Technological University of Cyprus

Department of Agricultural Science, Biotechnology and Food Science

Master Thesis

Detection of food-borne viruses on ready-to-eat meat products and meat processing establishments in Cyprus

Nikolas Markantonis

Technological University of Cyprus, Limassol, Cyprus

Faculty of Geotechnical Science and Environmental Managment

Department of Agricultural Science, Biotechnology and Food

Science

Detection of food-borne viruses on ready-to-eat meat products and meat processing establishments in Cyprus

Nikolas Markantonis

Approval Form

Master Thesis

Detection of food-borne viruses on ready-to-eat meat products and meat processing establishments in Cyprus

Presented by

Nikolas Markantonis

Supervisor	
Dr George Botsaris	
Committee member	
Dr Despoina Miltiadous	
Committee member	
Dr Ouranios Tzamaloukas	

Technological University of Cyprus

May, 2016

Copyright

Copyright ©Nikolas Markantonis, 2016

All rights reserved.

The approval of the master thesis by the department of Agricultural Science, Biotechnology and Food Science of the Technological University of Cyprus does not suggest acceptance of the ideas of the author by the department.

Acknowledgments

I would like to thank Dr George Botsaris and Dr Petra Vasickova for the supervision of the project and for their helpful advises. I wish also to thank the member of the committee Dr Despoina Miltiadous and Dr Ouranios Tzamaloukas for the time consumed to read and evaluate this thesis.

Table of contents

Acknowledgments	vi
Table of contents	vii-x
List of Tables	xi
List of Figures	xii
Abbreviations	xiii-xiv
Abstract	XV
1. Introduction	1-29
1.1 Overview	1-3
1.2 Taxonomy of food-borne viruses	3-4
1.2.1 Taxonomy of Norovirus.	3-4
1.2.2 Taxonomy of Rotavirus.	4
1.2.3 Taxonomy of Hepatitis A virus.	4
1.2.4 Taxonomy of Hepatitis E virus.	4
1.3 Genome features and viral proteins	4-9
1.3.1 Norovirus genome features and genome encoded proteins	6
1.3.2 Rotavirus genome features and genome encoded proteins	6-7
1.3.3 Hepatitis A virus genome features and genome encoded proteins	6-8
1.3.4 Hepatitis E virus genome features and genome encoded proteins	8-9
1.4 Morphology of food-borne viruses	9-14

1.4.1 Norovirus morphology	9-11
1.4.2 Rotavirus morphology	11-12
1.4.3 Hepatitis A morphology	12-13
1.4.4 Hepatitis E morphology	13-14
1.5 Translation of viral proteins	14-17
1.5.1 Translation of Norovirus	14-15
1.5.2 Translation of Rotavirus.	15-16
1.5.3 Translation of Hepatitis A	16-17
1.5.4 Translation of Hepatitis E.	17
1.6 Replication of food-borne viruses	17-20
1.6.1 Replication of Norovirus	17-18
1.6.2 Replication of Rotavirus.	18
1.6.3 Replication of Hepatitis A	19
1.6.4 Replication of Hepatitis E	19-20
1.7 Clinical features and symptoms	20-21
1.7.1 Clinical features and symptoms of Norovirus	20
1.7.2 Clinical features and symptoms of Rotavirus.	20-21
1.7.3 Clinical features and symptoms of Hepatitis A	21
1.7.4 Clinical features and symptoms of Hepatitis E	21
1.8 Contamination of food and food as vehicle of food-borne viruses	22-25
1.8.1 Products as vehicle of food-borne viruses.	22

1.8.2 Contamination of ready-to-eat products by handlers	22-23
1.8.3 Contamination of ready-to-eat meat products by handlers	24
1.8.4 Good hygienic practices and problems in their application	24-25
1.9 Survival and persistence of food-borne viruses	25-28
1.9.1 Survival of food-borne viruses on environmental and food surfaces	25
1.9.2 Persistence of food-borne viruses under processing condition	25-26
1.9.3 Packaging of meat products and survival of food-borne viruses	26-27
1.9.4 Persistence to disinfectants	27-28
1.10 Difficulties in detection of food-borne viruses on food	28
1.11 Aim of the study	29
2. Materials and Methods	30-37
2.1 Sampling of swabs from staff and equipment	30-31
2.2 Sampling of meat products	31-33
2.3 Artificial contamination of meat products and swabs	33
2.4 Release of viruses from meat products	33
2.5 Nucleic acid isolation	33-34
2.6 Two steps RT-qPCR for the detection of Hepatitis E and process control virus	34-35
2.7 One step RT-qPCR for the detection of Norovirus, Hepatitis A and Rotavirus	35-36
2.8 Experimental design	37

3. Results	38-43
3.1 Analysis of swabs from plant A and B	38-40
3.2 Analysis of meat products from plant A and B	41-43
4. Discussion	44-46
Bibliography	

List of tables

Table 1: List of swabs	30-31
Table 2: List of meat products	32-33
Table 3: List of primers	36
Table 4: Swab analysis from plant A	38-39
Table 5: Swabs analysis from plant B	39-40
Table 6: Products analysis from plant A	41-42
Table 7: Products analysis from plant B	42-43

List of figures

Figure 1: Pyramid of surveillance	3
Figure 2: Schematic drawing of NoV genome	5-6
Figure 3: Schematic drawing of HAV 5'-UTR	8
Figure 4: Schematic drawing of HAV genome	8
Figure 5: Schematic drawing of HEV genome	9
Figure 6: Schematic drawing and 3D model of NoV particle	10
Figure 7: 3D model of NoV capsid protein	11
Figure 8: 3D model of RV virion particle	12
Figure 9: Schematic drawing of HAV virion particle	13
Figure 10: 3D model of HEV virion particle	14
Figure 11: Sources of contamination of products by food-borne viruses	23
Figure 12: Experimental design.	37

Abbreviations

Capsid Protein CP Cis-acting Replication Element cre **CDC Control Center of Disease and Prevention** CO_2 **Carbon Dioxide DLP Double-Layered Particle** ER **Endoplasmic Reticulum** eIF **Eukaryotic translation Initiation Factor Food and Agriculture Organization FAO FCV Feline Calicivirus** GG GenoGroup **GDPH** Glyceraldehyde-3-Phosphate Dehydrogenase HAV **Hepatitis A virus** human heterogeneous Ribonucleoprotein **hnRNP Histo-Blood Group Antigen HBGA HEV Hepatitis E virus Internal Amplification Control IAC IRES Internal Ribosome Entry Site** IFN-γ Interferon-y NoV **Norovirus NaCl Sodium Chloride**

NTP **Nucleotide Triphosphate NSP Non-Structural Protein ORF Open Reading Frame Phosphate Buffered Saline PBS Quantitative Polymerase Chain Reaction** qPCR **PABP Poly(A) Binding Protein Poly Pyrimidine Binding Protein PTB Poly(C) Binding Protein PCBP** PV **Poliovirus Reverse Transcription** RTRdRp **RNA-dependent RNA polymerase RF Release Factor** \mathbf{RV} **Rotavirus** Single Stranded positive sense RNA ss(+)RNASL **Stem Loop Triple-Layered Particle TLP TGBE Tris-Glycine Beef Extract UTR Untranslated Region** Virion Protein genome-linked **VPg** VP **Viral Protein WHO World Health Organization**

Abstract

Food-borne viruses are able to contaminate and persist on food, therefore causing disease and in some occasions even death among the exposed population. The major food-borne viruses are NoV, RV, HAV and HEV, causing acute gastroenteritis (NoV,RV) and acute hepatitis (HAV, HEV). The economic burden of food-borne viral infections is also very important for the food industry, because contamination will result to withdrawal and destruction of products. The involvement of food products in large outbreaks of acute gastroenteritis and hepatitis has let scientists around the world to categorize food stuffs with higher risk. Vegetables, fruits, shellfish and ready-to-eat products have been involved in several food-borne outbreaks of acute hepatitis and gastroenteritis. Viruses found on such products, which can be eaten raw or partially cooked, can remain active until consumption, therefore are in higher risk. Ready-to-eat meat products such as ham, salami and bacon can be contaminated with viruses, by infected handlers during the process of packaging. In Cyprus, no study has attempted to record the prevalence of food-borne viruses in animal origin products and establishments yet. Therefore, in this pilot study, ready-toeat meat products and establishments of two meat-processing plants in Cyprus have been analysed for the presence of NoV, RV, HAV and HEV, using RT-qPCR. The meat products analysed were ham, bacon, salami, hiromeri and lountza. Additionally, swabs from the two establishments were also analysed, including processing equipment (slicing machine, trimming machine, scales), toilet handles and workers hands. The slicer machine and the hand of a handler from plant B were found to be positive to NoV. Contamination of ready-to-eat meat products just before packaging can result to public health threats, since the products usually are consumed raw without any further processing. The results of this study disclose the dangers for public health by food-borne viruses and set the foundations for further examination of this issue.