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Abstract. A second-order approximation of adsorbate uptake rate is 
presented. The derivation of this approximation is based on the methodology 
developed by Georgiou & Kupiec (1996). Computations have been 
performed for different pellet geometries and boundary conditions for which 
analytical solutions are available. The results obtained are of high accuracy, 
significantly improving on other available approximations. An illustration of 
the application of the new model for kinetic parameters estimation is 
presented. 

 
 
1.  INTRODUCTION 
 
Modeling of many transient mass and/or heat transfer processes leads to coupled 
partial differential equations involving time and spatial variables. The unsteady-state 
diffusion and adsorption in particles is described by the following equation. 
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The meaning of variables and parameters in (1.1) depends on the diffusion model 
and is given in Table 1 below. 
 
 

Table 1. Definitions of variables and parameters in diffusion model (1.1) 
 

Variables / 
Parameters 

Pore diffusion  
model 

Solid diffusion  
model 

Q C q 
D Dp Ds
a εp + K 1 

 
 
Analytical solutions of equation (1.1) are available (Crank 1956) for a number of 
initial and boundary conditions. These solutions are often in the form of infinite 
series and are not easy to use. The substantial simplification of computations is 
achieved by the use of driving-force approximations of the form 
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       ( , )R
dQ f Q Q
dt

=                (1.2) 

 
and has motivated numerous studies for the development of such models. 
 
 
The first and most widely used driving-force approximation is the Linear Driving-
Force (LDF) approximation suggested by Glueckauf & Coates (1947) as follows. 
 

       ( 2)(1 ).              (1.3) dA m m A
dτ

= + −

nd showed that as the degree of the polynomial increases indefinitely, the 

uzanowski & Yang (1989) derived an extended linear driving-force approximation 

ermeulen (1953) formulated the following QDF approximation. 

 
Glueckauf (1955) presented a justification of the LDF model and a discussion of its 
applications. Liaw et al. (1979) showed that a LDF model may be derived if a 
parabolic intraparticle concentration profile is postulated. Yao (1991) and Yao & 
Tien (1992) showed that the LDF approximation is equivalent to solving the 
intraparticle diffusion equation by the least-squares method with a parabolic 
concentration profile. A detailed analysis of the applications and limitations of the 
LDF approximation is given (for example) in Hills (1986) and Yang (1987). 
Nevertheless, it is important to note that the parabolic profile leads to a physical 
inconsistency: for τ < 0.061 a portion of the concentration profile is negative (Do & 
Mayfield 1987). Furthermore the results for τ < 0.05 are underestimated (Do & Rice 
1986). 
 
Do & Rice (1986) suggested a quartic profile approximation. The solution in this 
case is valid for τ > 0.015. Yao (1991) obtained the best (in least-squares sense) 
uptake rate expression corresponding to the quartic profile approximation. The 
expression was found to be accurate at large time but still underestimated the uptake 
rate at small times. 
 
Tomida & McCoy (1987) considered a polynomial concentration profile of the form 
 

                     (1.4) 
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a
polynomial profile equates to the exact solution. 
 
B
based on a cubic intraparticle concentration profile. The extra coefficient in this case 
is an adjustable parameter. This approximation is valid both for large and small 
times. However, Kikkinides & Yang (1993) have shown that the cubic profile is 
mathematically unacceptable to satisfy equation (1.1). 
 
V
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Do & Mayfield (1987) considered the following intraparticle concentration profile. 
 
                      (1.6) 

here, a , a  and n are functions of time. This profile approximation leads to a 

0 ,n
nQ a a x= +

 
w 0 n
Quadratic Driving-Force (QDF) expression for the uptake rate: 
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−

= − +            (1.7) 

 
esembling Vermeulen’s (1953) QDF model (equation 1.5). Model (1.7) is valid for 

     

r
τ > 0.003.  
 
Do & Mayfield (1987) mention that profile (1.6) leads to a physical inconsistency: 
for non-even values of n, the symmetry of the concentration field at the particle 
center is violated. 
 
Yao & Tien (1993) presented new approximations of the uptake rate that are valid 
both at small and large times. These approximations were obtained by making the 
assumption that the significant part of the concentration profile within a pellet may 
be represented by a parabolic profile over a spatial domain that expands with time. 
This profile is given by 
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eorgiou & Kupiec (1995) applied an exponential approximation of the intraparticle 

where a0, a1, a2 and δ (the concentration layer thickness) are functions of time. 
 
 
G
concentration profile and developed a new driving-force model given by following 
equation. 
 

       2 18 1( )(1dA A ).A
d A

π
τ π

−
= + −             (1.9) 

 
The same authors presented a new methodology for the derivation of driving-force 
approximations based on an analysis of exact analytical solutions for the particular 
case of negligible external mass-transfer resistances. This methodology allowed for 
the derivation of approximate models for all basic pellet geometries (Georgiou & 
Kupiec 1996).  
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The purpose of the work presented here is to obtain a second-order driving force 
approximation using the methodology of Georgiou & Kupiec (1996). It is shown 
that the model obtained is (analytically) integrable and is applicable to all three basic 
pellet geometries, namely: slab, infinite cylinder and sphere. A substantial 
superiority on the accuracy of the new model as compared with other available 
approximations is demonstrated. 
 
 
2.  MODEL OF THE PROCESS. EXACT SOLUTIONS AND                                              

APPROXIMATIONS 
 
We consider the case of a particle with a uniform initial concentration Q0 subject to 
a unit-step change of the concentration at r = R. In this case, the system is described 
by equation (1.1) with the following initial and boundary conditions. 
 
      t = 0,   Q = Q0;                         (2.1a) 
 

     r = 0,   0;Q
r

∂
=

∂
                       (2.1b) 

 
     r = R,   Q = QR.                        (2.1c) 
 
 
The following change of variables in (1.1) and (2.1): 
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leads to equation 
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with conditions 
 
     τ = 0,   Y = 0;                           (2.3a) 
 

     x = 0,   0;Y
x

∂
=

∂
                        (2.3b) 

 
     x = 1,   Y = 1.                          (2.3c) 
 
 
The analytical solution in this case (Crank 1956) is given by 
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where an depend on the pellet geometry and A is the volume-averaged value of Y, 
i.e. 
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At short times, upon a step change, the particle may be treated as a semi-infinite 
medium and this assumption leads to the following approximation (Crank 1956). 
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applicable for τ < 0.01. At large times, the series in equation (2.4) converges rapidly 

ollowing the methodology of Georgiou & Kupiec (1996), we define the following 

     

and, by retaining only the first term, the fractional uptake can be estimated with 
satisfactory accuracy. 
 
 
F
function. 
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r, equivalently (using 2.4)  
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hen, it is not difficult to show that 
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ote that since F = F(τ) and A = A(τ), we can obtain dependency F = F(A)). 

e next define another function as follows. 
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It follows (using 2.6) that 
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2
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and (using 2.10) 
 
       lim ( ) 0.G

τ
τ
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In figure 1 below is shown the dependency G = G(A) for the three basic pellet 
geometries. 
 
 

 
Fig. 1: Comparison of exact and approximate G(A) functions. 

- sphere, (b) approximate - sphere, (c) exact - cylinder, (d) appr(a) Exact oximate - 
cylinder, 
, (f) appro(e) exact - slab ximate - slab. 
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Some earlier publish oposed second-order 

A. Zeroth-order approximations 
 

I. Linear driving-force approximation 
 

he LDF model is equivalent to the approximation 

     

ed approximations along with a pr
approximation may be considered as resulting from suitable approximations of 
function G(A). 
 
 

 

T
 
  ( ) 0.G A ≈                               (2.13) 

II. Vermeulen’s QDF approximation 
 

he QDF model (equation 1.7) is applicable only to spherical particles and it is 

     

 

T
equivalent to the approximation 
 

2

( ) 4.934.
2

G A π
≈ ≈                           (2.14) 

 
III. Do and Mayfield approximation 

 
he DM model (equation 1.5) is applicable only to spherical particles and it is 

     

T
equivalent to the approximation 
 
  ( ) 4.797.G A ≈                             (2.15) 

IV. Georgiou and Kupiec approximation 
 

he GK model (equation 1.8) is also applicable only to spherical particles and it is 

     

 

T
equivalent to the approximation 
 

18( ) .G A
π

=                                       (2.16) 

 

B. First-order approximation 
 

eorgiou & Kupiec (1996) developed the following first-order approximation (see 

      

 

G
figure 1). 
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This is equivalent to 

     
 

22( ) (1 ).mG A A
π

= −                           (2.18) 

 

C. Second-order approximation 
 

 second-order approximation of function G(A) is now proposed as follows. 
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 comparison of this second-order approximation with the exact function (2.10) is 

he resulting driving-force model is therefore given by equation  

   

 
A
shown in figure 1. 
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ith initial condition A(0) = 0. 

. ANALYTICAL SOLUTION 

he proposed model (2.20) may be solved analytically as follows. 

troducing z = 1 – A, (2.20) yields 
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on condition 
 
      m ≠ 2.                      (3.3) 

      z  = S + T + 

  
 
The first root of cubic polynomial P(z) is given by 
 

1
1
3

µ, 

 
where 
 

      S = 3 3 2 ,V U V+ +    T = 3 3 2 ,V U V− +  
 
 

      U = 
2

21 1
3 9M
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6 2 27M M
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It follows polynomial (3.2) may be factorized as 
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Now, separation of variables in (3.1) yields 
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Decomposing the integrand in right-hand side of (3.4) into partial fractions yields 
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It then follows that (3.4) yields, 
 
τ = Φ(z)                       (3.5) 
  

2
2 151 1
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where 
 

           Β5 = Β4 – 1
2

(z1 – µ)       

and   
2 2
6 1 1

1/ (
4

B M W z 2)α µ= + − −    (with condition  > 0). 2
6B

 
4.  SPECIAL CASES 
 
We now consider the second-order model (2.20) for the three basic pellet 
geometries. 
 
 
4.1. Slab 
 
A slab corresponds to parameter values m = 1 and α1 = 0.5π in equation (2.20). Αs 
result, we obtain the following table of values for each of the coefficients that arose 
in the analysis of section 3. 
 
It follows that (3.5) (with substitution A = 1 – z and initial condition A(0) = 0) 
becomes 
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 τ =   20.405ln |1 | 0.176ln | 3.350 | 0.114ln | 4.350 4.999 |A A A A− − + − + − +
 

            1 0.1750.281tan
0.517

A− − −
+  – 5.181.              (4.1) 

 
 

Table 2. Coefficient values for slab (m = 1 and α1 = 0.5π) 
 

Coefficient Numerical value 
 

M –0.5π = –0.636620 
U –1.291928 
V –1.937892 
S –0.876485 
T –1.473988 
µ 0 
z1 –2.350473 
W (S + T)2 = 2

1z = 5.524723 
Β1 –0.405284 
Β2 0.176328 
Β3 0.228955 
Β4 –0.123698 
Β5 0.145378 
Β6 517455.0  = 0.267759 

 
 
4.2. Sphere 
 
A sphere corresponds to parameter values m = 3 and α1 = π in equation (2.20). Αs 
result, we obtain the following table of values for each of the coefficients that arose 
in the analysis of section 3. 
 
 

Table 3. Coefficient values for sphere (m = 3 and α1 = π) 
 

Coefficient Numerical value 
 

M 9/π = 2.864789 
U 0.148381 
V 1 
S 1.260264 
T –0.117738 
µ 1 
z1 2.142526 
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W (S + T)2 – (S + T) – 2 = –1.837160 
Β1 –0.101321 
Β2 –0.091446 
Β3 0.267066 
Β4 –0.192555 
Β5 –0.078054 
Β6 424167.1  = 1.193385 

 
 
It follows that (3.5) (with substitution A = 1 – z and initial condition A(0) = 0) 
becomes 
   τ =   20.101ln |1 | 0.091ln | 1.143 | 0.134ln | 1.143 1.751|A A A− − − − − + − +A
 

        1 1.4290.065 tan
1.193

A− −
+  – 3.216.              (4.2) 

 
 
4.3. Cylinder 
 
A cylinder corresponds to parameter values m = 2 and α1 = 2.4048 in equation 
(2.20). This is a degenerate case (see condition 3.3) for the analysis of section 3, as 
parameter µ → ∞. Hence, a separate analysis must be followed. 
 
 
The model equation (2.20) becomes 
 

      
2,

2
1

8 (1 ){ }dA A (1 )A
d A

α
τ π

−
= + − ,             (4.3) 

 
with initial condition A(0) = 0,   or   (z = 1 – A) 
 

      – (1 ) ( )c
dzz zP
dτ

− = z   (with z(0) = 1),          (4.4) 

 
where 
 

2 2 2
1 1

8( ) .cP z z zα α
π

= − +               (4.5) 

 
Note that Pc(z) may have real roots for 2

1
32α
π

≥ . Hence, for the cylinder case (α1 = 

2.4048) Pc(z) has no real root. 
 
 
Now, separation of variables in (4.4) yields 
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2

(1 ) 0.393(1 ) .
( ) ( 2.271 2.271)

z zd dz
zP z z z z

τ − − − −
= =

− +∫ ∫ ∫ dz              (4.6) 

 
Decomposing the integrand in right-hand side of (4.6) into partial fractions yields 
 

    
2 2

0.393(1 ) 0.173 0.173 .
( 2.271 2.271) 2.271 2.271

z z
z z z z z z

− − −
= +

− + − +
 

 
It then follows that (4.6) (with substitution A = 1 – z and initial condition A(0) = 0) 
yields, 
 
τ =                         (4.7) 
  2 1 0.1360.173ln |1 | 0.086 ln | 0.271 1| 0.198 tan

0.991
AA A A − − −

− − + + + +  – 1.543. 

 
5.  COMPARISON BETWEEN THE EXACT AND THE APPROXIMATE 

MODELS 
 
The validation of approximate models is based on their comparison with the exact 
solution (equation 2.4). In figure 2 is shown a comparison of the uptake curves for 
each of the pellet geometries presented in section 4 resulting from the exact and 
approximate model (2.20). It is evident that the agreement between the two models 
is very good. 
 

 
Fig. 2: Comparison of exact and approximate uptake curves. 

(• - exact, lines - approximate; 1 - slab, 2 - cylinder, 3 - sphere) 
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The percent relative errors resulting from the application of model (2.20) are shown 
in figure 3 for each of the above-mentioned geometries. Note that the maximum 
error does not exceed 2.5%. 
 
 
 

 
 
 

Fig. 3: Percent relative errors resulting from the application of the approximate 
model. 

(1 - slab, 2 - cylinder, 3 - sphere) 
 
 
For comparison purposes, the percent relative errors resulting from the application 
of the widely applied LDF model (recall equation 1.3) that yields 
 
       ALDF = 1 – e–m(m+2)τ,                 (5.1) 
 
are shown in figure 4. Observe that the LDF model at small times underestimates the 
fractional uptakes by more than 80%. This, clearly, indicates that the proposed 
approximation (2.20) is more suitable than the LDF approximation for the modeling 
of kinetic separations. 
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Fig. 4: Percent relative errors resulting from the application of the LDF model. 
(1 - slab, 2 - cylinder, 3 - sphere) 

 
 
6.  THE APPLICATION OF THE SECOND-ORDER APPROXIMATION IN 

KINETIC PARAMETER ESTIMATION 
 
An important application of the proposed model is the estimation of kinetic 
parameters. The resulting analytical solution of the approximate model (see equation 
3.5) may be written as 
 

       
2( ) .DA t

R a
Φ =                (6.1) 

 
The equation above shows a linear relation between function Φ = Φ(A(τ)) and time t, 
with gradient 

2

D
R a

. The experimental results by Yucel & Ruthren (1980) and Prinz 

& Riekert (1986) give estimates of this gradient, as shown in figure 5. Based on 

linear regression, diffusion times 
2

d
R at
D

=  were found to be td = 7037 [s] for 

nitrogen on zeolite 4A spherical pellets (line 1) and td = 604 [s] for benzene on 
zeolite slab pellets (line 2).  
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Fig. 5: Estimation of kinetic parameters. (• - experimental, lines - linear regression)  

(1 - Yucel & Ruthren (1980), 2 - Prinz & Riekert (1986)) 
 

 
Fig. 6: Comparison of the experimental data with the predictions of the approximate 

model.(• - experimental, lines – approximate model)  
(1 - Yucel & Ruthren (1980), 2 - Prinz & Riekert (1986)) 
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Finally, using the estimated td values, the fractional uptake curves were computed 
for sphere (using equation 4.1) and slab (using equation 4.2). A comparison of the 
experimental data and the computed fractional uptake curves is shown in figure 6. 

 
7.  CONCLUSIONS 
 
In this paper a second-order driving-force approximation of intraparticle mass 
transfer in adsorption processes with a linear isotherm and negligible external mass 
transfer resistances has been presented. The derivation of this approximation is 
based on an analysis of the available analytical solution of the problem, thus 
resigning from the widely exploited methodology based on intraparticle 
concentration profile approximations. The obtained approximate expression has 
been applied to batch adsorption systems for various pellet geometries. The obtained 
results have been compared with the exact analytical solution of each problem. It has 
been shown that the maximum errors do not exceed 2.5%, with the accuracy being 
even better in the small-time region. Furthermore, the proposed model has been 
applied to kinetic parameters estimation using experimental data from literature. It 
has been shown that the estimated kinetic parameters may be used for the accurate 
prediction of the fractional uptake curves. 
 
 
NOTATION 
 
a  defined in Table 1 
A  fractional uptake 
C gas-phase concentration 
D defined in table 1 
Dp effective pore diffusion coefficient 
Ds effective surface diffusion coefficient 
K linear equilibrium adsorption constant 
m  geometry factor 
q solid-phase concentration 
Q defined in table 1 
r radial coordinate 
R particle radius 
t time 
td diffusion time 
x dimensionless spatial variable 
Y  dimensionless solid phase concentration 
 
Greek letters 
 
ε  percent-relative error 
εp porosity of particle 
τ dimensionless time 
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Subscripts 
 
0  value at τ = 0 
1  value at surface 
∞  value at τ → ∞ 
R  value at r = R 
 
Superscripts 
 

  volume-averaged quantity 
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