system consisting of 18 generating units. Then, we compare it with 

our novel version and evaluate its ability to deal with identical generating units. 

 

4.1. Mathematical framework of Lagrange Relaxation 

By utilizing dual optimization, Lagrange Relaxation becomes advantageous over dynamic 

programming-based approaches where all generating units are examined in the same time 

interval. This disturbs the coupling constraints since an action to one unit affects what will 

happen on the others. Through the dual optimization procedure, the UC problem is solved 

by “relaxing” (or temporarily ignoring) the coupling constraints as if they did not exist, so 

that other primal constraints can easily be added to the problem [45]. 

The method starts by defining the fundamental constraints and the objective function. 

Minimize:  

𝐹(𝑃𝑖
𝑡, 𝑈𝑖

𝑡) =∑∑[𝐹𝑖(𝑃𝑖
𝑡) + 𝐶𝑆𝑈𝑖

𝑡 ]

𝑁

𝑖=1

𝑇

𝑡=1

𝑈𝑖
𝑡                                             (4.1) 

subject to loading constraints,  

𝑃𝑛𝑒𝑡𝐷 − ∑𝑃𝑖

𝑁

𝑖=1

= 0    ∀ 𝑡 ∈ 𝒯                                                    (4.2) 

and unit constraints.          

𝑈𝑖
𝑡𝑃𝑖,𝑚𝑖𝑛

𝑡 ≤ 𝑃𝑖
𝑡 ≤ 𝑈𝑖

𝑡𝑃𝑖,𝑚𝑎𝑥 
𝑡    ∀ 𝑖 ∈ 𝒩 , ∀ 𝑡 ∈ 𝒯                                      (4.3) 
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Adding the constraint function (4.2) to the objective (4.1) after multiplying the first 

by an undetermined multiplier λ, we obtain Lagrange Function shown in Equation 5.4. 

ℒ(𝑃, 𝑈, 𝜆) =  𝐹(𝑃𝑖
𝑡, 𝑈𝑖

𝑡) +∑𝜆𝑡 (𝑃𝑛𝑒𝑡𝐷
𝑡 − ∑𝑃𝑖

𝑡𝑈𝑖
𝑡

𝑁

𝑖=1

)

𝑇

𝑡=1

                          (4.4) 

 

The first derivative gives the necessary condition for the existence of a minimum 

cost.  When the Lagrangian is rewritten as: 

ℒ =  ∑∑[𝐹𝑖(𝑃𝑖
𝑡) + 𝐶𝑆𝑈𝑖

𝑡 ]

𝑁

𝑖=1

𝑇

𝑡=1

𝑈𝑖
𝑡 +∑𝜆𝑡𝑃𝑙𝑜𝑎𝑑

𝑡 − ∑∑𝜆𝑡
𝑁

𝑖=1

𝑇

𝑡=1

𝑇

𝑡=1

𝑃𝑖
𝑡𝑈𝑖

𝑡            (4.5) 

it is observed that the second term is constant and can be neglected to reach the form of 

Equation 4.6. 

ℒ =∑(∑{[𝐹𝑖(𝑃𝑖
𝑡) + 𝐶𝑆𝑈𝑖

𝑡 ]𝑈𝑖
𝑡 − 𝜆𝑡𝑃𝑖

𝑡𝑈𝑖
𝑡}

𝑇

𝑡=1

)

𝑁

𝑖=1

                                     (4.6) 

 

This way, we achieve unit separation and the term inside the outer brackets can now 

be solved separately for each generating unit. The minimum of the final function for each 

unit over all time periods is found by the first derivative and makes sense only when 𝑈𝑖
𝑡 =

1. The necessary condition for the existence of a minimum cost of operation for the thermal 

power system is that all the unit incremental cost rates must be equal to the undetermined 

value λt over all time periods according to:  

𝑑

𝑑𝑃𝑖
𝑡 [𝐹𝑖(𝑃𝑖

𝑡) − 𝜆𝑡𝑃𝑖
𝑡] =

𝑑

𝑑𝑃𝑖
𝑡 𝐹𝑖(𝑃𝑖

𝑡) − 𝜆𝑡 = 0                                (4.7) 

 

To incorporate the thermal constraints of minimum and maximum power output of each 

generating unit, the following conditions must be qualified: 

𝑚𝑖𝑛[𝐹𝑖(𝑃𝑖
𝑡) − 𝜆𝑡𝑃𝑖

𝑡] = {

𝐹𝑖(𝑃𝑖
𝑜𝑝𝑡
) − 𝜆𝑡𝑃𝑖

𝑜𝑝𝑡
        𝑓𝑜𝑟 𝑃𝑖

𝑚𝑖𝑛 ≤ 𝑃𝑖
𝑜𝑝𝑡

≤ 𝑃𝑖
𝑚𝑎𝑥         

𝐹𝑖(𝑃𝑖
𝑚𝑖𝑛) − 𝜆𝑡𝑃𝑖

𝑚𝑖𝑛      𝑓𝑜𝑟 𝑃𝑖
𝑜𝑝𝑡

≤ 𝑃𝑖
𝑚𝑖𝑛                          

𝐹𝑖(𝑃𝑖
𝑚𝑎𝑥) − 𝜆𝑡𝑃𝑖

𝑚𝑎𝑥     𝑓𝑜𝑟 𝑃𝑖
𝑜𝑝𝑡

≥ 𝑃𝑖
𝑚𝑎𝑥                         

  (4.8) 
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Finally, since the objective is to minimize [𝐹𝑖(𝑃𝑖
𝑡) − 𝜆𝑡𝑃𝑖

𝑡] at each stage and as this value 

goes to 0 only when 𝑈𝑖
𝑡 = 0, the only way to get a lower value is to achieve: 

[𝐹𝑖(𝑃𝑖
𝑡) − 𝜆𝑡𝑃𝑖

𝑡] < 0                                                     (4.9) 

 

While the solution is given for each generating unit independently, the remaining 

constraints can easily be integrated. Specifically, for each time-interval the independent 

generating units are allowed to change their status (or check if they satisfy Equation 4.9) 

based on Equations (3.17) and (3.18). At the same time, their minimum and maximum 

capacity are limited according to Equations (3.19) and (3.20). The dimensionality problems 

affecting dynamic programming have been avoided and a way remains to be found adjusting 

λt values for the coupling constraints of load balance, spinning reserve, etc. Such an example 

is presented by Equation (4.10). 

𝜆𝑘+1 = 𝜆𝑘 + [
𝑑

𝑑𝜆
𝑞(𝜆)] 𝑎                                                   (4.10) 

The function q(λ) represents the Lagrangian Function and its derivative results in: 

𝑑

𝑑𝜆
𝑞(𝜆) =∑(𝑃𝑙𝑜𝑎𝑑

𝑡 − ∑𝑃𝑖
𝑡𝑈𝑖

𝑡

𝑁

𝑖=1

)

𝑇

𝑡=1

                                  (4.11) 

To avoid oscillations the values of α must be distinguished according to derivative’s sign so 

that: 

𝑎 = {
𝑐        𝑖𝑓 

𝑑

𝑑𝜆
𝑞(𝜆) < 0

𝑐

2
       𝑖𝑓 

𝑑

𝑑𝜆
𝑞(𝜆) > 0

                                                  (4.12) 

                      

A measure of the closeness to the solution is referred to as relative duality gap (RDG) and is 

given by the following Equation. 

𝑅𝐷𝐺 =
𝐽∗ − 𝑞∗

𝑞∗
                                                                 (4.13) 
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In this equation, J* represents the total cost (for the N generating units during the T 

time periods) estimated by the relaxed λ while q* is the total cost given by the corrected λ 

values used in ED. In some cases, the process may fall into oscillations due to unnecessary 

commitments and de-commitments of identical units. This is reflected as overload or 

underload conditions violating the power balance constraints. To deal with such a sensitivity 

problem, the identical units j can be grouped to form a composite cost function and an 

alternative process is utilized to optimally define the active unit number (𝜂𝑖
𝑡) of each group 

i based on the following mathematical statements [46]: 

𝜂𝑖,𝑚𝑖𝑛
𝑡 ≤ 𝜂𝑖

𝑡 ≤ 𝜂𝑖,𝑚𝑎𝑥
𝑡                                                        (4.14) 

𝜂𝑖,𝑚𝑖𝑛
𝑡 . 𝑃𝑖𝑗,𝑚𝑖𝑛

𝑡 ≤ 𝜂𝑖
𝑡. 𝑃𝑖𝑗

𝑡 ≤ 𝜂𝑖,𝑚𝑎𝑥
𝑡 . 𝑃𝑖𝑗,𝑚𝑎𝑥

𝑡                                        (4.15) 

As we observe, the solution of the above problem comprises the computation of 3-

dimensional matrices. In contrast to conventional LR formulations where each variable 

could be represented by processing 𝒩𝑥𝒯 (2-dimensional) matrices, the composition of 

groups to accommodate identical units requires a further dimension. This is needed, for 

example, to define a variable’s value for a generating unit i classified in group j for the 

interval t. As this procedure is computationally cumbersome, this thesis will examine an 

innovative method that performs the commitment of identical units in two further stages 

regarding the dual and primal problem for grouped (i) and individually included (j) 

generating units [47]. This way, the contribution of each generating group is reformulated, 

by making use of dual variable constraints. To overcome oscillations and achieve the 

convergence, we propose that such variables are needed to detect which group was last-up, 

to set the time duration that each distinguished (un-grouped) unit has been on-line or off-line 

at the end of interval t, and to identify if the unit was started-up at the beginning of this 

interval. The dual and relaxed problems will be alternatively resolved until the optimal 

Lagrange multiplier vector is found iteratively. 

 

4.2. A demonstration of Lagrangian Relaxation 

Based on the previously presented framework, a model has been developed and assessed in 

two test-cases. We consider the IEEE Reliability Test System which consists of 18 

generating units depicted below.  
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Table 3. Characteristics of IEEE Reliability Test System. 

GU 
Pmin 

(MW) 

Pmax 

(MW) 

a  

($/h) 

b 

($/MWh) 

c 

($/MW2h) 

SU        

($) 

MU 

(hr) 

MD 

(hr) 

Initial Operating 

hours 

1 100 800 5 4 0.001 10000 8 8 8 

2 100 800 5 6 0.002 10000 8 8 8 

3 80 400 20 8 0.0025 8000 4 4 4 

4 80 400 20 10 0.0025 8000 4 4 4 

5 60 300 30 10 0.002 6000 3 3 3 

6 60 300 30 12 0.002 6000 3 3 3 

7 50 200 40 14 0.0015 5000 2 2 2 

8 50 200 40 16 0.0015 5000 2 2 2 

9 25 100 55 15 0.0012 2500 1 1 1 

10 25 100 55 17 0.0012 2500 1 1 1 

11 25 100 55 17 0.0012 2500 1 1 1 

12 60 300 30 10 0.002 6000 3 3 3 

13 60 300 30 12 0.002 6000 3 3 3 

14 50 200 40 14 0.0015 5000 2 2 2 

15 50 200 40 16 0.0015 5000 2 2 2 

16 25 100 55 15 0.0012 2500 1 1 1 

17 25 100 55 17 0.0012 2500 1 1 1 

18 25 100 55 17 0.0012 2500 1 1 1 

 

 

 

 

 

 

 

 

 

 

Figure 14. Optimal UC based on traditional Lagrange formulation. 
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To evaluate the performance of our algorithm, we first use a Lagrangian Relaxation method 

based on the traditional formulation. Figure 14 illustrates the optimal UC schedule achieved 

for a weekly load demand variation and spinning reserve requirement of 10%.  

Apart from the power balance and spinning reserve, minimum-up and minimum-

down times are also included. Other constraints such as unit status restrictions and crew 

constraints are not integrated into the UC formulation, to allow for reaching a comprehensive 

overview of the optimization procedure. Furthermore, we completely ignore the ramp 

limitations since they are found adequate for the respective hourly demand. Finally, all start-

up costs are calculated based on a fixed cost including crew and maintenance expenses ai 

(Equation 3.5). 

As can be observed, traditional UC algorithms relying on mathematical optimization 

such as Lagrange Relaxation, present a sensitivity regarding the identical generating units. 

Specifically, the generating units that possess identical or even similar cost coefficients (a, 

b and c) and start-up costs (SU) are selected to get online according to mathematical 

statement (4.9). As a result, the generation is over-scheduled leading to increased start-up 

and production costs. When more constraints are taken into account, the committed units 

force the optimization into oscillations providing consecutive over-load and under-load 

solutions.  

As stated in the previous chapter, to overcome this weakness we propose a double-

decomposition approach capable of accounting for the identical units and treating them as 

individual composite groups. Compared to the models proposed in the framework of LR, the 

Lagrangian dual function is separable into sub-problems regarding both each group of 

identical units and each single unit individually. As a result, LR proceeds with a four-stage 

procedure instead of the classical approaches which converge in two stages of dual and 

primal problem solutions. Aiming to optimally define the active unit number, 𝑛𝑖
𝑡, which 

satisfies system power balance and spinning reserve requirements, whilst minimizing the 

total production cost, a suitable modification can be explained through the main steps of the 

procedure given below. 

1. Initialization: All unit characteristics, cost coefficients and load are imported. 

2. Grouping: The identical as per cost coefficients and status units are identified and 

grouped together to form a composite cost function. 
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3. Generate the possible binary combinations for each time interval subject to group 

specific constraints.  

4. Economic dispatch: Using the proposed commitment schedule calculate the total 

generation for those time intervals during which the power balance and spinning reserve 

constraints are satisfied. 

5. Un-grouping: For the rest of time intervals (during which the inequalities are over-

constrained), un-group and evaluate the generation of the last-up (costliest) group, 

updating the dual variables of active unit number of the particular group and last-up, off-

line duration and start-up time of each individual unit of the corresponding group.  

6. Calculate the total production cost for each time interval and based on the fitness function 

update λ for each combination.  

7. Algorithm update: Regroup the units based on the new parameters constraining their 

contribution and go back to the step 3 until the maximum iteration number is achieved. 

 

Utilizing dual variable constraints, we reformulated the contribution of each 

generating group based on mathematical statements (4.14) and (4.15). The quadratic, 

pricewise cost function is processed in its nominal form for both stages of either grouped or 

individually included units [48]. Once the appropriate groups are decided to change their 

status, two possible conditions may occur alternately, namely overload or underload and 

hence, three extra variables are required to overcome oscillations and achieve the 

convergence. These include integer variables to detect which group was last-up and to set 

the time duration that each distinguished (un-grouped) unit has been on-line or off-line at 

the end of interval t, and binary 0/1 variables equal to “1” if the unit is started-up at the 

beginning of interval t. Improvements in the number of committed units to satisfy the same 

load demand are achieved.  

Applying our proposed technique to the same power system configuration, the 

improvements in UC schedule can be observed in the following scheme. The significance of 

our proposed approach when identical generating units are utilized for electricity production 

can be observed through the Figure 15, where the cost difference of the weekly simulations 

concerning the two test-cases are presented. As can be seen, the unnecessary commitment 



 
  

 

43 
 

of identical generators leads to increased start-up costs and uneconomic dispatch of the 

partially loaded units. 

 

Figure 15. Weekly total production and start-up costs. 

 

The estimated cost difference reaches a total of up to $550,000 which constitutes a 

18% increase compared to our novel LR solution. Finally, exploiting the innovative concept 

of double-decomposition, improvements also for the convergence performance do exist. The 

optimal UC schedule for the week under consideration is presented in Figure 16. Figure 17 

illustrates this performance in terms of duality gap across the required iterations of the 

conventional and proposed LR optimization processes.  
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Figure 16. Optimal UC based on novel Lagrange formulation. 

 

Figure 17. Optimization process LR duality gap. 
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5. Bayesian optimization solution 

In previous chapter, we elaborated on mathematical optimization and we found that it 

undeniably offers a high-performance/low-cost UC solution technique. Specifically, 

Lagrange Relaxation framework is easily modified to model characteristics of different 

utilities, surpassing the sensitivity it might have experienced in managing identical units. 

However, despite its ability to overcome non-convexity and non-linearity of large-scale 

systems, only a near-optimal feasible solution can be expected. In addition, LR methods 

constitute mainly deterministic approaches unable to include the stochastic behaviour of 

modern power systems into their objectives. They rely, instead, on simulated scenarios 

weighted with a probability of occurrence. Finally, the number of function evaluations 

needed increases by increasing generating units and integrated (especially coupled) 

constraints.  

To ameliorate this expensive requirement, intelligent systems for determining 

appropriate UC schedules have risen as a promising solution. This is especially the case for 

weak power systems with low dispatching flexibility and high dependency on imported 

fossil fuels. In this chapter, we introduce a radically novel paradigm for addressing the 

optimal UC problem, that is capable of accounting for the largely unaddressed challenge of 

the uncertain and volatile behavior of modern generation. In the following, we first introduce 

the paradigm of BO. Further, we elaborate on our suggested solution, leveraging BO 

arguments to revolutionize the UC in power systems. 

 

5.1. A Bayesian optimization primer 

We consider the problem of finding the global minimizer x⋆ of a scalar objective function 

f(x) over some bounded domain, typically 𝒳⊂ℝD, subject to a set of K constraints 

𝑐1, 𝑐2, … , 𝑐𝐾 as defined previously.  

𝑥∗ = argmin
𝑥∈𝑋

𝑓(𝑥)                                                                  

𝑠. 𝑡.                  𝑐1(𝑥) ≤ 0,… , 𝑐𝐾(𝑥) ≤ 0                                                 (5.1) 

 

BO introduces the fundamental assumption that the functional form of the scalar 

objective 𝑓(𝑥) is unknown and it cannot be determined with certainty. On the contrary, it 
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constitutes a stochastic function of the input x, which can only be modelled as a random 

process. On the basis of this assumption, BO infers a Bayesian predictive model for 𝑓(𝑥), 

by making use of previous function evaluations. The predictive model typically used is a 

GP, which operates as a relatively inexpensive surrogate to guide the optimization algorithm 

towards regions that are promising (low GP mean) and/or unknown (high GP uncertainty). 

This procedure is performed on the basis of a local optimization rule which relies on a 

properly defined acquisition function [49].  

Let us consider an existing set of measurement pairs {𝑥𝑖, 𝑦𝑖}; this constitutes both the 

observed data points and the corresponding measured values of the sought stochastic 

function f. BO uses this set as the training data D of an underlying GP model used for 

predictive inference purposes. GP inference consists in assigning a prior, 𝑝(𝑓), over the 

function 𝑓(𝑥) and, combining it with the evidence from the data D, formulated under a 

likelihood assumption, 𝑝(𝐷|𝑓), to get a posterior distribution, 𝑝(𝑓|𝐷), over 𝑓(𝑥) according 

to Bayes’ theorem.    

𝑝(𝑓|𝐷) =
𝑝(𝐷|𝑓)𝑝(𝑓)

𝑝(𝐷)
                                                                

𝑜𝑟                                                                                 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∗ 𝑝𝑟𝑖𝑜𝑟

𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑
                                        (5.2) 

 

In more detail, given any finite collection of n points 𝑿 = {𝑥𝑖 ∈ 𝒳|𝑖 = 1,2, … , 𝑛}, the value 

of f at these points is assumed to be jointly Gaussian with mean m:X↦ℝ, where 𝑚 =

(𝜇(𝑥1), 𝜇(𝑥2), … , 𝜇(𝑥𝑛))
𝑇
 and covariance matrix K:X×X↦ℝ, where 𝑲𝑖𝑗 = 𝒌(𝑥𝑖, 𝑥𝑗) for 

i≥1, j≤n. The implications of this assumption establish that the sum of the number of 

independent and identically distributed i.i.d. random variables, 𝑿, with finite variances will 

tend to a normal distribution, f, which is able to describe any set of their correlated, real 

values [50]. This is expressed in the form of the postulated prior imposed over 𝑓(𝑥) which 

yields 𝑓 ∼ 𝒩(𝑚,𝐾). In order for neither positive nor negative values to be privileged, the 

mean is typically taken as zero, yielding: 

𝑓|𝑋~𝒩(0, 𝐾)                                                                    
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𝑜𝑟                                                                               

 log 𝑝(𝑓|𝑋) = −
1

2
𝑓𝑇𝐾−1𝑓 −

1

2
log|𝐾| −

𝑛

2
log 2𝜋                         (5.3) 

Turning to the selection of the covariance function, we typically utilize kernel 

functions that ensure its positive semi-definiteness. There is a large variety of alternatives 

that are typically used, including the radial basis function (RBF) kernel, as well as Matern 

class kernels [51]. For instance, in this work we will make use of the adaptive relevance 

determination (ARD) Matern 5/2 kernel, which reads: 

𝑘(𝑥𝑖, 𝑥𝑗) = 𝜎𝑓
2 (1 + √5𝑟 +

5

3
𝑟2) 𝑒𝑥𝑝(−√5𝑟)                          (5.4) 

𝑟 = √∑
(𝑥𝑖𝑚 − 𝑥𝑗𝑚)

2

𝜎𝑚2

𝐷

𝑚=1

                                               (5.5) 

 

The benefit of this type of kernel lies both on its highly non-Gaussian form, as well 

as the fact that it puts different trainable weights, 𝜎𝑚
2 , on the components of the observed 

vectors x. This way, it learns which observed features are the most important for modelling 

purposes.  

On the other hand, to allow for realistic modelling, we take into account that the GP 

model can only generate noisy predictions, f(x), of the dependent variable y. To encapsulate 

this assumption, we postulate an additive independent identically distributed Gaussian noise 

model, ε, with zero mean and variance 𝜎𝑛
2. Under this formulation, we obtain a likelihood 

function for the model which reads 𝑦|𝑓~𝒩(𝑓, 𝜎𝑛
2𝐼). 

Based on the introduced prior and likelihood assumptions, and using Bayes’ rule, it 

can be shown that the marginal likelihood of the model reads: 

log 𝑝(𝑦|𝑋) = −
1

2
𝑦𝑇(𝐾 + 𝜎𝑛

2𝐼)−1𝑦 −
1

2
log|𝐾 + 𝜎𝑛

2𝐼| −
𝑛

2
log 2𝜋             (5.6) 

or 

𝑦|𝑋~𝒩(0, 𝐾 + 𝜎𝑛
2𝐼)                                                        (5.7) 
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Optimization of this expression can be performed to estimate the appropriate values 

of the trainable hyperparameters of the employed kernel functions, for instance the set of 𝜎𝑚
2  

hyperparameters of the ARD Matern 5/2 kernel, as well as the noise variance hyperparameter 

𝜎𝑛
2of the likelihood of the model.  

Once model training by optimizing the marginal likelihood (5.6) is performed, using 

a data set 𝐷𝑡 = {𝑥1:𝑡, 𝑦1:𝑡}, BO employs an  acquisition function 𝑢(𝑥|𝐷𝑡) to decide what 

point xt+1 to consider next, as it seeks to find the global optimum of the modelled stochastic 

function f(x). Considering a minimization setup for f(x), a point xt+1 yielding a high 

acquisition value should correspond to low posterior expected values of f(x) inferred by the 

trained GP, or predictions with high uncertainty, as expressed in the form of the obtained 

predictive posterior variance.  

The notion of expected-improvement offers the most typically used formulation of 

the acquisition function. We consider [52]: 

𝑥𝑡+1 = argmin
𝑥𝑡∈𝑥1:𝑡

𝑢(𝑥)                                                     (5.8) 

such that 

𝑥𝑡+1 = argmin
𝑥𝑡∈𝑥1:𝑡

𝔼(‖𝑓𝑡+1(𝑥) − 𝑓(𝑥∗)‖|𝐷𝑡)                                                                         

= argmin
𝑥𝑡∈𝑥1:𝑡

∫‖𝑓𝑡+1(𝑥) − 𝑓(𝑥∗)‖𝑝(𝑓𝑡+1|𝐷𝑡) 𝑑𝑓𝑡+1                                        (5.9) 

 

In this expression, the predictive posterior 𝑝(𝑓𝑡+1|𝐷𝑡) is obtained by making use of 

Bayes’ rule and the likelihood and prior assumptions of the employed GP model. 

Specifically, the joint distribution of the observed target values and the function values 

𝑓𝑡+1 = 𝑓(𝑥𝑡+1) at the test location xt+1 under the prior can be written as: 

[
𝑦1:𝑡
𝑓𝑡+1

] ~𝒩 (0, [
𝑲 + 𝜎𝑛

2𝑰 𝒌

𝒌𝑇 𝑘(𝑥𝑡+1, 𝑥𝑡+1)
])                                (5.10) 

where 

𝑲 = [
𝑘(𝑥1, 𝑥1) ⋯ 𝑘(𝑥1, 𝑥𝑡)

⋮ ⋱ ⋮
𝑘(𝑥𝑡, 𝑥1) ⋯ 𝑘(𝑥𝑡, 𝑥𝑡)

]                                          (5.11) 
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𝒌 = [𝑘(𝑥𝑡+1, 𝑥1) 𝑘(𝑥𝑡+1, 𝑥2) ⋯ 𝑘(𝑥𝑡+1, 𝑥𝑡)]                          (5.12) 

 

This yields the predictive distribution: 

𝑝(𝑓𝑡+1|𝐷1:𝑡, 𝑥𝑡+1)~𝒩(𝑚𝑡(𝑥𝑡+1), 𝜎𝑡
2(𝑥𝑡+1) + 𝜎𝑛

2)                         (5.13) 

and the sufficient statistics: 

𝑚𝑡(𝑥𝑡+1) = 𝒌𝑇[𝑲 + 𝜎𝑛
2𝑰]−1𝑦1:𝑡                                            (5.14) 

𝜎𝑡
2(𝑥𝑡+1) = 𝑘(𝑥𝑡+1, 𝑥𝑡+1) − 𝒌

𝑇[𝑲 + 𝜎𝑛
2𝑰]−1𝒌                              (5.15) 

 

Finally, in most practical optimization problems, the observation space does not 

cover the whole domain of real numbers; some parts of it are excluded due to imposed 

constraints. Therefore, the BO algorithm must be prohibited from picking such points when 

applying the expected improvement rule. To ensure this, we can modify the original expected 

improvement rule, weighting it with the probability of the constraints being satisfied 

[53][54].  

𝑢𝐶(𝑥|𝐷𝑡) = 𝑢(𝑥|𝐷𝑡)∏𝑝(𝑐𝑘(𝑥) ≤ 0|𝐷𝑡)

𝐾

𝑘=1

                               (5.16) 

Once observing the output of each query of the objective, the model is updated to 

produce a more informative posterior over the space of objective functions, the acquisition 

is recomputed, and a new input is chosen for evaluation. After n queries, the algorithm makes 

a final recommendation 𝑥𝑛∗, providing the algorithm’s best estimate and completing the 

Bayesian optimization loop [55]. 

 

5.2. A Bayesian optimization approach 

Our proposed approach utilizes the latest advances in Bayesian inference under prespecified 

constraints [54]. This represents a data-driven inferential framework for solving 

combinatorial problems, namely UC and ED. The entailed modelling procedure starts with 

the definition of the independent variables, the optimizable variables, and the functional 
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form of the dependent variables, as well as constraints definition, both at the individual unit 

level and the system level.  

We aim to consider two types of optimizable variables, namely a) the power output 

at unit level, which is a real number and b) the unit status which is integer. Under this scheme, 

it is easy to ensure satisfaction of the status restrictions, for instance by excluding from the 

optimization the state variables of the units that must run, the power output variables of the 

units that run at a fixed-MW output and both variables for those which must be out. In 

addition to the predefined unit bounds which are, by nature, expressed by the specification 

of the optimizable variable domain, we intend to also introduce coupled constraints. These 

include the power balance constraint, as well as the spinning reserve requirements.  

Moreover, our investigation may be further improved by considering a third category 

of constraints that are of deterministic nature. One such a deterministic constraint is the plant 

crew constraint as defined in Chapter 3. Further, the also previously defined MU/MD and 

RU/RD constraints can also be treated as conditional constraints since if the optimization 

enforces certain values to some variables, other variables have to be set to given, feasible 

values under certain conditions.  

 

5.2.1 Methodology 

Inspired from the previously described state-of-the-art advances, in this chapter we propose 

a radically novel paradigm for addressing the UC challenge. Our vision is: 1) to ameliorate 

the need of heuristically specifying a functional form for the fuel cost function, which 

constitutes a core part of the optimized objective function in conventional formulations of 

the UC problem, and may undermine the obtained outcome if it deviates from reality; and 2) 

allow to discover quality solutions to the UC problem after only a limited number of function 

evaluations, which is of utmost importance in real-world settings where scheduling decisions 

may need to be made within extremely limited time-windows.  

To this end, our proposed approach utilizes the latest advances in Bayesian 

optimization under prespecified constraints, summarized in the previous chapter. 

Specifically, we formulate the UC problem as a BO task whereby the stochastic dependent 

variable, y, represents the total production cost of the system, while the independent 

variables, x, comprise: 1) the exogenous variable that must be satisfied, namely the net load 
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demand; 2) the optimizable variables that the algorithm needs to specify, namely the status 

of each unit and the power output of each generating unit. Further, we impose a number of 

proper constraints to ensure the feasibility of the discovered solutions, both at the individual 

unit level and the system level. This way, we establish a novel inferential paradigm, which 

operates in a completely data-driven fashion to discover the system dynamics and utilizes 

this outcome to effect the optimization task.  

In our setup, the power output at unit level is treated as a real number. On the other 

hand, the unit status constitutes an integer. Under this scheme, it is easy to ensure satisfaction 

of the imposed status restrictions, for instance by excluding from the optimization the state 

variables of the units that must run, the power output variables of the units that run at a fixed-

MW output, as well as both these two types of variables in cases of units that must be out. 

Turning to the specification of the imposed constraints, we consider: 1) the predefined unit 

bounds; 2) a set of coupled constraints, which include the power balance constraint, as well 

as the spinning reserve requirements; 3) the plant crew constraint, defined in Equation 3.8; 

and 4) the MU/MD and RU/RD constraints, given by Equations 3.17-3.18 and 3.19-3.20, 

respectively. Start-up costs are calculated based on a fixed cost including crew and 

maintenance expenses ai (Equation 3.5). 

In our realization of the BO pipeline, the functional form of the total production cost 

is inferred by means of a GP regression model. The postulated GP is presented with historical 

data, as well as observations fed back to the model during the optimization process and 

enables efficient prediction of how the dependent variable fluctuates when we modify the 

values of the independent/optimizable variables. Each time the BO algorithm modifies the 

value of an optimizable/independent variable, it records the resulting value of the measured 

dependent variable, namely total production cost, and retrains the postulated GP regression 

model on the augmented data of independent and corresponding dependent variable values. 

This way, it allows to process the load demand without requiring hourly measurements and 

ensures exploration of global solutions to achieve optimality. 

Turning to the optimizable variable selection strategy, we rely on an appropriately 

defined acquisition function, pertinent to the addressed problem. The rationale underlying 

our selection can be summarized under the following objectives: 1) The optimizable 

variables must be modified in a way that maximally improves the expected dependent 

variable value, according to the predictions generated by the postulated GP model, 2) The 

number of modifications performed until the BO algorithm finds the globally optimal 
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selection for the optimizable variables must be the least possible. Specifically, we utilize the 

expected improvement function, defined in Equation 5.16, combined with a properly 

selected threshold for timely detecting BO convergence; we set this at 0.5% iteration-to-

iteration improvement, which constitutes a less than marginal cost improvement according 

to the related practice. Hence, the condition of 𝑓(𝑥∗) < 𝑓(𝑥), ∀𝑥 ≠ 𝑥∗ is retained and 

optimality is guaranteed. 

 

5.2.2 Experimental evaluation 

In the following, we perform a thorough experimental assessment of our proposed approach, 

adopting a common experimental setup, described for instance in [56]. We consider a power 

system with 10 generators, the properties of which are summarized in Table 4. In our study, 

we treat the power demand as an input variable defined over daily horizons of 24-hourly 

intervals, as depicted in Table 5.  

We have implemented our novel paradigm in MATLAB 2018a [57]. To initialize the 

Bayesian optimization algorithm, we generate an initial guess of the independent variable 

values in 𝑥0. These comprise an initialization of the UC, selected by considering that 

generating units 1 and 2 operate at their mean power output. This initialization strategy 

essentially reflects a simplistic UC policy, commonly used by transmission system operators 

that have not assimilated sophisticated optimization know-how. Moreover, the operating 

hours of each generating unit at the first time slot are included in the last column of Table 4. 

 

Table 4. Characteristics of thermal generating units. 

Unit 

i 

Pmin 

(MW) 

Pmax 

(MW) 

a        

($/h) 

b 

($/MWh) 

c 

($/MW2h) 

RU & RD 

(MW/hr) 

MU/MD  

(hr) 

SU             

($) 

Oper. 

hours 

1* 225 455 1000 16.19 0.00048 405 8 4500 8 

2 225 455 970 17.26 0.00031 405 8 5000 8 

3 30 195 700 16.60 0.00200 54 5 550 0 

4 30 195 680 16.50 0.00211 54 5 560 0 

5 37.5 243 450 19.70 0.00398 67.5 6 900 0 

6 30 120 370 22.26 0.00712 54 3 170 0 

7 37.5 127.5 480 27.74 0.00079 67.5 3 260 0 

8 15 82.5 660 25.92 0.00413 27 1 30 0 

9 15 82.5 665 27.27 0.00222 27 1 30 0 

10 15 82.5 670 27.79 0.00173 27 1 30 0 

* Generating Unit 1 is constantly in must-run mode. 
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To render our experimental setup more realistic, we introduce an additional 

constraint which is of major importance for system operators, but is omitted from the 

experimental setup of [56]: We consider a spinning reserve requirement, and set it at 50MW, 

which is a standard practice in Cyprus. Figure 18 illustrates the outcome of the objective 

function evaluations at the determined candidate solutions over the performed algorithm 

iterations. For exposition purposes, we depict the solutions pertaining to 24-hours along with 

a colormap, to give a more effective insight into results. As we observe, for each hourly 

interval, the adopted BO process converges consistently.  

Characteristically, the first solutions, obtained through algorithm initialization, yield 

poor values; however, performance improves fast as the BO algorithm proceeds. 

 

Table 5. Net load demand (MW) for 24 hours. 

Hour Load Hour Load Hour Load 

1 700 9 1300 17 1000 

2 750 10 1400 18 1100 

3 800 11 1450 19 1200 

4 850 12 1500 20 1400 

5 950 13 1400 21 1300 

6 1000 14 1300 22 1100 

7 1150 15 1200 23 900 

8 1200 16 1050 24 800 

 

Further, to obtain some comparative results, we also evaluate some state-of-the-art 

alternatives under the same experimental scenario. Specifically, we consider: 1) Dynamic 

Programming, which constitutes a standard solution in the related literature [41][42]; 2) the 

Lagrange Relaxation-based approach, presented in [47]; and 3) a standard Genetic 

Algorithm implementation, as provided in the GA toolbox of MATLAB [58].  

The obtained results are provided in Table 6. Specifically, in this Table we provide 

the comparative results pertaining to the two key aspects that characterize an optimization 

process: 1) the number of attempts (function evaluations) required for the algorithm to 

converge (converge to a minimum); 2) the eventually obtained optimal (cost) value. 
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Table 6. Comparative results. 

Method 
Number of Function 

Evaluations 

Minimum TPC 

achieved 

Proposed Approach 7840 567178.5 

Lagrangian Relaxation 11520 588217.2 

Genetic Algorithm 24000 596217.3 

Dynamic Programming 24552 587512.9 

          * TPC = Total Production Cost ($) 

 

 

Figure 18. Function evaluations of our proposed approach pertaining to the 24-hourly 

intervals. 



 
  

 

55 
 

As we observe, our proposed approach yields the best optimal solution, which 

decreases the minimum achieved TPC by a whopping $30K. This is an unprecedented 

improvement over the examined alternatives. It corroborates our claims on how the need of 

existing solutions to postulate specific functional forms for the cost functions undermines 

the optimization process. In addition, it offers strong empirical evidence that the proposed 

data-driven paradigm brings significant merit and benefits to the design of successful UC 

systems.  

Further, our results indicate that our proposed solution constitutes the absolute leader 

in terms of the required number of function evaluations; it outperforms Dynamic 

Programming, which yields the second-best optimal cost, by more than three times the total 

required number of function evaluations. This outcome strongly vouches for the capacity of 

the employed GP model to effectively learn the underlying cost dynamics given only a 

limited number of training data. It also provides strong support to the adopted acquisition 

function, namely the expected improvement. 

Finally, for completeness sake, in Figure 19 we illustrate the optimal scheduling 

results of our approach over all the generating units, for the 24-hourly intervals. In addition, 

we provide the real-valued, optimal power output of each generating unit in tabular form for 

the daily satisfaction of electricity demand. 

 

Figure 19.  Optimal UC schedule obtained by our approach. 
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Table 7. Optimal power output (MW) for 24-hours load demand. 

t P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

0 250 250 0 0 0 0 0 0 0 0 

1 455 245 0 0 0 0 0 0 0 0 

2 455 295 0 0 0 0 0 0 0 0 

3 455 395 0 0 0 0 0 0 0 0 

4 455 455 0 0 0 30 0 10 0 0 

5 455 385 0 130 0 20 0 10 0 0 

6 455 455 0 130 0 50 0 10 0 0 

7 455 405 130 130 0 20 0 10 0 0 

8 455 455 130 130 0 30 0 0 0 0 

9 455 455 130 130 85 20 25 0 0 0 

10 455 455 130 130 162 43 25 0 0 0 

11 455 455 130 130 162 80 25 13 0 0 

12 455 455 130 130 162 80 33 55 0 0 

13 455 455 130 130 162 58 0 10 0 0 

14 455 455 130 130 110 20 0 0 0 0 

15 455 455 0 130 150 0 0 10 0 0 

16 455 440 0 130 25 0 0 0 0 0 

17 455 455 0 0 90 0 0 0 0 0 

18 455 455 0 0 162 28 0 0 0 0 

19 455 455 0 0 162 80 25 23 0 0 

20 455 455 130 0 162 80 25 55 38 0 

21 455 455 130 0 162 0 25 55 18 0 

22 455 455 130 0 60 0 0 0 0 0 

23 455 315 130 0 0 0 0 0 0 0 

24 455 215 130 0 0 0 0 0 0 0 

 

5.2.3 Concluding Remarks 

Our proposed solution was based on an effective GP algorithm for enabling data-driven 

inference of the functional form of the underlying cost function, as well as the utilization of 

a state-of-the-art scheme for selecting the next function evaluation, namely an expected 

improvement-based acquisition function.  

We provided an experimental evaluation of our approach under a standard 

benchmark scenario, and we compared with state-of-the-art alternatives. As we observed, 

our proposed approach outperforms the alternatives in terms of the ultimate system costs, as 

well as the number of required function evaluations. These findings strongly corroborate our 

theoretical claims motivating this work.  

As for future directions for research, we indicate the consolidation of several 

consecutive hours into one stage. More extended works may also involve multi-bus 
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formulations introducing the real power network losses and transmission constraints into the 

UC task. We expect that by increasing the formulation complexity our novel approach might 

allow for even higher optimization performance. 
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6. The challenge of Electrical Energy Storage  

So far, we have shown how to optimally plan-ahead the thermal generation subject to 

technical, operational and security constraints. The optimal storage planning constitutes a 

second, internal optimization problem and differs according to each stakeholder’s objectives. 

Conventional approaches concentrate in either individual applications with common cost 

metrics or assume several storage techniques participating in a single operation without 

considering the degradation due to the round-trip efficiency, depth of discharge, self-

discharge rate, cycle and life times [59][60][61]. In addition, none of these studies has 

conducted storage as an optimization problem and if they did so, they omitted to take into 

account different components for power-related and energy-related costs [62][63][64]. 

Therefore, the following chapters focus on the main characteristics of the state-of-the-art 

EES technologies, the requirements and preferences of their most realistic applications and 

different ways by which they can be modelled. 

EES technologies find ready application in a diverse range of sectors including 

portable electronics, automotive vehicles and stationary systems, providing traction and 

propulsion, the ubiquitous automotive starting, lighting and ignition (SLI), standby power, 

remote area power supply, etc [65]. Improvements in both renewable and storage 

technologies are continuously needed, in order for the grid to accommodate the ever-

increasing variable sources.  

For several years now, EES is attracting increasing interest for power grid 

applications that provide regulation, contingency and management reserves [8]. The term of 

storage refers to a wide variety of technologies and potential applications across the power 

chain and hence, can be confusing as it occasionally acts as increased demand or generator 

[9][10]. Until 2017, the storage was limited to 176GW accounting for less than 2% of total 

electric power production capacity and more than 98% stemmed from pumped hydro. As 

can be observed from Figure 20, this is followed by lithium-ion batteries and flywheels with 

a contribution of 1120MW and 930MW respectively, while the rest of 1112MW is held by 

compressed air (640MW), sodium-based batteries (220MW), lead-acid (80MW), capacitors 

(80MW), flow batteries (47MW), nickel-based (30MW) and hydrogen-fuel cell (15MW) 

[66][67][68][69].       
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Figure 20: Global EES capacity by technology. 

 

In this chapter a comprehensive overview of the existing and emerging EES systems 

is carried out, to provide an updated summary and guide to the information extensively 

published in the literature. The operating principles together with the critical technical and 

operational features concerning each technology are analyzed. Following, the potential 

applications that provide support and management in existing and future power system 

operations are reviewed. Developing a deep understanding of the individual requirements 

and preferences of the various applications across the power chain, an assessment is 

conducted in Chapter 7 in order for the appropriate applications to be matched with the best-

fit EES option. 

 

6.1. Characteristics of EES 

According to the application that the storage devices are intended for use, they are 

presented favorable or unfavorable as to some performance characteristics. The most 

essentials include: response time, storage duration, power rating and energy capacity, 

investment and whole life cost, power and energy density, technical maturity, self-discharge 

rate, cycle and chronological life, round-trip efficiency, etc. All this information regarding 

the technical and operational characteristics of each EES technology is included in Tables 8, 

9 and 10, 11, respectively. 
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Table 8. Technical characteristics of EES [70]. 

Technology 

Power 

Density 

(kW/m3) 

Energy 

Density 

(kWh/m3) 

Specific 

Power 

(W/kg) 

Specific 

Energy 

(Wh/kg) 

Power 

Rating 

(MW) 

PHES 0.01-0.12 0.5-.133 0.01-0.12 0.5-1.5  100-5000 

CAES 0.04-10 0.4-20 2.2-24 10-30 5-300 

SS-CAES >10 >20 - 140 0.003-3 

LAES - 80-120 - 214  10-200  

Flywheel 40-2000  0.25-424 1000 5-100 0-0.25 

Lead-acid 10-400 25-90 180 30-50 0-20 

NiCd 38-141 15-150 140-180 35-60 0-40 

NiMH 8-588 39-300 220 50-75 0.01-3 

Zn-air 10-208 22-1673 60-225 450-650 0-0.01 

NaS 1.3-50 150-345 150-240 120  0.05-8 

ZEBRA 54.2-300 108-190 174 120 0-0.3 

Li-ion 56-800 94-500 500-2000 100-200 0-0.1 

VRB 2.5-33.4 10-33 80-150 30-50 0.03-3 

ZnBr 3-8.5 5.2-70 100 75-85 0.05-2 

PSB 1.35-4.16 10.8-60 - 15-30 1-15 

Reg-FC 1-300 25-770 5-50 200-1200 0-50 

Capacitor 15-4500 less than SC 105 0.01-0.1 0-0.05 

EDLC 15-4500 1-35 500-5000 2.5-15 0-0.3 

SMES 300-4000 0.2-13.8 500-2000 0.5-5 0.1-10 

 

 

Table 9. More technical characteristics of EES [70]. 

Technology 

Energy 

Capacity 

(MWh) 

Power 

Capital cost 

($/kW) 

Energy 

Capital cost 

($/kWh) 

Technical 

Maturity 

PHES 500-8000  600-2000  5-100 Mature 

CAES <1000 400-800 2-50 Commercialized 

SS-CAES <0.008 1400-1550 200-250 Commercializing 

LAES 2.5 900-1900 260-530 Developing 

Flywheel 0.75 250-350 1000-5000 Commercializing 

Lead-acid 0.001-40 300-600 200-400 Mature 

NiCd 6.75 500-1500 800-1500 Commercialized 

NiMH - 270-530 200-730 Mature 

Zn-air - 100-250 10-60 Developing 

NaS 0.4 >1000 300-500 Commercialized 

ZEBRA - 150-300 100-200 Commercializing 

Li-ion 0.004-10 1200-4000 600-2500 Commercialized 

VRB 2 600-1500 150-1000 Commercializing 

ZnBr 4 700-2500 150-1000 Demonstration 

PSB 0.06 700-2500 150-1000 Developing 

Reg-FC 0.312 500 15 Developing 

Capacitor - 200-400 500-1000 Commercialized 

EDLC 0.0005 100-300 300-2000 Developing 

SMES 0.015 200-300 1000-10000 Commercializing 
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The tabulated technologies refer to pumped-hydro energy storage (PHES), 

compressed-air energy storage (CAES), small-scale CAES (SS-CAES), liquid-air energy 

storage (LAES), different chemistries of secondary and flow batteries, regenerative fuel cells 

(Reg-FC), electrochemical double-layer capacitor (EDLC) and superconducting magnetic 

energy storage (SMES). Zn-air is the battery technology with the best volumetric and 

gravimetric energy density, which means that it constitutes the lightest option and occupy 

the least space. Flywheels, EDLC and SMES offer the highest energy capital cost while the 

highest power capital cost is provided by Li-ion secondary batteries.  

The lifetime given in years promotes PHES and CAES. When measured in cycles, 

SMES and EDLC become more advantageous among others. Another important parameter 

refers to the daily self-discharge rate which reflect the stand-by, parasitic losses mostly 

affecting flywheels and EDLC. This critical parameter determines the suitable storage 

duration for each EES device. A further feature regards autonomy which defines the duration 

that a storage system can operate autonomously. For each technology, it is calculated by 

dividing the maximum energy capacity by the system power rating. 

 

Table 10. Operational characteristics of EES [70]. 

Technology 

Daily 

self-discharge 

(%) 

Lifetime 

(years) 

Cycling times 

(cycles) 

Round-trip 

efficiency   

(%) 

DoD 

(%) 

PHES almost 0 30-50 10000-30000 70-85 95 

CAES almost 0 30 8000-12000 42-54 100 

SS-CAES almost 0 23+ 30000 17-57 100 

LAES almost 0 25+ - 55-80 100 

Flywheel 55-100 20 105-107 90-95 100 

Lead-acid 0.1-0.2 5-15 200-2000 85-90 80 

NiCd 0.1-0.2 10-20 1500-3000 60-90 100 

NiMH 5-20 2-15  1200-1800 50-80 50 

Zn-air almost 0 0.17-30 100-300 50 100 

NaS almost 0 10-15 1500-5000 89-92 100 

ZEBRA 20 10-14 1000 70-85 80 

Li-ion 0.03 5-15 3000-10000 ~100 80 

VRB almost 0 5-10 >16000 85 100 

ZnBr almost 0 5-10 2000-3500 75 100 

PSB almost 0 10-15 800-2000 75 100 

Reg-FC 0.06-3 5-15 20000 20-50 90 

Capacitor 40 ~5  106  95  100 

EDLC 20-40 10-12 106  85-98  100 

SMES 10-15  20+ almost infinitely 95  100  
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Table 11. More operational characteristics of EES [70]. 

Technology 
Response 

time  

Suitable storage 

duration 

Autonomy at 

power rating 

O&M cost 

($/kW-year) 

PHES mins hours-months 1-24h 3 

CAES mins hours-months 1-24h 19-25 

SS-CAES sec-mins 3h 3h very low 

LAES mins hours several hrs - 

Flywheel msec secs-mins 15sec-15min 20 

Lead-acid msec mins-days secs-hrs 50 

NiCd msec mins-days secs-hrs 20 

NiMH - - - - 

Zn-air - hours-months secs-24h - 

NaS msec secs-hours secs-hrs 80 

ZEBRA - secs-hours secs-hrs - 

Li-ion msec mins-days mins-hrs - 

VRB msec hours-months secs-10h 70 

ZnBr msec hours-months secs-10h - 

PSB msec hours-months secs-10h - 

Reg-FC secs hours-months secs-24h  0.002-0.02 

Capacitor msec  secs-hours  secs-hrs 13  

EDLC msec  secs-hours  secs-hrs 6  

SMES msec ≤30mins  mins-hrs  18.5  

 

 

Broadly, EES systems are categorized into three types according to their power 

rating. PHES, CAES and LAES are suitable for large-scale applications (>100MW). Pb-

acid, NiCd, PSB, SMES and regenerative FCs are suitable for medium-scale (10-100MW), 

while SS-CAES, flywheels, supercapacitors, NiMH, VRB, ZnBr, NaS, ZEBRA, Zn-air and 

Li-ion are falling into small-scale of lower than 1-3MW. 

According to the time-scale of response, the various EES are distinguished to fast, 

relatively fast and not rapid. With response times within milliseconds to seconds, flywheels, 

supercapacitors, SMES, all kind of batteries and flow batteries, are falling into fast-response 

systems. Regenerative FCs together with SS-CAES provide relatively fast response in the 

range of seconds, whereas PHES, large-scale CAES and LAES offer slower response times 

of a few minutes. 

The storage duration is a key element which helps distinguishing the EES 

technologies into short-term (seconds-minutes), medium-term (seconds-hours) and long-

term (minutes-days). Storage duration is directly affected by self-discharge ratio and thus 

short-term storage is provided by flywheels due to their very high daily energy dissipation. 

Medium-term is offered by electromagnetic supercapacitors and SMES due to increased 
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parasitic losses, high-temperature/Na-based batteries because of the self-heating needs to 

maintain the operating temperature, SS-CAES and LAES. PHES, large-scale CAES, Pb-

acid, NiCd, Li-ion, Zn-air, flow batteries and regenerative FCs are capable for providing 

long-term storage duration. However, Pb-acid, NiCd, and Li-ion batteries possess a moderate 

self-discharge rate and consequently they become inappropriate for storage durations longer 

than tens of days. 

Related to storage capability, autonomy constitutes an important attribute in isolated 

systems and micro-grids relying on intermittent renewable sources. It refers to the duration 

that an EES system is able to continuously supply energy. Hence, EES technologies can be 

classified in terms of their energy capacity (amount of stored energy) against the power they 

can deliver (power rating). Typically, less autonomy is expected from electromagnetic 

devices of supercapacitors and SMES along with the flywheels. Higher autonomy involves 

SS-CAES, conventional and high-temperature batteries while PHES, large-scale CAES, 

LAES, flow batteries, Zn-air and regenerative FCs are considered capable of supplying 

autonomously for several hours.    

Cycle or round-trip efficiency is a further key element in evaluating the EES options 

in power system applications. Very high efficiencies (>90%) appear in electromagnetic 

storage systems, flywheels and Li-ion batteries. The rest of batteries and flow batteries, SS-

CAES and LAES provide high efficiencies of over 60%. Large-scale CAES, Zn-air and 

regenerative FC constitute more energy-intensive conversion processes and thus they 

provide low efficiencies which in the case of regenerative FCs may fall even by 20%. It must 

be noted that in some applications, efficiency becomes a crucial factor and even the cheapest 

technologies may be considered unsuitable. Such an example could be energy arbitrage 

where the electrical energy may be purchased and sold back excluding conversion losses. In 

these cases, the self-discharge rate should also be considered. In addition, the efficiency of 

transformers and power conversion systems should be included in the estimation since some 

technologies require high voltage AC to low voltage DC (and back to AC) conversions while 

others do not [71][72][73].    

Additional factors affecting the overall investment cost are lifespan and cycle times. 

Electromagnetic EES devices provide extremely high cycling capability due to the absence 

of moving parts and chemical reactions realization. Mechanical components normally 

determine the lifetime of PHES, CAES and flywheel systems whereas all kind of chemical 
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EES systems are deteriorated by time due to the chemical elements and electrolytes 

degradation.   

Apart from the significant improvements in efficiency and extended lifetimes, capital 

and O&M costs tend to be decreased by increasing R&D efforts. In this sense, mature and 

commercialized PHES and CAES offer the lowest energy capital cost becoming appropriate 

in high energy/long duration applications, followed by Zn-air and regenerative FCs which 

need further development to be proved as efficient. In terms of power capital cost, flywheel, 

supercapacitor and SMES technology are suitable for high power/short duration applications 

along with commercializing ZEBRA and developing Zn-air and regenerative FC. Flow 

batteries and Li-ion are still far too expensive while the rest of conventional and high-

temperature batteries sit in the middle. Regarding O&M costs, electrochemical technologies 

that require chemical handling are disadvantageous against others followed by technologies 

that need additional equipment to maintain the energy stored. 

 

6.2. EES technologies 

EES technologies can be categorized by various criteria, such as, suitable storage duration 

(into short-term, mid-term or long-term), response time (into rapid or not), scale (into small-

scale, medium-scale or large-scale) or based on the form of stored energy. A classification 

of the EES technologies according to the latest method is presented in Figure 21.  

Depending on the form that the electrical energy can be stored, EES systems are 

divided into chemical, electrical, magnetic and mechanical. Batteries and hydrogen storage-

fuel cells are falling in the chemical systems, whereas electromagnetic systems involve the 

supercapacitors and superconductors. Mechanical systems can be subdivided into kinetic 

energy storage including flywheels and potential energy storage where pumped hydro and 

compressed air systems are classified. Following, a detailed description along with the main 

technical characteristics regarding each storage technology is carried out.   
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Figure 21: Classification of EES technologies by the form of stored energy [74]. 

 

6.2.1 Pumped hydro 

Pumped hydro energy storage (PHES) is currently the only proven and by far the most 

adopted technology for large scale (>100 MW) energy storage [75][76]. As shown in Figure 

22, a PHES station typically consists of reversible pumps/generators through which, 

electricity is utilized by pumps to move water from a lower to an upper reservoir during off-

peak hours and thus electric energy is stored in the form of hydraulic potential energy, 

whereas water is released from the upper reservoir during peak hours in order to produce 

electricity by generators [77]. Hence, the amount of stored energy is proportional to the 

height difference between the reservoirs h and the mass of water stored m according to 

Equation (6.1).  

                                                              𝐸 =  𝑚𝑔ℎ                                                          (6.1) 

PHES technology is readily available offering long life in the range of 30-50 years, 

low operation and maintenance (O&M) cost and cycle efficiencies of average 75% due to 

elevation plus conversion losses [78]. It provides the highest capacity of all available 

technologies, since its size is limited only by the size of the upper reservoir.  However, this 

technology requires specific site conditions the most essential of which are the availability 

of technically suitable locations with access to water [75]. Unfortunately, the high capital 

cost and environmental concerns are still the further limiting factors for PHES to be utilized 

as a storage technology option [79].  
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Since 1929 when the world’s first large scale plant was constructed, there are now 

over 300 PHES plants with a total installed capacity of over 120 GW, representing almost 

99% of worldwide installed electrical storage capacity and about 3% of global generation 

[80][81][82]. Due to their not-rapid response, PHES plants were initially built for energy 

management applications to maximize the base-load generation. Assuming that most of the 

suitable locations with a remarkable height difference have already been exploited, in short-

term, innovative pumped hydro are foreseen to be upgraded by adding more turbines in order 

to become more flexible and offer higher ramp rates over a shorter time. This will also 

eliminate the main drawback of extremely long construction time needed.  

A second innovation developed in recent years and being the focus of research for 

PHES technology, involves the variable-speed pump-turbines, enabling increased flexibility, 

efficiency and reliability in the expense of cost [83][84]. Aiming to address the constraints 

of suitable site availability and environmental impact, alternative reservoir types such as sub-

surface instead of over-ground reservoirs, storing sea-water instead of fresh water and other 

innovative sea-based solutions have been studied. Apart from the increase in the suitable 

locations, by utilizing the open sea as the lower reservoir, the concerns over fresh water use 

are reduced. 

 

Figure 22: Schematic diagram of pumped hydro storage plant [70]. 
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However, additional costs relating to pumping may occur in both proposed 

technologies due to an event of a fracture or even a collapse in the sub-surface of a PHES, 

or the corrosive environment of operation in sea-water pumped hydro [84][85]. Finally, 

minimal environmental impact, larger energy capacities and reduced costs are also expected 

from other solutions proposed, such as the hydraulic lifting of masses during charging and 

discharge by releasing them to sink gravitationally forcing the water to pass through a 

turbine. Although these research proposals seem technically and economically feasible, a 

demonstration plant is needed for their commercialization and their contribution in a 

sustainable development [7].  

 

6.2.2 Compressed air 

Compressed air energy storage (CAES) systems are mainly equipped with a 

motor/generator, compressor and expander units, a turbine train and the storing cavity [78]. 

Typically, during off-peak hours, low-cost or excess electricity is used for storing high-

pressured compressed air in a suitable underground cavern so electrical energy is converted 

into elastic potential energy which can be converted back into electricity during a peak of 

demand by the air being heated and expanded in a gas turbine [86]. In Figure 23, a schematic 

diagram of such a facility plant is presented. CAES is achieved at high pressures (typically 

40-80 bar) at near ambient temperatures, resulting in less volume and consequently smaller 

storage reservoirs, the best option of which is given by deep caverns made of high quality 

rock, ancient salt mines or underground natural gas storage caves [87].  

CAES is considered as one of the highest economic utility-scale storage technology 

which may contribute to future sustainable energy systems with a high share of fluctuating 

energy sources [86][88]. This technology offers high reliability in combination with low 

environmental impact and in addition, the storage volume is located underground which 

means that no further landscape is required [89]. Possessing high commercial maturity, 

CAES systems can provide huge capacities (>100 MW) but they require both special site 

preparations and underground storage caverns which may not exist [77]. However, in areas 

without water or suitable reservoir locations CAES is the only storage technology option 

which could be used on large scales [89]. There are only two operating first-generation 

systems, the first built in Germany (in 1978) and the second in Alabama (in 1991) [9][90].  
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Although CAES occupies a small land, it is associated with greenhouse gas 

emissions. In addition, first-generation, traditional CAES systems, exhibit low efficiencies 

in the range of 42-54% due to increased heat losses to the atmosphere during compression 

and thermal energy requirements when the decompressed air cools down the turbine [91]. 

To address the two critical issues constrained the overall efficiency, advanced adiabatic and 

isothermal CAES systems have been designed. Second-generation CAES systems exploit 

the heat released during compression process, which is transferred and stored in heat storage 

sites [92]. Advanced adiabatic CAES (AA-CAES) tends to consume little or no fuel or 

external energy to heat up the air during expansion, increasing the overall efficiency to a 

theoretical of 70% and eliminating the associated emissions [93][94][95][96][97].  

Isothermal CAES includes the by-produced heat removal during compression to 

maintain a constant temperature and thus avoiding the expense needed to create a thermal 

storage. This can be achieved by compressing the air slowly, allowing the temperature to 

equalize with the surroundings [98]. These systems occur promising in terms of improved 

efficiencies in the range of 70-80% and relatively low costs [95].    

 

Figure 23: Schematic diagram of compressed air storage plant [70]. 
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Liquid air energy storage (LAES) is a new concept that is attracting attention. The 

whole equipment comprise a LAES plant is similar to that of CAES facility. It defers in that 

the heat lost to the atmosphere during air compression, in the instance of LAES is stored in 

a phase change material (PCM). Typically, employing cryogenic energy storage, the 

atmospheric air is converted into cryogen liquid and thus electrical and thermal storage are 

simultaneously achieved. When needed, the stored liquid is converted back to the gaseous 

state by being exposed to ambient temperature and expanded in turbine. LAES offer long 

storage duration and promising round-trip efficiency of up to 80% [78].  

CAES options without the need of thermal or suitable underground storage caverns 

can be built in smaller scales. Small scale CAES (SS-CAES) has attracted the interest 

especially for industrial applications, to provide uninterruptible and buck-up power supply 

[99]. However, by using efficient and well-designed artificial storage vessels, it can 

significantly reduce the costs and associated emissions in distributed generation systems 

[95][100]. SS-CAES is considered less cost-effective than large-scale CAES, it therefore 

offers greater power and energy densities along with faster response [101]. Further 

advancements in the absence of underground cavern, refers to underwater-ocean storage in 

chambers to maintain the stored air pressure constant. Although they could be integrated 

with off-shore renewable generation technologies, they are at their infancy or exist on pilot 

scale only [85]. 

   

6.2.3 Flywheels 

Flywheel energy storage (FES) device is comprised of a massive cylinder supported by 

bearings. In a high-speed (up to 100,000 rpm) structure magnetic bearings and composite 

disk are used, all contained in a vacuum to eliminate frictional losses and protect them from 

external disturbances, whereas low-speed (up to 10,000 rpm) FES includes mechanical 

bearings, steel flywheel and no vacuum enclose [102][103][104]. In Figure 24, a modern 

high-tech FES system is depicted in upright position to prevent gravity influence. In a FES 

system, electricity powers an electric motor which spins and increases the speed of the 

flywheel, thus converting electricity into kinetic energy the amount of which is proportional 

to the flywheel’s rotor inertia (J) and to the square of its angular velocity (ω) [105]. When 

short-term back-up power is demanded, electricity is recovered by the same motor, acting 

then as a generator, which causes the flywheel to slow down thus the rotational energy is 
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converted back into electricity [59]. The energy stored in a flywheel can be calculated by 

equation (2). Since the moment of inertia depends on shape and mass of the flywheel (J = 

0.5mr2 = 0.5ραπr4), the stored energy increases by increasing the disk radius or using high 

density material [104].   

𝐸 =  
1

2
𝐽𝜔2                                                           (6.2)  

Flywheels have the ability to provide both high energy and power density for short 

duration discharges. High efficiency in the range of 90-95% can also be achieved through 

the use of a vacuum pump, permanent and magnetic bearings, which are necessary to 

overcome the friction forces during operation [77][78]. Furthermore, they offer extended 

cycle lives and as a buffer store could remove the need for downstream power electronics, 

to track the fluctuations derived from variable sources, which results in improved overall 

electrical efficiency [106][107]. Further advantages compared to other EES systems include 

their insensitivity to environmental conditions and no hazardous chemicals production [108]. 

Apart from the fact that flywheel technology is high costly, to store energy in an electrical 

power system high capacity flywheels are needed with the impact of increased friction losses 

and the consequent reduced efficiency [87]. According to those mentioned above, it is 

apparent that long-term storage of this type of devices is not feasible thus flywheels are 

employed in high power/short duration applications or as a supplement to batteries in 

uninterruptible power supply (UPS) systems [78][59]. In short-term, their contribution in the 

transport sector is expected to increase as an environmentally benign technology, capable of 

improving the overall efficiency and fuel economy in vehicles [109][110]. 

 

Figure 24: Schematic diagram of flywheel energy storage system [70]. 
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6.2.4 Batteries 

Batteries are classified as primary which are not rechargeable and secondary which can be 

recharged. Rechargeable or secondary batteries consist of cells each comprising two 

electrodes immersed in an electrolyte and they can store and provide energy by 

electrochemical reversible reactions. Generally, during these reactions, the anode or negative 

electrode is oxidized providing electrons while the cathode or positive electrode is reduced 

accepting electrons through an external circuit connected to the cell terminals [77]. In order 

to adjust power generation to changing demand many technologies have been proposed and 

depending on the materials used as electrodes and electrolytes, secondary batteries can be 

divided into lead-acid, alkaline, metal-air, high temperature and lithium-ion [71].  

As the oldest type of rechargeable batteries (invented in 1859), lead-acid (Pb-acid) 

is widely used in vehicles and boats for engine starting and a host of other facilities, but is 

therefore considered as one of the best suited for stationary applications as it can supply 

excellent pulsed power [42]. A schematic diagram of a Pb-acid battery operation is shown 

in Figure 25. In the charged state, the battery consists of lead (Pb) and lead oxide (PbO2) 

both in 37% sulfuric acid (H2SO4), whereas in the discharged state, lead sulphate (PbSO4) is 

produced both at the anode and the cathode while the electrolyte changes to water [85]. The 

chemical reactions at the anode and cathode are presented by equations (6.3) and (6.4), 

respectively [111]. The rated voltage of a Pb-acid cell is 2V and capable of operating in the 

range of -5 and 40oC [77][112][113]. Although lead-acid technology has maturity of over a 

century and low manufacturing cost, the lead and sulfuric acid used to form the anode and 

the electrolyte respectively are toxic and its cycle life is relatively limited. In addition, 

flooded type devices require periodic water maintenance and large footprint due to their low 

specific energy (25Wh/kg) and discharging depth (70%), thus they become unfavorable for 

large-scale applications. From the invention of valve regulated lead-acid (VRLA) batteries, 

banks of up to 36MW are already being utilized for power generation from RES, as they 

achieve higher specific energy (30-50Wh/kg) and depths of discharge (80%) with negligible 

maintenance requirements [112][114].  

Pb + SO4
2- ⇌ PbSO4 + 2e-           (6.3) 

 

PbO2 + SO4
2-

 + 4H+ + 2e- ⇌ PbSO4 + 2H2O          (6.4) 
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Figure 25: Schematic diagram of Pb-acid battery energy storage system [115]. 

 

Nickel-iron (NiFe), nickel-cadmium (NiCd) and nickel-metal-hydride (NiMH) 

represent the alkaline batteries comprising nickel oxide for cathode and potassium hydroxide 

for electrolyte. The nickel-iron battery is considered unsuitable for electrical storage as it 

provides low electrical efficiency in combination with its self-discharge effect and as the 

corrosive iron anode requires high water maintenance [71]. Conversely, nickel-cadmium 

batteries are widely used in both portable and stationary applications providing chief 

advantages compared to lead-acid such as higher specific energy (60Wh/kg), longer cycle 

life (1500-3000 cycles) and lower water maintenance requirements, against the higher 

manufacturing cost [65].  

At the charging state, they consist of a nickel oxyhydroxide NiOOH cathode, a 

metallic cadmium Cd anode, a separator and an alkaline electrolyte [78]. During the 

discharging process, the cathode NiO-OH reacts with water which exists in the aqueous 

potassium hydroxide (KOH.H2O) to produce Ni(OH)2 and hydroxide ion at the anode. The 

reversible reactions are given in equations (6.5) and (6.6) for the anode and cathode, 

respectively, while a better explanation can be obtained by Figure 26 through a flow diagram. 

However, both its maximum capacity and whole life are subject to memory effect and thus 

cannot be repeatedly recharged after being partially discharged [116].  
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Figure 26: Schematic diagram of Ni-Cd battery energy storage system [115]. 

 

Similar to lead-acid, nickel-cadmium spent batteries create environmental concerns because 

of cadmium and nickel toxicity, and consequently are largely displaced [117].  

As regards nickel-metal-hydride (NiMH), it defers in that a hydrogen-absorbing alloy 

is used to form the electrode instead of cadmium. The electrochemical reactions at the anode 

and cathode of such a device are represented by equations (6.7) and (6.8) respectively. 

Possessing the same with NiCd cell voltage of 1.2V, NiMH can achieve higher specific 

energy (up to 75Wh/kg) and reduced memory effect. In the contrary, it suffers from severe 

self-discharge issues (20% per day) and lower efficiency, thus it becomes an undesirable 

candidate for electrical storage from RES [102][118][119][120]. Nevertheless, the distinct 

advantage of the wide temperature-range of operation (from a minimum of -40 to 50oC) of 

Ni-based batteries, make their use possible for some utility-scale EES applications [91].      

Cd + 2OH- ⇌ Cd(OH)2 + 2e-           (6.5) 

2NiOOH + 2H2O + 2e- ⇌ 2Ni(OH)2 + 2OH-         (6.6) 

MHx + OH- ⇌ M + 
𝑥+1

2
H2O + e-          (6.7) 

NiO(OH) + H2O + e- ⇌ Ni(OH)2 + OH-         (6.8) 
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Metal-air batteries can be considered as special types of fuel cell which use metal 

instead of fuel and air as the oxidant. The anodes in these batteries are commonly available 

metals with high energy density such as lithium (Li), aluminum (Al) or zinc (Zn), while the 

cathodes are made of either porous carbon or metal mesh capable of absorbing oxygen (O2) 

from air. The liquid or solid electrolytes are mainly good hydroxide ion (OH-) conductors 

like potassium hydroxide (KOH) [112]. Although Li-air has a theoretical specific energy as 

high as 11140Wh/kg, there are concerns about a probable fire due to the high reactivity of 

Li with humid air [82][121][111]. Moreover, it possesses a much more expensive cell 

compared to Zn-air, which is environmentally benign and exhibits long storage life while 

un-activated [116].  

Hence, Zn-air represents the only technically feasible example of metal-air batteries 

up to date, offering a high energy density (650Wh/kg). It provides a cell voltage of 1.6V, 

temperature range from -20 to 50oC and negligible self-discharge rate. On the contrary, it is 

difficult to be recharged and offers a limited cycling capability of a few hundred cycles along 

with a quite low efficiency of fairly 50% [78]. However, Zn-air constitutes a developing 

technology that occurs promising and able to contribute in future energy management 

applications. The chemical reactions, at the anode and cathode of a Zn-air cell shown in 

Figure 27, are provided in equations (6.9) and (6.10), respectively.  

 

Figure 27: Schematic diagram of Zn-air battery energy storage system [115]. 
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Other metals proposed to form the anode of a metal-air cell can be represented by a 

similar manner. Equations (6.11) and (6.12) are given as an example of an under-research 

metal-air battery of aluminium (Al) anode. 

Zn + 2OH- ⇌ Zn(OH)2 + 2e-           (6.9) 

 

H2O +  
1

2
O2 + 2e- ⇌ 2OH-         (6.10) 

 

Al + 4OH- ⇌ {Al(OH)4}
- + 3e-        (6.11) 

 

3

4
O2 + 

3

2
H2O + 3e- ⇌ 3OH-         (6.12) 

 

High temperature batteries consist of molten sodium anode material, a solid 

electrolyte of beta-alumina and according to the cathode solid reactant they are subdivided 

into sodium-sulfur (NaS) and sodium-metal-chloride (NaNiCl or ZEBRA) [122]. NaS 

batteries are constructed from inexpensive materials and are considered as an attractive 

option for large-scale stationary electrical storage applications since they offer high energy 

density (150-345kWh/m3) and cycle efficiency (89-92%), long cycle life (1500-5000 cycles) 

and they are much smaller and lighter than NiCd, NiMH and Pb-acid [102][114][123].  

The main disadvantages of NaS technology are the corrosive nature of manufacturing 

materials and the requirement for constant heat input in order to maintain the electrolyte’s 

molten state which is ensured at 300-350oC increasing the hazard of probable reaction 

between electrode materials and associated fire [71]. A demonstration of a charge/discharge 

cycle concerning a NaS cell is illustrated in Figure 28 while the reactions realized at the 

negative and positive electrodes are shown in equations (6.13) and (6.14) respectively.  

On the other hand, ZEBRA technology has some advantages relative to NaS systems 

including lower mean temperature of 250 to 350oC and a much safer cell, no corrosion 

problems, high cell voltage (2.58V) and the ability to withstand limited overcharge and 

discharge [65][60]. The overall chemical reaction occur in a ZEBRA battery is represented 

by the equation (6.15). 
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2Na ⇌ 2Na+ + 2e-          (6.13) 

 

S + 2e- ⇌ S2-                                  (6.14) 

 

2NaCl + Ni ⇌ NiCl2 + 2Na          (6.15) 

 

Figure 28: Schematic diagram of Na-S battery energy storage system [115]. 

 

The last major type of battery storage technology is lithium-ion (Li-ion) system 

containing a graphite anode, a cathode formed by a lithium metal oxide (LiCoO2, LiMO2, 

LiNiO2 etc.) and an electrolyte consisting of a lithium salt dissolved in an organic liquid 

(such as LiPF6), thus electrodes can reversibly accommodate ions and electrons [124]. 

Finally, a separator is deployed in order to prevent a short-circuit between the electrodes and 

associated hazard of flame burst. A typical structure of a Li-ion battery with a cathode made 

of LiCoO2 is demonstrated in Figure 29.  

During discharging, lithium atoms (Li) are oxidized to lithium ions (Li+) releasing 

electrons. While the electrons are flowing through the external circuit to reach the cathode, 

Li+ are moving through the electrolyte to the cathode where they react with the cobalt oxide 
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(CoO2) and electrons to form lithium cobalt oxide (LiMO2) [125]. Equations (6.16) and 

(6.17) show the chemical reactions realized at the anode and cathode of the demonstrated 

example. However, the reactions can be generalized into equations (6.18) and (6.19) to 

explain the similar operation occur if different lithium metal oxides (LiMO2) are used to 

form the cathode [78][91].  

 

Figure 29: Schematic diagram of Li-ion battery energy storage system [115]. 

 

Lithium-ion batteries offer chief advantages over the nickel-cadmium and lead-acid, 

as they provide the highest specific energy (200Wh/kg), specific power (500-2000W/kg) and 

nominal voltage (3.7V), energy storage efficiency of close to 100%, lower self-discharge 

rate (0.03% per), no memory effect and extremely low maintenance requirements [77][85]. 

Moreover, their small size and low weight make them suitable to portable applications (such 

as in smartphones and laptops) where are almost exclusively being used and electric vehicles 

where are proved to become the most promising option [114]. Despite the above advantages, 

the high cost as well as the prohibitive for their lifetime deep discharging, are the main 

drawbacks of lithium-ion batteries that restrict their use in large-scale applications [102].  
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Although considerable efforts are paid to lower the cost, concerns still exist relating 

to an increasing consumption in the future, since the depleting worldwide lithium reserves 

may lead to increasing raw material costs [110][126]. A further disadvantage is the 

sensitivity they provide to high temperatures and thus are equipped with a battery 

management system to at least provide overvoltage, over-temperature and overcurrent 

protection [110][127]. Their suitable temperature range of operation is rated between -30 

and 60oC [112]. 

 

LiC6 ⇌ Li+ + e- + 6C          (6.16) 

 

CoO2 + Li+ + e- ⇌ LiCoO2         (6.17) 

 

LixC ⇌ xLi+ + xe- + C          (6.18) 

 

LiMO2 + xLi+ + xe- ⇌ Li1+xMO2                   (6.19) 

 

6.2.5 Flow Batteries 

In contrast to conventional batteries which store energy in solid state electrodes, flow 

batteries convert electrical energy into chemical potential which is stored in two liquid 

electrolyte solutions located in external tanks, the size of which determines the capacity of 

the battery [65]. The principal three existing types of flow batteries are vanadium-redox 

(reduction-oxidation), zinc-bromine and polysulfide bromide. Flow batteries may require 

additional equipment, such as pump sensors and control units. They may also provide 

variable and generally low energy density, however they present major advantages in 

comparison with standard batteries as they have long cycle life, quick response times, can 

be fully discharged and they can offer unlimited capacity by increasing their storage tank 

size [114].  

The vanadium redox flow battery (VRB) is one of the most mature flow battery 

system [78][112]. In such a system, vanadium in sulfuric acid is employed in both the 

electrolyte loops but in different valence states [71]. Thus, it stores energy by using 
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vanadium redox couples (V2+/V3+ and V4+/V5+) in the anolyte and catholyte tanks, 

respectively, as can be seen in Figure 30. By using a hydrogen-ion permeable polymer 

membrane, H+ are allowed to reversibly be exchanged through it, balancing the charge in 

the cell and allowing the chemical reactions of equations (6.20) and (6.21) to occur at the 

negative and positive half-cells. Consequently, in the charging state the anolyte contains V3+ 

and the catholyte V4+, whereas their containments in the absolute discharged state are V2+ 

and V5+, respectively.  

 

Figure 30: Schematic diagram of vanadium redox flow battery energy storage system 

[70]. 

 

The technical and operational features of a VRB system include 30-50Wh/kg specific 

energy and 80-150W/kg specific power, fast responses in the order of milliseconds, high 

cycling capability (>16000 cycles) and relatively high efficiencies of up to 85%. The cell 

voltage is 1.2-1.6V and the operating temperature in the range of 0-40oC [112][110]. Also, 

they offer no self-discharge rate, can withstand deep discharging and require low 

maintenance [60]. Being able to provide an energy capacity of near 2MWh and considering 

the aforementioned benefits, VRB is considered as an attractive option for large scale EES 
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applications and therefore the high capital cost (1500$/kW) needs to be further reduced 

[128][129].   

V3+ + e- ⇌ V2+          (6.20) 

 

V4+ ⇌ V5+ + e-          (6.21) 

 

Zinc bromine (ZnBr) falls into the hybrid flow batteries category. Hybrid flow 

batteries are distinguished from conventional redox flow batteries by the fact that at least 

one redox couple species is not fully soluble and may be either a metal or a gas [128]. In 

ZnBr both the electrolyte loops employ an electrolyte of zinc-bromine [65]. In the charge 

state, metallic zinc (Zn) is plated as a thin film on one side of the carbon-plastic composite 

electrode while bromine oil (Br2) sinks to the bottom of the electrolytic tank at the other side 

(Figure 31).  

 

Figure 31: Schematic diagram of zinc bromine flow battery energy storage system 

[70]. 

The two compartments are separated by a microporous polyolefin membrane [78]. 

Equations (6.22) and (6.23) represent the chemical reactions at negative and positive 

compartment of the ZnBr cell during the reversible process of a charge/discharge cycle. 
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Similar to VRB, ZnBr offers no self-discharge rate, no degradation due to deep discharge 

and as narrow temperature operation as VRB [112]. Compared to VRB, ZnBr offers higher 

specific energy (75-85Wh/kg) and cell voltage (1.8V) [110][60]. The disadvantages of this 

system are the lower efficiency (75%), cycling capability (2000-3500 cycles) and the metal 

corrosion [91]. Although many ZnBr devices have been built and tested, their use in utility-

scale EES applications is in the early stage of demonstration. 

Zn2+ + 2e- ⇌ Zn          (6.22) 

2Br- ⇌ Br2 + 2e-          (6.23) 

 

Polysulfide bromide (PSB) or Regenesys is a regenerative fuel cell involving a 

reversible electrochemical reaction between two salt solution electrolytes namely, sodium 

bromide (NaBr3) and sodium polysulfide (Na2S2) and it constitutes another type of redox 

flow battery [112]. The electrodes are electrically connected through the external circuit 

while the electrolytes are separated by a polymer membrane that only allows positive sodium 

ions (Na+) to go through, producing a cell voltage of 1.5V [78][110]. The electrochemical 

reactions occur at the anode and cathode of the half-cells are respectively represented by 

equations (6.24) and (6.25).  

 

Figure 32: Schematic diagram of polysulfide bromine flow battery energy storage 

system [70]. 
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According to Figure 32, during the charging process the sodium bromide (NaBr) 

becomes to sodium tribromide (NaBr3) at the anode while sodium polysulfide (Na2S4) is 

converted into sodium disulfide (Na2S2) at the cathode. Operating within the same 

temperature range (0-40oC), PSB systems offer longer lifetime (10-15 years) and a net 

efficiency of 75%. However, chemical handling becomes a serious aspect, especially in large 

scale EES applications, due to existing environmental concerns regarding the bromine and 

sodium sulfate crystals formation during operation [91].    

 

3Br- ⇌ Br3
- + 2e-          (6.24) 

 

2S2
2- +2e- ⇌ 3S4

2-           (6.25) 

 

6.2.6 Regenerative fuel cell 

Hydrogen is the only carbon-free and possesses the highest energy content compared to any 

known fuel producing only water when is utilized for energy production [130][131][132]. 

Although it is colorless and odorless (and therefore difficult to detect), and in order for 1 kg 

of H2 to be stored at ambient temperature and pressure a volume of 11m3 is required, at the 

user end is considered as the most versatile fuel [4][133]. Hence, it constitutes an electricity 

storage pathway through electrolysis of water, a process in which electricity splits water into 

its simplest components of H2 and O2. Electrolyzers are typically used for such a method, 

whereas the inverse procedure of producing electricity via H2 is realized through fuel cells, 

where hydrogen gas reacts with the oxygen of air, providing electricity and water which can 

be recycled and reused to produce more hydrogen [134][135][136]. 

A typical electrolysis unit consists of a cathode and an anode immersed in an 

electrolyte and depending on the technology, water is introduced at the anode or cathode 

where it is split into hydrogen ion H+ and oxygen O2 or hydrogen H2 and hydroxide ion OH- 

respectively, thus molecular hydrogen is always produced or remain at the cathode. A similar 

concept but in reverse order is observed in fuel cells [133][137]. To date, the developed and 

commonly used electrolysis technologies are alkaline (A), proton exchange membrane 

(PEM) and solid oxide (SO) electrolysis cells, while the five major groups of fuel cells are 

alkaline (AFC), proton exchange membrane (PEMFC), solid oxide (SOFC), phosphoric acid 



 
  

 

84 
 

(PAFC) and molten carbonate (MCFC) [91]. The chemical reactions that take place in the 

main fuel cells mentioned here, are included in [133]. The major advantage of fuel cells is 

their ability to convert chemical energy directly to electricity, without involving any 

intermediate energy-intensive steps and noisy moving parts [138]. The voltage of a FC 

stands below 1.5V as it uses an aqueous technology [139].  

Regenerative fuel cells are devices that combine the function of the fuel cell (FC) 

and the electrolyzer into one device. Although all FC can operate as regenerative FC, they 

are typically optimized to perform only one function [110]. In Figure 33, a PEMFC is 

demonstrated as a typical example of a regenerative FC which provides the most efficient 

cycle of hydrogen and electricity production. The hydrogen produced can be stored as 

compressed gas, cryogenic liquid or solid hydride [140][141][142][143]. In over-ground 

tanks or underground geological formations is effectively stored as pressurized gas providing 

a daily loss of near 3% [77], while if transmitted by tracks or pipelines where is to be used 

it is preferred to be stored as cryogenic liquid mainly due to the reduced daily boil-off losses 

in the range of 0.06-0.4% [4][141][133].  

 

Figure 33: Schematic diagram of regenerative PEMFC energy storage system [70]. 
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Regenerative FC can be characterized as long-term EES devices. They offer the 

highest specific energy accounted at a maximum of 1200Wh/kg and excellent cycle 

capability of 20,000 cycles [91]. Their daily self-discharge is rated at 3%, the depth of 

discharge at 90% and the overall efficiency somewhere between 20-50% (with electrolysis 

being the weakest link in the chain) [78][144]. Except from their application in the transport 

sector where they potentially replace fossil fuels for vehicles, such EES devices occur 

promising in providing both stationary and distributed power [145][146][147]. However, 

they are still in the development stage and applications are limited to a few relating to stand-

alone renewable energy systems [148][149]. 

 

6.2.7 Capacitor and Supercapacitor 

A capacitor consists of two conducting metal-foil electrodes separated by an insulating 

dielectric material normally made of ceramic, glass or plastic film. The stored energy is a 

result of the electric field produced by opposite charges, which occur on the electrodes’ 

surface when a voltage is applied [91]. Already commercialized, capacitors can be charged 

faster and offer higher than that of conventional batteries specific power but they experience 

high self-discharge rate and lower energy density [78].  

Supercapacitors (also named ultra-capacitors, electrochemical capacitors or electric 

double-layer capacitors), are energy storage devices with special features somewhere 

between conventional capacitor and battery. As illustrated in Figure 34, their structure 

includes two metal electrodes of carbon surface, separated by a porous membrane soaked in 

an electrolyte, which simultaneously has the role of electronic insulator and ionic conductor 

[150]. Their capacitance, which is determined by the effective area of the plates (A), the 

distance between the electrodes (d) and the dielectric constant of the separating medium (ε), 

is 100-1000 times greater than that of conventional capacitors (C ∝ εA/d). As the stored 

energy given by equation (6.26) is directly proportional to both the capacitance and the 

square of voltage, ultra-capacitors also offer greater than that of capacitors energy density 

[85]. The maximum voltage is dependent on the electrolyte type and is rated at 1V or 3V for 

aqueous or organic electrolytes respectively [102].  

𝐸 =  
1

2
𝐶𝑉2       (6.26) 
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Supercapacitors ideally store the electric energy in the electrostatic field of the 

electrochemical double layer, rather than perform any chemistry, thus can be cycled millions 

of times and have much longer lifetime compared to batteries [151]. They achieve higher 

than that of batteries power density due to the short time constant of charging, but they 

provide lower energy density because of the limited surface area of the electrode [152]. 

Moreover, ultra-capacitors exhibit very high efficiencies up to 95% due to low resistance 

which results in reduced loss of energy and can be charged/discharged faster as compared to 

batteries since the transport of ions in the solution to the electrode surface is rapid [150].    

 

Figure 34: Schematic diagram of electrochemical double-layer capacitor [70]. 

 

Although this technology is susceptible to self-discharging and is currently applied 

in portable electronics and automotive industries [102], ultra-capacitors can also be used in 

electric or hybrid vehicles in order to supply the peak power needed during acceleration 
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[153]. In recent years, ultra-capacitor banks have been used in power applications to provide 

voltage sag compensate, intermittent renewable storage and smoothing [150][154]. Finally, 

through efficient use of diverse EES technologies, supercapacitors may hide their drawback 

of low energy density, forming a hybrid system with extended cycle life and high enough 

specific power to respond in pretentious applications.  

A new energy storage technology that has gained interest for grid-scale applications, 

involves the electrochemical flow capacitors (EFC). Aiming to decouple the power and 

energy capacity, after the double layers being charged, the slurry particles together with their 

charged surfaces are transferred to external tanks. When it is required, the stored energy can 

be recovered by pumping these particles back through the cell. A four-tank design for such 

a technology is needed in order to occasionally (charging/discharging) accommodate the 

slurry particles of the two layers [155]. Although a guidance for future EFC designs has been 

provided, more R&D is needed in order for such systems to become viable options for large-

scale EES applications. 

 

6.2.8 Superconductors 

Superconducting magnetic energy storage (SMES) system is briefly composed of 

superconducting coil, power conversion system and cryogenically cooled refrigerator 

(Figure 35). Typically, electric energy is stored in the magnetic field created by the flow of 

rectified current in a coil made of niobium-titanium cables of extremely low resistance [156]. 

In order for the superconducting state to be maintained, the device must be cooled to -264oC 

(9.2K), allowing current to flow permanently through the inductor [102]. The stored energy 

calculated by equation (6.27), is proportional to the wire inductance (L) and the square of 

direct current (I). It can be returned back by discharging the coil when the network demands 

the excess power [78].  

                                                            𝐸 =  
1

2
𝐿𝐼2                                                             (6.27) 

Superconductors offer high efficiency of storage, up to 98%, due to the nearly zero 

resistance resulting in negligible energy losses and rapid response in comparison with other 

energy storage systems as the current can be injected and extracted very quickly [156]. 

Moreover, these devices can be cycled almost infinitely and are capable of discharging the 

near totality of the stored energy [87]. The major drawbacks of the low-temperature 
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superconducting (LTS) coils are the high cost of superconducting wire and the increased 

energy requirements of cooling, and as a result, they are currently used for short duration 

energy storage applications to improve power quality [59]. In addition, they are susceptible 

to daily self-discharge (10-15%) and have a negative environmental impact due to the strong 

electromagnetic field [78]. New, high temperature superconducting (HTS) coils are in 

development, reaching the superconducting state at -163oC (110K) and significantly 

improving the economics and overall efficiency [157][158][159]. 

 

Figure 35: Schematic diagram of superconducting magnetic energy storage [70]. 

 

6.3. Applications of EES 

Apart from the potential support that EES technologies offer in mobile devices, automotive 

vehicles, space applications and the rest of autonomous or isolated systems, for several years 

now, EES is attracting increasing interest for power quality regulation, bridging power and 

energy management applications in power system operations.  

Power quality refers to the extent to which provision of power is reliable and 

maintains nominal voltage levels, unity power factor, nominal frequency levels (50Hz or 

60Hz depending on the country’s standard), and a purely sinusoidal waveform with zero 

harmonics and no transients [9]. Power quality regulation services are the fastest acting, 
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enabling operation within seconds to a few minutes. Following are bridging power services, 

which are capable of working within minutes to an hour, constituting a bridge between the 

limited generation capability of energy sources and highly variable electricity demand, and 

assuring continuity when switching from one source to another [7][59]. The rest of the 

applications facilitate energy management and concerns all applications that provide time-

shifting in the range between hours to days or even months to decouple the timing of 

generation and consumption of electrical energy [160].  

Several applications providing grid support and management already exist while 

others will emerge in the future. Table 12 presents by chain the most essentials, based on 

storage duration, whereas a more detailed description of each application is included below. 

Also, a broad overview of these applications across the power chain from generation to end-

users can be obtained from Figure 36. 

 

Table 12. Applications of EES technologies per value chain. 

Power Quality Regulation 

≤ 1min 

Bridging Power 

1min – 1h 

            Energy Management 

1 – 12h hours – days ≥ 4 months 

Fluctuation Suppression 

Oscillation Damping 

Frequency Regulation 

 

Reactive Support 

 

Low Voltage Ride-Through 

Voltage Regulation 

UPS  

Forecast Hedge Mitigation 

Load Following 

Contingency Reserve 

Black-start 

 

 

 

 

Emergency Back-up 

 

 

Peak Shaving 

Energy Arbitrage 

Transmission Curtailment 

Transmission Deferral 

Distribution Curtailment 

Distribution Deferral 

Demand Shifting 

Unit Commitment 

 

Load Levelling 

 

 

 

 

Seasonal Storage 

 

 

 

<RES Integration> <Generation> <Transmission> <Distribution> <End-User> 

 

6.3.1 Fluctuation suppression 

Fast output fluctuations from renewable sources can occur due to variations in weather 

conditions, in the time range of up to a minute [111][61]. Such variations can become fatal 

for some power electronic, information and communication systems in the grid. In order to 

mitigate this recurring effect, fast-response EES capable of providing high ramp rates and 
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cycling times can be applied [91]. The facility could be charged/discharged within seconds 

to minutes, to smooth generation from intermittent renewable sources [78][101][161][62].  

  

6.3.2 Oscillation damping 

Up to a certain penetration rate, the integration of renewables into the power mix can be 

managed by existing flexibility sources. As the penetration increases, it may compromise 

the system stability against disturbances, especially in weak or isolated grids [162]. 

Therefore, an EES is needed, providing fast response and high ramp rates within one-minute 

time, to avoid system instability and consequent brownout or blackout, by absorbing and 

discharging energy during sudden decreases in power output over short duration variations 

[61].  

 

6.3.3 Frequency regulation 

Frequency regulation is needed to maintain a balanced system. Although daily, weekly and 

seasonal patterns exist, it is impossible for the power consumption to predict in accuracy, 

leading to generation-demand imbalances (or nominal-frequency deviations), which can 

cause brownouts or blackouts [163][164]. Systems that can be used in such applications, 

require high cycle life and fast response rates in combination with good ramp rates (i.e., 10-

20MW/s) [60][165]. Stored energy, in these applications is requested to increase or decrease 

the output for seconds or less, to continuously maintain the frequency within electricity 

network standards [59][166].    

   

6.3.4 Reactive support 

Power converters used to facilitate RES integration, introduce several undesired harmonics 

to the system. On the other hand, some kind of wind generators consume large amounts of 

reactive power, also influencing voltage degradation and synchronisation with current. 

Devices capable of correcting the phase difference, are those which provide reactive support 

and includes generators, loads or energy storage equipment. EES used in such applications, 

offers both the distinct advantage of being available even when the power generation does 

not take place and high enough ramp rates in short time scale support [9][60]. The regulation 

can be realized either mechanically or via automated generation control. It is worth noting 
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that in both cases, the power conversion system applied possesses essential role since both 

active and reactive power must be compensated from the storage device [167]. 

 

6.3.5 Low voltage ride-through 

The low voltage ride-through, also known as fault ride-through, defines the ability of a power 

generator to remain connected to the grid throughout a short voltage drop or a total failure 

of the system. It is crucial for a power system to sustain the supply on-line, in order to avoid 

a possible chain event where the voltage may be caused to drop further and down enough, 

forcing another generator to trip and so on. The integration of an EES system, with high 

power ability and instant response, at the point of connection with the external grid, enables 

the continuous connection of the power plant and reduces the risk of a network collapse 

[168][169].  

 

6.3.6 Voltage regulation 

Apart from the frequency, stable voltage must be maintained within technical limits among 

the whole value chain of a power system, an issue not always guaranteed by the grid. Voltage 

is generally controlled by taps of transformers but in order for modern systems to withstand 

the dynamic changes in active and reactive power, EES technologies could be deployed 

[82][170][171]. Fast-response EES located at the end of a heavily loaded line may improve 

voltage drops and rises by withdraw or inject electricity, respectively [91][172][63].  

 

6.3.7 Uninterruptible power supply 

Uninterruptible power supply (UPS) acts as a time-delay off switch during interruptions, 

voltage peaks or flickers, and becomes crucial for some residential and commercial 

consumers who possess fire protection and security systems, computer, server databases, and 

other automation systems that need to be protected or continuously keep data recorded in 

memory. Since such appliances require continuity of supply, EES systems with 

instantaneous reaction can be deployed to improve power quality and provide back-up power 

during power disruptions [10][78][82][64]. This application adds considerable value in cases 

where power quality is a concern and power outages occur frequently. 
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6.3.8 Forecast hedge mitigation 

Power output from renewable sources varies according to daily or seasonal patterns and 

weather conditions, both of which are imperfectly predictable and uncontrollable [173][174]. 

Moreover, while RES have the priority in the generation mix, the net load variations (demand 

minus intermittent output) may fluctuate far more widely than the demand curve, giving high 

uncertainty to the generation units that are to be dispatched. Consequently, forecast hedging 

mitigation constitutes a major application, especially in systems that are highly dependent 

on variable renewables, so that the risk of exposure of consumers to high market prices along 

with financial impacts related to forecast error to be reduced [78].     

 

6.3.9 Load following 

Generation support and optimization involves the accurate adaptation of power output to 

changing demand. Depending on the flexibility needed, generators are currently dispatched 

upon the request of power system operators [175][176]. However, as the penetration of 

renewables increases, alternative sources with good ramping capability are needed to meet 

the mismatches between production and consumption, and shape the energy profile [10]. 

This is commonly referred to as load following and includes storage devices capable of 

providing energy in the time frame of minutes to an hour. A suitable for this purpose EES 

system could offer ramp rates of 0.3-1 MW/s and sufficient stored energy and power capacity 

[60].  

 

6.3.10 Contingency reserve 

Contingency reserves are distinguished by the time needed to achieve their maximum power 

output into spinning, non-spinning and supplemental reserve ancillary services. Because of 

the rapid response needed to replace production deficit, a large fraction of primary reserve 

is provided by plants that are operating and synchronized (spinning) to the system and thus 

is referred to as spinning reserve [177]. Spinning reserves must be available within ten 

minutes. Then, secondary and tertiary reserves, also known as non-spinning and 

supplemental, respectively, that need not be operating and synchronized when called upon, 

can be activated by the system operator’s decision.  
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Non-spinning reserves must be available within ten minutes and operable until they 

will be replaced by supplemental reserves [178]. The need for fast-responding, partially 

loaded power plants capable of providing the necessary contingency reserves, results in 

uneconomic dispatch and increases in the capital and O&M costs, reinforcing the 

requirement for EES applications especially in isolated systems [179][180][181][182].      

 

6.3.11 Black-start 

Many power plants require electrical energy from the grid to perform start-up operations 

such as to build up a reference frequency for synchronization and help other units to restart 

[177]. This service forms an integral part in a power system and has been performed by using 

diesel generators or hydroelectric units to provide the initial supply needed for the power 

grid to restart after a full black-out. Without taking power from the grid, EES units must sit 

fully charged and discharge when black-start capability is demanded to assist other facilities 

to start-up and synchronize to the grid [78][183][184].     

 

6.3.12 Emergency Back-up 

Energy storage can provide a source of back-up power that allows customers to ride-through 

a utility outage and continue normal operation [78]. It is operated as a substitute to an 

emergency diesel generator which is typically installed and changed-over to support 

important users, including healthcare facilities, telecommunication services, commercial and 

industrial customers. For increased reliability, emergency back-up storage requires instant-

to-medium response time and relatively long duration of discharge [101][185][186]. The 

rated power output and energy capacity of such applications depends on whether they are 

deployed to ride-through an outage until conventional back-up generator can start-up or they 

completely mitigate the event by themselves [178].   

 

6.3.13 Peak shaving 

If cheap energy is stored at off-peak demand periods at night, and injected into the network 

during periods of maximum electricity demand during the day, economics of a power 

generation plant improves greatly [61][187]. This service, also known as peak-shaving, must 
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be operable in the time frame of 1 – 10h, in order to meet daily peak demand and hence, to 

be able to de-activate expensive peak generation plants [188][189][190][191].   

 

6.3.14 Energy arbitrage   

Electricity prices are highly unstable, but tend to a daily pattern of low prices during night-

time off-peak hours and high prices during day-time on-peak hours [178]. Energy arbitrage 

involves operating storage in a manner that it consumes energy (self-produced and/or bought 

from others) during low market prices and releases the energy when market prices are higher 

[9][85][192]. Consequently, bulk energy storage becomes advantageous in that it can 

provide both generation and load, allowing to arbitrage the production price of the two 

periods and improving the load factor of the generation [78][193].   

 

6.3.15 Transmission and distribution congestion relief 

In most power networks, the generation is located far from the populated areas and electricity 

is delivered with some losses to the consumers. Congestion may occur either on high voltage 

transmission lines or more locally on the distribution system due to several reasons, such as 

when transmission lines cannot be enhanced in time to meet the increasing demand, in the 

event of an overload at the distribution equipment or due to extremely high penetration of 

distributed generation [9]. In both cases, where power generation or load demand exceeds 

the maximum delivery capacity, either excess energy must be curtailed, or a system upgrade 

must take place to provide sufficient capacity to accommodate or meet the changes, 

respectively. These two constraints are usually distinguished into two individual applications 

in the literature and are referred to as Transmission Curtailment and Transmission & 

Distribution Deferral.    

An EES device capable of providing energy in the time frame of 5 – 12 h would 

mitigate such power delivery constraints imposed by insufficient delivery capacity 

[181][194][195][196]. Instead of being curtailed, excess generation could be stored and 

injected back when the delivery capability is available again, whereas the increased demand 

would be treated without the additional losses burdened the transmission lines by simply 

shift the delivery of generation from on-peak to off-peak periods. According to the 

appropriate node side at the substations where EES systems are intended for use, they could 
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be large scale or smaller, stationary or transportable to provide supplemental energy to the 

end-users during overload situations [10]. This way, both transmission curtailment is 

reduced, and investment upgrades are deferred for years, whilst improving the utilization 

factor of the existing network. 

6.3.16 Demand shifting 

Apart from the firm power that energy storage provides to off-grid users, grid-tied consumers 

may profit from a time-varying electricity price often set by power utilities. This can be 

therefore achieved by shifting electrical energy purchases from on-peak (with high time-of-

use charges) to off-peak periods (when time-of-use charges are lower) [197]. In a similar 

manner, large commercial and industrial customers (whose demand charge is based on a 

peak load measured over a defined period) can reduce their demand charges in future bills 

by constantly reduce their peak load measured by the utility meter [178]. For the current 

requirements of a power system, EES devices with capacities of 1-10 kW and capable of 

providing energy in the time frame of 2-4 h would be sufficient [61]. Associated with local 

generation and/or in conjunction with a micro-grid formation able to be operated in island 

mode, power capacities may need to be increased for a time frame of 5-12 h. The feasibility 

of such storage systems is highly site-specific and depends on the existing incentives given 

by utilities [82][112][198][199].  

 

6.3.17 Unit commitment 

Unit commitment applications contribute to a proper scheduling of generators for certain 

time periods. The maximum share of RES fed to the grid is constrained by the minimum 

generation capacity of the conventional units being committed. As the penetration of variable 

renewable energy sources increases, it is more than usual for utilities to over-schedule and 

keep the plants partially loaded, to avoid curtailment. This implies uneconomic dispatch due 

to increased start-up costs and operation at inefficient output.  

Storage technologies are needed to provide energy in the time-frame of hours to days, 

in order to compensate forecast errors in a case of an under-predicted renewable source and 

enhance a joint operation through efficient unit commitment [177][200][201].     

 

6.3.18 Load levelling 
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Whatever the season, minimum power consumption during the day approximates nearly half 

of the maximum peak. However, as a function of peaks, production is over-dimensioned in 

the expense of its economics which are improved if it had been designed to fulfil average 

demand [87]. Load levelling is another example of time-decoupling of generation and 

consumption. By charging of storage during periods of low demand and discharging as 

needed, the gap between peak and off-peak is reduced, reducing the requirements of peaking 

generators to a minimum [85].  

Electricity storage technologies able to provide energy for many hours to days, allow 

the load to become flatter, thereby improving the generation efficiency, and reducing capital 

and O&M costs related to fuel avoidance and lighter design, respectively [82]. 

 

 

Figure 36: Power grid applications of EES [74]. 
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6.3.19 Seasonal storage 

Systems exposed to large seasonal variations in the level of either power generation or 

demand, may use storing energy in the time frame of months. Such a long-term electricity 

storage is currently limited by storing primary energy sources including coal, gas, oil, 

biomass or water, which can be converted to power at a later time [202]. However, EES 

technologies with a very large energy capacity and no self-discharge rate would be eligible, 

while if other quantifiable benefits (such as emissions avoidance) could be taken into 

account, they will become technically viable options [203][204][205].    
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7. Qualitative and Quantitative assessment of EES 

For our research to be complete, a methodology is needed for evaluating and comparing EES 

technologies with different cost structures in potential grid applications, distinguishing their 

power-related and capacity-related costs. Aiming to apply the same evaluation method to all 

cases, we seek for an algorithm which incorporates the initial project cost, storage 

replacement cost, fixed and variable O&M costs over the life of an EES facility. To gain a 

deep understanding of how electrical storage affects power system operations, both 

qualitative and quantitative analyses are needed.  

 

7.1. Life-cycle cost analysis of EES 

Since electricity is considered as the most versatile form of energy, electrical energy storage 

(EES) can assist in the improvement of the modern power systems’ stability, energy security 

and quality of supply with a wide variety of technologies and plenty of applications. Optimal 

planning of such systems, allows separating the power production from its consumption, 

both in space and time [206]. Generally, EES system planning involves four basic steps, 

namely the type selection, sizing, siting and operation and control. The specific EES 

technology is chosen according to the requirements and preferences of the application that 

it is intended for use. Once the EES type is determined, its optimal sizing can be found by 

balancing the benefits and cost, while its optimal placement can be addressed considering 

the geographical and topographical conditions in combination with the expected equipment-

upgrade deferral or network losses reduction. Finally, the operation and control strategies 

are designed in relation to the stakeholders and services across the different locations in the 

power chain, the desired purpose and the function performed [207][208].  

Based on the development status and cost metrics extensively published in the 

literature, EES technologies are continuously being studied, analyzed and compared. 

However, considering the performance and capital costs, most comparisons between 
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different EES systems participating in distinguished applications are qualitatively assessed. 

Some recent research has been conducted on the performance of EES in power system 

operations, investigating a specific technology in a specific application or using profitability 

analysis and calculation of cost per stored unit of electricity [209][210][211][212][213]. 

Even when the composition of cost is studied in great detail, the cost per kWh is not the 

optimal expression of a storage application service. Besides selling stored energy, other 

services such as emergency back-up or black start capability cannot be valued in terms of 

cost per kWh, while in the case of seasonal storage, a difficulty exists in evaluating the 

purchased energy since it may have been absorbed at different time intervals and in differing 

amounts.  

In this chapter, we present a methodology to evaluate and compare EES technologies 

with different cost structures in potential grid applications, distinguishing their power-related 

and capacity-related costs. Aiming to apply the same method to all cases, the viability of 

EES systems in different stationary applications is examined by the development of an 

algorithm which incorporates the initial project cost, storage replacement cost, fixed and 

variable O&M costs over the life of an EES facility. Once the costs of the subsystems 

comprising the whole facility are defined, the calculation of life-cycle cost is ascribed to the 

present value in terms of the power rating ($/kW). The levelized cost of storage (LCOS) 

provided, constitutes a quick and useful metric for EES facility owners to compare between 

technologies that may possess different characteristics, such as response time, power rating, 

suitable storage duration, round-trip efficiency, depth of discharge, self-discharge rate, 

cycling capability, lifespan times, capital and O&M costs, etc. 

Implementation of electricity storage can be possible in all five major subsystems of 

the electric power system: RES generation, thermal power plants, transmission, distribution 

and final consumers [214]. The EES applications are distinguished by the roles they play for 

different stakeholders and services across the power chain. These applications aim to satisfy 

their operational objectives as efficiently as possible, minimizing environmental impacts and 

maximizing system reliability and dynamic stability, at a reasonable cost. Governments, 

regulators, balancing authorities, dispatchers, marketers, RES plant owners, utility 

companies, transmission and distribution system operators, transmission and distribution 

network owners, all sorts of suppliers and end-users can benefit from the integration of EES 

systems via different power grid operations.  
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Either in international networks with centralized or distributed generation, or 

microgrids in islanded or interconnected mode, the presented approach functions similarly 

and minor differences are only found in sizes and scales [15]. Power quality involves fast 

acting services with the requirement of a few-milliseconds response and multiple annual 

charge-discharge cycles. Considering their storage duration and discharge time preferences, 

short-term/short-duration EES technologies are considered adequate systems for such 

applications. Fluctuation suppression and oscillation damping is needed to mitigate fast 

output variations and smooth generation from intermittent RES, while frequency regulation 

and spinning reserve are capable of managing generation-demand imbalances and retaining 

system stability. In medium scales, energy can be absorbed/injected through voltage 

regulation and low voltage ride-through, in order for the supply to be sustained on-line, 

reducing the risk of a network collapse. At the demand-side of the meter, the most common 

power quality application, known as uninterruptible power supply (UPS), ensures the 

continuity of supply during sudden power disruptions [74].  

The second category represents a bridge between the limited generation capability of 

energy sources and highly variable electricity demand. Bridging power applications require 

medium-response times and operation within minutes to hours. Their main objective is to 

store and provide energy in order to reduce forecast errors (Forecast hedging mitigation), 

shape the energy profile (Load following), avoid start-up and O&M costs of partially loaded 

power plants (Non-spinning reserve), assist other generating systems to start-up and 

synchronise (Black-start) or support customers in the event of a utility outage (Emergency 

back-up) [70].  

The last category accommodates the energy management applications which call for 

long-term storage in the range between hours to days or even months. Based on the market 

prices, energy arbitrage is equivalent to peak shaving and the only difference relies on the 

participation in electricity wholesale market [215]. In a similar manner, but in quite smaller 

scales, customers are allowed profit from time-varying demand charges through 

absorbing/returning energy during low/high time-of-use charges respectively.  Τhe 

applications of transmission and distribution congestion relief may occur in between them. 

By deploying EES downstream from regions of congested transmission or distribution, the 

need for energy curtailment is reduced and investment upgrades can be deferred for years 

[74]. Footprint limits mostly exist in urban areas where the facilities are roofed and strictly 

enclosed, while in rural areas the restrictions can be less noticeable or entirely neglected.  
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Load levelling and unit commitment are two further applications aiming to support 

power generation and RES integration for a proper scheduling of generators and improved 

economics in terms of capital, O&M and fuel costs. The former is needed to reduce the gap 

between peak and off-peak, whereas the latter is used to ensure the flexibility adequacy 

[216]. Finally, the longest storage duration is required by seasonal storage, an application by 

which the fulfilment of the yearly averaged demand is guaranteed with lighter designs and 

consequent improved economics. The requirements and conditions concerning all 

applications discussed so far are listed in Table 13 along with the addition of discharge time, 

annual operating cycles and examined life-cycle. In our analysis, the load profile is 

considered similar for all days of the year, requiring steady, full charging-discharging cycles. 

Also, the function performed along with the benefits achieved are provided in Table 14 for 

the various applications extensively published in the literature. 

The EES technologies considered in this study include pumped hydro (PHES), 

compressed air (CAES), small-scale compressed air (SS-CAES), flywheel (FES), valve-

regulated lead-acid (VRLA), advanced lead-acid, nickel-cadmium (NiCd), zinc-air (Zn-air), 

sodium-sulphur (NaS), ZEBRA, lithium-ion (Li-ion), vanadium redox (VRB), zinc-bromine 

(ZnBr), polysulphide-bromide (PSB), hydrogen fuel cell (H2FC), electrochemical double 

layer capacitor (EDLC) and superconducting magnetic energy storage (SMES). All 

technologies are modelled using the most realistic technical, operational and cost data 

obtained from industry reports, white papers, government databases, project summaries, 

journal articles and IEEE conferences.   

The most essential performance characteristics which make a storage device 

favourable or unfavourable to the application that is intended for use are: response time, 

power rating, suitable storage duration, autonomy, self-discharge rate, depth of discharge, 

cycle and chronological life, round-trip efficiency and spatial requirement. All this 

information regarding each EES technology is included in Table 15.  

The most suitable EES technologies are selected to compete in a certain application 

according to its specific parameters and conditions. In this regard, all types of batteries, 

flywheels, EDLC and SMES can respond in time for all applications, while PHES and 

CAES, for those with a requirement of minutes and greater. The rest of the technologies can 

compete in applications with response time between seconds to minutes. Power rating sets 

the minimum scale at which the selection of an EES device is considered feasible. 

Consequently, SS-CAES cannot take place in smaller than 0.003MW application scales, 
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followed by VRB (0.03MW), ZnBr and NaS (0.05MW), SMES (0.1MW) and PSB for which 

a requirement of at least 1MW must be satisfied. In larger scales, CAES and PHES require 

a minimum scale of 5 and 100 MW respectively.  

Finally, the discharging time must be satisfied, and storage duration be within the 

required limits. Although the majority of technologies can retain and release energy for 

hours, flywheels and SMES cannot take place in applications that require longer than 30 

minutes of storage. In general, battery energy storage (BES) devices can compete in most 

system operations due to their rapid response and no power-rate limitations. PHES and 

CAES are selected for large-scale/long-duration storage while FES, EDLC and SMES for 

short-duration [74]. On this basis, and according to the requirements and preferences of the 

individual applications across the power chain, the selected EES candidates are presented in 

Table 16. 
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Table 13. Requirements and conditions of EES Applications [217]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

No Application Response 

time 

Power 

rating 

(MW) 

Storage 

duration 

Discharge 

time 

Cycles 

(y-1) 

Life-

time 

(y) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

Distributed Fluctuation Suppression and Oscillation Damping 

Centralized Fluctuation Suppression and Oscillation Damping 

Forecast Hedging Mitigation 

PV Load Following 

Wind Load Following 

Unit Commitment 

Frequency Regulation 

Spinning Reserve 

Non-Spinning Reserve 

Black Start 

Peak Shaving 

Energy Arbitrage 

Load Levelling 

Seasonal Storage 

Voltage Regulation 

small footprint Transmission Congestion Relief 

no-footprint limits Transmission Congestion Relief 

Low Voltage Ride-Through 

Reactive Support 

small footprint Distribution Congestion Relief 

no-footprint limits Distribution Congestion Relief 

Uninterruptible Power Supply 

Emergency Back-up 

Demand Shifting 

msecs 

msecs 

secs 

secs 

secs 

mins 

msecs 

msecs 

secs 

secs 

mins 

mins 

mins 

day 

msecs 

mins 

mins 

msecs 

msecs 

mins 

mins 

msecs 

secs 

mins 

1-10 

100-400 

0.2-400 

1-2 

100-400 

10-1000 

1-1000 

10-1000 

10-1000 

100-1000 

10-1000 

10-1000 

10-1000 

10-1000 

10-100 

0.25-10 

10-100 

0.002-1 

1-10 

0.25-1 

1-10 

0.002-10 

0.002-10 

0.001-0.01 

 

30min-1hour 

15-30min 

1min-1hour 

15min-4hours 

5-10hours 

hours-days 

15min 

1-5hours 

1-5hours 

days-months 

2-6hours 

5-12hours 

hours-days 

3-6months 

15min 

2-8hours 

2-8hours 

2-4hours 

2-4hours 

2-8hours 

2-8hours 

15-30min 

4-10hour 

2-6hours 

 

30min-1hour 

15-30min 

1min-1hour 

15min-4hours 

5-10hours 

8-12hours 

1-15min 

15min-1hour 

1-5hours 

2-4hours 

2-6hours 

2-6hours 

5-12hours 

2-6days 

1-15min 

2-8hours 

2-8hours 

2-4hours 

2-4hours 

2-8hours 

2-8hours 

15-30min 

2-6hour 

2-4hours 

 

5000 

10000 

4500 

5000 

500 

400 

8000 

500 

500 

3 

400 

400 

150 

4 

5000 

400 

400 

150 

150 

400 

400 

50 

50 

350 

20 

20 

15 

15 

20 

20 

15 

20 

20 

20 

15 

20 

20 

25 

20 

15 

20 

10 

15 

10 

15 

10 

15 

15 
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Table 14. Applications of EES technologies per value chain [74]. 

System Operations Application Function Benefit 

Power Quality and 

Regulation 

Fluctuation Suppression (FS) 

 

Oscillation Damping (OD) 

 

Frequency Regulation (FR) 

 

Reactive Support (RS) 

 

Low Voltage Ride-Through (LVRT) 

 

Voltage Regulation (VR) 

 

 

Uninterruptible Power Supply (UPS) 

Absorb/inject energy to smooth generation 

from intermittent RES. 

Absorb/discharge energy during sudden 

decreases in power output. 

Increase/decrease the output to continuously 

maintain nominal frequency 

Sourcing/sinking reactive power handling 

undesired system harmonics. 

Absorb/inject energy to remain connected 

throughout a short voltage drop. 

Withdraw/inject electricity to maintain the 

voltage within technical limits. 

 

Absorb/discharge energy during sudden power 

disruptions. 

Mitigate fast output variations improving 

reliability. 

Avoid system instability and consequent 

brownout or blackout. 

Manage generation-demand imbalances 

retaining system security. 

Avoid voltage degradation and 

synchronization with current. 

Sustain the supply on-line reducing the 

risk of a network collapse. 

Withstand the dynamic changes in active 

and reactive power improving voltage 

drops and rises. 

Ensure continuity of supply improving 

power quality. 

Bridging Power 

Forecast Hedging Mitigation (FHM) 

 

Load Following (LF) 

 

 

Contingency Reserve (CR) 

 

 

Black-start (BS) 

 

 

Emergency Back-up (EB) 

Absorb/discharge energy to mitigate 

uncertainty concerning RES. 

Withdraw/inject energy to accurately adapt 

power output to changing demand. 

 

Store/provide energy to replace production 

deficit of spinning, non-spinning and 

supplemental reserves. 

Sit fully charged and discharge to build up a 

reference frequency for synchronization when 

call upon. 

Operate as a complement or substitute to an 

emergency diesel generator. 

Reduce forecast error and the risk of 

exposure to high market prices. 

Meet the mismatches between 

production and consumption shaping the 

energy profile. 

Avoid start-up, capital and O&M costs of 

partially loaded power plants and 

uneconomic dispatch. 

Assist other facilities to start-up and 

synchronize to the grid improving 

reliability. 

Support customers to continue normal 

operation in the event of utility outage. 
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Energy Management 

Peak Shaving (PS) 

 

 

Energy Arbitrage (EA) 

 

 

Transmission & Distribution 

Congestion Relief (T&D CR) 

 

Demand Shifting (DS) 

 

Unit Commitment (UC) 

 

 

Load Levelling (LL) 

 

 

 

Seasonal Storage (SS) 

Store/inject energy at off-peak/on-peak 

demand periods. 

 

Consume energy during low market prices and 

release when market prices are higher. 

 

Store excess generation and inject back when 

the delivery capability is available again.  

 

Absorb energy during low time-of-use charges 

and return at high time-of-use charges. 

Absorb/discharge energy to enhance a joint 

operation through efficient unit commitment. 

 

Charge during low demand periods and 

discharge as needed to reduce the gap between 

peak and off-peak. 

 

Long-term electricity storage to recover large 

seasonal variations at a later stage. 

Improve economics by allowing 

expensive peak generation units to be de-

activated.  

Improve the load factor of generation 

whilst enabling production price 

arbitrage. 

Improved utilization factor, reduced 

energy curtailment and investment 

upgrades are deferred for years. 

Allow customers profit from time-

varying demand charges. 

Compensate forecast errors, increase the 

penetration of VRES, contribute to a 

proper scheduling of generators. 

Reduce the requirements of peaking and 

over-dimensioning generators, improving 

generation efficiency and economics in 

terms of capital, O&M and fuel costs. 

Lighter designs to fulfil yearly averaged 

demand, improving economics. 
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Table 15. Technical and operational characteristics of EES [217]. 

 

 

 

  

 

Technology Daily 

self-

discharge 

(%) 

Lifetime 

(years) 

Cycling times 

(cycles) 

Round-trip 

efficiency 

(%) 

DoD 

(%) 

Time of 

response 

Suitable 

storage 

duration 

Autonomy at 

power rating 

Power 

Rating 

(MW) 

PHES almost 0 30-50 10000-30000 70-85 95 mins hours-months 1-24h 100-5000 

CAES almost 0 30 8000-12000 42-54 100 mins hours-months 1-24h 5-300 

SS-CAES almost 0 23+ 30000 17-57 100 sec-mins 3h 3h 0.003-3 

Flywheel 55-100 20 105-107 90-95 100 msec secs-mins 15sec-15min 0-0.25 

Lead-acid 0.1-0.2 5-15 200-2000 85-90 80 msec mins-days secs-hrs 0-20 

Advanced LA 0.1-0.2 5-15 4000-17000 85-90 80 msec mins-days secs-hrs 0-20 

NiCd 0.1-0.2 10-20 1500-3000 60-90 100 msec mins-days secs-hrs 0-40 

Zn-air almost 0 0.17-30 100-300 50 100 mins hours-months secs-24h 0-0.01 

NaS almost 0 10-15 1500-5000 89-92 100 msec secs-hours secs-hrs 0.05-8 

ZEBRA 20 10-14 1000 70-85 80 - secs-hours secs-hrs 0-0.3 

Li-ion 0.03 5-15 3000-10000 ~100 80 msec mins-days mins-hrs 0-0.1 

VRB almost 0 5-10 >16000 85 100 msec hours-months secs-10h 0.03-3 

ZnBr almost 0 5-10 2000-3500 75 100 msec hours-months secs-10h 0.05-2 

PSB almost 0 10-15 800-2000 75 100 msec hours-months secs-10h 1-15 

H2-FC 0.06-3 5-15 20000 20-50 90 secs hours-months secs-24h  0-50 

EDLC 20-40 10-12 106  85-98  100 msec  secs-hours  secs-hrs 0-0.3 

SMES 10-15  20+ almost ∞ 95  100  msec ≤30mins  mins-hrs  0.1-10 
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Table 16. EES technology-application pairs. 

Apps 

P
H
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S
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B
E

S
 

P
S

B
 F

B
E

S
 

H
2
F

C
 

E
D

L
C

 

S
M

E
S

 

1 Distributed Fluctuation Suppression and Oscillation Damping     ✓ ✓ ✓  ✓ ✓ ✓     ✓  

2 Centralized Fluctuation Suppression and Oscillation Damping    ✓ ✓ ✓ ✓  ✓ ✓ ✓     ✓ ✓ 

3 Forecast Hedging Mitigation   ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓     ✓ ✓ 

4 PV Load Following   ✓  ✓ ✓ ✓  ✓ ✓ ✓     ✓  

5 Wind Load Following     ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓   

6 Unit Commitment ✓ ✓   ✓ ✓ ✓ ✓   ✓ ✓ ✓ ✓ ✓   

7 Frequency Regulation     ✓ ✓ ✓  ✓ ✓ ✓     ✓ ✓ 

8 Spinning Reserve    ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓  ✓  

9 Non-Spinning Reserve     ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓   

10 Black Start        ✓    ✓ ✓ ✓ ✓   

11 Peak Shaving ✓ ✓   ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓   

12 Energy Arbitrage ✓ ✓   ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓   

13 Load Levelling ✓ ✓   ✓ ✓ ✓ ✓   ✓ ✓ ✓ ✓ ✓   

14 Seasonal Storage ✓ ✓      ✓       ✓   

15 Voltage Regulation    ✓ ✓ ✓ ✓  ✓ ✓ ✓     ✓ ✓ 

16 small footprint Transmission Congestion Relief   ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓   

17 no-footprint limits Transmission Congestion Relief ✓ ✓   ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓   

18 Low Voltage Ride-Through     ✓ ✓ ✓    ✓ ✓ ✓   ✓  

19 Reactive Support     ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓    

20 small footprint Distribution Congestion Relief   ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓     

21 no-footprint limits Distribution Congestion Relief  ✓   ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓   

22 Uninterruptible Power Supply     ✓ ✓ ✓    ✓     ✓  

23 Emergency Back-up   ✓  ✓ ✓ ✓ ✓   ✓     ✓  

24 Demand Shifting   ✓  ✓ ✓ ✓ ✓   ✓    ✓   
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Overall expenditures of an EES facility consider both the investment (initial project 

and replacement costs) and operation (purchased energy, fixed and variable O&M costs). 

The initial project cost (IPC) is composed of the three primary components of energy storage 

medium (ESM), power conversion system (PCS) and balance of plant (BOP). While specific 

power and energy can be quite different, the power and energy capital costs are largely 

decoupled from each other. The ESM components include the energy-related costs (battery 

banks, air/gas/electrolyte tanks, cavern excavation, water reservoir construction, etc.) 

whereas power-related costs (inverter/rectifier, pump, compressor, turbine, motor, generator, 

electrolyzer, fuel cell, etc.) are represented by PCS component. BOP encloses all costs 

associated with project engineering, construction management, grid integration, system 

isolation/protection, land and access, site buildings and foundation, monitoring, control and 

HVAC systems, procurement, shipment and installation, permitting and so on [218][219]. 

IPC can be calculated based on the following equation: 

        

𝐼𝑃𝐶 = 𝐶𝐸𝑆𝑀 . ℎ𝑑 + 𝐶𝑃𝐶𝑆 + 𝐶𝐵𝑂𝑃                                           (7.5) 

     

where hd is the discharging-time hours. To meet the requirements of each individual 

application in terms of output (useful) energy, CESM must be divided by the round-trip 

efficiency. Since the quantification of the generated profit is beyond the scope of this work, 

round-trip efficiency (η) concerns only the charge/discharge efficiency without considering 

further transmission, transformation or conversion losses. In addition, ESM must be 

oversized for those devices that cannot be fully discharged (constrained by their allowed 

depth of discharge-DoD) and are distinguished from the rated to the net capacity [220]. In 

this regard, no memory effect (associated mainly with BES) is observed and the performance 

characteristics of EES systems are retained over their specified lifetime [221]. Finally, self-

discharge rate (SDR) is a crucial parameter that directly affects the discharged energy 

according to the application’s storage duration needs (hs). While steady, full charge-

discharge cycles were assumed, SDR can accurately be incorporated to reform the IPC as 

follows: 

 

                                      𝐼𝑃𝐶 =
𝐶𝐸𝑆𝑀

𝜂.𝐷𝑜𝐷
. (1 +

𝑆𝐷𝑅

24
. ℎ𝑠) . ℎ𝑑 + 𝐶𝑃𝐶𝑆 + 𝐶𝐵𝑂𝑃                           (7.6)                         
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According to the quality of the manufacturer and the guarantee, the lifespan of the 

electronic equipment (inverter, rectifier and control system) is usually higher than 15 years 

and thus, replacement costs (CR) stem from the number of replacements of the ESM 

compartment [222]. The year and the number of replacements are found according to the 

application’s lifespan and cycling times over each technology, via Equations (7.7) and (7.8), 

respectively.  

 

                                                  𝐿𝐸𝑆𝑀 = min { 
𝐿𝐸𝑆𝑀𝐶

𝑁𝑘
 ,  𝐿𝐸𝑆𝑀𝑌

 }                                            (7.7)                                            

                                                        𝑁𝑅 = Integer (
𝐿𝑘

𝐿𝐸𝑆𝑀
)                                                  (7.8)                                             

 

, where LESM is the ESM durability life or equivalent replacement year, LESMC and LESMY is 

the ESM lifetime in cycles and years respectively, NK and Lk are the application’s 

requirements in cycles per year and examined lifespan in years, and NR represents the number 

of replacements.  

During the span of each EES facility’s useful lifetime, O&M is a further key element 

affecting the total cost. Operational costs that do not change as a function of plant output are 

expressed via fixed O&M costs (CfO&M), while variable O&M costs (CvO&M) represent the 

operational costs that change as a function of energy output [26]. Fixed costs regard the 

routine maintenance required to keep the system operational and consist of the plant staff 

employment, planned inspections, tests and analyses, annual taxes and fees, insurance, 

carrying charges, energy availability, etc [26]. Variable O&M cost comprises the small-scale 

fault restorations, unplanned replacements of mechanical or electronic parts, auxiliary 

equipment overhauls, rented maintenance equipment, fluid leakage treatment, substances 

and materials consumed during maintenance and other operational energy needs [223]. In 

data models where variable O&M values are not incorporated into fixed cost metrics, 

operating hours per cycle (ho = hc + hd = 2.hd) are used to calculate the impact of CvO&M on 

annual O&M cost (CO&M) using the Equation (7.9).  

                                              

𝐶𝑂&𝑀 = 𝐶𝑓𝑂&𝑀 +  𝐶𝑣𝑂&𝑀. 𝑁𝑘. (2ℎ𝑑)                                         (7.9)                                
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In order for the annual operating hours to be counted, Nk (annual number of cycles) 

is applied to Equation (7.9). On the contrary, for the CfO&M already expressed in $/kW-year, 

a triple variation is utilised to gain a broader overview from independent applications in the 

power chain. As a result, CfO&M differs when an EES technology is used for bulk energy 

storage, distributed generation or power quality purposes. The cost metrics regarding each 

EES technology are included in Table 17. Finally, for each application k and for each 

individual technology j selected for it, the levelized cost of storage can be computed as the 

present value of the system in terms of power rating through the use of Equation (7.10). 

 

𝐿𝐶𝑂𝑆 =∑
𝐶𝑅(𝑡) + 𝐶𝑂&𝑀(𝑡)

(1 + 𝑖)𝑡

𝐿𝑘

𝑡=1

                                             (7.10) 

 

At this point, it should be noted that all cost data involved for the EES systems and 

derived from different sources, range over no greater than 5 years, so that inflation rates i 

have remained relatively stable and no further adjustments have to take place. In addition, 

each cost component is assumed to scale linearly, so LCOS does not vary with system size. 

 

Table 17. Cost metrics of EES. 

Technology BOP 

($/kW) 

PCS 

($/kW) 

ESM 

($/kWh) 

Fixed O&M  

($/kW-year) 

Variable 

O&M 

($/MWh) Bulk 

energy 

Distributed 

generation 

Power 

quality 

PHES 270-580 0-4.8 5-100 2.50 - - 0.25 

CAES 270-580 46-190 2-50 2.50 10 - 2.95 

SS-CAES * 1072-1195 134-158 - 2.95 - 2.55 

Flywheel 110-600 120-1200 200-500 - 1000 5.76 0.27 

Lead-acid 120-600 58-180 200-500 4.29 15 10 0.20 

Advanced LA 120-600 58-180 200-500 4.29 15 10 0.20 

NiCd 120-600 50-180 800-1500 5.36 25 - ** 

Zn-air 120-600 0-120 10-60 - - - - 

NaS 120-600 0-120 300-500 20 - 2.68 0.40 

ZEBRA 120-600 0-120 100-200 4.42 - 4.42 0.51 

Li-ion 120-600 0-120 600-2500 2.68 25 10 0.54 

VRB 120-600 0-120 150-1000 4.56 20 - 0.27 

ZnBr 120-600 60-120 150-1000 4.29 20 - 0.40 

PSB 120-600 36-120 150-1000 - - - - 

H2-FC * 1383-4453 15 21.44 3.80 - ** 

EDLC 180-580 50-12000 300-2000 - - 5 ** 

SMES 140-650 50-12000 1000-10000 - - 10 ** 

  *   BOP is included in PCS cost. 
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**   Variable O&M cost is included in fixed O&M costs. 

 

Following, an analysis is performed on the LCOS for each EES participant, to 

determine which properties add most uncertainty according to the intended use in individual 

applications, based on their performance characteristics extensively published in the 

literature. The uncertainties resulting from the large technological variations between system 

types, along with their extremely challenging behaviour prediction, require flexibility on 

each input parameter that affects both the investment and operation costs.    

The selected parameters of capital cost, efficiency, lifetime and self-discharge rate, 

were subjected into variations between their minimum and maximum value while keeping 

the rest parameters constant. As a result, their range deviated around the median value (mean 

value for all input parameters) whereas their impact was differed from the worst and best 

case. To reach an apparent inference of the representative LCOS of EES technologies in a 

specific application, the storage duration and discharge times were set to their maximum 

demand. It is worth noting that recycling and disposal costs regarding each individual 

component of a whole EES facility, provide additional uncertainty to LCOS and should be 

included. However, these costs are strongly dependent on each country’s policy and 

legislation and are, therefore, difficult to collect and process.     

 

7.2.1 Effect of capital cost 

The variation in cost of different technologies participating in wind load following, unit 

commitment, transmission congestion relief with small and no-footprint limits, and 

distribution congestion relief with small and no-footprint limits can be observed in Figure 

37. Considering the middle range of costs, VRB is dominated by its capital cost range as the 

lower and upper bounds coincide with minimum and maximum values. VRB is followed by 

ZEBRA, PSB, ZnBr, H2 fuel cells and Li-ion, for which their capital cost accounts for the 

78.8, 73.5, 64.8, 56.6 and 52.2% of the total cost disparity respectively.  

From the ownership perspective, minimum LCOS and overall range constitute the 

most important elements in terms of affordability and reliability. Where footprint is not an 

inhibiting factor, PHES is the least-cost technology option, whereas CAES is preferred only 

when the power-rate limits restrict PHES technology to participate. As a result, PHES is the 
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least-cost technology for transmission congestion relief with no footprint limits and unit 

commitment, while CAES is favourable in distribution congestion relief with no-footprint 

limits. H2-FC provides the lowest LCOS in wind load following and small footprint 

transmission congestion relief, followed by Zn-air systems which are considered the next 

cheapest and consequently the best type for small footprint distribution congestion relief. In 

terms of reliability, PHES and CAES present the smallest range (followed by H2-FC), 

reducing the investment risks and empowering EES facility owners to proceed to 

implementations.         

 

 

Figure 37. LCOS with varying capital cost for EES participating in Applications 5, 6, 

16, 17, 20 and 21 shown in Table 16. 

 

7.2.2 Effect of efficiency 

Figure 38 depicts the LCOS of different EES facilities applied in low voltage ride-through, 

reactive support, uninterruptible power supply and demand shifting. The efficiency range is 

responsible for the 81.6% of uncertainty that governs SS-CAES, 29.1% for NiCd and to a 

lesser extent for ZEBRA, VRLA and EDLC. Similar results are obtained from Figure 39 
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where non-spinning reserve, peak shaving, energy arbitrage and emergency back-up are 

listed. 

 

 

Figure 38. LCOS with varying efficiency for EES participating in Applications 18, 19, 

22 and 24 shown in Table 16. 

 

According to the results, minimum LCOS and min/max range favours PHES and 

CAES for large scale applications such as peak shaving and energy arbitrage. VRLA 

becomes the cheapest option for low voltage ride-through and uninterruptible power supply, 

whereas Zn-air BES can be applied for emergency back-up and demand shifting at the 

demand-side of the meter. In non-spinning reserve applications, H2 fuel cells can 

appropriately be integrated, providing the least-cost technology and acceptable range. 

Finally, reactive support costs less with the application of VRB FBES but the wide range of 

cost variation adds risk in such an investment. This range is significantly reduced by 83.6 or 

81.1% using NaS or ZEBRA BES, respectively.  
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Figure 39. LCOS with varying efficiency for EES participating in Applications 9, 11, 

12 and 23 shown in Table 16. 

 

7.2.3 Effect of lifetime 

The effect of the variation of lifetime on the LCOS is shown in Figure 40. In order to evaluate 

its impact, the most frequently cycled applications were selected, namely distributed and 

centralized fluctuation suppression, forecast hedging mitigation, PV load following, 

frequency and voltage regulation [107]. Lifetime mainly affects BES facilities due to the 

degradation of chemical elements and electrolytes. The greatest uncertainty (overall range 

between best and worst case) is given by Li-ion, the middle range of which accounts for the 

40.3% of LCOS range. This share is exceeded by NaS and advanced lead-acid BES which 

occupy near 52% but with reduced overall range. When the median value of costs is taken 

into account, advanced lead-acid constitutes the first choice followed by NaS and VRLA. 

However, considering the minimum costs, EDLC possesses the lowest LCOS compared to 

the rest of technologies in each of the six applications presented in Figure 40.     
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Figure 40. LCOS with varying lifetime for EES participating in Applications 1, 2, 3, 

4, 7 and 15 shown in Table 16. 

 

7.2.4 Effect of self-discharge rate 

While self-discharge rate constitutes a critical parameter that directly enhances the storage 

losses, the consistent selection of the appropriate technologies to compete in the proposed 

applications has prevented its precise impact from being revealed. The selected applications 

characterized by extended storage periods include load levelling, black-start and seasonal 

storage. As can be observed, H2-FC is heavily affected by SDR adding 25.5% of uncertainty 

to LCOS. Since PHES and CAES systems require large storage reservoirs for acquiring a 

certain amount of power and energy, H2-FC would be applicable only in smaller scales. 

Aiming to reach a clear view of SDR effect on flywheels, spinning reserve was selected and 

depicted in Figure 41 along with the other three applications mentioned here. As can be seen, 

SDR variation is superior in a Flywheel system even when the storage period does not exceed 

a few hours. Based on the middle range, this variation is responsible for the 31.1% of the 

added uncertainty. 
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Figure 41. LCOS with varying self-discharge rate for EES participating in 

Applications 8, 10, 13 and 14 shown in Table 16. 

 

Regarding the minimum LCOS achieved in the best case, PHES plants are preferred 

in load levelling and seasonal storage while Zn-air is promoted for black start services. 

Spinning reserve favours advanced lead-acid BES which offers both the lowest minimum 

cost value and overall uncertainty. 

The derived results showed that the LCOS uncertainty favors PHES in unit 

commitment, peak shaving, energy arbitrage, load leveling, seasonal storage and TCR with 

no footprint limits. CAES is preferred only when power-rate limitations restrict PHES 

technology from taking place, while H2-FC facilities are applicable in smaller scales as non-

spinning reserves or for small footprint TCR and wind load following. In short-term and 

frequently cycled applications (fluctuation suppression, forecast hedge mitigation, PV load 

following, frequency and voltage regulation), EDLC holds primacy considering minimum 

cost value.  

In terms of uncertainty, advanced lead-acid adds the lowest risk in such investments, 

while VRLA becomes favourable in low voltage ride-through and uninterruptible power 

supply. Although, Zn-air constitutes the least-cost technology for emergency back-up and 

demand shifting operations, SS-CAES would fit better as technology-application pairs based 
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on the min/max LCOS range. However, it offers the greatest potential in black start 

provision. Finally, a similar conclusion was drawn from the application of VRB in reactive 

support where it was displaced by NaS or ZEBRA if overall LCOS range was taken into 

account. The resulting minimum LCOS values by application are provided in Figure 42. 

 

 

Figure 42. Least-cost EES technology per application. 

 

 

7.2. A Multi-criteria decision method 

In this chapter, an attempt is undertaken to qualitatively compare a total of 19 EES 

technologies based on their technical and operational characteristics. This constitutes a 

multi-criteria decision method to validate the findings of the previous quantitative analysis. 

In order to effectively assess the feasibility of those systems in existing and emerging power 

grid applications across the power chain, the performance characteristics of interest are 

normalized. The ranking is selected from 0 to 10, where the range between the worst and 

ideal is defined accordingly. The normalization is based on 5 different functions according 

to the expression and which value represents the ideal. Two functions are selected to evaluate 

the characteristics expressed in real units, while two further are needed for those in 

percentage values. The last function is typically used to quantify a special technical feature. 
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In this sense, lower costs (Ci) and self-discharge rates (SDRi) show higher rankings 

and thus “0” represents the highest cost and “10” indicates the ideal case. To be consistent 

with such an assumption, equation (7.11) is used to give the normalized values for the real 

units of power capital, energy capital and O&M costs, whereas to estimate the rank of self-

discharge rates equation (7.12) is applied. 

𝑅𝑎𝑛𝑘(𝐶𝑖) = 10
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝐶𝑖
𝑚𝑎𝑥𝑖𝑚𝑢𝑚

                                              (7.11) 

 

𝑅𝑎𝑛𝑘(𝑆𝐷𝑅𝑖) = 10(1 − 𝑆𝐷𝑅𝑖)                                                (7.12) 

   

Conversely, higher potential features (Fi) including ratings, densities, and specific 

power and energy, cycling and lifetime, show high rankings and thus are estimated by 

equation (7.13), while efficiencies (ηi) are normalized based on equation (7.14) which 

determines a poor performance with “0” and an ideal of 100% with “10”.    

𝑅𝑎𝑛𝑘(𝐹𝑖) = 10 (1 −
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝐹𝑖
𝑚𝑎𝑥𝑖𝑚𝑢𝑚

)                                     (7.13) 

             

𝑅𝑎𝑛𝑘(𝜂𝑖) = 10𝜂𝑖                                                            (7.14) 

                               

Finally, the special feature of technical maturity of each technology is normalized as 

follows: “2” corresponds to “developing” technologies, “4” to demonstration, “6” to 

commercializing, “8” to commercialized, and “10” to mature. The normalized values for the 

selected technical and operational features are provided in tables. Assumptions made here, 

include only the costs derived from different sources but in the range of no greater than 10 

years so that the exchange rates have remained relatively stable and no present value 

adjustments have to take place. 

Mechanical EES technologies are summarized and compared Figure 43. As can be 

seen, the most mature is PHES technology followed by CAES and FES which are 

commercialized and commercializing, respectively.  
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Figure 43: Potential characteristics of mechanical energy storage technologies. 

 

The highest power rating and energy capacity correspond to PHES which exhibits 

the advantage over the others, with the FES being the last in the row. On the other hand, 

PHES and CAES offer quite low performance per unit mass and volume, requiring large 

storage reservoirs for acquiring a certain amount of power and energy. 

Consequently, they become disadvantageous in relation to FES technology in 

applications where space and weight are limiting factors. The capital costs follow a reverse 

order per units of energy and power. The highest power capital cost concerns PHES 

technology favouring FES, whereas the highest energy capital cost corresponds to FES and 

promotes the rest of two, with CAES occurring slightly less expensive. PHES offers the 

longest lifetime and the less O&M cost, while FES enjoys the highest efficiency and cycling 

capability. Finally, the parasitic losses are superior in a FES system resulting in even a full 

daily self-discharge, while PHES and CAES plants possess negligible losses and almost zero 

daily self-discharge rate.   

Compared to the rest of technologies and according to those mentioned in Chapter 4, 

in large-scale applications (of greater than 100MW) PHES and CAES achieve the lowest 

energy capital cost for extended storage durations of days to months. FES devices are 

presented less cost-effective compared to electromagnetic storage mainly due to their high 

capital cost. It is worth noting that the capital cost of auxiliary equipment needed for power 
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conditioning in electromagnetic systems is not included. Also, the overall efficiency (due to 

AC/DC and back to AC conversions) may favour flywheels which do not require voltage 

rectification before interconnect with network. 

Historically, chemical EES systems have by far spurred the greatest interest of 

research, demonstrating many different chemistries and topologies to meet the ever-

increasing demand from the old 1859s up to date. The first conventional secondary battery, 

Pb-acid, was invented in 1859. Since the beginning of the next century (and specifically in 

1915), NiCd batteries have been used commercially, followed by the introduction of NaS in 

the 1960s. Although Li-ion battery was first proposed in the same year, the first was 

produced 31 years later. In 1980, VRB flow battery was pioneered in Australia and the basic 

patents were bought in 1998, whereas the ZnBr was developed in 1970 and demonstrated in 

1991. ZEBRA technology was acquired by MES (Swiss) in the early 1999 [78]. Although 

many other chemical technologies, including secondary batteries, flow batteries and fuel 

cells, have been investigated and found technically possible, they are still under 

development. 

The most popular chemical EES technologies, both conventional, molten salt and 

metal-air batteries, and regenerative fuel cells, are examined and compared in Figures 44 

and 45. Pb-acid batteries accounts for the largest secondary battery market share in the world. 

The low cost and maintenance combined with relatively high-power output and efficiency, 

make them attractive in automotive, telecommunications and UPS industries.  

Despite the high environmental impact, this kind of battery has been also used in 

MW-scale stationary applications in conjunction with renewables. NiCd batteries also 

provide high environmental impact. With similar features such as high efficiency, specific 

power and moderate self-discharge, NiCd offers more cycling times and longer lifetime, 

higher energy density and power ratings, whereas it becomes disadvantaged in capital costs 

and power density. Improved performance is achieved by NiHMe which provides higher 

power and energy densities, lower capital costs, no self-discharge in the expense of lower 

efficiency, cycle capability and lifetime. For a given amount of energy, Li-ion batteries 

require the smallest volume and weight. Along with their higher efficiency of near 100% 

and extended cycle times, Li-ion batteries offer widespread uses in portable devices and 

promising potential in transportation and small-scale stationary applications. 
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Figure 44: Potential characteristics of conventional battery technologies. 

 

 

Figure 45: Potential characteristics of high-temperature battery and fuel cell 

technologies. 

 

High energy batteries including NaS, ZEBRA and Zn-air, together with PEM 

regenerative FC are summarized in Figure 45. One can be seen is that NaS technology 
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possesses the highest efficiency followed by ZEBRA, while Zn-air and regenerative FC 

provide the lowest one of fairly 50%. Regarding the energy density, Zn-air occurs promising 

while the regenerative FC becomes advantageous in specific energy. The key limitations of 

Zn-air are found in cycling capability and power rating whereas the major advantages 

include long lifetime and low capital investment. Regenerative FC are able to provide power 

density as high as ZEBRA but with lower energy capital cost, limited maintenance cost and 

better cycling capability. In addition, ZEBRA exhibits severe self-discharge rate in contrast 

to almost zero of NaS within a day. NaS constitutes the most expensive EES investment in 

the category and in order for the rest of the technologies to become competitive, more 

research is needed to improve the round-trip efficiency and lower the cost. 

Constituting a developing technology, regenerative FCs provide excellent energy-

cost performance able to compete even the mature PHES and CAES for storage durations of 

up to 12 hours, while they are exclusively preferred when footprint becomes a crucial factor. 

Transmission congestion relief could be a reference scenario to demonstrate such a 

requirement. Although they provide the best energy performance of all battery chemistries, 

NaS systems possess the most expensive O&M costs followed by flow batteries since they 

both require additional equipment to maintain the energy stored.        

 

Figure 46: Potential characteristics of flow battery technologies. 
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VRB flow batteries outweigh the ZnBr and PSB in technical maturity, efficiency, 

cycling capability, specific power and power density. However, they provide moderate 

specific energy and the lowest energy density, constraining their use in applications where 

bulk energy storage needs to take place. All this information is presented in Figure 46 and 

as shown, with a similar capital investment such potential features can be greatly improved 

by a factor of two, utilizing the different topologies of ZnBr or PSB flow batteries. Hence, 

improvements in both cycle efficiency and lifetime are needed in order to become 

competitive and contribute in future power system applications. 

Capacitors and inductors are appropriate to store small quantities of energy. Recent 

advances have extended the use of capacitive and inductive technologies to larger scale 

applications. Figure 47 demonstrates the selected potential features of capacitors, 

supercapacitors and superconductors, allowing a direct comparison between them. 

Supercapacitors experience the highest efficiency and lowest investment and whole life 

costs. SMES can be cycled almost infinitely and provides the longest lifetime, whereas it 

occurs disadvantageous in terms of power and energy performance along with capital and 

O&M costs. Due to increased parasitic losses, electromagnetic EES technologies suffer from 

severe self-discharge and thus they become favourable only in high power/short duration 

applications. The daily self-discharge rate slightly favours SMES. 

 

 

Figure 47: Potential characteristics of electromagnetic energy storage. 
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Apart from the significant improvements in efficiency and extended lifetimes, capital 

and O&M costs tend to be decreased by increasing R&D efforts. Mature technologies offer 

the lowest energy capital cost reducing the investment risk in large-scale/long duration 

applications. Regarding O&M costs, chemical technologies that require chemical handling 

are disadvantageous against others, followed by technologies that need additional equipment 

to maintain the energy stored (e.g. NaS battery and VRB flow battery). In terms of power 

capital cost, devices that can deliver high power are required when the discharge period is 

short, whereas for extended discharge periods of several hours or more, there is a 

requirement for devices that can store large amounts of energy with low O&M costs. 
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8. Isolated power grids: A demonstration of our integrated 

solution 

We conclude this thesis by providing a comprehensive and consolidated demonstration of 

our integrated approach. The solution consists in finding both the optimal size of the intended 

EES facility and UC schedules based on actual annual data. The evolved formulation takes 

into account the variable renewable energy contribution, embedding a large number of real-

world constraints regarding an isolated power network.  

In contrast to the large interconnected power systems, the integration of intermittent 

RG in autonomous island grids is subject to security and reliability limitations. As a result, 

operating reserves (both spinning and non-spinning) are required to cover the uncertainty 

caused by forecast errors, whereas sufficient ramping capability is necessary to address the 

variability issues which often occur at high time resolutions (e.g. minute-to-minute) [224]. 

Spinning reserves represent the on-line capacity synchronized to the grid and ready to meet 

electric demand within 10 minutes while non-spinning is the off-line generation capacity 

that can be ramped to capacity and synchronized to the grid within 10 minutes and can 

maintain that output for at least two hours.  

Due to the isolation, small area and remoteness, electricity supply for people 

inhabited in more than 50 thousand islands on the earth, mainly rely on imported fossil fuels 

the price of which is 3-4 times higher than that in the mainland. On the other hand, for most 

islands the sunlight is sufficient for generating abundant electricity from PV in summer while 

in winter wind power can be the main contributor to electricity supply [225]. Consequently, 

it is crucial for a solution to be examined, in order to facilitate a shift towards decarbonization 

without degrading the continuity and quality of power supply in islands but reducing the 

exposure of such weak economies to varying fuel prices or shortages [226].  

Electrical energy storage (EES) constitutes a potential candidate capable of 

regulating the power generation to match the loads via time-shifting. EES may favor some 

technologies from being applied in contingency reserves, based on two main requirements 

namely, the time of response and storage duration. First, the rapid response needed to provide 

a large fraction of both primary and secondary reserves favors the flywheels, electrochemical 

and electromagnetic storage technologies. The second requirement invites the storage system 

to retain the energy stored for several days and operate as a complement or substitute when 

needed instead of increasing/decreasing its output to continuously maintain the generation-
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demand balance. This excludes flywheels and electromagnetic storage (both capacitive and 

conductive) from participating because of their increased daily parasitic losses expressed by 

their self-discharge rate [70]. Within the wide variety of electrochemical storage systems, 

Nickel-based technologies are also excluded because of memory effect aspects [74].  

Based on the previously described concept, the performance of battery-based energy 

storage facilities applied in an island’s power system is investigated. The considered 

technologies include lead-acid (Pb-acid), zinc-air (Zn-air), sodium-sulfur (Na-S), lithium-

ion (Li-ion) batteries and vanadium-redox (VRB), zinc-bromine (Zn-Br) and polysulfide-

bromide (PSB) flow batteries. The spinning reserve requirements (power rating and energy 

capacity) derives after strongly restricted unit commitment (UC) optimization solved via a 

novel Lagrange Relaxation method, based on real data of both generation and demand. Each 

EES system is subjected to life-cycle cost analysis distinguishing their power-related and 

capacity-related costs. Once optimally planned, the systems are analysed and compared 

through an ablation analysis concerning the most recent technological variations in 

development status and cost metrics in research. 

Aiming at minimizing the spinning reserve requirements, our investigation is focused 

on a methodology performed in four steps; 1) the robust formulation for the UC problem 

considering both operational and technical constraints; 2) the extraction of the optimal 

solution based on maximum RES integration subject to the complex constraints; 3) the 

determination of EES optimal size; and 4) the life-cycle cost analysis of the examined EES 

models. 

 

8.1. Problem Formulation 

The total production cost (TPC) of a power system consisting of traditional thermal units is 

mainly the cost of fuel (CF), start-up (CSU) and shut-down (CSD) costs, maintenance cost 

(CM), emission cost (CE), and cost of energy not served (CENS). By denoting the number of 

generating units with N and the number of periods with T, a formulation for the UC problem 

is as follows: 

min∑{∑{[𝐹𝑖(𝑃𝑖
𝑡) + 𝐸𝑖(𝑃𝑖

𝑡) + 𝐶𝑀𝑖

𝑡 + (1 − 𝑈𝑖
𝑡−1)𝐶𝑆𝑈𝑖

𝑡 ]

𝑁

𝑖=1

𝑇

𝑡=1

𝑈𝑖
𝑡 + (1 − 𝑈𝑖

𝑡)𝐶𝑆𝐷𝑖
𝑡 𝑈𝑖

𝑡−1} + 𝐶𝐸𝑁𝑆
𝑡 }   (8.1) 

 𝑠. 𝑡.   
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∑𝑃𝑖
𝑡

𝑁

𝑖=1

= 𝑃𝑛𝑒𝑡𝐷
𝑡 + 𝑃𝑙𝑜𝑠𝑠

𝑡                                                                                     (8.2) 

∑𝑃𝑖,max _𝑐𝑎𝑝
𝑡

𝑁

𝑖=1

≥ 𝑃𝑛𝑒𝑡𝐷
𝑡 + 𝑆𝑅𝑡                                                                       (8.3) 

𝑃𝑖,min
𝑡 . 𝑈𝑖

𝑡 ≤ 𝑃𝑖
𝑡 ≤ 𝑃𝑖,max

𝑡 . 𝑈𝑖
𝑡                                                                          (8.4) 

𝑈𝑖
𝑡 = 0 ⇾ 1     𝑖𝑓     ∑(1 − 𝑈𝑖

𝑡)

𝑡−1

𝑡=𝑡𝑑

≥ 𝑀𝐷𝑖                                                   (8.5) 

𝑈𝑖
𝑡 = 1 ⇾ 0     𝑖𝑓     ∑ 𝑈𝑖

𝑡

𝑡−1

𝑡=𝑡𝑢

≥ 𝑀𝑈𝑖                                                             (8.6) 

𝑃𝑖
𝑡 − 𝑃𝑖

𝑡−1 ≤ 𝑅𝑈𝑖,     𝑖𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠                                       (8.7) 

𝑃𝑖
𝑡−1 − 𝑃𝑖

𝑡 ≤ 𝑅𝐷𝑖,     𝑖𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑠                                      (8.8) 

 

While the objective (8.1) is the sum of total production cost in all periods, Ui
t and Pi

t 

are used to model various operational constraints. Constraint (8.2) ensures that the sum of 

the power produced from all committed units meets the net load demand (Pt
netD) along with 

transmission loss (Pt
loss) at each time-interval, considering the contribution of renewable 

generation (Pt
RG) normally treated as negative load so that 𝑃𝑛𝑒𝑡𝐷

𝑡 = 𝑃𝐷
𝑡 − 𝑃𝑅𝐺

𝑡 . Constraint 

(8.3) guarantees that the power margins cover the spinning reserve requirements SRt based 

on the maximum ramping capacity (Pt
i,max-cap) of each unit. The maximum and minimum 

rated power forcing the generating units to operate within their boundaries are represented 

by constraint (8.4). Considering the time a unit has started-up (tu) or shut-down (td), the 

satisfaction of predefined minimum up (MUi) and down (MDi) times before a change in state 

occurs is constraint by (8.5) and (8.6), respectively. The last constraints (8.7) and (8.8), 

represent the ramp-up (RUi) and ramp-down (RDi) rate restrictions between consecutive 

periods. 

Further constraints may include the unit status restrictions and plant crew constraints. 

Unit status may restrict a unit in three possible states namely, the must-run, must-out and 

run at a fixed-MW output. The number of units that can simultaneously start-up is restricted 
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by the plant crew constraints depending on the number of operators available or the 

maximum water availability for feeding multiple boilers. 

 

8.2. Optimal EES sizing 

The role of the proposed EES facility is to store and provide energy, in order to replace the 

deficit of spinning reserves. Aiming to evaluate the improvement achieved by the application 

of EES, two case-studies are investigated with weekly simulations carried out for the entire 

duration of a year. In the first case, the optimal UC schedules along with the total production 

costs are evaluated based on non-zero spinning reserve requirements (SR≠0) and model (8.1) 

- (8.8). The procedure is repeated in the second case where the application of EES adequately 

replaces the spinning reserve margins. Sitting fully charged and ready to be brought online 

when called upon, the EES facility makes the system capable of handling net-load dynamic 

changes ensuring the operation reliability. Thus, the second case considers zero spinning 

reserve requirements (SR=0) from thermal power plants. 

The optimal scheduling of generating units to meet the net load demand is solved 

over a short-term horizon of 336 half-hours. To initialise the process, some initial states of 

generating units took place: minimum up and down times are considered qualified, all units 

are assumed to operate between minimum and maximum power limits and start-up costs add 

no value for the first-time slot. Aiming to evaluate both the impact of intermittent RES and 

the improvement achieved by the application of EES systems, we investigated the two case-

studies with weekly simulations carried out for the entire duration of the year.  

The first case accounts for the RES contribution, considering biomass as a firm 

import but solar and wind as variable renewable energy sources (VRES). In this regard, 

spinning reserve requirement is differentiated according to Equations (8.9) and (8.10):  

𝑆𝑅𝑡 = 6%.𝑃𝑛𝑒𝑡𝐷
𝑡 + 100%. 𝑃𝑉𝑅𝐸𝑆

𝑡                                       (8.9) 

𝑃𝑉𝑅𝐸𝑆
𝑡 = 𝑃𝑤𝑖𝑛𝑑

𝑡 + 𝑃𝑠𝑜𝑙𝑎𝑟
𝑡                                                 (8.10) 

 

, where Pt
wind and Pt

solar are the instantaneous, summed power output from wind and solar 

generators, respectively. Finally, we completely neglect and exclude the spinning reserve 
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requirement from the objective function in the second case. The integration of sufficient in 

terms of power rating and energy capacity EES devices, guarantees the adequacy of spinning 

reserve margins and makes the system capable of handling net-load dynamic changes and 

ensures the operation reliability. We model the cost of energy not served 𝐶𝐸𝑁𝑆
𝑡  based on 

Equation (8.11) which assigns the constant maximum cost of all units being online and 

operating at their maximum power output. The start-up costs can be calculated based on 

formulation (3.6). 

𝐶𝐸𝑁𝑆
𝑡 =∑𝐹(𝑃𝑖,𝑚𝑎𝑥

𝑡 )

𝑁

𝑖=1

                                               (8.11) 

To adequately replace SR requirements the optimal size (both rated power and 

energy capacity) considers the worst-case scenario. Therefore, the rated power (𝑃𝑟𝑎𝑡𝑒𝑑
∗ ) can 

be defined according to the maximum difference between spinning reserve margin without 

storage and power margin from committed units when storage was applied to eliminate it, 

as follows:  

𝑃𝑟𝑎𝑡𝑒𝑑
∗ = max

𝑡
𝑃𝑟𝑎𝑡𝑒𝑑 (𝑡)     , ∀𝑡 ∈ 𝒯                                    (8.12) 

𝑃𝑟𝑎𝑡𝑒𝑑(𝑡) =∑{𝑃𝑖,𝑚𝑎𝑥−𝑐𝑎𝑝
𝑡

𝑁

𝑖=1

(𝑆𝑅 ≠ 0) − 𝑃𝑖,𝑚𝑎𝑥−𝑐𝑎𝑝
𝑡 (𝑆𝑅 = 0)}                  (8.13) 

 

On the other hand, energy capacity (𝐸𝑐𝑎𝑝
∗ ) is determined by the highest requirement to 

provide power for hs hours, as defined by Equations (8.14) and (8.15).  

𝐸𝑐𝑎𝑝
∗ = max

𝑡
𝐸𝑐𝑎𝑝 (𝑡)     , ∀𝑡 ∈ 𝒯                                            (8.14) 

𝐸𝑐𝑎𝑝(𝑡) = ∫ ∑{𝑃𝑖,𝑚𝑎𝑥−𝑐𝑎𝑝
𝑡 (𝑆𝑅

𝑁

𝑖=1

𝑡+ℎ𝑠

𝑡

≠ 0) − 𝑃𝑖,𝑚𝑎𝑥−𝑐𝑎𝑝
𝑡 (𝑆𝑅 = 0)}𝑑𝑡            (8.15) 

 

Performing weekly simulations for a whole year, the annual profitable return (APR) can be 

computed according to Equation (8.16). 
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𝐴𝑃𝑅 =∑[𝑇𝑃𝐶𝑆𝑅≠0(𝑡) − 𝑇𝑃𝐶𝑆𝑅=0(𝑡)

𝑇

𝑡=1

]                                     (8.16) 

 

8.3. Life-cycle cost analysis 

The selected EES facilities are modeled considering both the investment and operation costs. 

Power-related costs concern the power conversion system (PCS) and balance of plant (BOP) 

while energy storage medium (ESM) involves the energy-related costs. As a result, the initial 

project cost (IPC) can be expressed as a function of rated power (𝑃𝑟𝑎𝑡𝑒𝑑
∗ ) and energy capacity 

(𝐸𝑐𝑎𝑝
∗ ) based on the following equation: 

𝐼𝑃𝐶 = 𝐸𝑐𝑎𝑝
∗ . 𝐶𝐸𝑆𝑀 + 𝑃𝑟𝑎𝑡𝑒𝑑

∗ . (𝐶𝑃𝐶𝑆 + 𝐶𝐵𝑂𝑃)                                  (8.17) 

 

To meet the requirements of the intended application in terms of output (useful) energy, CESM 

must be oversized to take into consideration the ac-to-ac conversion losses, the maximum 

permitted capacity and parasitic losses. Hence, IPC is rewritten as a function of the round-

trip efficiency (η), depth of discharge (DoD), self-discharge rate (SDR) and storage duration 

(hs): 

𝐼𝑃𝐶 = 𝐸𝑐𝑎𝑝
∗ .

𝐶𝐸𝑆𝑀
𝜂. 𝐷𝑜𝐷

. (1 + 𝑆𝐷𝑅. ℎ𝑠) + 𝑃𝑟𝑎𝑡𝑒𝑑
∗ . (𝐶𝑃𝐶𝑆 + 𝐶𝐵𝑂𝑃)                  (8.18) 

 

Operation and maintenance (O&M) cost accounts for both fixed O&M values (CfO&M) 

expressed per kW-year and variable O&M values (CvO&M) which represent the operational 

costs that change as a function of annual discharged energy (Edis) [26]. The total O&M cost 

(CO&M) is calculated through the use of Equation (8.19).  

𝐶𝑂&𝑀 = 𝐶𝑓𝑂&𝑀. 𝑃𝑟𝑎𝑡𝑒𝑑
∗ +  𝐶𝑣𝑂&𝑀. 𝐸𝑑𝑖𝑠                                  (8.19) 

 

For each individual technology k selected to participate, the life-cycle cost (LCC) (during 

the span of the EES facility’s useful lifetime) can be computed as the present value of the 

system by Equation (8.20). The net present value (NPV) for each EES facility k is finally 

achieved by Equation (8.21).                                                              
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𝐿𝐶𝐶𝑘 = 𝐼𝑃𝐶𝑘 +∑
𝐶𝑂&𝑀
𝑘 (𝑡)

(1 + 𝑖𝑅)𝑡

𝑁

𝑡=1

                                                (8.20) 

 

𝑁𝑃𝑉𝑘 = −𝐼𝑃𝐶𝑘 +∑
𝐴𝑃𝑅(𝑡) − 𝐶𝑂&𝑀

𝑘 (𝑡)

(1 + 𝑖𝑅)𝑡

𝑁

𝑡=1

                                 (8.21) 

, where N is the examined lifespan in years and iR the discount rate. 

 

8.4. Case study system 

A medium-sized energy system is selected with a peak demand of 1108MW and a load factor 

of 53% which constitutes a representative example of an island’s autonomous, non-

interconnected power system. This is the system of Cyprus powered by three thermal power 

plants consisting of a total of twenty generating units whose main technical and economic 

characteristics are listed in Table 18, as well as by domestic renewable resources including 

biomass, solar PV and wind. According to the Cyprus Energy Regulatory Authority (CERA), 

during the year from 01 January 2017 to 31 December 2017 the installed capacity for 

thermal, wind, PV and biomass generating units was 1278MW, 157.5MW, 112.2MW and 

9.81MW, respectively. Their contribution in electricity production can be observed from a 

Sankey diagram depicted in Figure 48  [227].  
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Figure 48: Sankey diagram for the total electricity generation during 2017. 
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Table 18. Parameters of the thermal generating units. 

Group 

Num. 

of 

units 

Pmin 

(MW) 

Pmax 

(MW) 

a        

(€/h) 

b 

(€/MWh) 

c 

(€/MW2h) 

RU 

(MW/min) 

RD 

(MW/min) 

MU 

(hr) 

MD 

(hr) 

HSU             

(€) 

CSU    

(€) 

tcold    

(hr) 

1-Gas turbine 4 4 37 949.05 67.84 0.213 5 5 3 0.5 15 104 0 

2-Steam turbine_1 61 30 58 1002.75 62.133 0.2827 1 2 8 2 1586 5786 4 

3-Internal combustion engine_1 3 8.75 17 154.745 62.247 0.0215 1 1 2 1 33 66 1 

4-Internal combustion engine_2 3 14.5 17 189.698 51.666 0.4377 1 1 2 1 33 66 1 

5-Steam turbine_2 31,2 66 124 1236.079 56.694 0.0662 4.2 4.2 8 12 2520 9200 6 

6-Combined cycle 23 66 216 2476.761 43.193 0.0395 12 12 6 12 30 208 2 

1 One of the units is constantly in must-run mode. 

2 One of the units was out of service for 2017. 

3 Operating in 2+1 mode. 
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Table 19. Technical characteristics and cost metrics of EES technologies. 

Technology 

Daily 

self-discharge 

(%) 

round-trip 

efficiency 

(%) 

DoD 

(%) 

BOP 

($/kW) 

PCS 

($/kW) 

ESM 

($/kWh) 

Fixed O&M 

($/kW-year) 

Variable 

O&M 

($/MWh) 

Pb-acid 0.1-0.2 85-90 80 120-600 58-180 200-500 4.29 0.20 

Zn-air almost 0 45-55.8 100 120-600 0-120 10-60 - - 

Na-S almost 0 89-92 100 120-600 0-120 300-500 20 0.40 

Li-ion 0.03 ~100 80 120-600 0-120 600-2500 2.68 0.54 

VRB almost 0 85 100 120-600 0-120 150-1000 4.56 0.27 

Zn-Br almost 0 67.5 100 120-600 60-120 150-1000 4.29 0.40 

PSB almost 0 67.5 100 120-600 36-120 150-1000 - - 
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To assess the impact of EES on system operation, both weekly and yearly simulation 

results are required. The necessary data obtained from CERA regard the half-hourly power 

demand during the year of 2017 along with the real-time generation from renewable energy 

sources (RES). Two case studies are carried out to evaluate the profitable return derived by 

the application of EES. The first case assumes a spinning reserve requirement accounting 

for 6% of the total power demand and 100% of the variable renewable energy sources 

(VRES). Offering a monthly-constant power output, biomass is considered as a firm import, 

whereas VRES refers to wind and PV generation for each time interval of the year. By the 

application of EES in the second case, the spinning reserve requirements become zero and 

the optimization procedure is repeated recording the total production cost. 

The variation in load demand for the whole year of 2017 and weekly representative 

profiles for summer, winter and spring is provided in Figure 49 and Figure 50, respectively 

[45]. Based on a single bus model we assume that the demand is satisfied as soon as the total 

production is approximately equal to the total consumption and spinning reserve 

requirements are qualified. 

 

 

Figure 49. Annual electricity demand variation during the entire year of 2017. 
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Figure 50. Weekly profile of seasonal electricity demand of the year 2017. 

 

8.5. Results 

For comparison purposes and based on actual, real-time data, the deterministic formulation 

of UC is advisable and useful. The optimal scheduling of generating units to meet the net 

load demand is solved over a short-term horizon of 336 half-hours to let ramp-rate limitations 

be involved. Completing the second’s case 52-week optimization process, the APR achieved 

was rated at €55,839,700 according to Equation (8.16). Undoubtedly, SR provides a high 

influence on the TPC. Forcing the utilities to over-schedule and individual units to operate 

partially-loaded, leads to increased start-up costs, inefficient and uneconomic dispatch.  

The contribution of RES during the week which comprises the worst-case scenario 

is presented in Figure 51. The high variability of the net load cannot be satisfactorily 

absorbed by the weak power system (due to ramp-up and -down limitations), requiring 

faster-response and expensive gas turbine generation to take place. The resulted UC 

programs for the worst-case scenario derived from the two case-studies are depicted in 

Figure 52. By making use of Equations (8.12-8.13) and (8.14-8.15) the optimal size of EES 

system was determined. In terms of power rating and energy capacity to 143.94MW and 

498.94MWh, respectively.  
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Figure 51. Net load demand vs. RES contribution for the week comprising the worst-

case scenario (23 April 2017). 

 

All necessary information regarding the different EES technologies selected is listed 

in Table 19. The ac-to-ac conversion efficiency assumed to be 90% including both 

transformers and converters, while we considered zero transmission losses (placement of 

devices near thermal generation units) [228]. The examined lifetime (N) was set at 10 years 

in order to avoid any replacements based on the lifetime of the main components comprise 

each EES facility [229]. Since the costs relating to fixed O&M and variable O&M were 

unavailable for Zn-air battery and PSB flow battery, the maximum values based on the rest 

of technologies were assumed. The main characteristics affecting the life-cycle cost analysis 

performed are enclosed in Table 20.  

 

 

Figure 52. Optimal power scheduling for the worst day of the year before EES (SR≠0) 

and in the presence of EES (SR=0). 
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Table 20. Main characteristics considered in overall analysis of EES. 

Characteristics Value 

Life-cycle cost analysis  

APR € 55,839,700 

Discount rate (iR) 2.5 % 

Conversion losses 10 % 

Examined life-time (N) 10 years 

Replacement cost - 

Storage duration (hs) 5 h 

vO&M discharged energy (Edis) Annual self-discharge losses (MWh) 

Unit Commitment  

Number of weekly time intervals 336 

Balance tolerance 0.1 MW 

Crew constraint per power plant ≤ 3 

 

Finally, in order to include the uncertainties due to the large technological variations 

between system types, we performed uncertainty analyses considering the variation range 

between all input parameters. Table 21 lists the calculated results while their graphic 

representation is shown in Figure 53. The median value indicates the NPV for averaged 

values for all inputs to decide whether investing in a technology is feasible. Min/max range 

refer to the extremities between low performance/high costs and high performance/low 

costs. The middle range results from the individual variation from highest to lowest values 

for both performance characteristics and cost metrics, deviating around the median. Min/max 

range shows the risk and increases by increasing IPC while the middle range indicates the 

degree of dependence of each technology on their initial investment. 

 

Table 21. Net present value (M€) for the participating EES facilities. 

EES median middle range min/max range 

Pb-acid 134.26 -16.65÷292.35 -42.30÷302.61 

Zn-air 364.55 300.255÷435.23 293.87÷436.29 

Na-S  158.03 58.59÷259.37 48.43÷265.46 

Li-ion  -651.49 -1354.37÷51.40 -1354.37÷51.40 

VRB 47.49 -272.88÷367.86 -272.88÷367.86 

Zn-Br -53.72 -441.63÷334.19 -441.63÷334.19 

PSB -71.79 -461.43÷317.85 461.43÷317.85 
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Figure 53. NPV for EES facilities participating in spinning reserve application. 

 

8.6. Concluding Remarks 

In this chapter, a methodology for the optimal planning of EES facilities involved in 

contingency-reserve applications has been presented. Based on a single-bus model the 

thermal generation of the power system of Cyprus has been optimally scheduled for the year 

2017 without and with EES facilities. The UC optimization problem was conducted via a 

novel Lagrange Relaxation method with constraints and considering the impact of RES. The 

derived simulation results showed that improvements exist in profitable return credits when 

EES was integrated to retain energy storage for 5h. TPC is strongly affected by RES 

uncertainty and variability allowing different storage technologies to take place and enhance 

flexibility. Pb-acid, Zn-air, Na-S, Li-ion, VRB, Zn-Br and PSB batteries were selected to 

replace the deficit in spinning reserves and subjected to ablation analysis. The optimal size 

was determined to 143.94MW/498.94MWh based on the worst-case scenario. The ablation 

analysis performed on NPV, indicates that Zn-air offers the greatest potential in terms of 

performance and investment risk. Pb-acid and Na-S battery systems constitute feasible 

investments whereas Li-ion stands out of preferences since it possesses a negative mean 

value and is dominated by its still high capital cost. Finally, it is noted that the benefits 

derived from electricity storage would have increased, according to the availability of data 

regarding the emission cost, energy and reserve not served. This would allow an extension 

of the UC model to also incorporate these terms and enhance the profitable return reflected 

in security, reliability and emission avoidance cost. 
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9. Conclusions 

This thesis has focused on advanced tools for enhancing the flexibility required by modern 

power systems. We have developed a novel approach based on Lagrange Relaxation 

framework for addressing the constrained unit commitment, considering the impact of 

renewable energy sources. The experimental evaluation of our approach showed that 

mathematical optimization principles can provide a persuasive and consistent mechanism 

for determining the appropriate generation schedules even for weak and isolated power 

networks. However, aiming to deal with future power needs in terms of system 

dimensionality and volatility, we have presented a radically innovative solution which is 

based on Bayesian optimization paradigm.  

  This approach relies on an effective Gaussian process algorithm enabling data-

driven inference of the functional form of the underlying cost function, as well as the 

utilization of a state-of-the-art scheme for selecting the next function evaluation, namely an 

expected improvement-based acquisition function. This way, it possesses an effective means 

of alleviating the need of conventional methods to provide a parametric functional form for 

the optimized cost function. In addition, it provides the pathway for a solution that is 

intrinsically designed to converge in quite low number of function evaluations. We provided 

an experimental evaluation of our approach under a standard benchmark scenario, and we 

compared with three alternatives. As we observed, our proposed solution outperforms the 

alternatives in terms of the system costs, as well as the number of required function 

evaluations. These findings strongly corroborate our theoretical claims motivating this 

thesis.   

 The second topic of our study regarded the electricity storage. Developing a deep 

understanding of the various storage techniques and their performance characteristics, we 

performed both qualitative and quantitative assessments in order to adopt an appropriate 

methodology for selecting the best-fit candidates per application. All applications were 

modelled based on real-world requirements and preferences across the power system chain. 

To determine the best electricity storage technology, we deployed an algorithm capable of 

distinguishing the power-related and energy-related cost components. In this regard, a quick 

and useful metric for storage facility owners is provided, enabling the comparison between 

technologies that may possess different characteristics, such as response time, power rating, 
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suitable storage duration, round-trip efficiency, depth of discharge, self-discharge rate, 

cycling capability, lifespan times, capital and O&M costs, etc.  

Finally, we have concluded this thesis by providing a comprehensive and 

consolidated demonstration of our integrated approach. The solution consists in finding both 

the optimal size of the intended EES facility and UC schedules based on actual annual data. 

The evolved formulation takes into account the variable renewable energy contribution, 

embedding a large number of real-world constraints regarding an isolated power network. 

The term of storage has been treated as an internal optimization task which its optimal sizing 

was found by balancing the benefits and cost. Identifying electrical energy storage as an 

approach enhancing the flexibility and reliability, we formulated and evaluated the selected 

facilities via a life-cycle cost analysis, based on the most realistic characteristics and cost 

metrics found in the literature. The derived simulation results showed that improvements 

exist in profitable return credits when storage was integrated. 

 

9.1. PhD Thesis Contribution 

The thesis introduced a number of contributions to the state of the art, focused on the 

operation of power systems, especially isolated systems, under high renewable penetration. 

Innovations were introduced in the solution to the unit commitment problem, in the electric 

energy storage systems assessment and in the use of electric energy storage to provide 

spinning reserve service to an isolated power system.  

Regarding the unit commitment problem, the thesis presents two innovations: (a) the 

treatment of identical units in the framework of Lagrange Relaxation solution and (b) the 

development of a new, data driven, unit commitment solution method based on uncertainty 

aware machine learning, namely Bayesian optimization. Elaborating on mathematical 

optimization, we provide a novel approach that offers a high performance/low-cost unit 

commitment solution, retaining the ability to overcome non-convexity and non-linearity in 

the framework of Lagrange Relaxation. To account for the largely unaddressed challenge of 

the uncertain and volatile behavior of modern generation, we present a radically novel 

paradigm that is timely and highly relevant for the electric power industry in a decarbonized 

world. Our proposed approach is capable of processing the net load demand as an exogenous 

variable that must be satisfied, optimizing a stochastic function rather than a scalar objective. 

This way, it ensures exploration of global solutions to achieve optimality in contrast to 
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hourly, local estimations which, especially in the present of variable renewable generation, 

may lead to far away from optimal schedules. 

Furthermore, the thesis provides a comprehensive assessment of electrical energy 

storage technologies competing in distinguished applications. This includes a thorough 

analysis of storage cost structure and life-cycle cost and an innovative multi-criteria decision 

method for the selection of the appropriate electricity storage system for a specific 

application, based on a ranking of the different technologies according to their 

characteristics. Finally, the integrated Lagrange Relaxation solution is combined with the 

life cycle cost analysis to determine the optimal sizing of electricity storage for spinning 

reserve provision in an isolated power system with high renewable penetration. 

 

9.2. Future Directions 

As for future directions for research, we indicate the consolidation of several consecutive 

hours into one stage. More extended works may also involve multi-bus formulations 

introducing the real power network losses and transmission constraints into the UC task. We 

strongly believe that by increasing the formulation complexity our novel approach might 

allow for even higher optimization performance. In addition, a more comprehensive UC 

formulation that accounts for the EES operation would be able to extract the full value of 

storage through the provision of multiple system services. 

With the development of active power networks due to the intermittency of 

renewable energy and the randomness of the demand-side load, the operating uncertainty is 

becoming serious. At the same time, the means of controlling such networks are becoming 

more necessary to set the distributed generation as a decision variable, incentivise price-

responsive prosumers and optimize the objectives of renewable generation utilization and 

user satisfaction. A wide variety of sustainable services and concepts are available to support 

the cooperation of flexible power sources and flexible loads, improving the predictability 

and manageability of various intermittent renewable energy sources. In this context, the 

optimal placement of electricity storage devices remains a robust challenge. New research 

directions may include formulations that take into account the geographical and 

topographical conditions. In combination with load demand and electricity-price forecasting 

in the presence of stochastic renewable generation, such models could provide optimal 

solutions regarding the expected equipment-upgrade deferral or network losses reduction. 
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