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Abstract

The proliferation of internet-based services and applications has led to both a

rapid growth and high variability of transactional workloads, which can negatively

affect the performance of the underlying database system. However, most existing

database systems do not offer any features to automatically support workload scala-

bility (i.e., the ability to handle increasing workload demands) or elasticity (i.e., the

ability to handle variations in those workloads). Database replication has been suc-

cessfully employed in the past to scale performance and improve availability of rela-

tional databases but current approaches suffer from various issues including limited

scalability, performance versus consistency tradeoffs, and requirements for database

or application modifications. This thesis presents a new replication-based middle-

ware system, called Hihooi, which is able to achieve workload scalability, strong

consistency, and elasticity for existing transactional databases at a low cost. As a

middleware system, Hihooi sits between the database engines and the clients, offer-

ing a single database view and masking the complexity of the underlying replication,

which is used to increase throughput (via increasing the processing capacity of the

system) and decrease latency (via spreading the load across the nodes). The novelty

of Hihooi lies in its replication and transaction routing algorithms. In particular, Hi-

hooi replicates all write statements asynchronously and applies them in parallel at

the replica nodes, while ensuring that all replicas remain consistent with the primary

copy. At the same time, a fine-grained transaction routing algorithm ensures that all

read transactions are load balanced to the replicas, while maintaining strong consis-

tency semantics. Finally, elasticity is achieved by supporting an easy and quick way

to add and remove replicas from the cluster. A thorough experimental evaluation

with several well-established benchmarks highlights how Hihooi is able to achieve

almost linear workload scalability for existing transactional databases.
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1 Introduction

The recent explosion of data has led to the development of innovative systems for large-

scale data processing [13]. In the transactional systems arena, systems such as Google’s

Megastore [14] and Spanner [34] were introduced for handling massive amounts of data,

even across datacenter boundaries. However, the majority of transactional databases

are smaller than 1TB in size [38], indicating that excessive data scalability is a non-

requirement for most small and medium enterprises (SMEs). Rather, modern applica-

tions tend to experience both rapid growth and variability of users (and consequently

application workload) due to the advent of the Internet and Internet-connected devices.

Therefore, workload scalability, i.e., the ability to handle increasing workload demands,

as well as support for elasticity to handle variations in those workloads, are critical for

existing database instances.

NoSQL technologies, such as MongoDB [29] and Cassandra [59], were explicitly de-

signed to address scalability and elasticity requirements. By doing so, NoSQL systems

sacrifice traditional consistency models and the familiarity of SQL. Hence, they cannot

replace existing transactional database systems. More recently, a new class of systems

has arisen, called NewSQL, that offers similar scalable performance as NoSQL while still

maintaining the ACID guarantees of a traditional database system [47]. NewSQL systems,

however, are often highly optimized for a narrow set of use cases (e.g., MemSQL[64] is

tuned for clustered analytics) and require other compromises related to language support

or transaction and workload handling capabilities (e.g., in VoltDB [96], the unit of trans-

action is a Java stored procedure). Finally, the evolution of cloud computing has led to

several Database-as-a-Service (DBaaS) offerings (e.g., Amazon RDS, Azure SQL DB)

that natively support scalability and elasticity in a pay-as-you-go model. Yet, SMEs are

cautious in adopting them due to the high costs associated with rewriting applications and

retraining employees, as well as privacy and security concerns [49].

A typical approach to scaling an existing database system is to scale up; i.e., to add

more physical resources (e.g., memory, disks) to the server or upgrade to a higher-end

server or a shared-disk database clustering solution (e.g., Oracle RAC [70]). Apart from
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being very expensive due to both hardware and software licensing costs, such solutions

necessitate over-provisioning for peak and eventual volumes [26]. The alternative is to

utilize a scale-out approach, which can help reduce costs by hosting databases on multiple

commodity hardware servers. Data partitioning (or sharding) is one of the two main

scale-out physical implementations, based on which the database data is partitioned and

spread across all nodes [24]. While this approach does improve scalability (up to a point

due to distributed transactions), it also requires expensive data migration and extensive

manual physical design tuning for partitioning the data effectively [99].

The second scale-out approach is database replication, which has been used for in-

creasing performance and availability of databases under various requirements [26]. This

approach fully replicates data across all nodes and it comes in two forms, i.e., multi-

master and master-slave. In the former, all replicas serve both read and write transactions

but need explicit synchronization mechanisms in order to agree to a serializable execution

order of transactions, so that each replica executes them in the same order [27, 55, 41].

Concurrent transactions might conflict, leading to aborts and thus limiting the system’s

scalability [46]. In master-slave replication, one primary copy handles all write opera-

tions while the other replicas process only read operations [77, 73]. As long as the master

node can handle the write workload, the system can scale linearly with the addition of

more slave nodes [26]. The biggest challenge here lies in the trade-off between perfor-

mance and consistency of the overall system.

This manuscript presents Hihooi, a replication-based master-slave middleware sys-

tem that is able to achieve workload scalability, strong consistency, and elasticity for

transactional databases. An existing database can readily become the master in a Hihooi

deployment. Replication is then used to increase the processing capacity of the system

(which increases throughput), to spread the load across the nodes (which decreases la-

tency), and to mask potential failures of individual nodes (which improves availability).

As a middleware system, Hihooi sits between the database engines and the client, of-

fering a single database view and masking the complexity of the underlying replication.

Neither the database engines nor the clients need to be modified as long as the popular

2



ODBC/JDBC drivers are used. Load distribution, fault tolerance, and failure recovery are

all handled by Hihooi.

The novelty of Hihooi lies in its replication and transaction routing algorithms. In par-

ticular, Hihooi replicates all write statements asynchronously and applies them in parallel

at the replica nodes, while ensuring that all replicas remain consistent with the primary

copy. At the same time, a fine-grained transaction routing algorithm ensures that all read

transactions are load balanced to the replicas, while maintaining strong consistency se-

mantics. In particular, Hihooi supports global strong snapshot isolation, explained and

proved in Section 7.3. Finally, elasticity is achieved by supporting an easy and quick way

to add and remove replicas from the cluster (partly due to the master-slave architecture).

Existing replication-based approaches fall short of achieving all of Hihooi’s aforemen-

tioned desiderata. Open-source solutions for replication are database-specific. MySQL

Cluster [87] uses a synchronous replication mechanism which limits scalability. Postgres-

R [55] integrates replica control into the kernel of PostgreSQL and utilizes special mul-

ticast primitives to propagate low-level write operations to the replicas. Middle-R [73]

allows all replicas to execute write transactions and uses a group communication system

to determine a global commit order but requires database engine modifications for ex-

tracting and applying tuple-based modifications. Finally, Ganymed [77] is a master-slave

replication middleware similar to Hihooi but applies all changes serially at the replicas

and offers only a coarse-grained load balancing of transactions.

3



1.1 Research Contributions

In summary, the research contributions are:

1. Novel Transaction- and statement-level routing algorithms for executing read trans-

actions consistently and efficiently.

2. A statement replication algorithm for applying writes in parallel while ensuring con-

sistent replicas.

3. A new database replication middleware architecture for achieving workload scala-

bility with strong consistency.

4. An extensive evaluation showcasing the workload scalability that is attainable with

Hihooi.

Section 2 provides preliminaries on concurrency control, scalability and elasticity.

Section 3 presents the important related to the Database Replication for Distributed Databases.

Sections 4 and 5 provide an overview of Hihooi and it’s architecture, respectively. Sec-

tion 6 presents Database Replication with Hihooi. Sections 7 and 8 describe Hihooi’s

Concurrency Control and Scalability Management, respectively. Section 9, presents the

experimental evaluation. Section 10 provides a preliminary investigation for Autonomic

Self-Management Database Elasticity. Section 11 presents the related work. Finally, Sec-

tion 12 concludes the manuscript.
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2 Preliminaries on Concurrency Control, Scalability, and

Elasticity

The majority of transactional databases are smaller than 1TB in size [38], indicating that

excessive data scalability is a non-requirement for most small and medium enterprises

(SMEs). Rather, modern applications tend to experience both rapid growth and variabil-

ity of users (and consequently application workload) due to the advent of the Internet

and Internet-connected devices. Therefore, workload scalability for enterprise workloads

are critical for existing database instances. A workload can scale-up if the distributed

database cluster has the ability to increase throughput as the number of cluster’s nodes

increases with the same factor as the workload size increases. This challenge requires

(i) a distributed database cluster that should be easily and quickly able to provision and

de-provision resources in an autonomic manner such that at each point in time the avail-

able resources match the current demand as closely as possible [50] and (ii) analysis of

the workload characteristics in order to find out which distributed database cluster is best

suited with this.

Enterprise workloads are (i) by nature transactional, and as a result, strong consistency

is mandatory, (ii) are based on a relational model and as a result, SQL is mandatory,

and (iii) deployed on customer’s premises using a Traditional RDBMS. Based on these

characteristics, in this section we examine the current database system technology taking

into account the consistency, scalability and elasticity that various systems offer in order

to found out which technology is best suited with our problem. Finally, we present each

system’s weaknesses and potentials.

2.1 Concurrency Control

A Database transaction is a logical unit of work that takes the database from one consis-

tent state to another. Transactions can terminate successfully(COMMIT) or unsuccess-

fully(ABORT). In the context of the Relational Database, transactions must satisfy the

A.C.I.D properties which are intended to guarantee validity even in the event of errors,

5



power failures, etc. These properties are Atomicity (all of a transaction completes, or none

of it does), Consistency (data is always valid according to schema constraints), Isolation

(it describes the degree to which concurrent transactions are aware of each other e.g., by

accessing the same data items), Durability (committed changes are not lost) [109]. Pro-

viding isolation is the main goal of concurrency control. Concurrency control is needed

when multiple users are allowed to access the database simultaneously. Without it, prob-

lems of lost update, uncommitted dependency, and inconsistent analysis can arise.

The highest level of isolation between transactions is achieved via serializability.

Transactions are said to be serializable if the results of running transactions simultane-

ously are the same as the results of running them serially, that is, one after the other.

Generally, serializability is implemented using the two-phase locking mechanism. In

two-phase locking, a transaction acquires all its locks before releasing any. Locks may

be shared (read) or exclusive (write). Even if Serializability offers absolute correctness,

it influences transactions’ performance and typically leads to poor transaction execution

rate and high transaction response time. As a result, Serializability is relaxed to weaker

methods with many characteristics of full serializability, but still short of some, and un-

fit in many situations. For example, a Multiversion Concurrency Control (MVCC) is a

common way to increase concurrency and performance by generating a new version of a

database object each time the object is written, and allowing transactions’ read operations

of several last relevant versions (of each object); i.e., when a transaction attempts to read

a data item, the system selects one of the versions that ensures serializability. Based on

MVCC, snapshot isolation (SI) is another version of concurrency control that has gained

importance in recent years and now provides as a standard consistency criterion in a num-

ber of commercial systems. SI allows read transactions (queries) to read stale data by

allowing them to read a snapshot of the database that reflects the committed data at the

time the read transaction starts. Consequently, the reads are never blocked by writes, even

though they may read old data that may be dirtied by other transactions that were still

running when the snapshot was taken. Hence, the resulting histories are not serializable,

but this is accepted as a reasonable tradeoff between a lower level of isolation and better
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performance. On the other hand, several proposals exist for modifying the application

programs, without changing their semantics, so that they can achieve serializably even

on an engine that uses SI with negligible reduction in throughput [9]. Oracle, DB2, and

PostgreSQL use SI for enforcing consistency in the database by default [26].

Similarly, database replication research has been focusing on SI and its variants, such

as generalized SI, strong SI and weak SI [60]. Some variants are (i) Weak SI i.e., write

transactions are asynchronously executed on the Replicas and read transactions are sent

to any Replicas regardless of their consistency; (ii) Replicated SI with Primary Copy

(RSI-PC) i.e., Write transactions are asynchronously executed on the Replicas and read

transactions are sent to any Replicas that is fully consistent with the Primary DB (but

waits if none is available). RSI-PC is implemented by the middleware Ganymed [77];

(iii) One-copy Serializability (1SR) i.e., write transactions are synchronously executed on

all Replicas and read transactions are sent to any Replica. 1SR is the default consistency

level of the middleware C-JDBC [27].

However, in any networked shared-data system there is a fundamental trade-off be-

tween consistency, availability, and partition tolerance. This is captured by Brewer’s CAP

theorem, which says it is impossible to have a distributed system which support Consis-

tency (C), Availability (A), and Partition tolerance (P) simultaneously; you can achieve

only two of the three. Consistency means everyone gets the same answer; Availability

means clients have ongoing access (even if there is partial system failure); and Partition

tolerance means correct operation, even if nodes within the system are cut off from the

network and unable to communicate. Distributed RDBMS typically CA systems, it sup-

ports consistency and availability but not partition tolerance. In simple terms it means,

horizontally scaling a RDBMS by adding more machines will not give a guarantee against

failure during network outage. NoSQL being non-relational, distributed, open-source and

horizontally scalable databases typically provide the system designer the ability to trade-

off between these choices. Most NoSQL systems implement AP that is also known as

Eventually Consistent (EC), because, AP properties do not guarantee immediate consis-

tency. EC requires convergence of replicas, i.e., in the absence of updates and failures
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the system converges towards a consistent state. Updates may be reordered in any way

possible and a consistent state is simply defined as all replicas being identical. EC is very

vague in terms of concrete guarantees but is very popular for web-based services [17].

2.2 Scalability

The recent explosion of data has led to the development of innovative systems for large-

scale data processing [13]. This large-scale capability requires a highly flexible architec-

ture that easily and quickly adds server nodes to an existing cluster. A scaled distributed

database can always be made cost optimal by adjusting the number of hardware resources

and the workload. Hardware resources (i.e., Compute and Memory) are adjusted horizon-

tally or vertically. Vertical scale up is to increase overall system capacity by increasing the

resources within existing individual nodes. However, horizontal scale out is to increase

overall application capacity by adding nodes. The combination of horizontally and ver-

tically scale up is called Diagonal [86]. The current scaled distributed databases inherit

their architectures design from the multiprocessor high transaction systems [32]. These

systems are classified as:

• Shared memory, i.e., when multiple processors share a common central mem-

ory. Shared memory is a tightly coupled architecture in which multiple processors

within a single system share system memory. This architecture provides high-speed

data access for a limited number of processors, but it is not scalable beyond approx-

imetely 64 processors when the interconnection network becomes a bottleneck.

• Shared disk, i.e., multiple processors each with a private memory share a common

collection of disks. Shared disk is a loosely-coupled architecture optimized for

applications that are inherently centralized and require high availability and perfor-

mance. Each processor can access all disks directly, but each has its own private

memory.

• Share all, i.e., multiple processors share a common central memory and a common

collection of disks.
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• Shared nothing, i.e., neither memory nor peripheral storage is shared among pro-

cessors. Shared nothing, often known as massively parallel processing (MPP), is a

multiple processor architecture in which each processor is part of a complete sys-

tem, with its own memory and disk storage i.e., a separate nodes.

The above architectures resulted in three Distributed Databases (i) The traditional RDBMS

cluster; (ii) The NoSQL data stores and (iii) The NewSQL cluster. Each of them are de-

signed to solve different types of problems, and as a result, their scaling characteristics

are different. Beneath, we analyzed these Distributed Databases taking into account their

scaling characteristics as well as which workloads are best suited for each system.

Traditional Relational Database Cluster: Relational Databases (RDBMS) store tu-

ples. Unlike the other data stores, relational DBMSs have a complete pre-defined schema,

offer a SQL interface, and support ACID transactions. Traditionally, RDBMSs have not

achieved the scalability performance offered by NoSQL and NewSQL data stores. Tra-

ditional RDBMS achieved horizontal scalability based on two architectures, the share

nothing architecture and the share all architecture (Their node members can be vertically

scaled). The current RDBMS using the share nothing architecture can horizontally scale

using one of the following solutions:

• Master-Slave Replication: The system’s replication is achieved using WAL (Write-

Ahead Logging). WAL writes all transactions’ modifications in a log file. At that

point, WAL’s logs are applied serially on slaves nodes [76]. This solution used to

improve read performance, where read-only content is accessed on the slave nodes

and updates are sent to the master.

• Middleware Replication: A middleware layer exists, between the database and the

application. The middleware layer is responsible for providing transactions routing,

data consistency and Database connection balancing. Examples of such solutions

are C-JDBC, Middle-R and DBFarm [25, 74, 79].

• Multi-Master Replication: Transactions’ writes and reads are distributed to more

than one master. Masters co-operate to provide data consistency. MS-SQL[6],
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MySQL 6.3+, and the PostgreSQL using third party solutions such as Bucardo,

hubyrep, pgcluster and postgresXC [4] are some examples of this type of replica-

tion.

• Master-Slave Replication with Sharding: Data distribution is similar to Master-

Slave Replication i.e., every slave has a copy of the Master Database. The sharding

option can be applied for large tables i.e., it allows table data to be partitioned to

all cluster nodes (Master and Slaves) based on some hash key. This technique is

supported from MS-SQL, MySQL and PostgreSQL.

The Multi-Instance share-all architecture is a mature architecture which has been built

over the last thirty years with full ACID compliance. It provides high availability and

scalability and also provides multi-instance query parallelism, data partitioning and a

plethora of RDBMS features including backups, security, and encryption. The RDBMSs

that use share all architecture are horizontally scaled using a Multi-Instance, share disk

architecture. Oracle RAC and IBM DB2 Pure-Scale[70, 52] are pioneers in this area. In

an IBM DB2 pureScale cluster, each database member has direct memory-based access

to the centralized locking and caching services of the PowerHA pureScale server. The

IBM PowerHA pureScale server provides centralized lock management services, a cen-

tralized global cache for data pages and more. The Oracle RAC, based on cache fusion

technology[58], allows running of multiple database instances on different servers in the

cluster against a shared set of data files. The database spans multiple hardware systems

and appears as a single unified database to the application. However, this solution also

has its downsides:

• Horizontal or vertical scaling involves very high licensing costs.

• The system is always overprovisioned, since licensing fees are prepaid for the max-

imum number of database nodes, regardless of whether a node is idle and will start

on demand.

• There is a limitation on the number of nodes per cluster, i.e., 128 nodes per cluster.
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• To achieve high performance with this technology, expensive hardware such as

high-speed networking and expensive SAN storage, is needed.

A Middleware and Master-Slave replication provides a scalable, low cost, and high

performance solution for read intensive workloads. Also, it supports full SQL features

and is associated with a plethora of in-core features. However, this solution presents

some drawbacks:

• Transaction’s properties support ACID with certain relaxations.

• All Writes transactions must be run on Master. Thus, the master node can be a

performance bottleneck, since it cannot be scaled horizontally, but only vertically

[84].

• The data are cloned to all cluster nodes, i.e., each cluster node has redundant data.

A Multi-Master share nothing replication approach supports ACID with certain relax-

ations. It provides high availability, both for read and write requests. In addition, it

supports full SQL features and is associated with a plethora of in-core features. However,

this solution also presents some drawbacks:

• This technology does not support enterprise applications. It needs to strengthen it’s

functionality in order to support more enterprise applications requirements.

• This technology has limited scalability due to limitations on the maximum number

of Masters per cluster.

• The data are cloned to all cluster nodes, i.e., each cluster node has redundant data.

• As more masters join the cluster to attend to the increasing demand, the overhead

necessary to keep consistency induces delays on requests.

Sharding solutions, provide low cost, high availability, linear scalability and high per-

formance for local transactions. The data are distributed to all nodes and transaction

consistency is relaxing to AP [21]. However, this solution has several pitfalls [23, 84, 95]:

11



• It is expensive when applied to global use reads and updates due to the networking

messaging between the nodes. To ensure linear scaling, the scope of a transaction

is usually limited to a single node.

• It cannot be used across the board and is applicable only to specific applications.

• Sharding needs extra implementation for shard balancing and data migration appli-

cations when shards are added or removed from the system.

• It does not support full SQL.

NoSQL data stores: Applications’ needs, for storing large amounts of data, move data

stores technology towards NoSQL systems. NoSQLs are extremely scalable but generally

do not provide ACID transactional properties. Rather, they are eventually consistent.

The nature of the NoSQL’s applications are generally limited to single nodes, thus, these

systems are flexible to scale. NoSQL data stores are mainly classified into three categories

[23]:

• Key-value Stores: These systems store values and an index to find them, based on

a programmer-defined key. Examples of these data stores are Dynamo, Founda-

tionDB, Voldemort, Riak, Redis, Scalaris, Tokyo, cabinet, Memcached, Membrain

and Membase.

• Document Stores: Document stores are very similar to key-value stores, where doc-

uments (data) are stored based on programmer-defined keys and the system is aware

of the (arbitrary) document structure (typically JSON). Clusterpoint, MarkLogic,

SimpleDB, CouchDB, MongoDB and Terrastore are some examples.

• Extensible Record Stores: Their basic data model is rows and columns, and their ap-

proach for scalability involves splitting both rows and columns over multiple nodes.

Rows are split across nodes through sharding on the primary key. They typically

split by range rather than a hash function. Yahoo PNUTS, Bigtable, Cassandra,

Accumulo, HyperTable and HBase are some example of Extensible Record Stores.
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Despite the significant benefits offered by NoSQL data stores, including ACID properties

and SQL features (both properties are offered for some engines), the current technologies

are not suitable for the vast majority of relational data. For example, NoSQL is not meant

for transactional applications. Also, NoSQL is not a specific type of database or pro-

gramming interface. The design and query languages of NoSQL databases vary widely

between different NoSQL products. This lack of standardization requires extensive appli-

cation rewrites.

NewSQL Data Stores: NewSQL is a new breed of DBMSs, which are divided into

two categories: (i) The extended NoSQL systems with ACID and SQL Features and (ii)

the completely new database platforms designed to be high scaled databases supporting

ACID and SQL Features.

Some examples of the former category are the Google Spanner [35], HyperDex [43]

and Splice Machine. Google Spanner is a NoSQL data store which provides all NoSQLs

advantages, while offering ACID properties. It is widely used for Google’s applications

such Megastore, Gmail, Picasa, AppEngine, etc. Google Spanner uses the google file sys-

tem (GFS) and the Big-Table as a data store [35, 61]. HyperDex is a distributed key-value

store that provides a new search primitive for retrieving objects by secondary attributes.

Other similar products, like MongoDB and Cassandra, allow an object to be retrieved us-

ing only the key under which it was stored. HyperDex achieves this extended functionality

by organizing it’s data using a novel technique called hyper-space hashing. Hyper-space

hashing maps objects to servers to enable efficient object insertion and retrieval. Splice

Machine extends Hadoop technology to support the relational technology. Splice Ma-

chine achieved this by integrating the Apache Derby DBMS [12] in each node on top of

H-base[1] and hadoop [2]. Splice Machine utilizes the proven auto sharding capability in

HBase to provide massive scalability across commodity hardware, even up to dozens of

petabytes. Splice Machine provides ACID transactions across multiple rows and tables to

enable real-time updates without data loss or corruption.

However, the rest NewSQL systems are completely new database platforms, handling

mainly all types of SQL’s queries and they are designed to operate in a distributed cluster
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of shared-nothing nodes, in which each node owns all or a subset of the data. Instead of

Sharding, NewSQL use intelligent techniques and sometimes specific hardware (i.e., fast

disks) and high memory to automatically split and distribute data across nodes. Uniform

data distribution is maintained as nodes are added, removed, or when data is inserted

unevenly. Storage Engines send the execution of transactions and queries to the nodes

that contain the needed data. SQL queries are split into query fragments and sent to the

nodes that own the data. NewSQL are drop-in replacements for MySQL and are designed

to overcome MySQL scalability issues. They extend MySQL in order to offer ACID

guarantees, intelligent indexing for query improvements, online schema modifications,

fault-tolerance features for high availability within a cluster, parallel backup and paral-

lel replication among clusters for disaster recovery. Clustrix [30], InnoDB [5], TokuDB

[100], etc., are the dominant products in this category. The Clustrix database uses the

query to data approach i.e., SQL queries are split into query fragments and sent to the

nodes that own the data, in order to run in parallel. This enables Clustrix to scale horizon-

tally as additional nodes are added. InnoDB is a MySQL’s storage engine that balances

high reliability and high performance. Today InnoDB is the default MySQL storage en-

gine, replacing the previous storage engine MyISAM [67] which does not offer ACID [5].

TokuDB for MySQL is an ACID-compliant transactional database that uses a proprietary

Fractal Tree storage algorithm to deliver 20x-50x faster indexing versus databases that

use a conventional B-tree algorithm. [100]. NuoDB has a distributed architecture which

is split into three type of engines: (i) the administrative engine (AE), (ii) the transaction

engine (TE) for concurrency control based on MVCC [85, 66], (iii) the storage manager

(SM) for transaction Durability. TE accept SQL client connections, parsing and running

SQL queries against cached data. However, SM contains the actual data. SMs and TEs

communicate with each other over a simple peer-to-peer coordination protocol. These en-

gines can scale separately and handle failures independently. The system can scale out by

spreading TE and SM engines to cluster nodes. MemSQL [64] is an in-memory, scalable,

shared-nothing architecture database that is queried through an SQL interface. Storing

data in memory eliminates the latency that results from reading and writing to disk. It
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uses MVCC and lock-free data structures to enable high throughput for large concurrent

workloads without sacrificing consistency. The cluster can be scaled out at any time to

provide additional computational resources and storage capacity. Sharding is done auto-

matically, and the cluster re-balances data and workload distribution. Because the data is

stored in memory, queries run at full speed on clusters built from commodity hardware.

VoltDB [107] is similar to MemSQL. VoltDB is a relational database system (RDBMS)

for high throughput, which includes automatic sharding across a shared-nothing server

cluster, main-memory data architecture, automatic replication and command logging for

high availability and durability.

Each database technology uses a different architecture thus has a different scaling ap-

proach. In this section, we examine the current scaling options for each technology, by

expressing for each technology the conditions of ”How”, which indicates what replica

management and live migration mechanisms are used during scaling-out and ”When”,

which indicates under which conditions the system scales-out or scales-in discussed in

section 2.2.1. The study of these two parameter will help us to identify how these tech-

nologies can scaled and how easy these technologies can auto-scale as a feature perspec-

tive. Note that we do not examine how data is replicated to replicas as well as how data is

read or changed by transactions. These issues are analyzed later in the Database replica-

tion section 3.

2.2.1 How RDBMSs Scale Horizontally

Scalability in RDBMSs is dependent on the database system architecture, i.e., share all or

share nothing.

In a Multi-Master solution (Figure 1), the database can be scaled by adding a repli-

cated Master node. When a new node joins the database, the state of the database must

remain consistent. The complexity of this task depends on the consistency level that

should be guaranteed by the Multi-Master databases. The replication phase for the ma-

jority of the current Multi-Master solutions are done when the systems are offline, i.e.,

the systems do not have active transactions. The extension of the system can be done by
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adding a new Master database (e.g., shutdown the system and clone any consistent Master

Database).

Figure 1: RDBMS Multi-Master Horizontal Scaling

With the Master-Slave solution (Figure 2), the database can be scaled by adding only

slave nodes and by adding more hardware resource on Master. The new replicated slave

database can join the active database online or offline. The database replication takes

place in a similar fashion to the one in Multi-Master architecture. Master-Slave solu-

tions with data sharding can replicate using a complete database rebalancing to all nodes.

This task works offline. Another approach is proposed by Soundararajan, et al. [94],

which considers online database replication and divides systems’ databases into two log-

ical states. In the ”READ” state, databases are active and have a consistent view of data.

These databases are able to support queries. In the ”WRITE” state, the databases are inac-

tive, and they apply committed database’s logs from the scheduler in order to be consistent

when the system needs more databases.

Figure 2: RDBMS Master-Slave Horizontal Scaling

In the share all architecture (Figure 3), the new instance can join the database online.

In this case, no data replication or migration is needed, because the data is shared from

all database instances and as a result, the instance addition is very fast. However, all the
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candidate nodes must have the appropriate software in order to be prepared/registered as

a member of the share all cluster during cluster creation.

Figure 3: RDBMS Share-All Horizontal Scaling
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2.3 Elasticity

Elasticity is the system’s ability to scale up and scale down capacity based on subscriber

workload [50]. In particular, when the load increases the system scales by adding more

resources and when demand wanes the system shrinks back by removing unneeded re-

sources. Elasticity is mandatory, if a subscriber’s workload defines workload’s quality

objectives (i.e., Quality Goals, the strategic quality goal, or combination of goals, that the

Service is trying to achieve e.g., Quality of Metrics X where X can be Quality of Business

or Quality of Service or Quality of Experience etc., [68]). Ideally, the system should be

able to fulfill workload objectives automatically. However, the challenge of building elas-

tic systems involves adjustment of resources along with load variations without the need

for human interventions [105]. Furthermore, Elasticity in Cloud environments is encour-

aged by the pay-per-use model. On one hand, users do not want to pay for resources they

do not currently need, but on the other hand, want to meet rising demands when needed.

According to [50, 53], the Elasticity’s core design principle conveys three important

aspects (i) scalability, the ability of the system to sustain workload fluctuations, (ii) cost

efficiency, acquiring only the required resources by releasing utilized ones, (iii) time effi-

ciency, acquiring and releasing resources as soon as a request is made. A system in order

to be considered autonomic scalable i.e., elastic should support three important condi-

tions. Firstly, its design should be supports scalability. Secondly, the When condition

should be tightly connected with Quality of Service working as driver of when the sys-

tem will scale-out or scale-in. Thirdly, the design should provide the How conditions

i.e., what replica management mechanisms should be used in order the system should

be able to scale-out or scale-in. Elasticity management could be simple or complex. In

simple elasticity management, Scheduling is delegated to a load-balancer that distributes

the workload among the VMs provisioned by the elasticity manager. However, In com-

plex elasticity management, the resource provisioning decision arises as a result of the

scheduling process. For instance, when the scheduler concludes that the current workload

cannot be handled by the available VMs given the impose QoS constraints and the current

size of VM job queues, the elasticity manager provisions new VMs from the System in
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order to avoid service degradation or penalties and also maintain the end-user satisfaction.

A complex elasticity management solutions usually consists of multiple components and

services such as [22]:

(i) Performance and workload monitors: These are the sensors of the system that

are in charge of collecting measures about the key performance and workload in-

dicators. Metrics are always used to evaluate elasticity. There are many kinds of

categories of metrics, and many of them are used to evaluate elasticity. Some met-

rics are of general purpose, and others are specific to elasticity. Example of such

metrics are:

(a) response time e.g., latency, allocation/deallocation,access, idleness, response

etc.

(b) throughput e.g., requisitions/second, Megabytes/second and etc.

(c) utilization e.g., resource utilization, percentage of CPU utilization and etc.

(d) reliability e.g., number of violations and etc.

(e) availability e.g., downtime, uptime and etc.

(f) acquisition e.g., costcost/performance, scalability and etc.

(ii) Resource allocator: This component actuates the resources provisioning actions

determined by the elasticity manager.

(iii) Load balancer: It distributes the requests among the instantiated resources. When

the elasticity manager is a complex one, load-balancing is replaced by an ASP-

customized Cloud-oriented scheduling algorithm.

(iv) Elasticity manager: It plays the central role of compiling the information received

from the sensors, reasoning about this input using Service defined policies, and

deciding which actions to make. This decision is then sent to the resource allocator

that, using the API of the Service, executes the provisioning actions. When new

VMs are provisioned, the load-balancer distributes the workload among them.
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Related Work on Elasticity The work [45] classifies the state-of-the-art elasticity mech-

anisms. The work defined that the existing automatic policy solutions can be reactive or

predictive, with the ultimate goal of combining various performance objectives such as

performance, cost, energy or increase infrastructure capacity. The reactive solutions,

are based in a rule-condition-action mechanisms, however, the predictive solutions uses

heuristics and mathematical/analytical techniques. A combination of predictive and re-

active approach is also employed to handle the prediction inaccuracy and workloads’

oscillations [103]. The work [92] provides a cost-aware elasticity. It computes both a

cost-optimized configuration for the desired capacity as well as a plan for transition the

application from its current setup to its new configuration. It formulates the provision-

ing problem as an integer linear program (ILP). A workload forecaster forecasts elapsed

time using an open-source R statistical package that knows the workload in advance.

Another work [88, 89] predict workload for feature time periods using a second order

auto-regressive moving average method (ARMA) and then identify resource requirements

based on the predicted workload using a look-ahead optimization. CloudScale imple-

mented on top of Xen, employs online resource demand prediction and prediction error

handling to achieve adaptive resource allocation without assuming any prior knowledge

about the applications. The prediction model first employs a fast fourier transform (FFT)

to identify repeating patterns called signatures. If a signature is discovered, the predic-

tion model uses it to estimate future resources demand. Otherwise, the prediction model

employs a discrete-time Markov chain to predict the resource demand in the near fea-

ture. The monitoring resources metrics include CPU consumption, memory allocation,

network traffic and disk I/O statistics [93].

2.4 Discussion

Traditional relational DBMS clusters are scalable, while offering strong consistencies

guarantees only in the ”Multi-Instance Share All” architecture. The lack of autonomic

scaling, the over-provisioned architecture and the high costs of licensing(during scale-

out) are important constraints to support the scalability of enterprise workloads. On the
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other hand, NewSQL systems achieve horizontal scalability, while offering ACID trans-

actions and SQL, but require expensive hardware (e.g., fast-disks and high memory) and

are designed especially for analytical applications. Also, despite the significant benefits

offered by NoSQL data stores, including ACID properties, the current technologies are

not suitable for the vast majority of relational data. For example, NoSQL is not meant for

transactional applications and would require extensive application rewrites. As a result,

these weakness imposes the need of offering workload scalability to existing databases

without the need for any modifications to either the database engines or the applications.

This can be done by the addition of a new middleware siting between application and

replicas that will act as Transaction Manager (TM) or sometimes as router, forwarding

each application’s operations directly to the replicas. The replicas can then execute the op-

erations locally and return the results to the application (e.g., reads can be carried out via

a data processor (DP) existing in each Replica). As Amdahl’s law implies, workload scal-

ability can be achieved if the problem (in our case the workload) is perfectly parallel, i.e.,

embarrassingly parallel. Adding a Middleware in the game, there are multiple choices and

challenges for how to intercept client queries and implement replication across multiple

nodes. For example, a Middleware is typically used to improve either read performance

or write performance, while improving both read and write performance simultaneously

is a more challenging task. As a result, the new added middleware should have the mech-

anisms for routing transactions in such a way as to run in parallel (i.e., distributed to all

cluster’s nodes) while ensuring strong consistency.
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3 Database Replication for Distributed Databases

Database replication is the process of creating and maintaining multiple instances of the

same database. Figure 4 shows a replication execution model. The users execute read

and write operations on a logical data item and the replica control protocol is respon-

sible for mapping these operations to reads and writes on the replicas. As a result, the

system behaves as if there is a single copy of each data item, which refers to one-copy

equivalence.

Distributed databases may be fully or partially replicated. Transactions that access

only non-replicated data items are local transactions, while, Transactions that access

replicated data items have to be executed at multiple sites and they are called global

transactions.

Figure 4: Replication Execution Model

3.1 Concurrency Control for Replicated Databases

Concurrency control is the activity of coordinating concurrent accesses to a database in

a multiuser database management system (DBMS). Concurrency control permits users

to access a database in a multi-programmed fashion while preserving the illusion that

each user is executing alone on a dedicated system [20]. Mutual consistency criteria for

replicated databases can either be strong or weak. Strong mutual consistency criteria

require that all copies of a data item have the same value at the end of the execution of an

update transaction. Weak mutual consistency criteria do not require the values of replicas

of a data item to be identical when an update transaction terminates. What is required is

that, if the update activity ceases for some time, the values eventually become identical.
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This is commonly referred to as eventual consistency, which refers to the fact that replica

values may diverge, but will eventually converge.

A replicated database is said to be in mutually consistent state if all replicas of each

data item have identical values. Consistency is the criterion that differentiates the current

solutions: some ensure that replicas are mutually consistent when an update transaction

commits (thus, they are usually called strong consistency criteria), while others take a

more relaxed approach (and are referred to as weak consistency criteria).

3.1.1 Serializability

Serializability is the most widely accepted correctness criterion for concurrency control

algorithms. If the concurrent execution of transactions leaves the database in a state that

can be achieved by their serial execution in some order, problems such as lost updates

will be resolved. A history R (also called a schedule) is defined over a set of transactions

T = (T1,T2, ..,Tn) and specifies an interleaved order of execution of these transactions’

operations. A history H is said to be serializable if and only if it is conflict equivalent

to a serial history. In other words, serializability roughly corresponds to consistency

such that (i) a transaction T1 does not overwrite dirty data of other transactions; (ii) T1

does not commit any writes until it completes all its writes i.e., until the end of transac-

tion; (iii) T1 does not read dirty data from other transactions; (iv) Other transactions do

not dirty any data read by T1 before T1 complete. As a result, the primary function of

a concurrency controller is to generate a serializable history for the execution of pend-

ing transactions. The issue, then, is to devise algorithms that are guaranteed to generate

only serializable histories. Consider two sites (A and B), and one data item (x) that is

replicated at both sites (xA and xB). Further consider the following two transactions: T1:

Read(x),Write(x+5),Commit; and T2: Read(x),Write(x∗5),Commit;. Assume that the fol-

lowing two local histories (the history of transaction execution at each site is called a lo-

cal history) are generated at the two sites HA =
{
(R1(xA);W1(xA);C1;R2(xA);W2(xA);C2

}
and HB =

{
R2(xB);W2(xB);C2;R1(xB);W1(xB);C1

}
. It is obvious, that although both of

these histories are serial, they serialize T1 and T2 in reverse order. As a result, the mutual
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consistency is violated and both databases are mutually inconsistent. Given the above

observation, the transaction consistency is extended in replicated databases to define one-

copy serializability (1SR) that states the effects of transactions on replicated data items

should be the same as if they had been performed one at-a-time on a single set of data

items.

Below are presented some different forms of serializability as they have already evolved

into the databases:

Replication with Serializability (SER) : Whenever a write set is received, a conflict

test checks for read/write conflicts between local transactions and the received write set.

If the write set intersects with the read set of a concurrent local transaction, the reading

transaction is aborted.

Replication with Cursor Stability (CS): The weak point of the SER protocol is that

it aborts read operations when they conflict with writes. The protocol may even lead to

starvation of reading transactions if they are continuously aborted. A simple and widely

used solution to this problem is cursor stability; this allows the early release of read locks.

In this way, read operations will not be affected too much by writes, although the resulting

execution may not be serializable.

Replication with Snapshot Isolation (SI): Snapshot isolation effectively separates read

and write operations thereby avoiding read/write conflicts entirely. This has the advan-

tage of allowing queries (read-only transactions) to be performed without interfering with

updates, however, it can suffer from data corruption with some application programs [9].

In fact, since queries do not need to be aware of replication at all, the replication protocol

based on snapshot isolation is only concerned with transactions performing updates. In

order to enforce the first committer wins rule, as well as to give appropriate snapshots to

the readers, object versions must be labeled with transactions and transactions must be

tagged with BoT (beginning of transaction) and EoT timestamps. The BoT timestamp

determines which snapshot to access and does not need to be unique. The EoT times-

tamp indicates which transaction made which changes (created which object versions),

and hence, must be unique. For example, Oracle uses a counter of committed transactions
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to create timestamps. In a distributed environment, the difficulty is that the timestamps

must be consistent at all sites. To achieve this, a sequence numbers is added in write sets

(WS) messages. Since write sets are delivered in the same order at all sites the sequence

number of a write set is easy to determine, unique, and identical across the system [56].

3.2 Replication protocols

According to [46], a fundamental design decision in designing a replication protocol is

the choice of update management, which includes:

1. Where the database updates are first performed.

2. How these updates are propagated to the other replicas.

In terms of where updates are first performed, the techniques can be characterized as cen-

tralized if they perform updates first on a master copy, versus distributed if they allow

updates over multiple replicas. A Centralized technique is the Master-slave replication, a

popular technique used to improve read performance. In this scenario, read-only content

is accessed on the slave nodes and updates are sent to the master. If the application can tol-

erate loose consistency, any data can be read at any time from the slaves given a freshness

guarantee. As long as the master node can handle all updates, the system can scale linearly

by merely adding more slave nodes. However, Multi-master replication is a distributed

technique that allows each replica owning a full copy of the database to serve both read

and write requests. The replicated system then behaves as a centralized database, which

theoretically does not require any application modifications. Replicas, however, need to

synchronize in order to agree on a serializable execution order of transactions, so that each

replica executes the update transactions in the same order. Also, concurrent transactions

might conflict, leading to aborts and limiting the system’s scalability.

In terms of how updates are propagated, the alternatives are handled in two ways [46]:

1. Eager: Updates are applied to all replicas of an object as part of the original trans-

action.
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2. Lazy: One replica is updated by the originating transaction. Updates to other repli-

cas propagate asynchronously, typically as a separate transaction for each node.

The update propagation technique that is used in each a protocol typically determines

the mutual consistency criterion i.e., eager protocols enforce strong mutual consistency,

while, lazy ones enforce weak.

Eager Update Propagation: With Eager Update Propagation all updates are applied to

all replicas of an object as part of the original transaction. Consequently, when the update

transaction commits, all the copies have the same state. Eager propagation techniques

are typically implemented using a 2-Phase-Commit (2PC) protocol. Furthermore, eager

propagation may use synchronous propagation of each update by applying it on all the

replicas at the same time, or deferred propagation whereby the updates are applied to one

replica when they are issued, but their application on the other replicas is batched and

deferred to the end of the transaction. Eager techniques typically enforce strong mutual

consistency criteria. Since all the replicas are mutually consistent at the end of an update

transaction, a subsequent read can read from any copy. Writes have to be applied to

all replicas. Thus, protocols that follow eager update propagation are known as read-

one/write-all protocols.

1. It typically ensures that mutual consistency is enforced using 1SR. Therefore, there

are no transactional inconsistencies among replicas.

2. A transaction can read a local copy of the data item and be certain that an up-to-date

value is read. Thus, there is no need to do a remote read.

3. The changes to replicas are done atomically.

Eager disadvantages are the following:

1. The response time performance of the update transaction suffers, since it typically

has to participate in a 2PC execution and because the update speed is restricted by

the slowest machine.
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2. If one of the copies is unavailable, then the transaction cannot terminate since not

all the copies need to be updated.

Lazy Update Propagation: In lazy update propagation, the transaction does not wait

until its updates are applied to all the copies before it commits; rather, the replication

starts immediately after commit. The propagation to other copies is done asynchronously

from the original transaction. The committed transaction is sent to the replica sites some

time after the update transaction commits. The main lazy advantage is that it has lower

response times for update transactions, since the update transaction can commit as soon

as it has updated one copy. The update management strategies provide a classification

mechanism for replication protocols according to when the updates are propagated to

copies (eager versus lazy) and where updates are allowed to occur (centralized versus dis-

tributed). As a result, from the combination of the above arise four replication protocols:

1. Eager Centralized.

2. Eager Distributed.

3. Lazy Centralized.

4. Lazy Distributed.

3.2.1 Eager Replication Protocols

In the Eager Single Master Replication Protocol (figure 5 as demonstrated in [71] chapter

13), the master side orchestrates the operations on the data item. A strong consistency

technique is supported so that updates are applied to all replicas within the context of

the update transaction, which is committed using the 2PC protocol or other alternatives.

Consequently, once the update transaction completes all replicas have the same values

for the updated data items. There are two design parameters that need to be taken into

account when managing this protocol:

1. The distribution on Master among data items e.g., a single Master for all data items

or different masters for a group of data items.
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2. The level of Replication transparency that is provided. Replication transparency

ensures that replication of databases are hidden from the users. Replication trans-

parency is associated with concurrency transparency and failure transparency.

Figure 5: Eager Single Master Replication Protocol Actions (1) A Write is applied on
the master copy; (2) Write is then propagated to the other replicas; (3) Updates become
permanent at commit time; (4) A Read goes to any slave copy. Figure is adapted from
[71] chapter 13.

3.2.2 Lazy Replication Protocols

Lazy centralized replication algorithms are similar to eager centralized replication ones in

that the updates are first applied to a master replica and then propagated to the slaves (see

figure 6 as presented in [71], chapter 13). The important difference is that the propagation

does not take place within the update transaction, but after the transaction commits as a

separate refresh transaction. Consequently, if a slave site performs a Read(x) operation

on its local copy, it may read stale (non-fresh) data, since x may have been updated at

the master, but the update may not have yet been propagated to the slaves. The first

challenge in Lazy centralized replication algorithms is ”How can it be ensured that the

refresh transactions can be applied at all of the slaves in the same order”. A solution

to the problem is ordering the transactions according to the transactions’ commit time.

Because, there is a single master copy for all data items, the ordering can be established

by simply using timestamps. The master site would attach a timestamp to each refresh

transaction according to the commit order of the actual update transaction, and the slaves

would apply the refresh transactions in timestamp order.
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Figure 6: Lazy Single Master Replication Protocol Actions (1) Update is applied on the
local replica; (2) Transaction commit makes the updates permanent at the master; (3)
Update is propagated to the other replicas in refresh transactions; (4) Transaction 2 reads
from local copy. Figure is adapted from [71] chapter 13.

3.3 Group Communication

The overhead of replication protocols can be high particularly in terms of message over-

head. A critical issue in efficient implementation of these protocols is to reduce the mes-

sage overhead. A group communication system enables a node to multicast a message to

all nodes of a group with a delivery guarantee, i.e., the message is eventually delivered to

all nodes. In total ordered multicast, all messages sent by different nodes are delivered in

the same total order at all nodes. Total ordered communication guarantees that all sites

receive the write operations in exactly the same order, thereby ensuring identical serializa-

tion order at every site. The [56] suggests a group communication based eager distributed

protocol. The protocol uses a local processing strategy, where Write operations are carried

out on local shadow copies where the transaction is submitted and utilizes total ordered

group communication to multicast the set of write operations of the transaction to all the

other replica sites. However, [72] provides a Lazy based protocol. The protocol assumes

FIFO ordered multicast communication with a bounded delay for communication (call it

Max), and assumes that the clocks are loosely synchronized so that they may only be out

of sync by up to some time. It further assumes that there is an appropriate transaction

management functionality at each site. The result of the replication protocol at each slave

is to maintain a “running queue” that holds an ordered list of refresh transactions, which

is the input to the transaction manager for local execution. Thus, the protocol ensures
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that the orders in the running queues at each slave site where a set of refresh transactions

run are the same. Furthermore, the work of [56] proposed four optimizations in order to

minimize the overhead of replication protocols. These include: (i) reducing the message

overhead (ii) eliminating deadlocks, (iii) optimizations using different levels of isolation

and (iv) optimizations using different levels of fault-tolerance.

3.4 Middleware Based Replication

Middleware based replication uses a middleware layer between the application and the

database engines to implement replication. The middleware is siting between application

and replicas and it act as Transaction Manager (TM) or sometimes as a ”router”, forward-

ing each application’s operations directly to the replicas. The replicas can then execute

the operations locally and return the results to the application (e.g., reads can be carried

out via a data processor (DP) running on each Replica). When using a Middleware, there

are multiple design choices for how to intercept client queries and implement replication

across multiple nodes. The solutions are divided into database kernel i.e., transaction logs

are created by the database’s kernel and non database kernel i.e., transaction logs are cre-

ated outside of the database’s kernel. In the context of database kernel, internal database’s

transaction logs are copied log shipping from the Primary and applied to the replicas im-

mediately after they are received, or after a short delay. This replication method is called

hot standby and it offers week consistency between Primary and Replicas. A strongest

consistency it offered via the streaming replication, where the Primary and the Replicas

have special processes in sync called the walsender and walreceiver which transmit mod-

ified data pages over a network port. This solution is supported by Oracle, PostgreSQL,

IBM DB2, Microsoft SQL, and others. However, in the context of non database kernel,

the middleware is responsible for gathering and shipping trasnsaction logs to replicas. As

a result, at the end of every transaction, transaction logs are organized into write sets and

applied to the replicas immediately after they are received. This solutions is supported

by MySQL and Microsoft SQL database as well for various middleware solutions such

as Ganymed [78], C-JDBC [28], DBFarm [80] and Middle-R [75]. A Middleware is typ-
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ically used to improve either read performance or write performance, while improving

both read and write performance simultaneously is a more challenging task.

31



4 Hihooi System Overview

The proposed system called Hihooi is a replication-based middleware solution that aims

at offering both workload scalability and strong consistency to enterprise databases. As

such, Hihooi employs master-slave replication, a popular technique used to improve per-

formance for transactional workloads [26]. Transactions are categorized into write trans-

actions when at least one of the containing queries modifies the database (e.g., INSERT,

UPDATE, DELETE SQL statements) and read transactions otherwise. With master-slave

replication, all write transactions are sent to the master node, denoted as Primary DB,

while read transactions are directed to the slave nodes, denoted as Extension DBs. As

long as the Primary DB can handle all writes and the system propagates the writes to the

Extension DBs efficiently, the system can scale linearly by adding more Extension DBs.

However, achieving the dual goal of scalability and strong consistency introduces six core

challenges addressed by the design choices of Hihooi.

Challenge 1. Concurrency Control: How to efficiently route read transactions to the

Extension DBs in a consistent way.

As a middleware layer between applications and database engines, Hihooi intercepts all

incoming transactions and is tasked with routing them either to the Primary DB or to one

of the Extension DBs. Since all write transactions are always executed in the Primary

DB, Hihooi can safely route there any read queries. This tactic, however, goes against the

primary goal of Hihooi to scale performance, which is maximized when the read queries

are distributed to the available Extension DBs. The main issue here is that Extension DBs

are not always up-to-date with the Primary DB due to the asynchronous propagation of

write transactions to the Extension DBs. Hence, Hihooi needs an efficient approach for

determining which Extension DBs are consistent with which incoming read queries.

The solution employed by Hihooi consists of three parts. First, for each incoming

query Q, Hihooi extracts the tables, columns, or rows that are potentially modified by Q

(if Q is an update query) or accessed by Q (if Q is a read query). Second, Hihooi keeps

track of the completed transactions that have been applied on each of the Extension DBs
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along with the transactions that are currently running on the Primary DB. Hence, Hihooi

recognizes which tables, columns, or rows are up-to-date on each of the Extension DBs.

Finally, Hihooi employs a novel lightweight algorithm for checking which read queries

are safe (from a consistency point of view) to execute on which Extension DBs. In the

case where multiple Extension DBs can execute an incoming query, Hihooi will perform

load balancing and send the query to the least-loaded Extension DB. Hihooi is the first

middleware system able to also do this for read queries that are part of multi-statement

write transactions. If no consistent Extension DB is found, then the system routes the

request to the Primary DB, which is always consistent.

Challenge 2. Replica Control: How to efficiently propagate updates from the Primary

DB to the Extension DBs in a consistent way.

To ensure that the read transactions running at some Extension DB see a consistent view

of the database, the replica must reflect a transaction-consistent snapshot of the data at

the Primary DB; that is, the replica must reflect all data modifications of transactions (up

to some transaction) executed at the Primary DB in the serialization order of execution.

To retain global system consistency, Hihooi captures the total order of transaction com-

pletions in the Primary DB and utilizes statement replication (i.e., the write statements

are replicated to the Extension DBs), while ensuring that each replica applies writes in

the same order. The statement replication takes place asynchronously in order to avoid

delaying the write transactions executing at the Primary DB. The conventional practice

in database replication and hot standby deployments is to apply the writes serially at the

slaves, even though the master processes them in parallel [77, 62]. In a heavily loaded

production system, however, the lag between the master and a slave node can become

significant [26]. Hihooi implements a novel algorithm for applying write transactions in

parallel at the slaves, while maintaining strong consistency guarantees.

Challenge 3. Backup and Scalability Management: How to efficiently create a new

Extension DB from a consistent backup and quickly bring it up-to-date.

Performing backups is a standard management operation for database systems in order

to provide recovery from failures. For a replicated database system, such as Hihooi, it
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is even more important because backups can be used to add new Extension DBs into

the system without affecting the performance of the Primary DB or the existing Exten-

sion DBs. Hihooi periodically creates system checkpoints which include two important

steps: (i) Create a Primary DB consistent Backup called Seed DB; (ii) Create a number of

Extension DBs by cloning the Seed DB.

During the time needed to create and synchronize the new Extension DB, new write

transactions may have been executed at the Primary DB. Since Hihooi already allows

for Extension DBs to fall behind and uses a smart query routing algorithm for executing

queries correctly, it is not necessary to enact a global barrier to ensure consistency. In-

stead, as soon as the Extension DB is created and an initial set of write transactions has

been executed, it can join the system and start executing read transactions, while con-

currently applying the new write transactions. The backup and scalability management

procedures are described in Section 8.
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5 Hihooi System Architecture

Figure 7 depicts the Hihooi architecture, along with the core components and the flow of

transactions through the system. As a middleware system, Hihooi is positioned between

the applications and the database engines. The custom Hihooi JDBC/ODBC Drivers

implement the Hihooi API and provide database-independent connectivity between the

applications and Hihooi. This approach requires the database driver to be replaced in the

application but it does not require any other application code changes. Internally, Hihooi

uses JDBC drivers for interacting with the underlying database engines in order to execute

the queries and to manage replication behind the scenes. Hence, Hihooi is not coupled to

the database engines, thus supporting multiple vendors. Currently, Hihooi supports multi-

ple versions of the same engine running concurrently (which is important during database

updates) and could support heterogeneous engines in the future. Finally, HConsole is

an interactive console application that can be used for configuring and managing Hihooi,

including adding and removing replicas, creating checkpoints, and executing queries.

The Transaction Manager is responsible for intercepting all queries and sorting them

into write and read transactions. The write transactions are executed on the Primary DB,

while the read transactions are load balanced to consistent Extension DBs. Apart from

managing the client sessions, the Transaction Manager oversees the available Extension

DBs and keeps track of which write transactions they have applied. Once a write transac-

tion completes (either via commit or rollback), the transaction’s statements are pushed

into the Transactions Buffer, which is distributedly stored in memory using Memcached

[44]. The Transactions Buffer acts as a highly available and fault tolerant propagation

medium for all database modifications, which need to be applied asynchronously to the

Extension DBs.

Each Extension DB node hosts two Hihooi services; the Extractor and the Delivery

Agent. The Extractor is responsible for fetching the new write transactions from the

Transactions Buffer and applying them to the local database. The Extractors implement a

novel algorithm (discussed in Section 6) for executing the transactions in parallel, while

respecting the order imposed by the transaction commit timestamps on the Primary DB.
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Figure 7: Hihooi Architecture

The Delivery Agent is responsible for executing the read-only queries routed to the local

Extension DB and delivering the results set incrementally to the client when requested,

to avoid creating an execution bottleneck at the Transaction Manager. When adding new

Extension DB into the system, the new Extension DB will be available on the system

having one of the following states: (i) UP: In this state the Extension DB is started but

its replication option is OFF and it is not available for serving queries. (ii) ACTIVE: In

this state the Extension DB is started and its replication option is ON and it is available

for serving queries. (iii) RECOVERY: In this state the Extension DB is started and its

replication option is ON but it is not available for serving queries. (iv) SUSPENDED: In

this state the Extension DB is started and its replication option is ON and it is not available

for serving queries. (v) DOWN: In this state the Extension DB is stopped.

The Archiver has a dual role in Hihooi. First, it is responsible for initiating the in-

cremental backups for creating the Seed DB based on the Primary DB, while keeping

track with which transactions are included in the backup. Hence, the Seed DB represents

a consistent checkpoint of the Primary DB at some point in time. Second, the Archiver

periodically moves the write transactions that have been applied by all Extension DBs
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from the Transactions Buffer to its local and persistent Archiver Buffer in order to keep

the memory usage of the Transactions Buffer bounded. A new Extension DB is initialized

using the Seed DB, followed by the application of the appropriate write transactions from

the Archiver Buffer. Next, the Extension DB notifies the Transaction Manager that it can

start serving read queries, while it starts applying the latest changes from the Transac-

tions Buffer. Finally, all system management operations, such as adding and removing

Extension DBs, are coordinated by the HController.
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6 Database Replication with Hihooi

Hihooi intercepts and redirects all incoming write transactions (i.e., transactions that mod-

ify the database) to the Primary DB for execution. As soon as a transaction completes on

the Primary DB, it must be propagated and executed on all Extension DBs, while preserv-

ing the completion order from the Primary DB. Before explaining our statement propaga-

tion and replication procedure in Section 6.3, we first introduce the notion of transaction

read/write sets in Section 6.1. Finally, we discuss the benefits and practical considerations

of our approach in Section ??.

6.1 Transaction Read/Write Sets

Transactions are naturally divided into single and multi-statement, depending on the num-

ber of SQL statements included in the transaction. In most database engines, each SQL

statement is considered to be a single transaction by default, and gets committed automat-

ically when it completes execution. Multi-statement transactions are either started with

their first statement when automatic commit is disabled (and must be committed manu-

ally), or enclosed between specific keywords (e.g., begin atomic ... end). Hihooi

follows the same conventions. For ease of presentation, we discuss single transactions

first, while multi-statement ones are presented if special handling is needed.

Each transaction T will read and/or modify some tables in a database instance, defined

as the Table Read Set and the Table Write Set of T , respectively. For example, trans-

actions W1, W2, and W3 shown in Table 1 modify the respective tables R, S, and R; these

tables form the corresponding table write sets. Read/write sets allow us to reason about

which transactions affect which tables. Thus, they allow us to effectively decide when

to parallelize the execution of transactions on the Extension DBs (discussed in Section

6.3) and how to route read transactions efficiently (see Section 7). Suppose W1–W3 are

executed on the Primary DB and committed in that order. In general, we wish to execute

W1–W3 on the Extension DBs in the same order to ensure the consistency of the replicas.

In this scenario, since W1 and W2 modify two different tables, we can execute them in

parallel and let them commit in reverse order. W3, on the other hand, must execute after
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Table 1: Example write transactions on tables R(A1*, A2, A3, A4) and S(B1*, B2, B3,
B4, B5) along with corresponding write sets, read sets, affecting classes, and transaction
state identifiers (TSIDs)

TX SQL Statement
Write Sets Read Sets Affect. Class

Tab. Col. Row Tab. Col. Row
W1 UPDATE R R A2,A3 A1 = 100 R A1 A1 = 100 RAS

SET A2 = ?, A3 = ?
WHERE A1 = 100

W2 UPDATE S S B2 S B5 CAS
SET B2 = ?
WHERE B5 > ?

W3 UPDATE R R A3,A4 R A2 CAS
SET A3 = ?, A4 = ?
WHERE A2 < ?

W4 DELETE FROM R R ∗ A1 = 120 R A1 A1 = 120 RAS
WHERE A1 = 120

W5 UPDATE S S B4 S B5 CAS
SET B4 = ?
WHERE B5 < ?

the completion of W1 (as it modifies the same table R) in order to preserve consistency.

Operating with table read/write sets constitutes a coarse-grained mechanism for rea-

soning about conflicting transactions. Hence, we define two more levels of granularity

for read/write sets. The Column Read/Write Sets of a transaction T denote the columns

read/written by T . Consider transaction W2 from Table 1. W2 reads the column S.B5 (its

column read set) and only updates S.B2 (its column write set). Similarly, the column

write set of W5 is {S.B4}, which is disjoint from the column write set of W2. Hence, even

though W2 and W5 modify the same table, they modify different columns and could be

executed in parallel without affecting consistency.

Finally, the Row Read/Write Sets of a transaction T denote the rows read/written by

T based on a primary key (PK) or a unique key. For instance, transaction W1 (see Table

1) updates the row in table R for which A1 = 100 (A1 is the primary key of R), whereas

W4 deletes the row for which A1 = 120. Since W1 and W4 operate on different rows of

the same table, they can also run concurrently without affecting consistency. We restrict

the row sets to include only primary or unique key equality predicates as those are simple

to identify (using a basic query parser) and efficient to compare against each other. The

alternative would require reasoning with complex query-level semantics, whose overhead
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Table 2: Definitions of read/write sets for relational algebra operations. The read sets of
write operations equal the corresponding read sets of expression E

Operation Notation
Read Sets

Table Column Row
Select σp(R) R Ai ∈ p (PK =?) ∈ p
Project ΠAi(R) R Ai

Union R∪S R,S R.∗,S.∗
Set Difference R−S R,S R.∗,S.∗
Cartesian Pr. R×S R,S R.∗,S.∗
Aggregation G jGFi(Ai)(R) R G j,Ai

Operation Notation
Write Sets

Table Column Row
Insert (tuple) R← R∪ t R R.∗ (PK =?) ∈ t
Insert R← R∪E R R.∗
Delete R← R−E R R.∗ read set of E
Update R←ΠA′i(E) R A′i if read set of E

A′i 6= R.Ai

Symbols: R, S = tables; p = predicate; Ai = at-
tribute; Fi = function; G j = group by attribute; t =
tuple; E = relational algebra expression

Table 3: Example read transactions on tables R(A1*, A2, A3, A4) and S(B1*, B2, B3, B4,
B5) along with the corresponding read sets, affecting classes, and consistent transaction
state identifiers (TSIDs)

TX SQL Statement
Read Sets Affect.

Tab. Col. Row Class
R1 SELECT * FROM R R ∗ TAS

WHERE A2 > ?
R2 SELECT A3, A4 FROM R R A1,A3,A4 A1 = 100 RAS

WHERE A1 = 100
R3 SELECT B2, B3 FROM S S B2,B3,B5 CAS

WHERE B5 < ?
R4 SELECT A1, B2, B3 FROM R R A1 CAS

JOIN S ON A1 = B2
S B2,B3
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would potentially outweigh any of the performance benefits of concurrent execution.

Table 2 formalizes the creation of read/write sets based on fundamental relational al-

gebra operations. All read operations (i.e., select, project, union, set difference, Cartesian

product, aggregation) result in table and column read sets that contain the accessed tables

and columns, respectively. A select operation with a conjunctive equality predicate on the

primary or unique key has a non-empty row read set. Insert, delete, and update opera-

tions have both read and write sets. The column write sets include all table columns for

insert and delete operations, but only the modified columns for update operations. The

row write sets refer to the rows that are modified based on a primary or unique key (if

applicable). Finally, the read sets for write operations are based on the items accessed

by their involved expressions. Tables 1 and 3 list several write and read SQL statements

along with their corresponding write and read sets.

Based on the scope by which an SQL statement affects a table R, we categorize it in

one of three affecting classes:

• Row Affecting Statement (RAS) when it modifies or accesses particular rows in R;

• Column Affecting Statement (CAS) when it modifies or accesses some columns of

R;

• Table Affecting Statement (TAS) when it modifies or accesses all columns of R.

These class definitions will be utilized by our algorithms presented later in Sections 6.3

and 7. Tables 1 and 3 also include the affecting classes for each example transaction.

All aforementioned definitions are easily extended to a multi-statement transaction

Tm. The table read set of Tm is simply the union of all table read sets of the individual

SQL statements in Tm. The same applies for the table/column/row read/write sets of Tm.

As for the affecting class of Tm, the following rules apply: (i) if all statements in Tm are

“RAS” for table R then Tm is a “RAS” for R; (i) if all statements in Tm are “CAS” for R

then Tm is a “CAS” for R; (iii) otherwise, Tm is a “TAS” for R. Finally, DDL statements

are handled as “TAS” write statements.
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Figure 8: Hihooi processing flow for executing single write and multi-write transactions

6.2 Hihooi Commit/Rollback Phase

Figure 8(a) demonstrate the commit/rollback flow for a single write transactions. In the

flow three actors are participating: the user who executes transactions, the Transaction

Manager and the Primary DB. Furthermore, the Transaction Manager maintains a mem-

ory structure called Transactions State (TXState). The TXstate contains the Transactions’

state into four fields the TXID, TSID, Commit Timestamp and STATUS.The system man-

ages all the write statements as Single Write Transactions if are not started with identi-

fier ”Begin Transaction” and automatically committed. When a Transaction Manager

receives a new write statement from the User, it begins a new Transaction on Primary DB

and retrieved the assigned Transaction’s TXID. Then, the current TXID is added (func-

tion setRunning(TXID)) in Transaction Manager’s TXState with status RUNNING. At

that point, the Transaction Manager executes the write on Primary DB and propagates

the affected rows to back to the User. Figure 8(b) demonstrate the commit/rollback flow

for a multi-statement read/write transactions. The user submits the ”Begin Transaction”

identifier indicate a Start Transaction. The Transaction manager propagates the Begin

Transaction to the Primary DB and retrieves the assigned Transaction’s TXID. Then, the
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current TXID is added as RUNNING in Transaction Manager’s TXstate. At that point, the

Transaction Manager informs the user that the Transaction with TXID has started. From

that point and after the user can submit one or more write statements. All the writes state-

ments are propagates and executed on Primary DB and the results are send back to the

user. Unlike the Single write statement Transactions the commit command is requested

by the user.

Figure 9: Hihooi Commit/Rollback Flow for single write or multi-write transactions

On commit time, figure 9, either Single write or Multi-statement writes statements, the

Transaction’s logs (i.e., txid and sql text) are written in a file called txlogs before commit

and thereupon the Transaction is committed to Primary DB. The return Transaction’s

commit timestamp is returned back to the Transaction Manager that writes it in txlogs

(txid,t). txlogs file is used for Transaction Manager recovery in case of failure. Finally,

the Transaction Manager returns a commit completed back to user, and updates TXState,

for the corresponding TXID by changing the status to COMMITED associated with the

commit timestamp already retrieved by Primary DB(setTerminate(TXID,COMMIT,t).

6.3 Statement Replication Procedure

For each transaction T intercepted by Hihooi, a Transaction State (or TState) is built and

maintained at the Transaction Manager. A TState contains the following:

1. a TState identifier (TSID) that uniquely identifies T ;
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2. the SQL write statements of T in the order of execution;

3. the read/write sets of each statement and the overall T ;

4. the total execution time of T on the Primary DB; and

5. the completion operation: commit or rollback (the replication of failed transactions

is explained in Table 4).

TSID Generation: TSID is a unique sequential number given to the TState of T once T

commits or rollbacks on the Primary DB. The purpose of the TSIDs is to capture the order

of transaction completions on the Primary DB, which is determined by the transaction

commit timestamps as recorded by the underlying database system. In order to ensure

the correct ordering, the Transaction Manager (TM) performs the following steps after T

completes: (1) the TM obtains the commit timestamp of T and the commit timestamps of

any other concurrent transactions that have issued a commit request but have not received

a response yet; (2) the TM issues TSIDs for these transactions in the same order as the

commit timestamps. Typically, T ’s timestamp is the lowest and it simply receives the next

TSID number. Occasionally though, commit responses are received out of order (up to

2% of the times in our most write-intensive experiments) due to multi-thread scheduling

in the TM or network delays. Hence, the procedure above is necessary to ensure that

TSIDs are given in the same order induced by the commit timestamps. The TState must

be given a TSID before it can be fetched and replayed by the Extension DBs.

TSID Implementation: The Transaction Manager has two important daemon processes

the Transactions Set Monitor (T-MON) and Transactions Set Archiver (T-ARC) which are

responsible for maintaining TSIDs. The T-MON is responsible to generate the sequential

TSIDs from the committed transactions and push the Transaction sets into the Transaction

Buffer as part of the replication procedure. Specifically, T-MON performs the follow-

ing: (1) Reading from Transactions State, it generates TSID for those Transactions which

have status COMMITED or ROLLBACK based on transaction commit timestamp, (2) For

Transaction Manager’s recovery in case of failure, the TSID:TXID entry is written into

disk (tslogs), (3) Push Transaction Sets into Transaction Buffer(if successfully pushed

then update the corresponding transaction with status REPLICATED). The T-ARC is re-
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sponsible to archive the COMMITED transactions into disk (on successfully write, the

corresponding transaction in Transaction List is marked as COMMITED ARHIVED).

The Transaction Set’s archiving is started when the system assigning a TSID to the can-

didate Transaction Set, otherwise the archiving is waiting. Another, task of T-ARC is to

remove Transaction Sets from Transaction Buffer. A Transaction Set is removed from

Transaction Buffer if already applied to all active Extension DBs.

Extension DBs Replication: On system startup, the Transaction Manager loads the last

TXID and TSID from tslogs file (the TSID numbering will continue from this value).

Therefore, T-MON is reading from Transactions State and it generates TSID for those

Transactions which have status COMMITED or ROLLBACK based on transaction com-

mit timestamp. The new TSIDs with the corresponding TXID are written into tslogs.

Thereupon, T-ARC archives the already replicated Transactions Sets into disk and update

Transactions State as ARCHIVED. Then, T-MON pushes the committed Transaction Sets

into Transaction Buffer. If the Transaction Sets are successfully pushed into Transaction

Buffer, the corresponding entry into Transactions State is marked as REPLICATED. Now,

on the Extension DBs’ side, on startup, each Extension DB loads the last TSID from its

local tslogs file and notifies the Transaction Manager about its TSID, and it starts seek-

ing from Transaction Buffer for a TSID + 1 without knowing at all whether or not there

is this TSID. However, if the Extension DB’s TSID is less than Transaction Manager’s

TSID, then, the Transaction Manager either replicated the missing Transaction Sets or

invoke the Archiver to reload from archives files all the missing Transaction Sets into the

Transaction Buffer. When a new TSID is applied on an Extension DB, the Extension DB

always notifies the Transaction Manager about the new TSID.

Each Extension DB node hosts an Extractor service, which is responsible for receiv-

ing the completed TStates from the Transactions Buffer and executing them on the local

Extension DB. The goal of the Extractor is to ensure that the local database replica is

consistent with the Primary DB. Executing the transactions from the TStates in the serial

order imposed by the TSIDs is a sufficient condition to achieve consistency. However, it is

very inefficient and can cause the Extension DBs to fall significantly behind the Primary
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DB, especially in times of heavy write load (given the parallel execution at the Primary

DB). Hence, it is crucial for the Extractors to execute in parallel as many transactions as

possible while maintaining correct consistency semantics.

As it was alluded in Section 6.1, the read/write (R/W) sets of the transactions are the

backbone for our parallel execution algorithm. Specifically, the R/W sets of two write

transactions can be used to determine whether the transactions affect the same data items

in the database, as shown in Algorithm 6.1. If they don’t affect the same items, we say

they are independent. When the table R/W sets of two write transactions are disjoint,

they are independent as they modify different tables (lines#2-4). Otherwise, we need to

check which columns and/or rows are modified by the two transactions, but only for the

commonly modified tables (line#6). If the two transactions both belong to class “CAS”

for a table t (i.e., they affect some columns of t) but do not modify the same columns, then

they are independent for t (lines#8-11). Similarly, if the two transactions both belong to

class “RAS” for a table t (i.e., they affect some rows of t) but don’t modify the same rows,

then they are independent for t (lines#12-15). If either of the above two conditions holds

for all common tables, then the transactions are independent and it is safe to execute them

concurrently.

One important property of our R/W set definitions is their cumulative nature. That is,

if we take the union of the R/W sets of multiple statements, we get R/W sets of a multi-

statement transaction with the same correct semantics, as explained in Section 6.1. With

the same reasoning, we can combine the read/write sets of two or more multi-statement

transactions that are running in parallel to build a transaction state that represents all

running statements as if they were one bigger multi-statement transaction. For example,

suppose transactions W1 and W2 from Table 1 are executed together by an Extractor. Then,

we can define a running transaction state that includes the merged states of W1 and W2.

The table write set of this new state would include tables R and S, meaning both tables

are currently being modified. This combined state allows us to avoid checking whether a

new transaction is independent with each currently running transaction. Instead, we only

need to check whether the new transaction is independent with the combined running
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Algorithm 6.1 Check independence between two write transactions

1: function AREINDEPENDENT(ts1, ts2)
2: if ts1.table w set ∩ ts2.table rw set =∅ &
3: ts1.table rw set ∩ ts2.table w set =∅ then
4: return true
5: end if
6: for each t in ts1.table rw set ∩ ts2.table rw set do
7: bool independent← false
8: if ts1.class[t] =CAS & ts2.class[t] =CAS &
9: ts1.col w set[t]∩ ts2.col rw set[t] =∅ &

10: ts1.col rw set[t]∩ ts2.col w set[t] =∅ then
11: independent← true
12: else if ts1.class[t] = RAS & ts2.class[t] = RAS &
13: ts1.row w set[t]∩ ts2.row rw set[t] =∅ &
14: ts1.row rw set[t]∩ ts2.row w set[t] =∅ then
15: independent← true
16: end if
17: if independent == false then return false end if
18: end for
19: return true
20: end function
Notation: ∗ w set = (table | column | row) write set; ∗ rw set = union of (table | column | row) read and
write sets

transaction state.

Algorithm 6.2 shows the two functions that constitute the parallel execution algorithm

employed by the Extractor. The new transaction states are received by the Extractor in

the order imposed by the Primary DB execution. For each new transaction state tsNew,

the Extractor checks if it is independent from both the running and waiting states, i.e., the

combined states of the already running and waiting transactions, respectively (lines#5-6).

If it is, tsNew can be executed in parallel with the already running transactions, after its

state is merged with the state of the running transactions (lines#7-8). Otherwise, tsNew

must wait in the queue and its state must update the waiting state (lines#10-11). It is

important to check tsNew against the waiting transactions because a conflict indicates

that an already waiting transaction will modify a data item that tsNew will affect, and

these changes must occur in order.

Suppose the five write transaction from Table 1 must be executed at an Extension DB

in that order. Transactions W1 and W2 will execute in parallel as they modify different

tables, while W3 is placed in the wait queue since it conflicts with W1. Even though W4 is
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Algorithm 6.2 Parallel transaction execution at Extension DBs

1: runningState . combined state of running transactions
2: waitingState . combined state of waiting transactions
3: waitQueue . FIFO queue with waiting transaction states
4: function ONNEWTRANSACTION(tsNew)
5: if areIndependent(runningState, tsNew) &
6: areIndependent(waitingState, tsNew) then
7: runningState.merge(tsNew)
8: execute(tsNew)
9: else

10: waitingState.merge(tsNew)
11: waitQueue.enqueue(tsNew)
12: end if
13: end function
14: function ONTRANSACTIONCOMPLETE(tsOld)
15: runningState.remove(tsOld)
16: while waitQueue.isNotEmpty() &
17: areIndependent(runningState, waitQueue.peek()) do
18: tsRun← waitQueue.dequeue()
19: waitingState.remove(tsRun)
20: runningState.merge(tsRun)
21: execute(tsRun)
22: end while
23: end function

independent from the two running transactions (W1 and W2), it is not independent from the

waiting W3 and, hence, will also be placed in the wait queue. W5 can also run in parallel

as it modifies a different table than W1 and a different column than W2.

When a running transaction completes execution, its state is removed from the running

state (line#15). Next, the wait queue is iterated, checking if the next waiting transaction is

independent from the running transactions (lines#16-17). If it is, its state is moved from

the waiting to the running state and then submitted for execution (lines#18-21). In our

running example, when W1 completes execution, W3 can then execute, followed by W4.

Even though we refer to the read/write sets as “sets”, they are internally implemented

using hash tables, where the key is the data item (i.e., table, column, or row) and the

value is a counter to track how many query statements access that data item. In addition,

the column and row read/write sets are maintained separately per database table (also

using hash tables), to facilitate their direct use in Algorithms 6.1 and 7.1 (presented in

Section 7.1). The merging of two transaction states is a straightforward process. For each

corresponding read/write set, the underlying hash tables are merged as follows: if the two
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hash tables contain the same key, the associated counters are added together; otherwise

the entries are simply put in the resulting table. The deletion of a transaction state from a

previously merged state involves decreasing the counters kept for each read/write set. If a

counter reaches zero, then the corresponding entry is deleted from the hash table. Hence,

all operations on read/write sets are very efficient to implement in practice.

Finally, the Extractor is responsible for notifying the Transaction Manager with the

latest applied TSID in sequential order without gaps. Suppose the transactions complete

in the order W1, W3, W2. When W1 completes, its TSID is reported but when W3 completes

nothing is reported. Once W2 completes, the TSIDs of W2 and W3 are reported. Hence,

the Transaction Manager is aware of up to which transaction has been replayed on each

Extension DB in sequential order. This information is stored in a simple hash table that

maps the Extension DBs to their latest applied TSID.

Transaction State Implementation Details: The Transaction States—and the contained

read/write sets in particular—are crucial for the efficiency of both the parallel replication

procedure of write transactions (discussed in Section 6.3) and the routing of read trans-

actions to Extension DBs (recall Sections 7.1 and 7.2). In this section, we describe the

implementation of the data structures used to hold the read/write sets as well as the merge

and delete methods used in Algorithm 6.2. Even though we refer to the read/write sets as

“sets”, they are internally implemented using hash tables, where the key is the data item

(i.e., table, column, or row) and the value is a counter to track how many query statements

access that data item. For example, consider a multi-statement transaction Tm containing

the statements W1 and W3 from Table 1, both of which modify table R. The table write set

of Tm contains the entry {R→ 2}, indicating that table R is modified by two statements.

The counters are necessary for the correct and efficient implementation of the delete

method, described below. In addition, the column and row read/write sets are maintained

separately per database table (also using hash tables), to facilitate their direct use in Algo-

rithms 6.1 and 7.1. Consider transaction R4 in Table 3, which reads columns R.A1, S.B2,

and S.B3. The column read set of R4 contains {R→{A1→ 1},S→{B2→ 1,B3→ 1}}.

The merging of two transaction states, ts1 and ts2, is a straightforward process. For each
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corresponding read/write set, the underlying hash tables are merged as follows: if the two

hash tables contain the same key, the associated counters are added together; otherwise

the entries are simply put in the resulting table. For example, if the table read set of ts1 is

{R→ 2} and of ts2 is {R→ 1,S→ 1}, then the merged table read set is {R→ 3,S→ 1}.

The deletion of a transaction state from a previously merged state involves decreasing the

counters kept for each read/write set. If a counter reaches zero, then the corresponding

entry is deleted from the hash table. Suppose ts2 with the table read set {R→ 1,S→ 1}

is now deleted from the merged state {R→ 3,S→ 1}. The resulting table read set is

{R→ 2}. In the absence of counters, the read set would end up empty in the above ex-

ample, which would be incorrect since ts1 is still present. The alternative would involve

maintaining the individual read/write set of all transactions and recomputing the merged

state each time a transaction was deleted from the state; which would not be as efficient

as our solution of maintaining simple counters.

Hihooi employs statement replication to ensure consistency in the replicas; i.e., it

replicates and executes all write statements on the Extension DBs. The alternative ap-

proach would be to use row-based replication, which entails capturing the modified table

rows on the Primary DB and replicating them to the Extension DBs [55, 73, 41]. One

method for achieving row-based replication is to integrate the middleware with the un-

derlying database engine for extracting and adding table rows. This limits the ability of

the middleware to use different database engines (or even different versions of the same

engine) [82]. Another method is to (i) declare triggers on every table for extracting the

modifications and (ii) use a complex mechanism for applying the changes to the replicas.

A serious drawback here is the performance overhead introduced on the primary database

from the multiple trigger executions.

Hihooi avoids the aforementioned limitations of row-based replication by using state-

ment replication. Hence, it is capable of supporting multiple, unmodified database en-

gines as well as preventing any unnecessary overheads at the Primary DB. In addition,

update and delete statements that affect multiple rows are very efficient to replicate as

only the SQL statements are propagated to the replicas [82]. Finally, capturing statements
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Table 4: Summary of Practical issues and resolutions for statement replication

Practical Issue Resolution
Database sequences, used
to generate unique or auto-
incremented keys, are non-
transactional objects

Failed transactions are also executed on the Extension DBs
to increment any sequences consistently. Read transactions
that perform sequence operations are treated as write trans-
actions (i.e., executed on the Primary DB and replicated to
the Extension DBs).

Time-related macros such as
now or current timestamp

Query rewriting techniques are used to replace a macro with
an actual value that will be common to all replicas.

User-defined functions in write
transactions

Non-deterministic functions are executed once and their re-
turn values are used in the calling statements. Deterministic
functions are left as is.

Stored procedures and database
triggers

The R/W sets are extracted from deterministic procedures
and triggers upon their definition. For deterministic pro-
cedures with non-SQL definitions, the DB admin must
provide their table R/W sets during system configura-
tion. Non-deterministic procedures/triggers are currently
not supported.

is the basis for extracting the R/W sets, which are used to improve the performance of

both the replication and the query routing procedures.

6.4 Resolutions against Statement Based Replication Challenges

The main practical issues concerning statement replication arise due to non-deterministic

queries, i.e., queries that may not produce the same result even when executed on the

same database state. Statement replication requires that the execution of a write statement

has the same effect on the Primary DB as on the Extension DBs. However, an SQL

statement could legitimately produce different results on different replicas if, for example,

it referenced sequences, or used the current timestamp, or invoked a non-deterministic

function (e.g., RAND). Hihooi resolves such issues by (i) performing on-the-fly query

rewriting before submitting the queries for execution; and (ii) replicating all, even failed,

transactions. Table 4 lists the main practical issues along with Hihooi’s resolutions in

the present implementation. Currently, Hihooi does not support the small set of non-

deterministic procedures and triggers. Below we describe in details the main challenges

presented when using Statement Based Replication and their resolutions:

Challenge 1. SQL Statement Execution Order: The order of execution for every SQL

statement is significant. The system should ensure that all SQL statements will be executed
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on Extension DBs in the same order as they were executed in the Primary DB.

Resolution 1. The TSID sequencing mechanism ensures that the system executes trans-

action’s on Extension DB, in the same order as they were executed in Primary DB.

Challenge 2. Table columns with auto increment number: A table’s columns with auto

increment numbers. The system should ensure that new rows added in Primary DB will

be replicated uniformly in the Extension DBs.

Resolution 2. The system replays everything done in Primary DB even statement failures.

As a result, unsuccessful transactions (e.g., due to a DBMS exception or primary key and

unique key violations etc.) are also logged and replicated, in this way, lost sequence’s

numbers due to failures are also lost in the Extension DBs (e.g., sequences for auto incre-

ment columns or sequences used to generate their next value inside a DML Statement).

Challenge 3. Table default values: A table’s columns with default values based on Date-

Time functions. The system should ensure that default values assigned to Primary DB will

produce the same results on the Extensions DBs.

Resolution 3. The same resolution as 2.

Challenge 4. A table’s columns with default values based on User-Defined functions:

The system should ensure that default values assigned to Primary DB will produce the

same results on the Extensions DBs.

Resolution 4. The same resolution as 2.

Challenge 5. Date-Time Functions: The system should ensure that Date-Time Functions

may used inside a DML statements either as assignment values, or used as predicates, will

not produce different values during replication.

Resolution 5. Database’s Date-Time functions can be used inside DML statements to

produce new values or they are used as conditions predicates for the WHERE clause. For

example, a Date-Time function can store its return value inside an INSERT statement, in

order to provide a new value for a DATE-TIME column. Also, the Date-Time functions

52



can be used in an UPDATE statement in order to store a new value for a column. In

addition, they are used as condition predicates in the UPDATE’s and DELETE’s WHERE

clause. During statement base replication, Date-Time functions, cannot provide consis-

tent values, for Primary DB and Extension DB columns because these functions are called

in at different times during replication. For this reason, the system rewrites all the DML

statements that contain Date-Time functions, and completes the candidate DML state-

ments with the exact values. This background process, and all supplementary queries are

performed as part of the current transaction, using the session’s primary DB connection.

The new SQL statement is executed on Primary DB and logged into Transaction Manager

in order for it to be replicated on the Extension DBs.

Challenge 6. User-Defined Functions and Procedures: The system should ensure that

User-Defined Functions inside DML statements that are either used as assignment val-

ues, or are used as predicates, produce the same results on the Extensions DB, as were

originally present on the Primary DB.

Resolution 6. It is possible for User-Defined functions to exhibit nondeterministic be-

havior, since their context is difficult to control during replication. To ensure data con-

sistency on statement replication, the system rewrites all SQL statements that contain

User-Defined functions, and replaces them with their return values. The system using the

transaction’s primary connection executes the function as a select statement i.e., SELECT

function Name() and rewrites the original SQL statement with the function’s return val-

ues. Unfortunately, all supplementary queries used for a User-Defined function, must be

also logged and executed on Extension DBs again, providing an extra overhead. Imag-

ine a User-Defined function that gets the next value of a sequence S, by selecting the

function, then the sequence S is changed, and, this change on sequence S must be repli-

cated in Extension DBs. In order to reduce any supplementary overheads against the

User-Defined functions, the system gives the user the option, to mark User-Defined func-

tions as deterministic and nondeterministic. All supplementary logs used for deterministic

User-Defined functions are not logged and thus, are not replicated to Extension DBs. The

default behavior for Service’s Database User-Defined functions are nondeterministic.
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Challenge 7. Database Triggers: Database Triggers may show nondeterministic behav-

ior on statement based replication.

Resolution 7. Database Triggers should also have nondeterministic behavior, and state-

ment based replication cannot be achieved because, of the difficulty in controlling trig-

gers’ context. To ensure data consistency on statement replication, the system disables all

tables’ triggers except of the triggers that are manually marked as deterministic by the

user. The default behavior for Service’s Database Triggers are nondeterministic.

6.5 Hihooi and Primary DB Consistency Challenges

A system checkpoint initializes the consistency between the Hihooi and Primary DB.

From the checkpoint and after, all Transactions executed on the Primary DB should be

replicated on Extension DBs. Even if one transaction is lost or transactions are applied in

different order, the consistency between Hihooi and Primary DB will be broken. Further-

more, the Primary DB is vulnerable to external interference, which cannot be controlled

by Hihooi, because, Hihooi and Primary DB are two separated entities. As a result, the

Hihooi must be able to detect that the state of the Primary DB is not changed outside of

the Hihooi context. Following are some known challenges where a consistency check is

mandatory:

Challenge 1. A Primary DB is detached from Hihooi: For example, the customer de-

taches Primary DB from Hihooi in order to load offline data or the customer’s needs for

system’s scalability is on demand.

Resolution 1. At any time, the Primary DB can be disconnected from Hihooi. However,

in the case of reconnection a new checkpoint creation is mandatory in order to reinitialize

the consistency between the Primary DB and Hihooi.

Challenge 2. External connections with Primary DB: When the Hihooi is binding with

Primary DB, nothing prevents other applications to connect with the Primary DB and

change its contents. This possibility creates more challenges in preserving consistency

for the middleware replication solutions.
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Resolution 2. Our resolution to the problem is focused on three approaches:

1. Prevent or block external connections from Primary DB:

(i) Open the Primary DB to read only transactions and force Hihooi to use only

restricted sessions that are able to create write transactions.

(ii) Offer a limited number of available Primary DB connections and reserved all

connections to Hihooi.

(iii) Binding Shutdown and Startup task for Primary DB and Hihooi.

(iv) Limit and lock unused Primary DB’s users.

(v) Limit and block TCP/IP connections to Primary DB from other sides, and

open TCP/IP connections only from Hihooi’s sides.

2. Detect transactions outside Hihooi: All transactions that are executed outside of

Hihooi cannot be controlled by Hihooi because they cannot be replicated. As a

result, the consistency cohesion between Hihooi and Primary DB is broken. These

transactions are difficult to prevent, but their actions can be traceable. The first

check in order to detect if any transaction commit/rollback outside of Hihooi, is

completed during the reconciliation phase that takes place during the Transaction

Manager’s startup procedure. The Primary DB’s latest commit TXID is compared

with the latest commit TXID saved in Transaction manager’s metadata (recall Hi-

hooi Commit/Rollback phase). If both TXIDs are equal, the Transaction Manager is

open normally, otherwise, the system recovery takes place. When the system opens

normally, the Transactions Monitor (TX-MON), which is responsible to detect in-

valid external transactions, takes the appropriate actions such as killing external

transactions or stops the replication. The TX-MON selects from the primary DB all

the running TXIDs and compares with the running TXID listed in the TXState. All

the TXIDs that are not included in the Transactions State are terminated.

3. Resolve transactions inconsistencies: Hihooi resolves Transaction inconsistencies

by creating a new system checkpoint; however, we are concern to find a fine-grained

solution as part of future work.
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7 Concurrency Control

As explained in Section 6, all write transactions are executed on the Primary DB, are

given a sequential TSID upon completion, and are replicated to the Extension DBs. An

Extension DB is considered consistent if it has replicated all transactions up to the latest

transaction (which has the largest TSID) that was executed on the Primary DB. Read

transactions can safely be routed either to the Primary DB or to any consistent Extension

DB for execution. However, the asynchronous replication of write transactions to the

Extension DBs can result in a lag between the Primary DB and the Extension DBs. In such

a scenario, read transactions must either wait for at least one Extension DB to become

consistent or be redirected to the Primary DB. The first option introduces latency delays

for the read transactions, while the second further increases the load on the Primary DB.

In either case, performance and scalability can suffer.

Hihooi implements a novel transaction-level routing and load balancing algorithm that

utilizes read/write sets for directing transactions to Extension DBs, even if they are not

consistent with the Primary DB. The key idea is that it is safe to route a read transaction

T to an Extension DB if the tables (or columns/rows) accessed by T will not be modified

by the write transactions that have yet to execute on the Extension DB (see Section 7.1).

Further, Hihooi can perform an even finer-grained load balancing by directing individual

read statements from within multi-statement write transactions to Extension DBs. To

the best of our knowledge, Hihooi is the first replication-based middleware system to

offer statement-based routing, while respecting transaction boundaries and maintaining

consistency (see Section 7.2).

7.1 Transaction-level Load Balancing

The goal of transaction-level load balancing is to direct read transactions to Extension

DBs that are consistent with the Primary DB but only with regards to the data each read

transaction will access. In order to achieve this efficiently, Hihooi needs quick access to

the tables, columns, or rows accessed by the read transactions as well as to which tables,

columns, or rows are up-to-date on each Extension DB. The former is achieved using the
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Algorithm 7.1 Update the Transaction Manager hash indexes after executing a write transaction

1: function UPDATEINDEXES(ts)
2: T Index.multiPut(ts.table write set, ts.T SID)
3: for each t in ts.table write set do
4: if ts.class[t] = TAS || ts.class[t] =CAS then
5: CIndex.multiPut(ts.col write set[t], ts.T SID)
6: else if ts.class[t] = RAS then
7: RIndex.multiPut(ts.row write set[t], ts.T SID)
8: end if
9: end for

10: end function

transaction read sets, while the latter using the TSIDs of the completed write transactions

and a set of hash indexes maintained by the Transaction Manager. In particular, three

hash indexes are used for separately mapping tables, columns, and rows to the latest write

transaction that modified them. Hence, the indexes can be used to find the transaction

after which the replica is consistent with regards to specific tables, columns, or rows.

Once a write transaction Tw completes, its write sets are used to update the three

indexes, as shown in Algorithm 7.1. All tables referenced in the table write set of Tw are

added into the Tables Hash Index (T Index) and mapped to the transaction state identifier

(TSID) of Tw (line#2). This action indicates that the latest transaction to update those

tables is Tw. Next, the modification of the other two indexes depends on the affecting

class of Tw for each table. In particular, if Tw’s class is “TAS” or “CAS”, then all columns

in Tw’s column write set are added into the Columns Hash Index (CIndex) and mapped to

Tw’s TSID (lines#4-5). Otherwise, all rows in Tw’s row write set are added into the Rows

Hash Index (RIndex) and mapped to Tw’s TSID (lines#6-7). Row entries in RIndex that

have been applied to all replicas are periodically pruned to keep the index size bounded.

Consider the five write transactions of our running example shown in Table 1. After

their execution on the Primary DB, the content of the three hash indexes is shown in Table

5. Each entry (of any index) shows the last TSID that modified that particular item. For

example, table S was last modified by transaction W5 with TSID=15, while column S.B2

was last modified by W2 with TSID=12.

The last step in the transaction-level load balancing is to determine which Extension

DBs are consistent for running an incoming read transaction Tr. Algorithm 7.2 shows
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Algorithm 7.2 Find the latest consistent TSID for a read transaction on the Transaction Manager

1: function FINDLATESTCONSISTENTTSID(ts)
2: tsid = 0
3: for each t in ts.table read set do
4: if not T Index.contains(t) then skip iteration
5: if ts.class[t] = TAS then
6: tsid = max{tsid, T Index.lookup(t)}
7: else if ts.class[t] =CAS then
8: tsid = max{tsid, CIndex.lookup(ts.col read set[t])}
9: tsid = max{tsid, RIndex.maxValue(t)}

10: else if ts.class[t] = RAS then
11: tsid = max{tsid, RIndex.lookup(ts.row read set[t])}
12: tsid = max{tsid, CIndex.lookup(ts.col read set[t])}
13: end if
14: end for
15: return tsid
16: end function

Table 5: The content of the Tables, Columns, and Rows Hash Indexes after executing the
Table 1 transactions

T Index CIndex RIndex
R→ 14 A3→ 13 (A1 = 100)→ 11

A4→ 13 (A1 = 120)→ 14
S→ 15 B2→ 12

B4→ 15

how the indexes can be used for finding the TSID of the last transaction that modified

any of the data items accessed by Tr. For each table t to be accessed by Tr, we utilize the

affecting classes and read sets for guiding our algorithm, assuming t has been modified

before (lines#3-4). If Tr is a “TAS” for table t (i.e., it will access all columns of t), then

a single lookup on the T Index is enough to find the latest TSID (lines#5-6). If Tr is a

“CAS” for t (i.e., it will access some specific columns of t), then we need to (i) lookup the

CIndex to find the latest TSID among all columns in Tr’s column read set and (ii) search

the RIndex to find the largest TSID from all rows affecting t (lines#7-9). We search for

the rows as well since any row modification can potentially modify any column. Finally,

if Tr is a “RAS” for t (i.e., it will access some specific rows of t), then we also lookup

both RIndex and CIndex (lines#10-12). Overall, we return the largest TSID found from

all lookups across all tables to ensure consistency. Any Extension DB that has replicated

at least that TSID can be used for executing Tr.

Table 3 lists some example read transactions along with their consistent TSID based
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on the indexes’ content in Table 5. Consider transaction R3 that accesses columns B2, B3,

and B5 of table S. Based on Table 5, only the relevant column S.B2 has been modified by

transaction with TSID=12. Hence, R3 can execute on any Extension DB that has applied

transactions with TSID=12 or higher.

7.2 Statement-level Load Balancing

Master-slave replication dictates that all transactions that modify the database, including

multi-statement ones, must be executed on the master first. However, multi-statement

write transactions may contain several read SQL statements, all of which are now exe-

cuted on the Primary DB. Some of these reads could potentially be executed on Exten-

sion DBs without violating atomicity or consistency constraints and, hence, increase the

scalability of the entire system.

The premise is that a read statement within a multi-statement write transaction Tm

that is independent of its preceding write statements in Tm can be safely executed on a

consistent Extension DB. This premise does not hold for serializable execution, but does

hold for Snapshot Isolation, which is the default consistency level of Hihooi (see Section

7.3), because the read still sees a consistent snapshot of the database. Algorithms 6.1 and

7.2 can be used to efficiently check independence and find a consistent Extension DB,

respectively. In particular, when the write statements of Tm are executed on the Primary

DB, a running state is kept by the Transaction Manager (similar to the running state kept

by the Extractors described in Section 6.3). When a read statement arrives in Tm, Hihooi

checks if it is independent from the running state (recall Algorithm 6.1). If so, Algorithm

7.2 is used as in Section 7.1 to find the latest consistent TSID, and thus, the available

Extension DBs for execution. When the read is not independent from the previous writes,

or no consistent replica is found, it is executed on the Primary DB.

7.3 Consistency Levels

Most database engines (e.g., PostgreSQL, Oracle, DB2) use snapshot isolation (SI) for

enforcing consistency [26]. With SI, each transaction operates on its own copy of data (a
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snapshot), allowing read transactions to complete without blocking. Similarly, database

replication research has been focusing on SI and its variants, such as Generalized SI,

Strong SI, and Weak SI [60]. Hihooi works over a set of SI-based database replicas and

offers the illusion of a single SI database to the client. Hence, it provides a form of Global

Strong Snapshot Isolation (GSSI) [60].

We follow concepts introduced in [16, 60, 37, 8] in order to formalize the notion of

GSSI in replicated systems and develop a direct proof of its support by Hihooi. According

to SI, as introduced in [16], the system assigns a transaction T a start timestamp s(T ) at

the beginning of its execution, before performing any read or write operations. T will

always read data from a snapshot of the (committed) data as of s(T ). In particular, writes

performed by any transaction T ′ that commits before s(T ) will be visible to T . On the

other hand, writes performed by any transaction T ′ that commits after s(T ) will not be

visible to T . SI also requires that each transaction T be able to see its own writes, even

though the writes occurred after s(T ). After finishing its operations, T is assigned a com-

mit timestamp, c(T ), such that c(T ) is more recent than any start or commit timestamp

assigned to any transaction. T commits only if all other transactions T ′ that committed

during the lifespan of T (i.e., s(T )< c(T ′)< c(T )) did not modify any data that T has also

written. Otherwise, T is aborted so as to prevent lost updates. Note that two transactions

T1 and T2 are called concurrent if their lifespan intervals [s(T1),c(T1)] and [s(T2),c(T2)]

overlap.

According to the original definition of SI, the system can choose s(T ) to be any time

less than or equal to the actual start time of T . Hence, T can see any snapshot earlier than

its start timestamp and not necessarily the latest one. This relaxed version of SI is called

Weak SI in [37]. With Strong SI, a transaction T2 that starts after a committed transaction

T1 is guaranteed to see a committed database state that includes the effects of T1. In other

words, T2 will see the latest snapshot of the database state. Most current database systems

(including PostgreSQL) and research prototypes [110, 73, 77] offer Strong SI. Finally,

the qualifier ‘global’ indicates that the definition of Strong SI applies to the distributed

system as a whole and not to the individual database replicas.
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Summarizing, a transaction history in a replicated database system satisfies Global

Strong SI if its committed transactions satisfy the following two conditions:

1. Read operations in any transaction T see the database in the state after the last

commit before s(T ). Read operations in T also see the data values that were last

written by T itself;

2. Concurrent transactions do not modify the same data objects in the database.

Theorem 1. If each underlying database system in the replicas guarantees Strong SI, the

Hihooi guarantees Global Strong SI.

Proof. Given a set of transactions to be executed with Hihooi, we need to show that their

transaction history will satisfy the two conditions of Global Strong SI noted above.

Condition 1: Suppose T is a read transaction arriving for execution in Hihooi. Algorithm

7.2 will find the TSID of the last write transaction that modified any of the data to be

accessed by T (recall Section 7.1). Then, T will be routed to any Extension DB that

replicated at least that TSID, guaranteeing that T will see the latest relevant state. When

no such Extension DB is found, T is routed to the Primary DB, which is always up to

date and offers Strong SI by itself. If T is a write transaction, then it will be executed

on the Primary DB. Since all write transactions always execute on the Primary DB and

the Primary DB guarantees Strong SI locally, any read operations in T will see the latest

database state. With statement-level load balancing (recall Section 7.2), read statements in

T that are independent of their preceding write statements in T , can be routed to Extension

DBs. Since the routing algorithm is the same as the one used for read-only transactions,

these read statements will see the latest relevant state as explained above. Read statements

in T that access data written by previous write statements in T are sent to the Primary DB

and, hence, will see the data values that were last written by T .

Condition 2: Since all write transactions are always executed on the Primary DB, which

offers Strong SI, no concurrent transactions can modify the same data and commit suc-

cessfully on the Primary DB. On the Extension DBs, transactions that modify the same

data are never run concurrently per Algorithm 6.2 (recall Section 6.3). Only independent
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write transactions are ever executed in parallel on the Extension DBs, guaranteeing that

concurrent transactions do not modify the same data in the database.

By controlling the replication and routing mechanisms, Hihooi can offer three addi-

tional consistency levels at the granularity of a database session:

1. Weak SI: Write transactions are asynchronously executed on the Extension DBs and

read transactions are sent to any Extension DB regardless of their consistency.

2. Replicated SI with Primary Copy (RSI-PC): Write transactions are asynchronously

executed on the Extension DBs and read transactions are sent to any Extension DB

that is fully consistent with the Primary DB (but waits if none is available). RSI-PC,

another form of GSSI, is implemented by the middleware Ganymed [77].

3. One-copy Serializability (1SR): Write transactions are synchronously executed on all

Extension DBs and read transactions are sent to any Extension DB. 1SR is supported

by Hihooi as long as the master database uses serializable transaction isolation. The

entire write workload goes to the primary first so the generated schedule is serializable.

Then, it is replicated in the Extension databases and it is applied in the primary’s

commit order; hence, the schedule there is serializable (the same serial order applies).

Finally, the reads executed at the Extensions are routed there only if a replica is up to

date. The order of execution of the reads does not matter as they don’t conflict with

any other running transaction or with each other, and hence, any serial order works.

1SR is the default consistency level of middleware C-JDBC [27].
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8 Scalability Management

Starting and shutdown the system, adding or removing Extension DBs and performing

backups are important management operations. During starting and shutdown operations,

the system is moved from one state to another and requires extra consistency checks to

ensure that the consistency between Primary DB and Hihooi is retained. Furthermore,

adding/removing Extension DBs and performing backups are important management op-

erations for ensuring Hihooi’s fault recovery and proper scalability. This section explains

these operations and discusses some enabling (future) work on automated backup and

elasticity management. Finally, it presents common scenarios in order to improve how

the system provides durability against various failures.

8.1 Hihooi Startup and Planned Shutdown

Startup: During the Hihooi startup, the state of the system could be either using a new

system checkpoint or can be a normal startup after a planned shutdown. In the former

state, the system is already synchronized with Primary DB (due to the new SEED DB

restore from Primary DB), and Extension DBs could be created on demand from the new

created SEED DB. As a result, in this state there are no consistency worries and no con-

sistency check is required. In the latter state, the system could restart to its previous state,

i.e., the state before the point where it ended. Initially the system checks that Transaction

Manager and Primary DB agreed on the Last Commit TXID. The Transaction Manager

gets its own latest TXID by reading the tslog file entry (TSID:TXID). However, the Pri-

mary DB’s latest TXID is selected from the database, during the check. If both TXIDs

are equal, the system can start, otherwise, the system automatically starts recovering using

the txlogs file, i.e., reading from txlogs the entries TXID,sql text,timestamp and loads it

into Transactions State for those TXID completed after the TXID located in tslog. After

the Transaction Manager starts up, the system can reuse all or a part of the Extension

DBs used in the previous run (note that Extension DBs are not destroyed after a plan

shutdown). TXID requirement is not valid for Extension DBs, because they are not nec-

essary to implement the last TSID in order to rejoin the system. The only requirement is
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to belong in the same version of SEED DB. The consistency between the Extension DBs

and Transaction Manager is determined by the last TSID replicated in Extension DBs and

the version of SEED DB (i.e., all used Extension DBs should have the same SEED DB

version). When the Hihooi shutdown, the Transaction Manager and each Extension DBs

save in disk (i.e., into tslog file) the latest TSID as a reference point for the next restart.

Also, an Extension DB is not prevented from entering the system with a smaller TSID

number, because, the Transaction Manager ensures that have all missing Transaction Sets

are available, so all the Extension DBs could be synchronized with the latest TSID.

Planned Shutdown: Hihooi and Primary DB are two separated entities and as a result,

their shutdown procedures are not correlated. In the case of Hihooi shutdown, the Pri-

mary DB remains open, and it is obvious that the Primary DB is vulnerable for external

interference. In other words, Hihooi needs to confirm that the Primary DB’s state remains

the same and after Hihooi’s restart. As a result, both systems’ shutdown are necessarily

binding. On Hihooi startup, the reconciliation phase guarantees that the Hihooi’s latest

commit TXID is equal with Primary DB’s last commit TXID. It is also important to men-

tion how to close the system so as not to affect the system’s consistency. (1) Shutdown

Normal: This is the default shutdown procedure. In this mode, the Transaction Man-

ager does not accept any new connection and waits for all current transactions to become

Replicated and Archived. Thereupon, the system shutdowns all Extension DBs, and the

Primary DB. (2) Shutdown immediate: In this mode, the Transaction Manager does not

accept any new connection and waits for all current transactions to complete (either com-

mit or rollback). Thereupon, the system shutdowns all Extension DBs, and Primary DB.

All transactions that are not replicated to Extension DBs are recovered during the next

startup.

8.2 System Initialization, Backups and Fault Recovery

The process of initializing the first system’s replica is called system checkpoint and in-

cludes the following steps:
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1) Create a Primary DB consistent Backup called Seed DB.

2) Create a number of Extension DBs by cloning the Seed DB.

3) Start Hihooi components (i.e., Transaction Manager, Transaction Buffer and Exten-

sion DBs) by resetting TSID to zero.

The Seed DB is created using the Primary DB’s vendor utility. In order to keep the

content of the database intact, the Primary DB does not support any transactions during

the backup. Every new Seed DB is sequential number, starting from one, associated with

the Primary DB’s latest system change number (SCN) e.g., the last commit timestamp or

last commit transaction id (TXID). The sequential number helps the system to correlate

the Seed DB with the Primary DB. The Extension DBs are created by cloning the Seed

DB.

During and after the Seed DB creation, write transactions are modifying the Primary

DB and are recorded into the Transactions Buffer. As as a result, all new Extension DBs

that will be cloned from SEED DB will have a huge number of Transactions Sets to im-

plement, because SEED DB is starting from TSID equal 0 and the rest system is more for-

warded. If the number of TSIDs is too large, in relation with SEED DB’s TSID, the new

Extension DB’s synchronization will take more time to complete. It is also possible that

part of TSIDs that are needed for synchronization will not exist in Transaction Buffer, as

a result, it takes another time from Archiver process to load it again in Transaction Buffer

from the archives. The time that takes for an Extension DB to reach the latest system’s

TSID is called Extension DB Recovery Time (EXTDB TIME TO RECOVERY). The

EXTDB TIME TO RECOVERY is measurable because, Hihooi includes in the Transac-

tion Set the Transaction’s elapsed time in Primary DB. In order to reduce the TSID’s gap

between the current state of the system and SEED DB’s state and make Extension DB

synchronization faster, we suggest one, or a combination of the following solutions:

1. Automatic SEED DB replacement in case that EXTDB TIME TO RECOVERY

parameters exceeded some predefine value, e.g., 30 minutes. This solution re-

quires a standby Extension DB in RECOVERY mode which will replace the SEED
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DB when the EXTDB TIME TO RECOVERY is exceeded. This option helps the

standby Extension DB to quickly catch up to the last state, however, it overprovi-

sions system’s resources. However, this option is very helpful, when the system

needs to scale up very quickly.

2. SEED DB replacement after a normal shutdown with a FULL synchronized Exten-

sion DB. Furthermore, if the system has a shutdown window, the system adminis-

trator can replace SEED DB with a FULL synchronized Extension DB.

3. SEED DB replacement with an Active Extension DB. This system’s feature is pos-

sible, but requires removing a production machine in order to replace the SEED

DB. However, this action will affect system’s performance if it is done at a time

when the system needs all the production machines. This replacement can only

take place while the system no longer needs some machines.

4. Shutdown System without destroying the Extension DB members. For example,

if the system has a predefined number of Extension DB members (e.g., minimum

and maximum number of Extension DB member), then the already instantiated

Extensions DBs will not be destroyed on system’s shutdown. This option helps the

system to quickly restore to the previous state, however, it overprovisions system

resources.

5. Frequently system checkpoint. If the Primary DB is small, and the system check-

point does not take long time to complete, as well as , frequent system shutdowns do

not influence the production flow, frequently system checkpoints is a good solution.

Through an example, we will highlight the resilience of the system to the following

scenarios:

1. Transaction Manager Failure.

2. Transactions Buffer Failure.

3. Primary DB Failure.
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Figure 10: Hihooi state snapshot at time t2

4. Extension DB Failure.

Figure 10 illustrates a system’s snapshot on important variables, memory structures,

system files and directories on time t2. Based on the system’s snapshot the last committed

TXID is the TXID 711 which committed on time t2 and the last Hihooi TSID is TSID

2. The Transaction with TXID 710 is committed and archived by T-ARC but not yet

replicated, the Transaction with TXID 709 is replicated and applied in Extension 1. The

Transactions 712 to 714 are still running. In our scenario, the Transaction Manager’s

tslogs at time t2 contains only the last replicated TSID 2, because the system did not yet

calculate the already committed transaction 711. However, Transaction Manager’s txlogs

contains all the Transaction logs.

Transaction Manager Failure: If the Transaction Manager’s failed on time t2 e.g.,

instance failure, on the next Transaction Manager’s Startup, an automatic recovery will

take place because, the TXID in the Transaction Manager’s tslog is different from the

Primary DB last commit TXID. The Transaction Manager will reload the Transactions

State (by reading txlogs), all the transactions and their status which are greater than t1,

in our case, the Transaction 711, with status committed. Also, the Transaction Manager

will invoke Archiver to reload in Transaction Buffer the Transaction sets 1.2. i.e., the

difference between its own TSID and Extension 1 TSID (This check is completed on
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every Transaction Manager startup or its triggered when new Extension DB added, in

order to supply the system with missing Transaction sets, if any). The rest transactions

i.e., 712 to 714 will be aborted by Primary DB due to the Transaction Manager’s failure.

However, when the recovery complets, the system will gets its normal way.

Transactions Buffer Failure: If the Transactions Buffer fails, the Extension DBs will

stop receiving any updates but will still be able to serve any read transactions that are

consistent with their current database state. Upon recovery of the Transactions Buffer,

all collected TStates will be pushed from the Transaction Manager to the Transactions

Buffers and from there they will be applied on the Extension DBs in parallel.

Primary DB Failure: In case of a Primary DB failure, the Transaction Manager in

order to protect the consistency of the system will signal a shutdown normal operation

(recall, in this mode, the Transaction Manager does not accept any new connection and

waits all current transactions to become Replicated and Archived. Thereupon, the system

shutdown all Extension DB). In our example, the system’s next steps during the shutdown

normal operation will be (i) the Transaction TXID 710 will be replicated, (ii) Transaction

TXID 711 will be archived, (iii) a new TSID number 3 will be created, and (iv) the 1.3

Transaction set will be replicated to Extension DB 1. On the next system’s startup the

system will start normally without any recovery.

8.3 Adding and Removing Extension DBs

The addition of a new Extension DB involves two steps: (i) the replication of the Seed

DB on the new node, and (ii) the parallel re-execution of all transactions located on the

Archiver Buffer using the procedure described in Section 6.3. Afterwards, even though

the new Extension DB might not be fully consistent with the Primary DB, it will register

with the Transaction Manager and start serving consistent read requests, while applying

the write transactions from the Transactions Buffer. Hence, the addition of a new replica

in Hihooi does not require a global synchronization barrier or the use of resources from

other active replicas [26].
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Extension DBs may be removed from the system for a variety of reasons such as main-

tenance operations, insufficient workload to justify their presence, and failures. Since

Extension DBs only serve read transactions to the clients, no complicated failure mecha-

nisms are needed from the client’s perspective. The Transaction Manager is either notified

or detects the removal of an Extension DB and simply re-routes the read transactions to

other consistent Extension DBs. During the application of the write transactions from

the Transactions Buffer, the Extractors log all completed transactions. When the node is

re-added to the system, the write transactions are replayed from that point forward.

The addition or removing of an Extension DB from the system, requires a redistribu-

tion of the existing connections to the instantiated Extension DBs. Without this feature

the system will not be able to utilized equally all the instantiated Extension DBs. The

implication of the absence of the workload’s rebalancing will results in poor workload

scalability performance. As a result, when the number of active Extension DBs changes

in the system, the Transaction Manager’s routing algorithm safely (i.e., priority is given to

maintaining strong consistency) redistributes all the current connections to the available

Extension DBs.

8.4 Towards Replica Self-Management

The time required to start an Extension DB depends on the time needed to replicate the

Seed DB (if the new Extension DB starts on a new node) plus the re-execution time

of the write transactions on the Archiver Buffer. The former can be easily calculated

since the process just entails bulk I/O transfers of known sizes. The latter can also be

computed because the execution time of each write transaction is recorded into the TState.

Hence, Hihooi can accurately model and estimate the replica synchronization time. This

model can guide the decision on how frequently to create new backups in order to provide

bounded guarantees on the time needed to deploy a new Extension DB.

The ability to add and remove replicas without service interruption in addition to ac-

curately modeling their cost are key steps towards autonomic middleware-based repli-

cated databases. Recent work on database workload monitoring and characterization
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(e.g., [36, 40]) could guide the development of elasticity policies that automatically de-

cide when to add or remove nodes based on the actual workloads. Another interesting

future direction would be integrating Hihooi with the cloud, which would extend the type

or resources available for hosting the replicas. Finally, cloud technologies such as Virtual

Machine migration or cloning could be used for creating the backups and launching new

Extension DB nodes.
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9 Experimental Evaluation

The purpose of our evaluation is (1) to evaluate the system’s performance and scalabil-

ity under varying workload types and consistency levels, (2) to study the effects of our

fine-grained statement replication and routing algorithms, and (3) to evaluate the key man-

agement and fault tolerance features of Hihooi. All experiments were run on a 13-node

cluster running CentOS Linux 7.2 with 1 Primary DB, 1 Seed DB, 8 Extension DBs, and

3 client nodes (with up to 16 clients each). The Transaction Manager is running on the

Primary DB node, its backup and Archiver on the Seed DB node, and the Transactions

Buffer on an active Extension DB node. The primary node has an 8-core, 3.2GHz CPU,

64GB RAM, and 2.1TB HDD storage. The rest nodes have an 8-core, 2.4GHz CPU,

24GB RAM, and 1.5TB HDD storage.

For our evaluation, we used three well-known benchmarks, each employing a dif-

ferent kind of workload: (i) TPC-C [101], the industry standard for OLTP workloads,

containing complex and write-intensive transactions; (ii) YCSB (Yahoo Cloud Serving

Benchmark) [33], a collection of web-based micro-benchmarks that represent data man-

agement applications whose workload is simple but requires high scalability; and (iii)

CHB (CH-benCHmark) [31], a workload combining OLTP from TPC-C and OLAP from

TPC-H [102].

The TPC-C database (also used by CHB) was populated with 500 warehouses for a

total size of 50GB. For the YCSB database, we used a scalefactor of 50000, resulting

in 56GB of data. The databases were fully replicated to the Extension DBs. We used

PostgreSQL version 9.5.3 in all nodes. The results presented, unless noted otherwise, are

from 10 minute trials, preceded by 2 minutes of warm up. OLTP-Bench [39] was used to

populate and run the tests for all benchmarks. The transactions load was injected using 6

clients per 1 Extension DB that continuously issued transactions.

9.1 OLTP Workload Scalability

This section studies the effectiveness and efficiency of Hihooi in scaling an OLTP work-

load by measuring its throughput and latency as we increase the number of Extension
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Table 6: Composition of TPC-C workload mixes

Transaction Read- Read- Balanced Write-
Only Heavy Heavy

New-Order 2% 7%
Payment 3% 3% 5%
Order-Status 50% 50% 85% 73%
Stock-Level 50% 47% 10% 15%

(a) Read-Only (b) Read-Heavy

(c) Balanced (d) Write-Heavy

Figure 11: OLTP workload scalability for TPC-C for different workload mixes and con-
sistency levels

DBs. The comparison is done along two dimensions: (i) for different read/write workload

mixes (i.e., Read-Only, Read-Heavy, Balanced, and Write-Heavy) and (ii) for different

consistency levels (i.e., Weak-SI, Hihooi, RSI-PC, and 1SR; recall Section 7.3). Weak-SI

is used to show the upper limit of performance that any system with consistency guaran-

tees could achieve. RSI-PC is used by Ganymed, a similar middleware system that does

not offer the type of replication and routing algorithms that Hihooi boasts, while 1SR

(used by C-JDBC) shows the effect of synchronous replication.
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(a) Read-Only (b) Read-Heavy

(c) Balanced (d) Write-Heavy

Figure 12: OLTP workload scalability for YCSB for different workload mixes and con-
sistency levels

For TPC-C, the Read-Only, Read-Heavy, Balanced, and Write-Heavy workload mixes

were set up as 100%, 95%, 85%, and 70% of read statements, respectively, and were

generated via mixing the TPC-C transactions as shown in Table 6. Figure 11 shows the

throughput rates in committed transactions per second for our workload mixes and consis-

tency levels. The Read-Only workload scales linearly as the number of replicas increases;

that is, the throughput doubles each time the number of Extension DBs doubles. As no

writes are performed, there is no difference between the 4 consistency levels. The trend is

similar for the Read-Heavy workload, with the exception of 1SR after 4 or more replicas

are used. This is expected since the system has to wait for more replicas to apply all mod-

ifications before being able to serve any subsequent reads. As the percentage of writes

increases in the workload, scalability naturally suffers for all consistency levels, since
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(a) Read-Heavy (b) Balanced

(c) Write-Heavy

Figure 13: Average latency for TPC-C and YCSB for different workload mixes and con-
sistency levels

all writes are executed on the Primary DB and more reads have to wait for a consistent

replica. Nonetheless, Hihooi is always able to offer comparable performance to Weak-SI

and up to 2.6x and 6.7x higher throughput compared to RSI-PC and 1SR, respectively.

Figure 12 shows the throughput rates for four workload mixes and our consistency

levels for YCSB. All YCSB workloads follow a Zipfian distribution (theta=1) and contain

unmodified queries. Similar to TPC-C, the Read-Only YCSB workload exhibits almost

perfect linear scalability. The Read-Heavy workload consists of 5% inserts and 95%

range scan queries, per [33], while the Balanced workload consists of 85% single-row

reads and 15% inserts. Both Weak-SI and Hihooi are still able to achieve near linear

scalability, while RSI-PC and 1SR do not scale at all for the Balanced workload. Based

on our observations, inserts in YCSB are 2-3x faster than reads. In Ganymed, this results

in delays in the execution of reads, which need to wait for all fast inserts to propagate

to at least one replica. The use of row R/W sets by Hihooi’s routing algorithms excels
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in this test as it enables the system to route a read transaction Tr to a replica that might

not be fully consistent with the Primary DB but is consistent for Tr. Finally, the Write-

Heavy workload consists of 50% reads and 50% updates, per [33]. As this is a more

demanding workload, both throughput and scalability suffer. Nevertheless, Hihooi still

performs considerably better (up to 1.42x) compared to RSI-PC and 1SR for the same

reasons.

Figure 14: Mixed OLTP-OLAP workload scalability for CHB

Figure 15: Effect of using the TAS, CAS, and RAS classes
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Figure 16: Effect of Hihooi’s parallel replication algorithm on TPC-C

Figure 17: Effect of statement-level load balancing on TPC-C

Figure 13 shows the average latency of transactions across different workloads mixes

for TPC-C and YCSB. For the Read-Heavy workloads, there is very little to no increase

in latencies as the number of replicas increases due to the efficient load balancing of

read queries to the replicas. However, as more writes are introduced in the Balanced and

Write-Heavy workloads, adding more replicas increases the average latencies (even for

Weak-SI) as a bigger percentage of the workload is sent to the Primary DB. Focusing on

Hihooi, we observe only a small increase in latency as the number of replicas increase,

indicating the low overhead added due to replication. Conversely, both RSI-PC and 1SR

cause increasingly larger latencies for all workloads due to waiting reads (as explained
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Figure 18: YCSB throughput after removing & adding 1 Extension DB

above). Once again, Hihooi is able to offer latencies comparable to Weak-SI in almost all

cases due to its fine-grained transaction routing capabilities.

9.2 OLTP-OLAP Workload Scalability

The execution of OLAP queries on transactional databases has long been a motivating

scenario for database replication [26, 60]. In this section, we evaluate the OLAP workload

scalability provided by Hihooi, while studying its effects on an OLTP workload. For these

tests, an OLTP client node executes the CHB transactional workload, while two OLAP

client nodes submit the CHB analytical queries, all using the default Hihooi consistency

level (GSSI). The general trend, as shown in Figure 14, is that the OLAP workload scales

sub-linearly, while the OLTP one exhibits a small negative impact that worsens as the

number of replicas increases (7-20%) because more OLAP queries are forced to execute

on the Primary DB (due to read-write conflicts). However, since OLAP workloads do

not typically require strong consistency, we repeated the experiment using Weak-SI for

the OLAP workload and GSSI for the OLTP one. The new results (see Figure 14) reveal

linear scalabilty for the OLAP workload with almost no overhead for the OLTP one, and

highlight the great benefits offered by Hihooi in this setting.
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Figure 19: YCSB throughput during Transactions Buffer failure

Table 7: Percentage (%) of TAS, CAS, and RAS statements

Benchmark Workload Affecting Class
TAS CAS RAS

TPC-C Read-Only 0 10 90
Read-Heavy 4 10 86
Balanced 23 14 63
Write-Heavy 40 12 48

YCSB Read-Only 0 0 100
Read-Heavy 95 0 5
Balanced 15 0 85
Write-Heavy 50 0 50

CHB OLTP 56 13 31
OLAP 82 18 0

9.3 Effect of Affecting Classes

Query statements can modify or access data at different levels of granularity, namely at the

table, column, or row level, captured by our definitions of TAS, CAS, and RAS classes,

respectively (recall Section 6.1). Table 7 lists the percentage of TAS, CAS, and RAS

statements for each workload mix of each benchmark. All TPC-C workloads contains a

mix of all three types of statements, while the percentage of TAS increases as the workload

becomes more write-heavy. YCSB workloads, on the other hand, contain a significant

fraction of RAS and no CAS statements.

This section studies the effect of letting Hihooi use these increasing levels of granu-

larity by configuring it to use: (i) only TAS; (ii) TAS and CAS; and (iii) all classes. We
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executed both the TPC-C and YCSB workloads with our different mixes on Hihooi us-

ing two Extension DBs. The results presented in Figure 15 reveal that the benefits from

utilizing the CAS and RAS classes depend both on the read-write mix and the workload

itself. In particular, the benefits for read-heavy workloads are relatively small because

the replicas are almost always consistent with the Primary DB and the reads are typically

load-balanced regardless of their affecting class. As the write portion of a workload in-

creases, there are more opportunities for Hihooi to route read statements that access some

columns or rows of a table, even though some other columns or rows of that same table

have been modified. This is more evident with YCSB, whose Balanced and Write-Heavy

workloads contain a significant fraction of RAS statements. Hence, when Hihooi is able

to exploit RAS, the overall throughput is increased up to 32% in our experiments. TPC-C

on the other hand, uses more complex transactions that effect tables both at the column or

row level, leading to small benefits from using CAS or RAS (less than 22%). The effects

on average latency follow the same trends as the effects on throughput shown in Figure

15 and are not shown due to space constraints. Finally, the memory overhead from the

hash indexes is very low as the maximum one measured in all experiments was less than

300 KB.

9.4 Parallel Replication Algorithm

This section delves into the performance implications of the parallel replication algorithm

(recall Section 6.3) compared to the common approach that executes the write transactions

serially on the replicas. The two approaches have no to little impact on the throughput

of the Read-Only & Read-Heavy TPC-C workloads (see Figure 16) since very few writes

are applied to the replicas. Note that TPC-C contains 1 TAS and 11 RAS write statements,

which are amenable to parallelism. The actual degree of parallelism (dp) when applying

the writes depends on the submission order of the writes as well as the portion of the

data they apply to. As an indicative example, the average dp for the Balanced workload

with 4 Extension DBs was 4. As the percentage of writes increases for the Balanced and

Write-Heavy workloads, the parallel algorithm has a profound effect on the throughput
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(up to 1.7x higher compared to the serial version) because it enables the Extension DBs

to reach consistency quicker and, hence, be available to serve more reads. There is a

drop in performance for the write-heavy workload on 8 Extension DBs because the writes

generated concurrently by the 48 clients overload the Primary DB. At that point, even the

Weak-SI case experienced a performance drop (see Figure 11(d)).

The 0-Extension DBs setting in Figure 16 corresponds to processing the workload

on a single node without replication. The difference between having 0 and 1 Extension

DBs reveals the overhead incurred by Hihooi from intersecting all transactions, which

was typically low (<4%) and no more than 9% across all experiments (not shown due to

space constraints). It is interesting to note that for heavy-write workloads, Hihooi is very

effective in separating the execution of writes and reads on the Primary and Extension

DBs, respectively, leading to an aggregated higher throughput.

9.5 Statement-level Load Balancing

One of the most novel aspects of Hihooi is its ability to route individual read statements

to consistent replicas, even within multi-statement write transactions. This section eval-

uates the effect of statement-level versus (the typical) transaction-level load balancing,

which always routes all statements from a write transaction to the Primary DB. Figure

17 shows the throughput and average latency for our 3 TPC-C workloads executed on

Hihooi running with two Extension DBs using either transaction- or statement-level load

balancing. As the percent of writes increases, so does the benefit of statement-level load

balancing, leading up to 1.43x better throughput and 14% lower latency compared to

transaction-level load balancing. These benefits are attributed to the extra read statements

that are diverted to the Extension DBs. Specifically, in the Write-Heavy workload, the

transaction-level algorithm routes 29% of the reads to the Primary DB either because

there are no consistent Extension DBs or the reads are part of multi-statement write trans-

actions. On the contrary, the statement-level algorithm routes only 15% of reads to the

Primary DB, while the remaining are load balanced to the Extension DBs. Overall, with

more multi-statement write transactions, Hihooi has more opportunities to divert the in-
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cluded reads to Extension DBs, increasing parallelism and, therefore, throughput.

9.6 Adding and Removing Extension DBs

Next, we explore the scenario of adding and removing an Extension DB at run time. We

started running the Balanced YCSB workload on Hihooi with 18 Clients and 3 Extension

DBs. After 20 minutes, we removed 1 Extension DB to simulate a failure or planned

maintenance operation. The read transactions executing on the Extension DB failed at

that point but the Transaction Manager automatically rerouted them to other replicas.

Hence, Hihooi continued serving the workload without any issues, albeit with a 24%

lower throughput and higher average latency, as shown in Figure 18. After 10 minutes,

we restored the Extension DB and observed the throughput rate return to its normal level

quickly. The Extension DB was able to serve its first read just 64 seconds after restoration

due to our fine-grained routing algorithm, while it was able to apply all changes it missed

during the outage in 82 seconds. In total, it missed 321786 write transactions, while the

memory size of the Transactions Buffer grew to only 384MB. We repeated the above pro-

cedure using the serial replication approach and observed a lower throughput and higher

average latency during the entire experiment, while it took the Extension DB 121 seconds

to catch up; highlighting once again the benefits of our parallel replication algorithm.

9.7 Transactions Buffer Failure and Recovery

In this section, we investigate the behavior of Hihooi during the failure and recovery of the

Transactions Buffer. We started running the Balanced YCSB workload on Hihooi with 24

Clients and 4 Extension DBs. After 5 minutes, we induced a failure on the Transactions

Buffer, which caused the Extension DBs to stop receiving any updates. However, Hihooi

kept serving the incoming workload without any query failures. As the Extension DBs

kept falling behind, the amount of read transactions executing on them decreased (since

the YCSB workload is skewed to favor recent items), while many read transactions were

routed towards the Primary DB, as shown in Figure 19. The write throughput was unaf-

fected by the failure due to the asynchronous nature of the replication procedure. Overall,
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the total throughput experienced a small slowdown of only 6.2%. After 6 minutes, we

recovered the Transactions buffer. At that point, all Transaction States accumulated at the

Transaction Manager (207220 in total, 247MB in size) were pushed on the Transactions

Buffer and the Extension DBs started applying them in parallel. The overhead caused by

the recovery process led to a small, 5.4% decrease in the overall throughput of the work-

load, which lasted for only 97 seconds until it returned back to its pre-failure level. These

results show that Hihooi is able to gracefully handle a Transactions Buffer failure.

9.8 Comparison with PostgreSQL Replication

Figure 20: Pgpool-II Vs Hihooi for YCSB Balanced workload

PostgreSQL supports master-slave replication, where the master database server exe-

cutes both read and write transactions and the slave (“hot standby”) replicas execute only

read queries. PostgreSQL replicates database modifications via streaming WAL records

from the master to the replicas, i.e., it employs row-based replication. This replication

is asynchronous by default so the data on the standby is eventually consistent with the

primary. On top of a PostgreSQL cluster, Pgpool-II [63] is used to provide connection

pooling and load balancing of read queries to the replicas. We have setup Pgpool-II with

PostgreSQL replication on our local cluster and compared its performance against Hihooi.

Figure 20 shows the throughput and average latency of the YCSB Balanced workload
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when executed on Pgpool-II and Hihooi as the number of replicas increases. Our results

show that both systems can scale throughput with more replicas in a similar fashion, while

having a small negative impact on the average latency. Nonetheless, Hihooi is able to of-

fer 35-55% higher throughput and 26-35% lower latency compared to Pgpool-II across all

experiments. Hihooi’s better performance is attributed to (i) its parallel replication algo-

rithm (as PostgreSQL applies the WAL records serially), and (ii) its fine-grained routing

algorithm (as Pgpool-II does not load-balance multi-statement write transactions).
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10 Preliminary Investigation of Future Work

The ability to add and remove replicas without service interruption as well as rebalancing

the workload automatically (recall Section 8) are necessary steps towards the creation of

a truly autonomic middleware-based replicated database system. The key piece missing

is the development of elasticity policies that automatically decide when to add or remove

nodes based on the actual workloads.

Definition 10.1. We define a workload W as a set of n SQL Statements that can be cate-

gorized using Hihooi’s Affected Classes 3 (RAS,CAS and TAS) and executed as a set of

Transaction Tj.

Definition 10.2. An Extension Database EXTi is the only Elastic Resource ER that exists

in the system. All Extension Databases are fully identical.

The Hihooi Autonomic Elasticity Model implements Hihooi’s elasticity management

strategy goals. Our strategic quality goal is to provide the maximum workload W scala-

bility with the fewest possible elastic resources ER.

10.1 The Hihooi Autonomic Elasticity Model

In this section we will analyzed our model thought an experiment. Our Model is supported

via two important metrics (i) the Reads per Second (RPS) i.e., the total number of read

responses divided by the total read time during the collection interval, and (ii) the Time

per Call (TPC), which includes the time executing queries on the database and delivering

the Results Sets, divided by the total number of calls during the collection interval. Since,

Hihooi classifies SQL Statements into three affected classes i.e, RAS,CAS and TAS, the

RPS and TPC metrics are specialized to the referencing class e.g., the RAS RPS and RAS

TPC are refer to RPS and TPC metric respectively, only for RAS Statements.

Experiment Setup: We create a draft benchmark based on a single table named employ-

ees. The table contains an arbitrary employees’ data, indexed based on the employee id
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Figure 21: RAS Statements per second Figure 22: RAS Time per call

column, which is the table’s primary key. The benchmark is able to generate and dynam-

ically mix all types of Hihooi’s affected SQL statements either in read or write mode.

We run our Benchmark against Hihooi using only one Extension Database. For this ex-

periment the employees table’s size was 10M rows. Every 5 minutes we start a new user.

The experiment implies that every user repeatedly executes arbitrary RAS statements. The

initial experiment uses RAS Statements, because RAS has fixed execution time due to the

fact that behind the scene, the DBMS uses primary key index (typically implemented as

a B+ tree). Therefore, overloading RAS Statements will immediate affect their execution

time as well as, output. The experiment aims to increase the number of clients every five

minutes until the maximum of 32 clients is reached. After that, we start the reverse pro-

cess by stopping a user every 5 minutes, starting with the user that came first. During the

experiment, we count the metrics RPSras and T PCras (metrics are defined in section 10.2)

while the final results are demonstrated in figures 21 and 22.

Experiment Results: The RPSras output (Figure 21) shows that, when new users peri-

odically enters into the system, the RPSras output follows a linear increase that gradually

decreases, flattening the curve is an indication that the workload overload the system (i.e.,

no resources are available to support the current load). Concurrently, the T PCras output

(Figure 22) shows a execution time per call when new users periodically enter into the

system. However, when the workload overloads the system, the T PCras output grows

sharply. Finally, when the workload subsequently reduces the number of users (i.e., the

load decrease),RPSras and T PCras outputs follow a downwards trend which is exactly the

opposite from the initial.
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Experiment Findings: From the experiment, it is illustrated that the overload detection

can be achieved if we can quickly identify the stabilization/saturation of the RPS met-

ric. The RPS saturation is due to the slow statements’ execution on Extension Database,

because, the current the Extension Database’s resources can not handle the current load.

How to identify RPSras stabilization:

(i) The Growth Rates Percentage (grp) refer to the percentage change of a RPS within a

specific time period e.g., between a period t (indicates now) and a previous period t-

1. A period t changes when the number of users change. On each period change the

system calculates RPSmat moving average. As a result, a period’s grpt is calculated

as

grpt =
RPSmat −RPSmat−1

RPSmat−1

(1)

Stabilization is presented if the grp between two consecutive periods is ≤ 0. The

side picture, , illustrates how the grp is calculated during the experiment

i.e., there is a spike when the new user enters the system, and later grpt is stabilized

one level up from the previews grpt−1; at that time grpt are very closed to 0 but

not ≤ 0. Generally the grp metric is very sensitive and may give some incorrect

indications but if used in conjunction with another measurement, namely, T PC it

may be applied in this context.

(ii) The ultimate approach is to measure the tangent angle between two RPS metrics

(the past RPS and the current RPS). If the tangent angle is less than 30 degrees,

then, RPS output is saturated. How to calculate the tangent angle measurement is

described in Algorithm 10.1 which runs on the Transaction Manager.

How to identify T PC slow performance: The complexity of RAS, CAS and TAS state-

ment are different. RAS statements are executed very fast (as they return a single row)

compared to CAS (i.e., returns a number of table’s columns for one or more table’s rows)

and TAS (that return all table’s columns for all table rows). As a result, the TPC response
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Algorithm 10.1 IsRPSrasStabilized
Require: currentRPSras , pastRPSras , activeUsers

1: return T RUE or FALSE
2: activeUsers = activeUsers−1
3: x = currentRPSras−pastRPSras

pastRPSras

activeUsers
4: radians = Math.atan(x)
5: IF (Math.toDegrees(radians) < 30)
6: return T RUE
7: ELSE
8: return FALSE
9: ENDIF

10: How to calculate tan angle :

is depended from the variety of Affected Classes Statements that belong in the current

workload. Fortunately, Hihooi is able to separate TPC to T PCras, T PCcas and T PCtas and

monitoring separately. As a result, the monitore these metrics of T PCras is enough to

identify if the current T PC value has grown prohibitively. We identify T PC slow perfor-

mance by treating it as an Outlier Detection Problem and solving it using Algorithm 10.2.

For example, let t pc1,t pc2,t pc3 be the historical T PCras values calculated during the last

three periods and t pc4 be the current T PCras. Based on Algorithm 10.2, the values a and

b are evaluated as:

a = AV G((t pc2− t pc1) ,(t pc2− t pc3))+2∗ (ST DDEV ((t pc2− t pc1) ,(t pc2− t pc3)))

(2)

b = (t pc4− t pc3) (3)

Based on the above framework, we can safely determine that any workload can over-

load our system if all conditions from definition 10.3 are apply.

Definition 10.3. We consider that a workload W overloads an Extension Database if the

RPSras output is stabilized (i.e., Algorithm 10.1 returns TRUE ), causing a sharp increase

of T PCras output (i.e., Algorithm 10.2 returns TRUE ).
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Algorithm 10.2 Is Current TPC an Outlier
Require: currentT PC

1: return T RUE or FALSE
2: [ ] t pcHistory // An ARRAY o f T PCras values
3: [ ] t pcDi f f = [t pcHistory.length−1] // Temporary ARRAY
4: latestT pc = t pcHistory[t pcHistory.length−1] // Last element o f t pcHistory
5: k = 0
6: for(i = t pcHistory.length−1 i >= 0 i−−)
7: if(i−1 >= 0)
8: di f f = t pcHistory[i]− t pcHistory[i−1]
9: t pcDi f f [k] = di f f

10: k++
11: endif
12: endfor
13: a = average(t pcDi f f ) + (2∗ standardDeviation(t pcDi f f ))
14: b = currentT pc − latestT pc
15: if b > a
16: returnT RUE
17: else
18: returnT RUE
19: endif

Evaluating Hihooi Autonomic Elasticity Model: In order to evaluate the Hihooi Au-

tonomic Elasticity Model we created a new experiment using the same workload and

enabled Hihooi autonomic scale-out. Initially, we start Hihooi using one Extension DB.

Every 5 minutes we start a new user. The experiment implies that every user repeatedly

executes arbitrary RAS statements. We stopped the experiment when 32 users accessed

the system. During the experiment, the system scales out two times, i.e., the experiment

is completed with three Extension DB. The new resources enter the system after the tenth

user and after the twentieth user. The experimental results (Figure 23) are very encourag-

ing, because the total reads per second and total number of reads scale linearly.

10.2 Metrics Definitions

Hihooi collects every second a number of statistics and metrics. Global are the metrics

collected by the Transaction Manager and Local metrics are collected by Extension DBs.

The metrics that are related with Autonomic Elasticity are the following:

(i) RASqet is the query time for a RAS Statement (i.e., elapsed time) executed in the
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Extension Database. RASqet includes the time t executing a query on database and

delivering the results set rs to the Transaction Manager.

(ii) CASqet is the query time for a CAS Statement (i.e., elapsed time) executed in the

Extension Database. CASqet includes the time t executing a query on database and

delivering the results set rs to the Transaction Manager.

(iii) TASqet is the query time for a TAS Statement (i.e., elapsed time) executed in the

Extension Database. TASqet includes the time t executing a query on database and

delivering the results set rs to the Transaction Manager.

(iv) RPSras is the Total RAS Statements executed per second. RPSras calculated from

Transaction Manager (System wide metric) and from each active Extension Database

(Local wide metric).

(v) RPScas is the Total CAS Statements executed per second. RPScas calculated from

Transaction Manager (System wide metric) and from each active Extension Database

(Local wide metric).

(vi) RPStas is the Total TAS Statements executed per second. RPStas calculated from

Transaction Manager (System wide metric) and from each active Extension Database

(Local wide metric).

(vii) EXTRAStime is the cumulative elapsed time for all RAS statements qet executed the

last 1000ms. This metric is reset after its use. This metric is calculated in each

Extension Database.

EXTRAStime = ∑RASqet (4)

(viii) EXTCAStime is the cumulative elapsed time for all RAS statements qet executed the

last 1000ms. This metric is reset after its use. This metric is calculated in each

Extension Database.

EXTCAStime = ∑CASqet (5)
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Figure 23: Results after enabling Hihooi Autonomic Elasticity

(ix) EXTTAStime is the cumulative elapsed time for all CAS statements qet executed the

last 1000ms. This metric is reset after its use. This metric is calculated in each

Extension Database.

EXTTAStime = ∑TASqet (6)

(x) T PCras is the average Time per call for RAS statements.

T PCras =
EXTRAStime

RPSras
(7)

(xi) T PCcas is the average Time per call for CAS statements.

T PCcas =
EXTCAStime

RPScas
(8)

(xii) T PCtas is the average Time per call for TAS statements.

T PCcas =
EXTTAStime

RPStas
(9)

10.3 Discussion

Using two experiments, we presented the initial work related to Hihooi Autonomic Elas-

ticity Model. Through the experiment, we presented our model characteristics and param-

eters. Our strategic quality goal is to provide the maximum workload scalability, for any

workload, with the fewest possible Extension Databases. The initial experimental results
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shows that the Autonomic Hihooi Elasticity Model can potentially scale some workloads

linearly.
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11 Comparison with State-of-the-Art

Cloud computing technologies have made tremendous strides with respect to Database

as a Service (DBaaS) offerings. Amazon, RackSpace, GoGrid, Google, Windows Azure

SQL, Oracle Database Cloud Service and EnterpriceDB are all examples of pioneering

database solutions in this field [10, 65, 42, 51, 3, 7, 69]. The companies that deploy

these solutions, manage huge datacenters that run thousands of virtual machines. They

employ traditional RDBMS, NoSQL and NewSQL data stores. Today, much attention

is focused on the deployment of enterprise applications on current DBaaS technologies.

A majority of these applications (making up 80% of all applications ) are not deployed

on the cloud. The majority of these applications are relational and their transactions are

dependent on ACID properties. The quality of these applications is high. Currently, these

applications are deployed on traditional RDBMS such as Oracle, IBM DB2, MySQL,

MS-SQL, Sysbase, Informix and PostgresSQL. The deployed Traditional RDBMS, that

are able to support enterprise applications with scaleability, are very expensive. The high

cost of licensing, the expense of specialist hardware, and overprovisioned systems which

must handle peak demands, are the main reasons for the high overheads. In addition,

current solutions appear not to be truly elastic. Their scalability capabilities are static

and cannot handle peak demands on the fly. Furthermore, the preponderance of current

solutions present poor multi-tenancy. NoSQL and NewSQL solutions are not able to of-

fer multi-tenancy, leading to misuse of resources and unpredictable performance result.

As a consequence, the ability to offer multi-tenancy is fully dependent on IaaS’s technol-

ogy. Also, none of the current solutions offer ”Quality of Service” (QoS) with respect of

DBaaS’s performance, and no solution protects DBaaS’s performance through a ”Service

Level Agreement” (SLA) contract.

Database replication comes in two forms: (i) master-slave, where one primary copy

handles all writes and the other replicas process only reads [77, 73, 104]; and (ii) multi-

master, where all replicas serve both reads and writes [27, 55, 41]. Each form can be

implemented either inside the database kernel or outside in a middleware layer. While the

former approach provides opportunities for various optimizations and a tight coupling of
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concurrency and replica control, it is heavily invasive and database-engine specific [57].

The middleware approach, also employed by Hihooi, leads to a seamless separation of

concerns, supports unmodified database systems and applications, and can enable hetero-

geneous environments.

Postgres-R [55] was one of the first multi-master replication systems to use group

communication primitives with strong ordering to enable scalability and 1-copy-serializabi-

lity, while a later version offered snapshot isolation (SI) [110]. Middle-R [73] was the

middleware extension of Postgres-R that moved group communication outside the database

engine but still required database modifications for extracting and applying tuple-based

updates. Other similar systems that rely on group communication primitives and offer

SI are Tashkent [41] and SI-Rep [60]. C-JDBC [27] is also a multi-master middleware

system but does not require database modifications as it uses JDBC drivers like Hihooi.

The system offers consistency guarantees through table-level locking at the middleware

level.

DBFarm [81] builds upon ideas from Middle-R (and thus requires database engine

modifications) but offers a master-slave middleware system. As such, a read transaction

is delegated to some replica but it is blocked until that replica is consistent with the pri-

mary. [11, 54] present middleware solutions that require a predeclaration of the access

pattern of all transactions to enable efficient scheduling. In [104], the middleware will

first execute a write transaction on the primary replica, extract lock-based concurrency

information, and use that to enforce a transaction scheduling to the replicas, which pre-

vents conflicting schedules. Unlike Hihooi, [104] requires the underlying databases to use

strict two-phase locking and cannot handle snapshot isolation, which is now widely used.

Ganymed [77] is a similar middleware system that instead blocks a read transaction at the

middleware layer until at least one replica becomes consistent. On the contrary, Hihooi

never blocks any read transactions. Rather, it uses the transaction read/write sets to find

the replicas, including the Primary DB, that are consistent for each read transaction to run

on. In doing so, Hihooi is the first replication-based middleware to offer such fine-grained

statement-based routing, even within multi-statement write transactions. Pgpool-II [63] is
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another PostgreSQL-specific replication middleware solution that ships and applies WAL

entries to the replicas. Pgpool-II, similar to DBFarm and Ganymed, apply all database

modifications serially at the replicas, as opposed to Hihooi that applies them in parallel.

Another way in which Hihooi differs from the state of the art is its new architec-

ture that uses an in-memory distributed storage system for statement replication, rather

than relying on command logging propagation or complex group communication proto-

cols [60, 26]. The Transactions Buffer acts as a highly available propagation medium for

all database modifications that need to be applied asynchronously to active replicas, im-

proving network load distribution and simplifying recovery procedures. Amazon Aurora

[106] has a different architecture that decouples compute from storage while employ-

ing primary copy replication to achieve read scale-out. Aurora uses physical replication,

where the redo log records are replayed in the replicas, allowing them to be physically

identical to the primary. Such an approach, however, cannot be used to scale existing

single-node databases (unlike Hihooi).

Other systems such as Hyder [19, 18] and Tango [15] provide the abstraction of a

replicated in-memory data structure backed by a shared log, and leverage the shared log

to enable fast transactions across different objects. [108] and [83] provide log shipping

from a primary copy. The former uses synchronous writes so it avoids concurrency issues

from reading from replicas, but it relies on the presence of InfiniBand and NVRAM to be

efficient. The latter replays logs at the level of records but the approach only targets the

scenario of primary-backup replication with a single backup instead of multiple replicas.

KuaFu [111] is a primary-backup, row-based replication system that offers concurrent log

replay by constructing and utilizing a graph to track write-write dependencies in the log;

unlike Hihooi that relies solely on TSIDs and read/write sets. To allow read operations to

be served on backups, KuaFu introduces barriers every N transactions to create snapshots

that are consistent with some past states on the primary, unlike Hihooi that never uses

barriers.

Commercial clustering solutions such as Oracle RAC [70] and IBM DB2 pureScale

[52] rely on the use of specialized hardware and network-attached storage to work. Hence,
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unlike our approach, the system cannot easily be installed on a set of commodity servers.

Finally, other database replication products such as Oracle Golden Gate [48] exist, but

only offer weak consistent properties and are meant to be used for off-line reporting or

disaster recovery plans.

Data partitioning is another popular scale-out approach that partitions and distributes

data across cluster nodes [24, 99]. Such approaches are amenable to dynamic scaling via

migrating data to existing or new nodes in order to diminish performance issues due to

skew or heavy loads. Accordion [90] migrates data at a coarse predefined granularity,

whereas E-Store [98] and Clay [91] work at a finer tuple-level granularity. The aforemen-

tioned approaches perform data migrations after detecting performance issues, whereas

P-Store [97], another elastic OLTP DBMS, focuses on workload prediction and proactive

migration. One of the key scalability hurtles of data partitioning approaches are transac-

tions spanning multiple partitions as they require locking or other specialized protocols; a

non-existent issue for Hihooi as all transactions have access to the full database. Finally,

the issue of dynamic scaling is orthogonal to our approach and something we plan to work

on in the near future.
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12 Conclusions

The rapid growth of workloads in combination with a variability of connected users often

cause database management systems to become overloaded. This problem was the reason

for designing new systems or transforming existing systems to be able to offer both work-

load scalability and elasticity. From the outset of our system design, we have assumed that

true elasticity of system’s scalability could not be realized if there was no autonomy in

the system. As a result, the design of the system was based on the idea of having the basis

of self management of the system. Initially, as a replication-based middleware, Hihooi

is able to provide workload scalability to existing databases without sacrificing consis-

tency. In addition, Hihooi’s parallel replication algorithm allows the Extension DBs to

reach consistency quicker. Additionally, Hihooi’s routing algorithms avoid any delays by

routing read statements to consistent replicas. All the above contributions are extensively

evaluated showcasing that the workload scalability is attainable with Hihooi. Finally, the

initial experiments on the Hihooi Elasticity Model show that model is able to achieves

a workload’s goals by moderating elasticity resources automatically. The system is able

to add and remove Extension DBs online and re-balances online the system load. Also,

the workload’s classification to Statements Affecting Classes, provides the perspective of

generalizing the elasticity requirements of any workload by helping the system to recog-

nize more easily saturation in performing the workload. Hence, Hihooi can jump start

interesting research towards automated elasticity as well as the creation of new cloud-

based offerings.
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 Appendix 
 

Hihooi Installation and Configuration Guide 
Version 1.0 (Rhino Guard) 

 

   
This document describes how to install Hihooi on windows standalone machine. 

 

Hihooi’s Components and TCP/IP Ports Distribution 
 

 
 

 Before continue with Hihooi installation please read the document  
“Installing Hihooi Depended Software for windows” and ensure that all components are 
installed as described in the document. 
  
 
Configuration Steps : 
 

1. Create the Primary and Extension Databases on localhost   
2. Install and Configure Transaction Manager  

1. Clone Software 
2. Init installation 
3. Create executable scripts and compile the Transaction Manager code 
4. Create, Configure and Start hsys repository 
5. Orchestrate Transaction Manager  using hconsole 
6. Start Transaction Manager 
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3. Install and Configure Extractor  
1. Create executable scrips and compile the Extactor code 
2. Configure Local Extractor 

 
 

Install and Configure Transaction Manager 
 
Clone Software 
 
Create HIHOOI_BASE 

------------------- 

cd \ 

mkdir Hihooi-Rhino-Guard 

cd Hihooi-Rhino-Guard 

set HIHOOI_BASE=C:\Hihooi-Rhino-Guard 

 

Clone Software 

------------------- 

git clone -b rhino-guard-02-12-2017 mgeorgiou@dicl.cut.ac.cy:/home1/git/hihooi/hihooi.git 

cd hihooi 

 

Create HIHOOI_HOME 

-------------------- 

set HIHOOI_HOME=C:\Hihooi-Rhino-Guard\hihooi 

 
Line 1 : Create the base hihooi directory e.g., Hihooi-0.7 
Line 2 : Go in directory Hihooi-07 
Line 3: Clone software using the git command. 
The clone command creates the directory hihooi which contains the directories extractor (for extractor), 
hih-client (client software)  and lis (Transaction Manager).  
Line 3: Set the session enviroment variable HIHOOI_HOME 
 
Init installation 
 
1. cd %HIHOOI_HOME% 

2. init.bat  

 
Line 1: Go in %HIHOOI_HOME% 
Line 2: Initialize the Transaction Manager installation using the init.bat command which 
creates the appropriate directories and configuration files. 
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Create executable scripts and compile the Transaction Manager code 
 
1. cd %HIHOOI_HOME%\lis\conf 

2. vi hihooi.conf  

 
Line 1: Go in the Transaction Manager’s configuration directory 
Line 2: Edit the hihooi.conf file using your familiar editor 
 
According the example architecture illustrated in figure 1 , add the following mandatory fields 
in the hihooi.conf , save and exit from editor . 

 Replace only the JAVA_HOME path  
 

 Open a notepad as administrator and add the following entry in 
C:\Windows\System32\drivers\etc\hosts 
 
127.0.0.1       ext01  
 
Where ext is the extractor_name and 01 the extractor_id  
 

 
Please to do not change the default value for the property 
SERVICE_DEFAULT_DB_VENDOR=PostgreSQL 9.3.6 

 
 
JAVA_HOME="C:\Program Files\Java\jdk1.8.0_144" 
EXTRACTOR_ID=01 
EXTRACTOR_NAME=ext 
EXTENSION_DB_NAME=ext1 
EXTENSION_DB_USERNAME=postgres 
EXTENSION_DB_PASSWORD=postgres 
SERVICE_REPOSITORY_HOST=localhost 
SERVICE_REPOSITORY_PORT=1088 
SERVICE_REPOSITORY_DB_NAME=/hihsrv 
SERVICE_NAME=TESTSRV 
SERVICE_DEFAULT_DB_VENDOR=PostgreSQL 9.3.6 
SERVICE_DEFAULT_DB_PORT=5432 
SERVICE_DEFAULT_DB_MAX_CONNECTIONS=10 
SERVICE_TRANSACTION MANAGER_HOST=localhost 
SERVICE_TRANSACTION MANAGER_PORT=7777 
SERVICE_TRANSACTION MANAGER_IP=127.0.0.1 
SERVICE_MEMCACHED_HOST=localhost 
SERVICE_MEMCACHED_PORT=11211 
SERVICE_MEMCACHED_IP=127.0.0.1 
SERVICE_MEMCACHED_INSTANCE_NAME=MEM1 
SERVICE_MEMCACHED_INIT_CONNECTIONS=1 
SERVICE_MEMCACHED_MAX_CONNECTIONS=1 
SERVICE_MEMCACHED_MIN_CONNECTIONS=1 
Transet_Management=serial 
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dirty_Objects_Mode=Mix 
poolConnections=10 
parallelApplier=false 
transetGroupApplier=false  
serialThreads=4 
databasePropertyFile=database.properties.txt 
listeningIp=localhost 
VERSION="Rhino Guard" 

 
3. %HIHOOI_HOME%\lis\installer.bat 

 
Line 3: run the Transaction Manager’s installer . The installer complies the transaction manager source 
code, and creates the appropriate executable scripts under the %HIHOOI_HOME%\lis\bin directory.   
 
 

hconsole   Start hconsole tool 

hsql   Start hsql console 

ij  Start ij console 

jcompile   The script that compiles the Hihooi Transaction Manager code 

shutDerby  The script that shuts the hsys Transaction Manager 

startDerby  The script that starts the hsys Transaction Manager 

 startLis The script that starts the Transaction Manager. 

 
Table 1: Transaction Manager command  

 
 

Create, Configure and Start hsys repository 
 
Start HSYS Transaction Manager 
 
HSYS is located in an Apache Derby Database, thus in order to startup and connect with the database 
you need to start the database's Transaction Managers.   The  HSYS Transaction Manager is started on 
tcp port as configured in  SERVICE_REPOSITORY_PORT parameter and hosted as configured the 
SERVICE_REPOSITORY_HOST parameter.  
Start HSYS Transaction Manager using the command: 
 

1. %HIHOOI_HOME%\lis\bin\startDerby.bat 
 
Output: 
Apache Derby Network Server - 10.10.2.0 - (1582446) started and 
ready to accept connections on port 1088 
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Important  
*** Leave the window open 

 
Optional : Create JDerdy as Windows service manageable by windows services 
nssm install JDerby C:\Hihooi-Rhino\hihooi\lis\bin\startDerby.bat 
 
Create HSYS database objects  
 
In order to create the HSYS database you need to connect with Transaction Manager using 
the ij tool. When you connect with ij connect/create the HSYS database named as hihsrv and 
run the script hsys.sql which creates the HSYS's database objects. 
 
Open a new CMD terminal and run the following:  
 
1. $HIHOOI_HOME/lis/bin/ij.bat 

2. connect 
'jdbc:derby://SERVICE_REPOSITORY_HOST:SERVICE_REPOSITORY_PORT/hihsrv;create=
true'; 

3. ij> run 'HIHOOI_HOME_PATH\lis\db\hsys.sql' ; 

4. ij> exit; 

 

Example: 
Ij>connect 'jdbc:derby://localhost:1088/hihsrv;create=true'; 
Ij> run 'C:\Hihooi-Rhino-Guard\hihooi\lis\db\hsys.sql' ; 
ij>exit; 

 
Line 1: Run the ij tool 
Line 2: Create the hihsrv database if not exist . Please replace the SERVICE_REPOSITORY_HOST 
and SERVICE_REPOSITORY_HOST parameters with the values already saved in hihooi.conf. 
Line 3: Create the HSYS database objects by running the hsys.sql script. Please replace 
HIHOOI_HOME_PATH with the physical path.   
Line 4: Exit from ij tool. 
 

 

Orchestrate Hihooi  components using hconsole 
 

  For postgreSQL 9.6 and 10.1 ( supported version for windows 10 ) copy and paste the following 
jar file 
 
C:\Hihooi-Rhino-Guard\hihooi\drivers\postgresql-42.1.4.jar into  
C:\Hihooi-Rhino-Guard\hihooi\lis\lib 
 
Line 1:  Start the hconsole.  
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1. %HIHOOI_HOME%\lis\bin\hconsole.bat 

 

A full description of Hconsole can be founded in Hconsole.docx document.  
 
Initially the hconsole creates a system service (if the service does not exist).  
On first login, the hconsole responses the following output :  
 
Working on Service TESTSRV Service id 1  

Working on checkpoint  using the Primary DB  

 
Hihooi's service is unique and contains one transaction manager, one transaction buffer (memcached), 
one primary database and at least one or more extension databases. 
 
2. add Transaction Manager; 

3. add memcached; 

 

Example output: 
hconsole>add Transaction Manager; 
Transaction Manager localhost added. 
hconsole>add memcached; 
Memcached MEM1 added. 
log4j:WARN No appenders could be found for logger (hih.MemcachedClient). 
log4j:WARN Please initialize the log4j system properly. 

*** Successfuly ADD key:1234567890,text:This a test 

*** Successfuly GET key:1234567890,text:This a test .. 

0 

hconsole> 

 
Line 2:  Add Transaction Manager according the properties in  hihooi.conf  
 
SERVICE_TRANSACTION MANAGER_HOST=localhost  
SERVICE_TRANSACTION MANAGER_PORT=7777 
SERVICE_TRANSACTION MANAGER_IP=127.0.0.1  
 
Line 3:Add Tranaction Buffer ( memcached) according the properties in hihooi.conf  
 
SERVICE_MEMCACHED_HOST=localhost  
SERVICE_MEMCACHED_PORT=11211  
SERVICE_MEMCACHED_IP=127.0.0.1  
SERVICE_MEMCACHED_INSTANCE_NAME=MEM1  
SERVICE_MEMCACHED_INIT_CONNECTIONS=1  
SERVICE_MEMCACHED_MAX_CONNECTIONS=1  
SERVICE_MEMCACHED_MIN_CONNECTIONS=1  
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4.  add primary database  host localhost name prm1  username postgres 
password postgres; 

 

5. add extension database  host ext01 name ext1  username postgres 
password postgres; 

 
Line 4 :  add the primary database by providing database end points.  
 

 
The adding database must be open and running because the system tries to test the 
database connection. 

You can add all your available databases from different experiments  

Related Hconsole's commands associated with database  

 show database; 
 show database schema; 
 ping database <connector_id>; 

 
To enable database replication from primary to extension database you need create a checkpoint 
between hihooi and primary database.  
 
hconsole>show database schema; 
+------------+------------------------------+------------------------------+ 
|CONNECTOR_ID|DB_NAME                       |DB_USER                       | 
+------------+------------------------------+------------------------------+ 
|1           |prm1                          |postgres                      | 
+------------+------------------------------+------------------------------+ 
|4           |ext1                          |postgres                      | 
+------------+------------------------------+------------------------------+ 

 
6. create checkpoint using primary database <connector_id>; 

Example: create checkpoint using primary database 1; 
 
Line 6:  Create the service checkpoint using the given connector id primary db. 
 
 

 
The Hihooi checkpoint mechanism is used in order for a system to have always a consistent starting 
point with Primary DB. Hihooi checkpoint is based on DBMS's numbering system technique in 
order to identify which are the last, consistent and visible transaction in their system.The system 
starts a new Checkpoint when there is inconsistency between Primary DB and the system. This 
can happen on data changes occurring out of the system e.g, bulk loads. The Checkpoint creation 
includes the creation of a new SEED Database or SEED Backup where new Extension DBs will 
be re-created based on that instance. In order to change the Primary DB for a specific runtime you 
need to cancel the current checkpoint .  
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Related Hconsole command related with checkpoint are: 

 - cancel checkpoint; 

 - show checkpoint; 

 - show checkpoint member;  

 - remove database member database <connector_id i>,..<connector_id n> 

 
 
7. add checkpoint member  database <connector_id>; 
 
Example: hconsole>add checkpoint member  database 4; 
 
 
Line 7: Add checkpoint member for the already existing extensions databases 
 

 

Start Transaction Manager 
 
Start the Transaction Manager using the command 
1. %HIHOOI_HOME%\lib\bin\startLis.bat 
 
Successful Transaction Manager output: 
…. 
Hihooi Transaction Manager Version 0.6.2 mantis  
Started...Listen on 172.16.56.48 at 7788 

 

Query the database using hsql 
 
l. %HIHOOI_HOME%/lis/bin/hsql.bat 
2. Connect to:localhost:7788@TESTSRV 
3. hsql>connect; 
4. <row> 
5. <output>Session 4016ed39-67d5-49 is created.</output> 
6. <\row> 
7. hsql>insert into dual values (1); 
8. <row> 
9. <output>affected rows 1</output> 
10. <\row> 
11. hsql>select count(*) from dual; 
12. 1. 
13. hsql>\q 
 
 
Line 1 : Start the hsql  
Line 3: Execute connect to connect with the system  
 
 
Hsql commands  are decribed in hsql document  
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  Shutdown Transaction Manager  

The Transaction Manager should be shutdown after it use. The shutdown operation saves the current 
state of the system.  

%HIHOOI_HOME%/lis/bin/hsql.bat 
Connect to:localhost:7788@TESTSRV 
hsql>connect; 
hsql>shutdown; 

 

If you close the Transaction Manager abnormally , you need to restart memcached , and set the 
extension’s transet_id to Transaction Manager’s transet_id -1 ( checkpoint.conf) file ( see next 
chapter). 

 

Install and Configure Extractor 
Create executable scrips and compile the Extractor code 
 
1. cd %HIHOOI_HOME%\extractor\conf 

2. vi hihooi.conf  

**   copy hihooi.conf from %HIHOOI_HOME%\lis\conf if extractor and Transaction Manager are hosted in 
the same machine 

 
Line 1: Go in extractor configuration directory 
Line 2: Edit the hihooi.conf file using your familiar editor 
 
 
 
3. %HIHOOI_HOME%\extractor\installer.bat 

 
Line 3: run the extractor installer.bat . The installer complies the extractor source code, and creates the 
appropriate executable scripts under the %HIHOOI_HOME%\extractor\bin directory.   
 
 

./startExtractor Start extractor 

./showTranset   Set current transet id 

jcompile   The script that compiles the Hihooi Extractor code 

 
Table 2: Extractor command  
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Start Extractor 
 
 
 

4.   $HIHOOI_HOME/extractor/bin/showTranset.bat  

    1.8999  

5.   $HIHOOI_HOME/extractor/bin/startExtractor.bat 

 
Line 4: Verify the setTranset Command or view the current Transet id 
Line 5: Start The extractor.   
 

HConsole  

HConsole is an interactive console application that can be used for configuring and managing 
Hihooi, including adding/removing replicas, creating checkpoints. HConsole save system’s 
configuration in HSYS database, thus, a connection with hsys database is mandatory. However 
for adding/removing replicas, Hconsole is communicated with Transaction Manager in order to 
notify him of the changes that will be made to the system. 

Start HConsole 

%HIHOOI_HOME/lis/startHconsole.bat  

Operations  

show service 

     database [schema] 

     Transaction Manager 

     memcached 

     checkpoint [member] 

 

add  service 

Transaction Manager 

primary database 

extension database 

add memcached 

add checkpoint member database <database_id_i,..,database_id_n> 

 

set default service <service_name> 
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create checkpoint using primary database <primary_database_id> 

 

cancel checkpoint 

 

remove checkpoint member database <database_id_i,..,database_id_n> 

  database <database_id_i,..,database_id_n> 

 

ping database <database_id> 

 

HSQL 

HSQL is an interactive console application that can be used for execute queries and monitoring 
Hihooi. HSQL is connected directly with Hihooi using the hihooi API.  

Start HConsole 

%HIHOOI_HOME/lis/hsql.bat  

Operations  

connect  

select <sql> 

update <sql> 

delete <sql> 

drop   <sql> 

create <sql> 

alter <sql> 

truncate <sql> 

commit <sql> 

rollback <sql> 

start transaction  

set consistency level [1|2|3|4|5] 

disconnect 

Transaction Manager 

print connector 

 database 

 dobj 
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refresh connectors 






















