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Abstract: During the last few decades, the food and beverage industry faced increasing demand
for the design of new functional food products free of synthetic compounds and artificial additives.
Anthocyanins are widely used as natural colorants in various food products to replenish blue color
losses during processing and to add blue color to colorless products, while other compounds such
as carotenoids and betalains are considered as good sources of other shades. Root vegetables are
well known for their broad palette of colors, and some species, such as black carrot and beet root, are
already widely used as sources of natural colorants in the food and drug industry. Ongoing research
aims at identifying alternative vegetable sources with diverse functional and structural features
imparting beneficial effects onto human health. The current review provides a systematic description
of colored root vegetables based on their belowground edible parts, and it highlights species and/or
cultivars that present atypical colors, especially those containing pigment compounds responsible for
hues of blue color. Finally, the main health effects and antioxidant properties associated with the
presence of coloring compounds are presented, as well as the effects that processing treatments may
have on chemical composition and coloring compounds in particular.

Keywords: anthocyanins; antioxidant activity; beet root; betacyanins; cyanidin; blue potatoes;
carotenoids; flavonoids; natural colorants; sweet potato

1. Introduction

Root vegetables display various colors which usually depend on the presence of three major
classes of compounds, namely, flavonoids, betalains, and carotenoids, which they may define their
visual appearance and consumer perception [1,2]. Anthocyanins are flavonoids responsible for the
different shades of plant epidermal tissues such as purple, blue, red, and pink colors, aiming at
attracting pollinators and contributing to the overall plant antioxidant mechanisms under abiotic
and biotic stress conditions [3]. They also participate in several physiological processes of the plant,
including photosynthesis and plant interactions with the environment [4]. They are produced via the
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phenylpropanoid pathway and the conversion of leucoanthocyanidins into colored anthocyanidin
and glycoside derivatives via anthocyanidin synthase and other enzymes [1,5]. The great number of
anthocyanins isolated in nature so far and their high structural variation across plant species raised
research interest in these compounds during the last few years in search of novel natural colorants [6,7].
The structural variation of anthocyanins is related to the substitution of hydroxyl and methoxyl groups
in the B ring, glycosidic substitution at positions 3 and 5 of the A and C rings, and the possible acylation
of glycosidic substitutes with aliphatic and cinnamic acids (Figures 1 and 2) [6]. These structural
differences may infer significant variations in the biological activities and antioxidant properties
of vegetable products. For example, Oki et al. [8] suggested that antioxidant activities of purple
sweet-potato extracts from peonidin-rich cultivars were attributed to anthocyanins, whereas, in those
extracts from cyanidin-rich cultivars, the antioxidant capacity was due to the phenolic compounds.
Other compounds that transfuse blue color in nature are quinones, quinodes, and various alkaloids
which are usually present in fungi, bacteria, and in the animal kingdom [9]. Quinones and quinodes
include carbonyl groups within aromatic rings, and they also show a great variation from a structural
point of view [9], while alkaloids contain nitrogen atoms and are divided into several distinct classes,
including pyridine alkaloids, phenazine alkaloids, and linear tetrapyrrole and indole alkaloids, with
different coloring attributes [9].
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On the other hand, carotenoids are mainly responsible for yellow and orange color with
several distinct compounds being detected so far in various vegetables [6,10–12], while betalains
such as betacyanins and betaxanthins are also important for the violet and yellow pigmentations,
respectively [13]. The main detected carotenoids are β-carotene and lycopene, which are unsaturated
hydrocarbons, and they differ in terms of the β-rings, where β-carotene molecules have both ends
(Figure 3), and they usually present synergistic effects [14]. Both are fat-soluble, and the number of
conjugate double bonds in their structure is closely related to their superoxide inhibitory effect [15,16].
Betacyanins and betaxanthins differ in the moiety derived from betalamic acid, as towel as the fact that
betaxanthins are produced from the condensation of betalamic acid with amino acids and they never
show glycosidation, whereas betacyanins are the result of condensation of betalamic acid with imino
compounds (Figure 4) [17,18]. Further differences are observed within each main class of betalains,
namely, betacyanins and betaxanthins, with several structures identified resulting in different individual
compounds with different absorption and stability capacity [19]. In particular, the various betacyanins
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are differentiated through the glycosyl groups attached to the o-position of the cyclo-dopa moiety [20],
while betaxanthins are differentiated through the conjugated moiety of betalamic acid (amino acids or
amines) [20]. The main pigments isolated in the various root vegetables are presented in Table 1.
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Table 1. The main pigments isolated in various root vegetables.

Species Edible Part Color Class of Compounds Compounds References

Potato (Solanum tuberosum L.) Tuber (stem tuber)

Purple Petunidin derivatives Petunidin-3-p-coumaroylrutinoside-5-glucoside,
petunidin-2-p-coumarylrutinoside-5-glucoside [21–24]

Red Pelargonidin, delphinidin, cyanidin, peonidin,
and malvidin acyl-glycoside derivatives Pelargonidin-3-p-coumaroylrutinoside-5-glucoside [21,23]

Purple/red Carotenoids Neoxanthin, violaxanthin [25]

Yellow Carotenoids Antheraxanthin [25]

Sweet potato (Ipomoea batatas L. Lam.) Tuberous root (root tuber) Purple Acylated anthocyanins Cyanidin, peonidin, and pelargonidin derivatives [26–30]

Carrot (Daucus carota L. ssp. sativus
Hoffm.)

Taproot (swollen
hypocotyl and root)

Purple or black Cyanidin derivatives
Acylated cyanidin 3-xylosyl(glucosyl)galactosides with sinapic acid,

ferulic acid, and coumaric acid; [31–35]

Vinylphenol and vinylguaiacol adducts of cyanidin derivatives [36]

Red and yellow Carotenoids Lycopene and β-carotene [37,38]

Beet root
(Beta vulgaris L.)

Root (swollen hypocotyl
and root)

Purple Betalains Betacyanins [39,40]

Yellow Betalains
Betaxanthins [41]

Vulgaxanthin I and betanin [42]

Yam (Dioscurea sp. L.)
Tuber

(stem tuber)

Purple Cyanidin, pelargonidin, and peonidin-type
compounds; alatanins A–C

Cyanidin 3-hexoside acylated with two hydroxycinnamic acids, cyanidin
3-glycoside acylated with one hydroxycinnamic acid, cyanidin
3-glycoside acylated with one hydroxycinnamic acid, peonidin

3-glycoside acylated with one hydroxycinnamic acid, alatanin-C

[43–46]

Yellow Carotenoids β-Carotene [47]

Onion (Allium cepa L.) Bulb (swollen basis of
leaves) Purple Flavonols and acylated and non-acylated

cyanidin glucosides Dihydroflavonol taxifolin and its 3-, 7-, and 4′-glucosides [48,49]

Radish (Raphanus sativus L.) Taproot (swollen root and
hypocotyl)

Purple Cyanidin glucosides

Cyanidin 3-(glucosylacyl)acylsophoroside-5-diglucosides, cyanidin
3-sophoroside-5-diglucosides, cyanidin 3-sophoroside-5-glucosides,

cyanidin 3-O-[2-O-(β -glucopyranosyl)-6-O
-(trans-feruloyl)-β-glucopyranoside]-5-O-[6-O

-(malonyl)-β-glucopyranoside] cyanidin
3-[2-(glucosyl)-6-(cis-p-coumaroyl)-glucoside]-5-[6-(malonyl)-glucoside]

[50,51]

Red Anthocyanins

Pelargonidin 3-sophoroside-5-glucoside, pelargonidin
3-[2-(glucosyl)-6-(trans-p-coumaroyl)-glucoside]-5-glucoside,

pelargonidin 3-[2-(glucosyl)-6-(trans-feruloyl)-glucoside]-5-glucoside,
pelargonidin 3-[2-(glucosyl)-6-(trans-p-coumaroyl)-glucoside]-

5-(6-malonylglucoside), pelargonidin
3-[2-(glucosyl)-6-(trans-feruloyl)-glucoside]-5-(6-malonylglucoside),

3-O-[2-O-(b-d-glucopyranosyl)-6-O-(trans-caffeoyl)-b-d
-glucopyr-anoside]-5-O-(6-O-malonyl-b-d-glucopyranoside),

pelargonidin 3-O-[2-O -(b-d-glucopyranosyl)-6-O-(cis-p-cou-maroyl)
-b-d-glucopyranoside]-5-O-(6-O-malonyl-b-d-glucopyranoside

[52,53]

Kohlrabi (Brassica oleracea var. gongylodes) Swollen epicotyl Purple
Cyanidin and cyanidin glucoside

Cyanidin-3-diglucoside-5-glucoside,
cyanidin-3-(sinapoyl)-diglucoside-5-glucoside, cyanidin 3-(feruloyl)

(sinapoyl) diglucoside-5-glucoside
[54–57]

Taro (Colocasia esculenta) Corm Purple Cyanidin and pelargonidin glucosides [58]
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The first coloring agents used in food products to improve their visual appearance were produced
from natural sources; however, the high cost for the production of these coloring agents, the variation
in color shades due to the inert variability in natural matrix compositions, and the increasing needs
of the market resulted in the use of synthetic compounds originally derived from coal tar and then
produced from petroleum and crude oil (e.g., FD&C blue No. 1 and blue No. 2) [9,59]. The consumer
concerns about additives and synthetic compounds, amplified by the reports regarding the health
risks and the environmental impact associated with these compounds [60–62], necessitated the shift
to the root food industry dyes; recently, the food and beverage industry is seeking natural coloring
agents that could substitute synthetic dyes and coloring additives [63,64]. The colorant content
of root vegetable products is associated with various health benefits including the prevention of
modern chronic diseases [65–67]. However, they are often highly concentrated in the epidermal
layers and skin tissues which are commonly discarded during domestic processing or in industrial
applications [68–70]. For this reason, the research interest in obtaining natural pigments and bioactive
compounds from agro-food waste is gaining ground within the context of circular economy and the
sustainable use of natural resources [70–74]. There are also several cases where colorants can be found
in high concentrations in the flesh due to the presence of pigments in parenchymal cells, increasing the
antioxidant capacity and functional value of these products (e.g., potatoes, beets, carrots, and other
root vegetables having colored flesh) [3]. Pigment compounds contribute to the overall antioxidant
capacity in a dose-dependent and compound-specific manner [75–77], although the bioavailability and
the absorption mechanisms within human body still need to be addressed [78]. Notwithstanding the
genetic background of each species and/or cultivar, color attributes may be modulated by environmental
factors such as the light and temperature conditions, through biotic and abiotic elicitors that may affect
chemical composition, hormonal signaling, and enzymatic activities. Although not directly exposed
to solar radiation, the pigmentation of root vegetables developing belowground may be indirectly
modulated by the level and quality of radiation to which the aboveground plant is exposed [79].
In addition to pre-harvest factors, post-harvest conditions and processing methods may have an
impact on bioavailability and biostability of natural matrices and coloring compounds [13,80,81].
Anthocyanins in particular are considered a good option as natural coloring agents due to their low
toxicity and the wide range of health effects they present [82]. However, the stability and bioavailability
of anthocyanins are affected by several factors (chemical structure and concentration, pH of food
matrix, temperature, light, presence of co-pigments, enzymes, and metallic ions, among others), which
determine the processing method specificity, and which need to be considered before using these
compounds as natural coloring agents in the food industry [83,84]. Moreover, the association of
structural differences with biostability and bioavailability is further reflected in the biological activities
of these compounds, since, for example, acylated forms are less prone to degradation due to pH
variations [14,85]. Therefore, although, for some species, there are already defined protocols for the
extraction and processing requirements for obtaining natural colorants (e.g., black carrot, beet root
colorants) [71,86–88], there is still a gap in the literature for other colored vegetables which could prove
valuable candidates for yielding coloring agents.

The present review aims to present the main colored root vegetable crops, focusing on cultivars
with colors atypical for the species. Special attention is given to blue- and purple-colored vegetables
since natural colorants of these shades are less common in nature and are highly sought by the
food industry, since blue shades are more difficult to replicate in food and beverages due to the
susceptibility of coloring compounds to external factors (e.g., pH of the food matrix, extraction
conditions). Furthermore, the main compounds responsible for uncommon colors are presented,
as well as their antioxidant capacity and health-promoting effects. Finally, the effects of processing
treatments on color stability are addressed. The presented information in this review was obtained
from worldwide accepted databases such as Scopus, ScienceDirect, PubMed, Google Scholar, and
ResearchGate, using the respective names of the studied species (both common and Latin names) and
the additional terms of the main colorants and “health effects” as keywords.
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2. Main Colored Root Vegetables

2.1. Potato

Potato (Solanum tuberosum L., Solanaceae) is the third most important food crop in the world, after
wheat and rice [89]. In addition to its nutritional and calorific value, potato varieties also offer bioactive
compounds with beneficial effects for human health, such as phenolic compounds and carotenoids,
among others [12,23]. Several reports highlighted the beneficial effects of antioxidant-rich potatoes
against various diseases, such as cardiovascular diseases [90] and various types of cancer [91,92].
Although yellow- and white-fleshed tubers are the most commonly used ones throughout the world,
potato has the highest genetic diversity among cultivated species, with approximately 5000 known
varieties with broad variability in terms of flesh and skin color [93]. Red- and blue-fleshed potatoes
are particularly rich in phenolic compounds, presenting about three times higher amounts of total
polyphenolic content than traditional yellow-fleshed tubers, as well as two to three times higher
antioxidant activity [12,23,24,94].

Acylated forms of anthocyanins were reported to be the main compounds responsible for the red
and purple flesh color of potatoes [94]. In particular, the deep-purple color of potato flesh and skin is
associated with the presence of petunidin derivatives, although studies on metabolite profiling revealed
a genotype- and tissue-specific pattern regarding the anthocyanin composition [22]. Petunidin was the
major anthocyanidin compound found both in the flesh and the peel of purple potato varieties studied
by Yine et al. [21]. In this study, petunidin accounted for 63–66% of the total anthocyanidin content
of purple peel and flesh. The same findings were observed by Kita et al. [23] when studying purple-
and red-fleshed potato cultivars, where petunidin-3-p-coumaroylrutinoside-5-glucoside was the major
anthocyanin compound found in the purple-fleshed varieties Salad Blue (29.31 ± 0.73 mg·100 g−1 dry
weight (dw)), Valfi (43.11± 0.37 mg·100 g−1 dw), and Blue Congo (36.32± 0.33 mg·100 g−1 dw). Similarly,
Nemś et al. [24] identified petunidin-2-p-coumarylrutinoside-5-glucoside as the major anthocyanin
present in the cultivars Salad Blue (28.34± 9.30 mg·100 g−1 dw), Valfi (57.77 ± 28.75 mg·100 g−1 dw), and
Blue Congo (75.97 ± 12.38 mg·100 g−1 dw). On the other hand, in red-fleshed potatoes, pelargonidin
acyl-glycoside derivatives appear as the main anthocyanin compounds. Kita et al. [23] found
pelargonidin-3-p-coumaroylrutinoside-5-glucoside as the major anthocyanin present in red-fleshed
varieties, such as Rosalinde (15.14 ± 0.12 mg·100 g−1 dw), Herbie 26 (44.46 ± 0.23 mg·100 g−1 dw), and
Highland Burgundy Red (126.38 ± 0.71 mg·100 g−1 dw). Yin et al. [21] carried out an acid hydrolysis of
the anthocyanins, studying the composition of the aglycones (anthocyanidins), reporting pelargonidin
as the main anthocyanidin present in the red-fleshed cultivar Red Cloud No. 1, with a concentration
of 11.73 ± 0.16 mg·100 g−1 fresh weight (fw), which corresponded to 82% of the total anthocyanidin
content. Other anthocyanin compounds were reported in the literature for red- and purple-fleshed
potatoes, including delphinidin, cyanidin, peonidin, and malvidin acyl-glycoside derivatives [21,23].
Moreover, the simulation of domestic cooking processing and gastrointestinal digestion of Solanum
tuberosum L. cv Vitelotte noire extracts revealed significant antimicrobial and anti-proliferative activities
against Bacillus cereus and Escherichia coli in the first case (domestic cooking processes) and colon
(Caco-2 and SW48) and breast cancer (MCF7, MDA-MB-231) cell lines in the latter case (gastrointestinal
digestion) [95].

Carotenoids are fat-soluble pigments that can exert antioxidant properties, and they are also present
in colored-flesh potatoes. According to Kotíková et al. [25] who compared the carotenoid content of
yellow-fleshed, white-fleshed, purple-fleshed, and red-fleshed potato cultivars, significant differences
were observed. Interestingly, yellow potatoes showed a much higher average total carotenoid content
(26.22µg·g−1 dw) in comparison to the red and purple-fleshed cultivars (5.69 µg·g−1 dw), indicating that
carotenoid pigments are not highly concentrated in the flesh of purple- and red-fleshed potatoes [25].

Yin et al. [21] investigated 10 colored potato cultivars from China and compared the composition
and antioxidant activities of their flesh and peel. The authors found that potato peels were on average
15.34 times richer in anthocyanins than the flesh; the antioxidant activity of the peels extracts was also



Antioxidants 2019, 8, 617 7 of 26

5.75 times higher on average than that of the flesh extracts [21]. In the same study, the flesh extracts of
cv. Purple Cloud No.1 showed the strongest antioxidant activity among all the tested varieties, along
with the highest total content of anthocyanidins (43.38 mg·100 g−1 fw), a correlation which indicates
anthocyanins as a major contributor to the antioxidant activity of colored potatoes [21].

Recently, there was increasing interest by consumers and food producers in colored potato
varieties, due to their attractive organoleptic features (color and taste) and health-promoting chemical
composition [12]. The increasing interest of the market for colored potato is stimulating private
and public breeding programs to release new specialty potato cultivars such as the red-skin and
red-flesh TerraRossa and AmaRosa or the purple-skin yellow-flesh cultivar Huckleberry Gold and
Peter Wilcox, marketed as “Purple Sun” or “Blue Gold”, which are also characterized by a higher
content of anthocyanins, anthocyanidins, and other phenolic compounds [96]. The consumption of
anthocyanin-rich food products such as purple-flesh potatoes is associated with the modification
of the expression of various genes involved in the metabolism of lipids, inflammation, and energy
homeostasis in liver and/or fat tissues [97,98]. Moreover, extracts from purple potato tubers may
improve the differentiation of gut epithelia and its barrier function against gut epithelial inflammation
through the activation of AMP-activated protein kinase (AMPK) and the increase of CDX2 gene [99].
Color-fleshed potatoes are an excellent source of bioactive compounds that are effective against
human colon cancer cell lines (HCT-116 and HT-29); however, prolonged storage may affect their
antiproliferative and pro-apoptotic activities [100]. Red- and purple-fleshed potato extracts were also
effective against tert-butyl hydroperoxide (t-BHP)-induced hepatotoxicity through the recovery of
serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) enzyme activities [101].
Therefore, a market niche for colored potato-based food products was created, such as potato chips and
crisps. However, the frying process to produce colored potato crisps can cause a 38–70% degradation of
anthocyanin compounds, with pelargonidin and malvidin acyl-glycoside derivatives being more stable
during the frying process in comparison to petunidin acyl-glycoside derivatives [23]. Nevertheless,
despite the reduced contents of anthocyanins in processed compared to raw potatoes, colored potato
crisps can present bright attractive colors, in addition to 2–3 times higher antioxidant activities and
40% higher contents of polyphenols than standard snacks made of commonly used yellow potatoes
and corn [23,24]. Moreover, in a recent study, Nemś and Pęksa [94] incorporated dried red- and
purple-fleshed potatoes into fried snacks and doughs, reporting a beneficial effect on the inhibition
of oxidative changes in lipids compared to control material (yellow snacks), particularly when
incorporating material from purple-fleshed potato varieties of Blue Congo and Valfi. These effects
were attributed to the higher content of colored snacks in polyphenols and anthocyanins than control,
with petunidin 2-p-coumaroyl-rutinoside-5-glucoside being the major anthocyanin present in both
cultivars [94]. Other domestic cooking processes such as boiling, baking, steaming, and microwaving
may also affect the anthocyanin content and antioxidant capacity of colored potatoes, with processing
(steaming and microwaving) showing the best results in retaining anthocyanin content and antioxidant
activity [102–106]. Thermal processing affects not only anthocyanins but also carotenoids which are
heat-sensitive and may be degraded, isomerized, or oxidized after domestic cooking processes [25].
According to Qiu et al. [107], anthocyanin content decreased with prolonged drying time and high
drying temperatures due to higher degradation rates and shorter half-life values compared to shorter
drying procedures with lower temperatures. Therefore, the antioxidant properties of colored potatoes
can be beneficial not only to human health but also to the shelf life of processed food products. Another
important aspect of processed food products based on processed colored potatoes is that the various
types of processing (French fries, chips, and puree) reduce the content of antinutritional factors such as
the glykoalkaloids α-chaconine and α-solanine, thus increasing the overall nutritional quality of the
semi-processed and final products [108].
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2.2. Sweet Potato

Sweet potato (Ipomoea batatas (L.) Lam., Convolvulaceae) is a perennial species native to Latin
America which is highly appreciated for its fleshly tuberous roots that are widely used in the food and
non-food industry depending on starch content and properties [109,110]. In Japan, purple sweet-potato
anthocyanins are used as ingredients in several food products and beverages [111,112]. The flesh of the
roots is usually white, yellow, or orange, although several cultivars with purple-colored flesh and a high
content of anthocyanins also exist [113,114]. It is the fourth most produced vegetable in the world after
potato, cassava, and tomato with a total production of 113 million tons in 2017, most of which (63.8%)
were produced in China [115]. The nutritional value of the edible roots consists in the richness of
carbohydrates, dietary fibers, vitamins, and minerals, while several polyphenolic compounds, peptides,
and carotenoids are also present in considerable amounts in the flesh [116] and peels [74] of the tubers.
The high calorific value of sweet potato roots makes the species one of the most important food crops
in terms of calorific contributors to the human diet [117]. Starch is the main calorific component of
sweet-potato tubers with significant variation in its structural and functional properties which depend
mostly on the genotype and are not correlated with flesh color [118], although, using a proteomic
approach, a recent study revealed that starch degradation may contribute to anthocyanin biosynthesis
and accumulation in purple sweet-potato roots [119]. Chlorogenic acid, protocatechuic acid, salicylic
acid, and caffeoylquinic acid derivatives are the main phenolic acids detected in purple sweet-potato
roots and are responsible for their antioxidant capacity [48,120,121], while orange-fleshed sweet-potato
cultivars are rich in provitamin A and also show significant antioxidant activity [113,122,123]. Moreover,
in the study of Lebot et al. [124], the antioxidant activity of sweet-potato cultivars with purple, orange,
and white flesh was correlated mostly with the presence of caffeoylquinic acid derivatives and less with
total anthocyanin content, whereas, according to Oki et al. [8], the contribution of phenolic compounds
in radical-scavenging activity is also dependent on the genotype. In contrast, according to the study of
Kubow et al. [125], anthocyanins are responsible for the antioxidant capacity of sweet-potato tubers.
In the same study, it was reported that the anthocyanin species were detected in the small intestinal and
the ascending colonic vessel, depending on the sweet-potato genotype, and the antioxidant activity
was increased accordingly [125]. According to the report of Meng et al. [126] who studied the digestion
kinetics of sweet-potato polyphenols, the maximum release was recorded 2 h after intestinal digestion
and was induced by gastric acid and pepsin [126]. Moreover, acylated anthocyanins from sweet potato
are considered as complex and less susceptible to intestinal degradation [127,128], while Sun et al. [129]
suggested a prebiotic-like activity of anthocyanins through the modulation of microbiota in the intestine.
These results highlight the importance of unraveling the bioavailability and bioaccessibility patterns
influencing the antioxidant potential of purple-fleshed sweet potatoes [125].

Acylated anthocyanins are responsible for the intense color of purple-fleshed sweet
potatoes [66,130], which renders them good candidates sources for natural colorants with practical
application in the food industry [131]. Moreover, peels are also a good source of natural
pigments since they contain significant amounts of anthocyanins, and the exploitation of this
by-product for obtaining coloring agents would increase the added value of the sweet-potato
crop [74]. The total anthocyanin content and compositional profile may differ among the various
genotypes, with a total of 39 different anthocyanins isolated so far [132,133]. The main anthocyanins
isolated from purple sweet-potato extracts were identified as cyanidin, peonidin, and pelargonidin
derivatives [26–30,110,134,135], which were effective against alcohol-induced liver injury in rats when
administrated at median doses (100 mg·kg−1 body weight), whereas higher doses (300 mg·kg−1

body weight) had a pro-oxidant effect and promoted liver injury [136]. Moreover, cyanidin
3-caffeoyl-p-hydroxybenzoyl sophoroside-5-glucoside which was isolated from purple-fleshed sweet
potatoes was shown to be effective both in vitro and in vivo in inhibiting hepatic glucose secretion and
reducing blood glucose [137–139], while peonidin suppressed the excessive expression of the HER2
protein showing anticancer activities [140]. According to Luo et al. [141], cyanidin 3-caffeoyl-feruloyl
sophoroside-5-glucoside and peonidin 3-dicaffeoyl sophoroside-5-glucoside were the most effective
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anthocyanins isolated from the purple sweet-potato cultivar Eshu No. 8. In another study, the oral
administration of purple sweet-potato color attenuated cognitive deficits in domoic acid-treated
mice through mitochondrial biogenesis signaling and the decrease of p47phox and gp91phox
expression [142], while similar results were reported by Zhuang et al. [143], who suggested the
regulation of AMPK/autophagy signaling as the mechanism of action. The same pigment was effective
against neuroinflammation in mouse brain through the inhibition of mitogen-activated protein kinase
(MAPK) and the activation of nuclear factor κB (NF-κB) [144], as well as against bladder cancer
through the inhibition of the signaling of phosphatidylinositol-4,5-bisphosphate 3-kinase/Akt or
protein kinase B (PI3K/Akt) [145]. In particular, for mitochondrial biogenesis, it was reported that
anthocyanins can bind and stimulate estrogen receptor-α and then increase the expression of nuclear
respiratory factor-1 (NRF-1) [146]. Anthocyanin-rich extracts from purple sweet potato were moderately
effective against human colon cancer cell lines (HCT-116 and HT-29) through the inhibition of tyrosine
kinase activity, whereas they showed no effectiveness against the CCD-33Co cell line [67]. Moreover,
Yoshimoto et al. reported that the antimutagenic activity of sweet-potato extracts was attributed
mainly to cyanidin content (63% inhibition of mutagenicity of Trp-1 against Salmonella tymphimurium
TA 98 at the dose of 1.5 mM) [147], while Zhao et al. suggested that anthocyanin-rich extracts from
sweet potato are potent anti-aging (at the dose of 1000 mg/kg body weight), anti-hyperglycemic
(at the dose of 1 g/kg body weight), and anti-tumor agents (68% tumor inhibition at the dose of
1000 mg/kg body weight) [148]. In another study, highly acylated anthocyanins showed effectiveness
against hyperuricemia and kidney inflammation in allopurinol-induced hyperuricemic mice [149],
while purple sweet-potato color reduced renal damage through the downregulation of vascular
endothelial growth factor receptor (VEGFR2) expression [150]. The regular intake of anthocyanins is
also highly associated with the prevention of various chronic liver diseases, and it can reduce lipid
accumulation in liver tissues and alleviate oxidative stress and hepatic inflammation [25,102,151–156].
Other hepatoprotective effects of purple sweet potatoes include hepatic insulin resistance in high-fat
diet-treated mice through the decrease of reactive oxygen species (ROS) production and the inhibition
of endoplasmic reticulum (ER) liver stress (administration of purple sweet-potato color at the dose
of 700 mg/kg/day) [157], through the decrease in the expression of ionized calcium-binding adapter
molecule 1 (Iba1), tumor necrosis factor-α, interleukin-1β, suppressors of cytokine signaling3 (SOCS3),
and galectin-3 (administration of purple sweet potato color at the dose of 500 mg/kg/day) [158],
or through the inhibition of nucleotide-binding domain, leucine-rich repeat (NLR) family, pyrin
domain containing 3 (NLRP3) inflammasome activation (administration of purple sweet potato color
at the dose of 700 mg/kg/day) [159]. Moreover, the combinative use of black soybean and purple
sweet potato (mixtures of 2:2 for black soybean and purple sweet potato) resulted in improved
insulin sensitivity in streptozotocin-induced diabetic rats through the improvement of insulin and
insulin receptor substrate-1 (IRS-1) expression, the increase of superoxide dismutase (SOD) levels,
and reduced pancreatic necrosis [160]. In a similar study, the mixture of Curcuma longa L. and sweet
potato (at the dose of 2–5 mg/kg body weight) showed significant immunomodulating properties
in murine leukemia retrovirus-infected mice [161]. The administration of purple sweet potato to
obese mice fed with a high-fat diet exhibited anti-obesity effects and attenuated gain weight [162].
Other bioactive compounds of purple sweet potatoes include alkali-soluble polysaccharides which
presented anti-inflammatory properties in lipopolysaccharide (LPS)-treated macrophages (RAW
264.7) through the inhibition of nitric oxide, interleukin (IL)-6, IL-1β, and tumor necrosis factor
alpha (TNF-α) and the increase of IL-10 [163], as well as anti-inflammatory effects against intestinal
inflammation on dextran sulfate sodium (DSS)-induced mice [164], hepatoprotective properties [165],
and immunomodulatory effects [166–168]. Non-flavonoid compounds and kaempferol derivatives
are also present in sweet-potato tuber tissues, and they contribute to the overall bioactive capacity of
sweet potato [28].

Processing and storage conditions are important for the chemical composition and the visual
quality of sweet-potato tubers, with heating treatments and higher pH having a detrimental effect on
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anthocyanins and starch content and on flesh color [139,169–172]. Pretreatments such as blanching,
osmotic dehydration, ultrasound-assisted dehydration, and ultrasound-assisted osmotic dehydration
before microwave drying also had an impact on total phenolic and anthocyanin content of orange- and
purple-fleshed sweet-potato slices [173]. Domestic cooking processes may also affect total anthocyanin
and total phenolic content, with steaming suggested as the mildest process to retain the highest amount
of total anthocyanins compared to fresh samples, while, at the same time, an increase in total phenolic
content was observed by Phan et al. [174]. In a similar study, steaming, roasting, and boiling were
suggested as the best cooking methods for retaining total phenolic, anthocyanin, and carotenoid
content, respectively, in white, yellow, orange, light-purple, and deep-purple sweet-potato tubers [10].

2.3. Carrot

Carrot (Daucus carota L. ssp. sativus Hoffm.) belongs to the Apiaceae family and is a highly
appreciated vegetable consumed for its edible fleshy roots. There are two cultivar groups depending on
root color, namely, the carotene or western carrot (Daucus carota ssp. sativus var. sativus) and the eastern
or anthocyanin carrot (Daucus carota ssp. sativus var. atrorubens Alef.), which are widely cultivated
throughout the world with an annual production of 42.8 million tons including turnips [115]. Although
the orange-colored carrots are the most popular ones, a broad genetic basis exists with many other
shades of root flesh (red, white, yellow, black, purple, or multi-color) which attract interest due to their
nutritional value and associated health effects [175]. Recently, new genetically biofortified cultivars
were developed which contain not only α- and β-carotene but also anthocyanins and lycopene [176].
In particular, for black or purple carrots, several research reports highlighted their beneficial health
effects on human health, and they are widely used so far as natural sources of blue color and functional
ingredients in the food industry [33,40].

Black carrots contain high amounts of mono-acylated anthocyanins which are less prone to thermal
degradation, while they can retain their color at various pH values and storage conditions [31,32,34].
These functional and structural characteristics of colored carrot pigments make them good candidates
for the extraction of natural colorant agents with practical applications in the food industry, especially
in food products with low pH, in beverages and confectioneries [40,131,177]. However, despite
their stability under various conditions, Espinosa-Acosta et al. [82] did not suggest their use in food
models such as yoghurt and jelly, except for the case of ethanolic extracts of black carrots, which
could be incorporated into jellies to increase the antioxidant activity of the final product. Moreover,
Assous et al. [86] suggested the use of black-carrot pigments as coloring agents in hard candy and
sweet jelly without significant differences in the sensorial profile compared to the control, while the
same pigments protected sunflower oil from lipid peroxidation. The use of black-carrot extracts was
also proposed for the preparation of jams and marmalades, where the main anthocyanins were slightly
affected after gastric ingestion and storage at 4 ◦C [178], as well in co-pigmentation with other natural
colorants (e.g., plum, jamun, strawberry, and pomegranate juices), to increase the color stability to heat
treatments and pH variation [179]. On the other hand, red and yellow carrots are rich in carotenoids
and lycopene and β-carotene in particular [37,38], which, according to Horvitz et al. [180], are both
bioavailable and can provide a significant amount of these carotenoids to human diet.

The main anthocyanins detected are mostly cyanidin derivatives, and, according to
Frond et al. [48], the most abundant anthocyanin identified in black-carrot extracts was
cyanidin-3-(p-coumaroyl)-diglucoside-5-glucoside. In the study of Montilla et al. [33], the main
detected anthocyanins in Daucus carota subsp. sativus var. atrorubens Alef. were identified as acylated
cyanidin 3-xylosyl(glucosyl)galactosides with sinapic acid, ferulic acid, and coumaric acid, and
significant differences were observed between genotypes (Antonina, Beta Sweet, Deep Purple, and
Purple Haze) in terms of total and individual anthocyanin content. Similar results were reported
in the earlier study of Kammerer et al. [181], with acylated and non-acylated cyanidin derivatives
found in the highest amounts, while they also suggested significant differences between 15 different
black-carrot cultivars, as well as between roots of the same cultivar. Moreover, in black-carrot juice,
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two more compounds were identified, namely, cyanidin-3-xylosyl-galactoside and cyanidin-3-xylosyl
(feruloylglucosyl)galactoside [35], while Schwarz et al. [36] isolated four more pigments identified as
vinylphenol and vinylguaiacol adducts of cyanidin derivatives which are formed during the storage
of juice through the reaction of phenolic acids with anthocyanins. Regarding the health effects of
anthocyanins, extracts from purple carrot were moderately effective against HCT-116 human colon
cancer cell lines through the inhibition of tyrosine kinase activity, whereas they showed no effectiveness
against HT-29 and CCD-33Co cell lines [67]. Yet, black-carrot crude extracts exhibited significant
antioxidant, cytoprotective, and anti-angiogenic properties, indicating a synergistic effect of the
various polyphenols (anthocyanins, phenolic acids, and flavonoids) contained in the root extracts [182].
Although non-digested purple carrot extract is more potent than the digested extract, Olejnik et al. [183]
reported that gastrointestinal digested purple-carrot extract had intracellular ROS-inhibitory activity
and protected colonic cells against oxidative stress by reducing oxidative DNA damage by 20.7%.
According to Blando et al. [184], the anthocyanin-rich extracts from black carrots contained mostly
anthocyanins acylated with cinnamic-acid derivatives, which exhibited anti-inflammatory activities
through the reduction of the expression of endothelial inflammatory antigens. Apart from anthocyanins,
black carrots are a good source of phenolic acids, namely, chlorogenic and caffeic acids, which contribute
to the overall antioxidant capacity [48,185].

Processing may affect the chemical composition and antioxidant properties of black-carrot
juice, and the use of pectinase during maceration increased the total anthocyanin content, the overall
antioxidant capacity, and the juice yield of enzyme-treated compared to normally pressed juice [186,187].
The use of ultrasound and mild heating (50 ◦C) may increase the extraction yield of anthocyanins from
black-carrot pomace, especially the content of cyanidin-3-xyloside-galactoside-glucoside-ferrulic acid
and cyanidin-3-xyloside-galactoside, which were detected in the highest amounts [71]. Another
processing treatment which could increase the bioavailability and stability of anthocyanins in
black-carrot-based food products is the microencapsulation of anthocyanin-rich extracts [83]. Moreover,
wounding stress may increase anthocyanin content, chlorogenic acid in particular, thus improving the
nutritional and functional value of the obtained food products [188].

2.4. Beet Root

Beet or table beet (Beta vulgaris L.) belongs to the Amaranthaceae family and is commonly used
for its edible fleshy red roots and tender leaves. Beet roots contain betalains, a class of compounds
which is further divided into betacyanins and betaxanthins [39]. The composition of betalains and the
ratio of betacyanins to betaxanthins depends on tyrosine production and its conversion to betalains,
with significant differences observed between red and yellow beet roots [189]. The most commonly
found betacyanins are betanins which are responsible for the red vivid color of beet roots, and they are
water-soluble and sensitive to prolonged heating [40]. Betanins are commercially available as color
additives (E162) in powder form or as juice concentrates following vacuum evaporation [39]; however,
there is a great diversity in flesh color among the beet-root genotypes with variable intensities of red color
or other shades ranging from white to orange. Apart from the genotype, color intensity is also affected
by growing conditions and maturity stage, storage conditions, and processing treatments [88,190,191].
Beet roots with yellow color are most abundant in betaxanthins, while betacyanins are present in lesser
amounts [41]. In the study of Wettasinghe et al. [192], beet-root genotypes with diverse flesh colors
exhibited significant differences in antioxidant activity and in phase II enzyme induction capacity,
which is associated with cancer chemoprotective effects [192]. Moreover, Lee et al. [42] reported that
betanine and betaine extracted from red- and yellow-colored beet roots were effective against HepG2
cell proliferation in a dose-dependent manner. In the same study, the main identified betalains detected
in the cultivar with yellow roots (Burpee’s Golden Globe) were vulgaxanthin I and betanin [42].
Vulić et al. [193] also reported that the beet-root pomace, a by-product of the beet-root juice extraction,
has a high content of betalains and phenolic compounds which exhibited in vitro antiradical activities
against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals and in vivo antioxidant and hepatoprotective
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activity, suggesting that it could be used as an excellent nutraceutical resource or an ingredient of
functional food products.

2.5. Yam

Yam includes various species of the Dioscorea genus (Dioscoreaceae), although sometimes it is
confused with other root vegetables such as sweet potatoes, oca, taro, etc., which locally may be referred
to as yams [194]. Tuber flesh color can be white, yellow, red, or purple depending on the cultivar, with
significant differences in bioactive compound content and antioxidant properties [194,195]. Purple
yam or water yam (Dioscorea alata purpurea) is usually cultivated in tropical and subtropical regions of
the world, and its edible roots are very rich in starch and amylose [196], although a great variation
in chemical composition of the edible parts of the species was reported [197]. Resistant starch from
purple yam (D. alata) was effective against hyperlipidemia in high-fat diet-fed hamsters through
the amelioration of lipid metabolism and the modulation of gut microbiota [196,198]. Moreover,
extracts from roots significantly reduced blood glucose levels in Wistar rats with alloxan-induced
hyperglycemia [199] or cholesterol (total and low-density lipoprotein (LDL)) and triglycerides in
hypercholesterolemic rats [200], ameliorated doxorubicin (DOX)-induced cardiotoxicity [201], showed
protective effects against aniline-induced spleen toxicity [202] and in vivo anti-inflammatory activities
against λ-carrageenan-induced paw edema in mice [203], and could be used as an adjuvant in
bone-marrow-derived dendritic cell (DC)-based vaccines for cancer therapy [204]. D. alata root extracts
may also alleviate cellular fibrosis through the downregulation of the transforming growth factor-beta
(TGF-β)/Smad signaling pathway and the modulation of epithelial–mesenchymal transition (EMT)
expression in kidneys [205]. On the other hand, according to Chan et al. [206], root extracts are
also effective against CCl4-induced liver injury and hepatic fibrosis. Other health effects include
the improvement in function of large bowel and modulation of fecal microflora [207], beneficial
effects in gastrointestinal function [208] and cognitive ability [209,210], and the activation of the
immune system [211]. The root color of purple yam (D. alata) is attributed to the high content of
anthocyanins which exhibit significant antibacterial activities [212], anti-inflammatory effects on
trinitrobenzenesulfonic acid (TNBS)-induced colitis in mice [213], antiglycative properties [214], and
antidiabetic properties [215,216]. The main detected anthocyanins in this species were identified as
cyanidin, pelargonidin, and peonidin-type compounds and alatanins A–C [43]; however, the individual
compound profile and the overall anthocyanin content are affected by maturity stage and the expression
of the concomitant genes [44]. Apart from D. alata, which is considered the main purple yam, there
are also cultivars of D. trifida or cush-cush yam which contain peonidin, cyanidin, and pelargonidin
aglycones [45]. Other compounds with bioactive properties are also present, namely, phenolic acids
such as ferulic, sinapic, vanillic, caffeic acid, and p-coumaric acid, and others, which presented
immunomodulatory properties [217,218], proteins with estrogen-stimulating activities that may relieve
menopausal syndrome [219], allantoin and dioscin [220], dioscorin [221], or β-sitosterol and ethyl
linoleate with anti-atherosclerotic activity [222]. On the other hand, carotenoids and β-carotene in
particular are responsible for the root color of yellow yam (D. cayennensis) [47]. Yam roots may
contain antinutritional factors such as tannins and diosgenin, which also present bioactive properties.
For example, antidyslipidemic effects were reported for diosgenin extracts from purple and yellow
yams without affecting body weight gain [220,223], while diosgenin and furostanol glycosides and
spirostanol glycosides were effective against the proliferation of various cancer cell lines (MCF-7, A
549, and Hep G2) [224].

A very common use of purple yam is the substitution of wheat flour for bakery products and food
products in general without affecting the sensorial acceptance of the products by consumers [225–227],
while yam flour can be used for gluten-free bakery products [228].
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2.6. Onion

Onion (Allium cepa L., Alliaceae) is one of the most important species of the Allium genus, which is
commonly used for its edible bulbs. There is a great number of cultivars available with a great diversity
in color, which usually refers to bulb skin color, since, in most cases, the presence of pigments is limited
to the outer skins of the bulb [229]. In many countries, onion bulbs are considered the main dietary
source of flavonoids, a high proportion of which is attributed to the anthocyanin content [70,230].
However, most of the studies refer to red-onion cultivars which contain various polyphenols including
acylated and non-acylated cyanidin glucosides, and less information is available about the profile
of anthocyanins in purple onions [48,49]. The biosynthesis of anthocyanins involves the shikimate
pathway and the activity of anthocyanidin synthase, which catalyzes the production of anthocyanidins,
and, after further enzymatic reactions, the various anthocyanins are produced [5]. Comparing green,
yellow, red, and purple onion, Benkeblia [231] observed higher total phenolic content and antioxidant
properties in red and purple onion-bulb extracts. Similar results were reported by Zhang et al. [232]
in a study comparing white, yellow, and red onion, with the latter showing considerably higher
total anthocyanin, flavonoid, and polyphenol content, which was also correlated to high antioxidant
activity measured through DPPH, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS•+), and
fluorescence recovery after photobleaching (FRAP) assays. Bulb extracts are potent bioactive natural
matrices, and, according to the study of Oboh et al. [233], extracts of purple onion were effective against
angiotensin-converting enzyme, α-amylase, andα-glucosidase activity, showing significant antidiabetic
and anti-hypertensive effects. Moreover, skins of pearl onion exhibited significant anti-inflammatory
properties and inhibitory effects against radical-induced DNA scission [234]. In terms of antioxidant
activity, purple onions exhibited higher oxygen radical absorbance capacity (ORAC) values than white
onions, which indicates a higher concentration of bioactive compounds [235]. A preliminary study
conducted by Khiari et al. [236] suggested that, depending on the quality of the plant residues, onion
solid waste, also constituted primarily by the outer dry layers of the bulbs, may be used to extract
polyphenols with potential antioxidant activity, and the yield of total polyphenols can be optimized
using ethanol extracts, with extraction time up to 6 h, while maintaining relatively low extraction
temperature (40 ◦C gave better results than 60 ◦C).

2.7. Other Root Vegetables

Radish (Raphanus sativus L., Brassicaceae) is a cruciferous species, well known for its normally
white edible fleshy hypocotyls which come in different shapes, sizes, and skin colors. Apart from
white-fleshed cultivars, there are also genotypes with pink and purple hypocotyls due to the presence of
pigments in the xylem [50]. Pigmentation may also change with the hypocotyl development stage [237].
Purple color implies the presence of anthocyanins, and, according to the study of Reference [51], 60
different compounds were detected and identified as cyanidin glucosides. Most of the anthocyanins
are present in acylated forms of cyanidin glucosides which increase their stability, and they could be
easily used as natural colorants in functional foods [7,50,238,239], while root extracts may also exhibit
beneficial health effects against gastric injuries [240].

Purple kohlrabi (Brassica oleracea var. gongylodes) is another species of the Brassicaceae family with
intense purple color, whose edible part is the swollen fleshy meristem. The pigments are located in the
meristem skin and consist of cyanidin and cyanidin glucosides which are responsible for the strong
antioxidant properties of the species [54–57]. Examining the antioxidant activity of kohlrabi ethanol and
water extracts, Pak et al. [241] observed strong DPPH radical-scavenging activity, and purple kohlrabi
extracts had higher antioxidant capacity compared to green kohlrabi extracts. Similarly, comparing
green and red kohlrabi, Jung et al. [242] observed that the latter had double the total phenolic content,
as well as a higher antioxidant (DPPH, ABTS, and peroxynitrite scavenging activity assay (ONOO−))
effect compared to green kohlrabi. In the same study, red kohlrabi methanol extract had stronger
anti-inflammatory, antidiabetic, and antioxidant effects than the green kohlrabi methanol extract.
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Taro (Colocasia esculenta L.) is a root vegetable of the Araceae family with great genetic diversity
in plant morphology, including the color of corm flesh, which can be white, purple, brown, or
blackish [57,243,244]. The main detected anthocyanins were identified as cyanidin and pelargonidin
glucosides, and they exhibit significant antioxidant and anti-inflammatory activities [58].

3. Conclusions

Root vegetables with intense and uncommon colors are very important in the human diet, not
only because they increase the overall intake of health-promoting compounds, but also because they
diversify the daily diet in terms of color, flavor, and chemical composition, which imparts distinct
functional effects on the human body. The inclusion of such root vegetables either raw in fresh
salads or in cooked dishes may increase palatability and appeal for healthier food products, although
proper marketing is always an issue since consumers are usually reluctant to introduce new flavors
and unconventional products that break the mold. Nevertheless, the current trends in the food
and beverage market and the increased public demand for substituting synthetic compounds with
natural alternatives could boost the establishment of these species and help the crossing over from
niche products to widely accepted ones with diverse uses in the food industry. Further research is
also needed in order to (i) identify those correlations and mechanisms of action responsible for the
antioxidant properties and health effects of the pigmented vegetables, (ii) evaluate agronomic practices
that will increase the bioactive capacity of the final products through the improved pigmentation,
(iii) study post-harvest and processing treatments that will make these compounds less prone to
degradation and easier to use in the design of functional foods and as natural coloring agents, and
(iv) define efficient extraction protocols that will allow high yields and high stability and quality of
coloring agents extracted from plant sources. Finally, increasing the knowledge about the chemical
composition and the health effects of individual compounds of colored root vegetables could be further
exploited through breeding programs for the production of elite genotypes with increased content of
coloring compounds and tailor-made health effects, as well as through plant in vitro strategies for the
production of specific natural secondary metabolites and further use in the pharmaceutical and the
food and beverage industries.
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