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Abstract: This paper offers an extension of Cauchy’s first law of motion to deformable bodies with
internal resistance with application to earth pressures. In this respect, a unified continuum mechanics
approach for deriving earth pressure coefficients for all soil states, applicable to cohesive-frictional soils
and both horizontal and vertical pseudo-static conditions is proposed. Adopting Jaky’s (1944) sand
heap hypothesis, modified suitably to accommodate the needs of the present research, the analysis
led to generalized, yet remarkably simple in form, expressions for the “at rest”, active and passive
earth pressure coefficients. The validity of the proposed coefficients is strongly supported by the
fact that, under static conditions they are transformed into the well-known Rankine’s expressions for
cohesive-frictional soils for the active and passive state. Comparisons with widely used solutions
(e.g., Rankine’s and Mononobe–Okabe’s), design code practices (Eurocode 8-5; AASHTO), and results
from centrifuge tests further support the validity of the proposed coefficients. In the framework of the
present work, analytical expressions for the calculation of the depth of neutral zone in the state “at
rest”, the depth of tension crack in the active state, the required wall movement for the mobilization of
the active or passive state, as well as the mobilized shear strength of soil (for all states) are also given.
Finally, following the proposed approach, the earth pressure can be calculated for any intermediate
state between the state “at rest” and the active or passive state when the allowable wall movement
is known.

Keywords: Jaky’s coefficient of earth pressure at rest; Cauchy’s first law of motion; pseudo-static
analysis; mobilized shear strength of soil; active earth pressure coefficient; passive earth
pressure coefficient

1. Introduction

The earth pressure problem dates from the beginning of the 18th century, when Gautier [1] listed
five areas requiring research, one of which was the dimensions of gravity-retaining walls needed
to hold back soil. However, the first major contribution to the field of earth pressures was made
several decades later by Coulomb [2], who considered a rigid mass of soil sliding upon a shear surface.
Rankine [3] extended earth pressure theory by deriving a solution for a complete soil mass in a state of
failure, as compared with Coulomb’s solution which had considered a soil mass bounded by a single
failure surface. Mohr circles have also been used with great effect to derive solutions for the Rankine
analysis. Originally, the Rankine’s theory considered the case of only cohesionless soils. However, this
theory has subsequently been extended by Bell [4] to cover the case of soils possessing both cohesion
and friction. Müller-Breslau’s [5], on the other hand, gave a general solution for a purely frictional soil
which allows for sloping backfill, sloping back of wall and a frictional wall. This solution has been
obtained on the same basis as the Coulomb solution. Caquot and Kerisel [6] modified Muller-Breslau’s
equations to account for a nonplanar rupture surface. They used a logarithmic spiral to represent
the rupture surface instead. This modification is important for passive earth pressure where there is
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soil-wall friction, however, for the active pressure coefficient, the logarithmic spiral rupture surface
provides a negligible difference compared to Muller-Breslau. Despite of the fact the above solutions
are, in essence, the earliest approaches to the problem, they are, undoubtfully, the main methods used
in practice. The same also stands for Mononobe–Okabe’s method [7–9], which is an extension of
Müller-Breslau’s method to horizontal-vertical pseudo-static conditions.

Except for the above widely adopted solutions, numerous other evidential, closed-form, limit
analysis, limit equilibrium, discrete spring model, and continuum model approaches have been
proposed by various researchers for the calculation of the active and passive earth pressure.
The concept of these approaches is described in Clayton et al.’s [10] excellent book, “Earth Pressure
and Earth-Retaining Structures”.

The coefficient of earth pressure at rest has also received considerable attention over the years.
Theoretical approaches considering static conditions and cohesionless soils have been proposed by
Jaky [11], Rowe [12,13], and Hendron [14], whilst empirical correlations, among others, by Alpan [15],
Brooker and Ireland [16] and Schmidt [17]. Among all, Jaky’s [11] coefficient of earth pressure at rest,
Ko, which is based on Cauchy’s first law of motion, is by far the most widely used worldwide. Besides,
its reliability has been tested and validated by numerous researchers (e.g., [16,18–22]).

The present paper offers an extension of Cauchy’s first law of motion to deformable bodies with
internal resistance with application to earth pressures. In this respect, a unified continuum mechanics
approach for deriving earth pressure coefficients for all soil states, applicable to cohesive-frictional soils
and both horizontal and vertical pseudo-static conditions is proposed. In this framework, Jaky’s [11]
soil heap hypothesis will be adopted, for the derivation of generalized coefficients of earth pressure for
all soil states, i.e., at rest, active, and passive.

2. Cauchy’s First Law of Motion

Generally, the forces acting within a continuum are classified as either surface forces or body forces
according to their mode of application. Surface forces are transmitted by direct mechanical contacts
across imaginary surfaces separating given portions of the continuum. Body forces, such as gravity, act
throughout the volume of a body and they are assumed to behave as an action-at-a-distance, which is
the instantaneous action between two bodies in spatial separation.

Cauchy’s equations of motion (also known as Cauchy’s first law of motion) state that the
acceleration of an element within a continuum results from the application of surface and body
forces [23]:

∂σx
∂x +

∂τyx
∂y + ∂τzx

∂z + fx = ρ
..
ux

∂τxy
∂x +

∂σy
∂y +

∂τzy
∂z + fy = ρ

..
uy

∂τxz
∂x +

∂τyz
∂y + ∂σz

∂z + fz = ρ
..
uz


. (1)

The state of stress at a point in the medium is represented in the cubic volume element of material
of Figure 1.

While this is the apparent interpretation for a physicist, in engineering the interest is usually
concentrated in finding the state of stress in mediums. Thus, after some switching between causes and
effects, with the unknowns being the various stress components (σ and τ) inside the differential terms
of surface forces, Cauchy’s equations give the state of stress of an element within a continuum caused by the
application of body forces and accelerations.
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Figure 1. Cubic volume element of material representing the state of stress at a point in the medium. 
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3. The Role of Internal Resistance in Distribution of Horizontal Stress 

Perfect elasticity, namely that the medium is homogeneous, elastic, and isotropic, is not quite 
true for most natural soil profiles. The elasticity of materials is described by a stress–strain curve, 
which shows the relation between the average restorative internal force per unit area and the relative 
deformation. The curve is generally nonlinear, but it can be approximated as linear for sufficiently 
small deformations (Figure 2). Despite this approximation, the ideal assumption of the theory of 
elasticity, provides reasonably accurate results for vertical stresses. Unfortunately, the results for 
horizontal stresses can be significantly in error because of simplifying assumptions [24–26]. 
Apparently, one of the main simplifying assumptions, when the elastic theory is applied to soils, is 
the ignorance of the internal resistance of the latter. When deformation occurs, the arrangement of 
soil particles changes and the body ceases to be in its original state of equilibrium. Forces due to 
internal resistance therefore arise which tend to return the body to its initial state [27]. The internal 
resistance is nothing more than the resistance of soil to shear, part of which is mobilized before 
yielding. 

 
Figure 2. Elastic-perfectly plastic assumption. 

Figure 1. Cubic volume element of material representing the state of stress at a point in the medium.

3. The Role of Internal Resistance in Distribution of Horizontal Stress

Perfect elasticity, namely that the medium is homogeneous, elastic, and isotropic, is not quite
true for most natural soil profiles. The elasticity of materials is described by a stress–strain curve,
which shows the relation between the average restorative internal force per unit area and the relative
deformation. The curve is generally nonlinear, but it can be approximated as linear for sufficiently small
deformations (Figure 2). Despite this approximation, the ideal assumption of the theory of elasticity,
provides reasonably accurate results for vertical stresses. Unfortunately, the results for horizontal
stresses can be significantly in error because of simplifying assumptions [24–26]. Apparently, one of
the main simplifying assumptions, when the elastic theory is applied to soils, is the ignorance of the
internal resistance of the latter. When deformation occurs, the arrangement of soil particles changes
and the body ceases to be in its original state of equilibrium. Forces due to internal resistance therefore
arise which tend to return the body to its initial state [27]. The internal resistance is nothing more than
the resistance of soil to shear, part of which is mobilized before yielding.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 3 of 46 

 
Figure 1. Cubic volume element of material representing the state of stress at a point in the medium. 

While this is the apparent interpretation for a physicist, in engineering the interest is usually 
concentrated in finding the state of stress in mediums. Thus, after some switching between causes 
and effects, with the unknowns being the various stress components ( σ  and τ ) inside the 
differential terms of surface forces, Cauchy’s equations give the state of stress of an element within a 
continuum caused by the application of body forces and accelerations. 

3. The Role of Internal Resistance in Distribution of Horizontal Stress 

Perfect elasticity, namely that the medium is homogeneous, elastic, and isotropic, is not quite 
true for most natural soil profiles. The elasticity of materials is described by a stress–strain curve, 
which shows the relation between the average restorative internal force per unit area and the relative 
deformation. The curve is generally nonlinear, but it can be approximated as linear for sufficiently 
small deformations (Figure 2). Despite this approximation, the ideal assumption of the theory of 
elasticity, provides reasonably accurate results for vertical stresses. Unfortunately, the results for 
horizontal stresses can be significantly in error because of simplifying assumptions [24–26]. 
Apparently, one of the main simplifying assumptions, when the elastic theory is applied to soils, is 
the ignorance of the internal resistance of the latter. When deformation occurs, the arrangement of 
soil particles changes and the body ceases to be in its original state of equilibrium. Forces due to 
internal resistance therefore arise which tend to return the body to its initial state [27]. The internal 
resistance is nothing more than the resistance of soil to shear, part of which is mobilized before 
yielding. 

 
Figure 2. Elastic-perfectly plastic assumption. Figure 2. Elastic-perfectly plastic assumption.

The role of the internal resistance (shear strength) of a medium in the distribution of horizontal
stresses in it, is better comprehended considering materials of different (Mohr–Coulomb) shear strength
(e.g., water, sand, clay). It is well-known from the earth pressure theory that the ratio between the
horizontal and the vertical pressure is greater in materials with small internal resistance. For the case
of water, that is, for the case of a material with no shear resistance, the horizontal pressure is equal to
the respective vertical. For loosely deposited sands at rest, Jaky [11,28] showed analytically that the
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above ratio (called the coefficient of earth pressure at rest and denoted by the symbol Ko) deviates from
unity with downward trend as the sinusoidal term of the internal friction angle of material increases
(Ko = 1 − sinϕ’). Jaky’s coefficient has been proved later to be also valid for normally consolidated
granular deposits [19,20,22] and normally consolidated clays [16,18,21]. However, Schmidt [17] and
Brooker and Ireland [16] suggest that differences in soil character other than those reflecting on the
friction angle may have an influence on earth pressure at rest. Logically thinking, in addition to
the friction part of shear strength, cohesion also controls the interparticle movements and, thus,
the ability of particles to transmit horizontal stress through contact pressure between adjacent particles.
About cohesion and its effect on earth pressure at rest, Schmidt [17] also commended that clays have an
effective cohesion which may cause a lateral stress (meaning resistance) σ3 = 2c′ cosϕ′/(1− sinϕ′)
even for σ1 = 0. This statement, although not a conclusion of an analysis but a rational thought based
on Bell’s [4] solution on earth pressures for c′ −ϕ′ soils, is one of the rare connections of cohesion with
Ko appearing in literature since the definition of the coefficient of earth pressure at rest by Donath [29].
The fully analytical procedure that follows will show that Schmidt’s intuition is basically right, although
incorrect in “absolute numbers”.

4. Extension of Cauchy’s First Law of Motion to Deformable Bodies with Internal Resistance and
under the Influence of Pseudo-Static Forces

Considering the above, Cauchy’s first law of motion has been extended as to include the internal
resistance of continuum, Ri (i ∈

{
x, y, z

}
), and, also, to treat accelerations as causes and not as effects.

Equation (1), thus, becomes: (
∂σx
∂x +

∂τyx
∂y + ∂τzx

∂z −Rx

)
+ fx = ρ

..
ux(

∂τxy
∂x +

∂σy
∂y +

∂τzy
∂z −Ry

)
+ fy = ρ

..
uy(

∂τxz
∂x +

∂τyz
∂y + ∂σz

∂z −Rz

)
+ fz = ρ

..
uz


, (2)

where Ri is the internal resistance, fi the body force and
..
us,i the imposed seismic force per unit mass in

the i-th direction (i ∈
{
x, y, z

}
), whilst ρ is the density of the material.

Intuitively, the internal resistance is given as

Ri =
n
z
τR,m, (3)

where n is the number of planes of the material element resisting to deformation (and thus, to the
transmission of stress) and τR,m is the mobilized shear strength of soil. The cubic material element of
Figure 1 with planes perpendicular to the coordinate axes of Cartesian coordinate system is assumed.

In Mohr–Coulomb terms the shear strength at depth z is

τR,m = cm + γz tanϕm . (4)

If no shear is assumed to take place in the vertical direction, Rz in Equation (2) is set to zero. This is
a rational assumption especially when loads are distributed uniformly in a semi-infinite mass (as in
the case of the self-weight of a material with horizontal surface and/or seismic loading), causing no
relative movement of soil particles in the vertical direction.

Regarding the acceleration term, the pseudo-static concept of analysis is adopted and the imposed
seismic force per unit mass will be [30]

..
us,i = kig, (5)
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where ki is the seismic coefficient in the x, y, or z direction (usually, kx = ky = kh and kz = kv) and g is
the acceleration of gravity. The seismic coefficients may take negative values indicating the change in
direction of the seismic force during an earthquake.

In geotechnical engineering gravity is usually the only body force, thus, when body forces are
considered in the analysis, fz equals ρg, whilst fx = fy = 0.

Based on the above and replacing ρg with γ and, also, considering the downward direction of
forces as positive, Equation (2) becomes:

∂σx
∂x +

∂τyx
∂y + ∂τzx

∂z −
n
z (cm + (1− kv)γz tanϕm) = −khγ

∂τxy
∂x +

∂σy
∂y +

∂τzy
∂z −

n
z (cm + (1− kv)γz tanϕm) = −khγ

∂τxz
∂x +

∂τyz
∂y + ∂σz

∂z − γ = −kvγ


, (6)

whilst, in plane strain conditions it simplifies to:

∂σx
∂x + ∂τzx

∂z −
2
z (cm + (1− kv)γz tanϕm) = −khγ (7a)
∂τxz
∂x + ∂σz

∂z = (1− kv)γ (7b)

5. Derivation of the Proposed Generalized Coefficient of Earth Pressure at Rest

Jaky [11] considered a heap of loosely deposited sand which attains the shape of a solid of an
equilateral triangle of infinite length. The slope of this loose heap of sand is assumed to be equal to the
angle of internal friction (Figure 3). Jaky [11] argued that the lateral pressure acting on a line passing
through the apex of the cone and is perpendicular to the base, is the lateral pressure at rest. He then
divided the sand mass into two zones; a zone containing slide planes (Zone I) and the transitional zone
(Zone II).Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 46 
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Figure 3. Slide planes and main stress trajectories in a sand heap at rest.

The main assumption involved in Jaky’s solution for Ko is related to the distribution of shear
stresses in Zone II, where, Jaky [11] assumed a parabolic distribution; this is further discussed later.

In the present problem, Jaky’s soil heap of Figure 3 is adopted but with the difference that Zone II
consists of a general c′ −ϕ′ material, which has not been subjected to overstress. Zone I still consists
of a purely frictional material (e.g., sand), also not overstressed (that is, it is normally consolidated).
For practical purposes, the two materials have the same effective friction angle value, so that the
principle trajectories remain the same. Thus, the last principle trajectory still coincides with the plane
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OB. In Figure 3, the slide planes have been drawn on the left-hand side of the drawing, whilst the
principle stress trajectories on the right side of it.

The formulations which are based on the proposed extension of Cauchy’s first law of motion are
presented in detail in Appendix A. Dividing the derived expression for σx,o with the respective one
for σz,o (see Appendix A), the following general expression for the coefficient of lateral earth pressure
is obtained

Kc−ϕ
xe =

1 − sinϕ′

1 + sinϕ′
(
(1− ξ sinϕ′) + kh

1 − kv
tanϕ′(2 + ξ(1− sinϕ′))

)
−

1
1 − kv

2cm
γz tan

(
45o
−
ϕ′

2

) , (8)

with
ξ =

m− 1
m + 1

f (m) − 1, (9)

and
σx = Kc−ϕ

xe (1− kv)γz. (10)

For the derivation of Equation (7b), the author assumed a variation of shear stress in Zone II in
the form:

τxz = f (m) · τxz,OB

(
x

xOB

)m

, (11)

with
f (m) = 1−

1
m

, (12)

and (1 ≤ m ≤ ∞). The rationality of Equation (11) and the role of the function f (m) is further discussed
in Sections 7 and 10.1. Equation (8) follows the sign convention given in Appendix B.

6. The Derived Coefficients of Earth Pressures

The coefficient of earth pressure at rest will be obtained after selecting the proper value for m and
defining the mobilized cohesion, cm. For selecting the proper m, the reasoning is as follows. Jaky’s [11]
assumed arbitrarily the following parabolic distribution

τxz = τxz,OB

(
x

xOB

)2

, (13)

resulting in

Ko =
1 + 2

3 sinϕ′

1 + sinϕ′
(1− sinϕ′). (14)

Apparently, during his “heroic” effort in 1944 with no electronic means, Jaky must have tried the
simpler and more rational linear distribution

τxz = τxz,OB

(
x

xOB

)
. (15)

Besides, the distribution of shear stresses in Zone I follows a linear pattern (see Equation (11) in
Appendix A); this distribution, however, gives singularity leading to Ko = 1 (independently of ϕ′

value), which is not the point for sand heaps. On the other hand, from the purely theoretical point of view,
the very simple 1− sinϕ′ formula, works ideally for the two extreme values of ϕ′, where for ϕ′= 0o it
gives Ko = 1 referring to hydrostatic conditions and for ϕ′= 90o it gives Ko = 0 referring to a frictional
material that can stand vertically without support, thus, exerting no lateral pressure. These extreme
cases are enough evidence that the correct expression for the coefficient of earth pressure at rest is the
Ko = 1− sinϕ′.
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Thus, for m = 1 (corresponding to linear distribution of shear stresses in Zone II) Equation (8)
gives the proposed generalized coefficient of earth pressure at rest

Kc−ϕ
oe = (1− sinϕ′)

(
1 +

kh
1− kv

tanϕ′
)
−

1
1− kv

2cm

γz
tan

(
45o
−
ϕ′

2

)
, (16)

with
σ◦ = Kc−ϕ

oe (1− kv)γz. (17)

For kh = kv = 0 (static conditions), the coefficient of earth pressure at rest simplifies to

Kc−ϕ
oe = (1− sinϕ′) −

2cm

γz
tan

(
45o
−
ϕ′

2

)
. (18)

For m→∞ , it is lim
m→∞

m − 1
m + 1 = 1 and lim

m→∞
m + sinϕ′

m + 1 = 1, thus, the generalized coefficient of active
earth pressure is obtained:

Kc−ϕ
ae =

1− sinϕ′

1 + sinϕ′

(
1 + 2

kh
1− kv

tanϕ′
)
−

1
1− kv

2cm

γz
tan

(
45o
−
ϕ′

2

)
, (19)

with
σα = Kc−ϕ

αe (1− kv)γz. (20)

Additionally, if kh = kv = 0, it is cm = c′ (see Section 8.2). Thus,

Kc−ϕ
ae =

1− sinϕ′

1 + sinϕ′
−

2c′

γz
tan

(
45o
−
ϕ′

2

)
, (21)

with

σα = Kc−ϕ
ae γz =

1− sinϕ′

1 + sinϕ′
γz− 2c′ tan

(
45o
−
ϕ′

2

)
, (22)

that is, Bell’s [4] solution for the active state. Apparently, this is a compelling evidence for the validity
of Equation (8) (and of course, Equation (7a)).

Kc−ϕ
pe can be obtained indirectly by inverting the signs of shear strength parameters in Equation (19)

and that, due to the “symmetry” between the active and the passive earth pressure coefficient in the
case of smooth, not battered walls retaining soil with zero backslope angle (that is, Rankine’s conditions
where θ = 45o + ϕ′/2 or 45o

−ϕ′/2 for the active and the passive state, respectively). The passive
earth pressure coefficient, therefore, is:

Kc−ϕ
pe =

1 + sinϕ′

1− sinϕ′

(
1− 2

kh
1− kv

tanϕ′
)
+

1
1− kv

2cm

γz
tan

(
45o +

ϕ′

2

)
, (23)

with
σp = Kc−ϕ

pe (1− kv)γz. (24)

As in the case of the active state, if kh = kv = 0, the mobilized cohesion is equal to its peak value
(i.e., cm = c′; see Section 8.2). Therefore:

Kc−ϕ
p =

1 + sinϕ′

1− sinϕ′
+

2c′

γz
tan

(
45o +

ϕ′

2

)
, (25)

with

σp = Kc−ϕ
pe γz =

1 + sinϕ′

1− sinϕ′
γz + 2c′ tan

(
45o +

ϕ′

2

)
, (26)

that is, Bell’s [4] solution for the passive state.
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A very interesting observation is that the number “2” in front of the cohesion term in Equations (22)
and (26) is the same number appearing in author’s extension of Cauchy’s law mentioned above (recall
Equation (7a)) indicating the two horizontal planes of the cubic elementary element resisting to shear
in plane strain conditions, i.e., the upper and the lower face of the cubic volume element. It is reminded
that Bell [4] came across the 2c′

√
Kα and 2c′

√
Kp terms working fully geometrically with Mohr’s circles

and Coulomb’s failure criterion. It is further noted that Bell’s solution is not able to provide explanation
for the physical meaning of this numerical coefficient.

7. The “Intermediate” State of Earth Pressure

Often the wall does not translate or rotate enough so that the active or passive state can be fully
mobilized. Thus, the pressure near the base is larger than predicted by theory. These pressures of
intermediate state could be calculated using Equation (8) along with the proper m value.

It is noted that for m = 1 and∞, Equation (8) leads to the coefficients of earth pressure for the
state at rest and the active state respectively given earlier. In addition, due to the known “symmetry”
between the active and the passive earth pressure coefficient, Equation (8) can be written in the
following form:

Kc−ϕ
xe =



active “side”;

from Kc−ϕ
oe (m = 1) to Kc−ϕ

ae (m = +∞); ξ1 = ξ2 = 1

passive “side”;

from Kc−ϕ
oe (m = 1) to Kc−ϕ

pe (m = +∞); ξ1 = 1 + ξ; ξ2 = 2
m − 1


=

(
1 ∓ sinϕ′

1 ± sinϕ′

)ξ1(
(1∓ ξ sinϕ′) ∓ ξ2

kh
1−kv

tanϕ′(2 + ξ(1∓ sinϕ′))
)

∓
1

1 − kv

2cm
γz

 tan
(
45o
∓
ϕ′

2

)
tan

(
45o±

ϕ′

2

)

ξ1

tan
(
45o
±
ϕ′

2

)
, (27)

where, ξ1 and ξ2 are parameters related to the transition from the soil wedge of the state at rest to
the soil wedge of the passive state (i.e., inclination angle of soil wedge changing from 45 + ϕ′/2 to
45- ϕ′/2). m is always positive meaning that, for the passive “side” m ranges between 1 (state at rest)
and +∞ (passive state). The symmetry stands for smooth, not battered wall with zero backslope angle.

For any m value between these extremes (i.e., 1 and +∞), Equation (27) gives the coefficient of
earth pressure at rest; however, m must be defined with respect to the wall movement. In this respect,
Finn [31] gave analytical expressions for the pressure behind smooth and rough translating wall which
moves outwards at a distance ∆x. He also gave expressions for the case of rotating wall as for the
top. According to Finn, the lateral earth pressure at depth z on a smooth wall that has been displaced
laterally by ∆x is:

σh,Finn =
µ

1− µ
γz−

EYoung

(1− µ2)π

4H2z

(z + H)3(H − z)
∆x, (28)

for smooth translating wall and

σh,Finn =
µ

1 − µγz−
4EYoungH

π(3 − µ − 4µ2)(1 + µ)
·

·

(
1 − µ2

H2 − z2 +
µ(1 + µ)H − (1 − µ2)z

(H + z)3

)
∆x

, (29)

for rough translating wall.
Note: “Equation 107” in Finn [31] for σh,Finn for the case of rough translating wall has a

typographical error. This error has been corrected in Equation (29). Additionally, some signs in



Appl. Sci. 2019, 9, 5291 9 of 42

Equation (29) have been inverted because herein ∆x is always positive quantity; in Finn [31], when the
wall moves away of soil, this distance in considered negative.

Re-evaluating the above expression, the procedure for the active case will have as follows: first,
σh,Finn is replaced by Equation (10) and the term (µ/(1− µ))γz (representing the static earth pressure
at rest in µ terms) by Equation (16); then, solving as for ∆x, the required displacement for the active
state to fully develop at depth z will be:

∆xmax =
π
4

(
1− µ2

)
EYoung

(H + z)3(H − z)
H2z

∆K(1− kv)γz, (30)

for smooth translating wall and

∆xmax = π
4
(3 − µ − 4µ2)(1 + µ)

EYoung
·

·

(
1 − µ2

H2 − z2 +
µ(1 + µ)H − (1 − µ2)z

(H+z)3

)−1
·

1
H ∆K(1 − kv)γz

, (31)

for rough translating wall. ∆K = Kc−ϕ
oe −Kc−ϕ

xe or Kc−ϕ
xe −Kc−ϕ

oe (depending on the case).
Assuming a linear relationship between f (m) = 1 − 1/m and ∆x/∆xmax, m is given by the

following equation:

m =
(
1−

∆x
∆xmax

)−1
{0 ≤ ∆x ≤ ∆xmax; if ∆x > ∆xmax, m = ∞}. (32)

The rationality of the latter is discussed in the “application examples” section.

8. The Mobilized Shear Strength of Soil

An essential part of the present solution is the calculation of the mobilized shear strength of
soil. For c′ −ϕ′ materials the rational assumption that cohesion and friction are mobilized in equal
proportions is made, that is,

tanϕm =
tanϕ′

fm
, (33)

and
cm =

c′

fm
. (34)

The above assumption reminds of the traditional safety factor defined with respect to shear
strength in Mohr–Coulomb terms (see [32,33]).

8.1. The Mobilized Shear Strength of Soil in the State at Rest

Schematically, the tangent to Mohr circle representing the state at rest at a specific depth, crosses
the axis of normal stresses at distance cm/tanϕm to the left of the point of origin (distance (AO) in
Figure 4). Substituting cm and tanϕm from above, (AO) = c′/tanϕ. The same distance is obtained for
both the active and passive state under static conditions, where, in this respect, the tangent to the circle
is the Mohr–Coulomb’s failure criterion. From the above it is inferred that the point A in Figure 4 is
also the pivot point for any intermediate state between the active and the passive one, including, of
course, the state at rest.
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Figure 4. Mohr’s diagram for the geometrical derivation of the mobilized shear strength of soil in the
state at rest.

Geometrically, from Figure 4, the mobilized friction angle is given by the following equation:

sinϕm =
±

(
(1 − kv)γz − Kc−ϕ

oe (1 − kv)γz
2

)
c′

tanϕ′ +
(1 − kv)γz + Kc−ϕ

oe (1 − kv)γz
2

. (35)

The plus sign, in the equation above, stands for the usual case that Kc−ϕ
oe < 1. It is assumed that

an extreme earthquake event in combination with a weak material may cause Kc−ϕ
oe to exceed unity.

In such a case, the minus symbol is used.
Substituting Equation (16) into Equation (35) with the 2cm/γz term inside Kc−ϕ

oe , to have been
replaced with 2c′/(γz fm), with the use of Equation (34)

sinϕm =
±

(
e1 +

1
fm

)
e2 −

1
fm

, (36)

with

e1 =
(1− kv)

(
1− (1− sinϕ′)

(
1 + kh

1 − kv
tanϕ′

))
2c′
γz tan

(
45◦ − ϕ′

2

) . (37)

e2 =
tan

(
45◦ + ϕ′

2

)
tanϕ′

+
(1 − kv)

(
1 + (1− sinϕ′)

(
1 + kh

1 − kv
tanϕ′

))
2c′
γz tan

(
45◦ − ϕ′

2

) , (38)

and
1
fm

=
tanϕm

tanϕ′
. (39)

The analytical solution of Equation (36) is given in the Appendix C.

8.2. The Mobilized Shear Strength of Soil in the Active and Passive State

As known, the mobilized shear strength of soils under static conditions is equal to the peak strength.
However, only part of the shear strength of soil is mobilized under dynamic conditions. For example,
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in the active state it stands that Kae > Ka. Thus, a Mohr circle representing the active state of stress
under dynamic conditions with σ3 = Kaeγz(1− kv) and σ1 = γz(1− kv) lies inside the respective one
representing static conditions with σ3 = Kaγz and σ1 = γz. The latter, as known, corresponds to state of
failure touching the Coulomb’s failure criterion, whilst the Mohr circle representing dynamic condition
does not. The same also stands, of course, for the passive state because Kpe < Kp. In the example above,
kv was considered positive; however, a negative kv does not change the general observation.

As it will be shown below, however, an earthquake excitation causes the reduction of the shear
strength of soil mobilized during an earthquake event. Thus, with smaller (mobilized) shear strength,
the soil exerts greater earth pressure on the retaining structure. The amount of the resisting forces
(or moments) in relation to the destabilizing forces (or moments) defines, finally, whether the earth
retaining structure will be stable or not. If the retaining structure is allowed to be displaced enough so
that failure occurs, the Rankine’s theory will give again the minimum or maximum earth pressure in
the active and passive state, respectively.

For the active and passive state, the mobilized shear strength is calculated following the steps
described for the state at rest. In this respect, geometrically, from Figure 4 (after replacing Kc−ϕ

oe with
Kc−ϕ

ae ), the mobilized friction angle for the active state is given by the following equation:

sinϕm =
±

(
(1 − kv)γz − Kc−ϕ

αe (1 − kv)γz
2

)
c′

tanϕ′ +
(1 − kv)γz + Kc−ϕ

αe (1 − kv)γz
2

. (40)

The plus sign, in the equation above, stands for the more probable case where Kc−ϕ
αe < 1, although,

an extreme earthquake event in combination with a weak soil could cause Kc−ϕ
αe to exceed unity.

A parametric study carried out by the author, however, showed that precondition for this unusual case
to occur is that the shear strength of soil is very small and simultaneously that the seismic event is
rather unrealistically extreme. Thus, since this condition is rather impossible to occur in practice, it is
not further discussed here.

By substituting Equation (19) into Equation (40) with the term 2cm/γz inside Kc−ϕ
αe to have been

replaced by the term 2c′/(γz fm) (recall Equation (34)), Equation (36) is again obtained, but with

e1 =
(1− kv)

(
1− 1−sinϕ′

1+sinϕ′
(
1 + 2 kh

1−kv
tanϕ′

))
2c′
γz tan

(
45◦ − ϕ′

2

) , (41)

and

e2 =
tan

(
45◦ + ϕ′

2

)
tanϕ′

+
(1− kv)

(
1 + 1 − sinϕ′

1 + sinϕ′
(
1 + 2 kh

1−kv
tanϕ′

))
2c′
γz tan

(
45◦ − ϕ′

2

) . (42)

In a similar way, the e1 and e2 parameters for the passive state are

e1 = −


(1− kv)

(
1− 1 + sinϕ′

1 − sinϕ′
(
1− 2 kh

1−kv
tanϕ′

))
2c′
γz tan

(
45◦ + ϕ′

2

)
, (43)

e2 = −


tan

(
45◦ − ϕ′

2

)
tanϕ′

+
(1− kv)

(
1 + 1 + sinϕ′

1 − sinϕ′
(
1− 2 kh

1−kv
tanϕ′

))
2c′
γz tan

(
45◦ + ϕ′

2

)
. (44)
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8.3. The Mobilized Shear Strength of Soil in the Intermediate State

For the intermediate state of earth pressures on the active side the parameters e1 and e2 are
given below:

e1 =
(1− kv)

(
1− 1 − sinϕ′

1 + sinϕ′
(
(1− ξ sinϕ′) − kh

1−kv
tanϕ′(2 + ξ(1− sinϕ′))

))
2 c′
γz B

, (45)

e2 =
tan

(
45o+

ϕ′

2

)
tanϕ′ +

(1 − kv)
(
1 +

1 − sinϕ′

1 + sinϕ′

(
(1 − ξ sinϕ′) −

kh
1−kv

tanϕ′(2 + ξ(1 − sinϕ′))
))

2c′
γz tan

(
45o −

ϕ′

2

) (46)

For the intermediate state on the passive side the parameters e1 and e2 are given in the Appendix D.
Moreover, it is noted that, λ = 1 and 0 for pressures on the active and passive “side”, respectively.
For the active state or “side”, the author suggests that the calculation of earth pressures be restricted to
the positive values. Otherwise, the value λ = 2 may be needed near the top of the wall where the
earth pressures are negative due to cohesion; the continuity of the distribution will show when the
λ=2 value is required to be used.

9. Depth of Neutral Zone (State at Rest) and Tension Crack (Active State)

9.1. Depth of Neutral Zone (State at Rest)

Apparently, the presence of cohesion creates a neutral zone extending to depth znz from the
surface. In this neutral zone no lateral earth pressure is exerted. The depth of this zone can be obtained
from Equation (35) setting Kc−ϕ

◦e = 0 and solving as for z, where:

znz =
2c′

(1− kv)γ

sinϕm

(1− sinϕm) tanϕ′
. (47)

By further processing Equation (47) along with Equation (16) (Kc−ϕ
◦e ) and the necessary

trigonometric identities, the depth of neutral zone is

znz =
c′

(1− kv)γ tanϕ′

 1(
cosϕ′ + kh

1 − kv
sinϕ′

)2 − 1

. (48)

From Equation (48) it is inferred that a neutral zone exists, apparently in cohesive materials, but
only when

kh
1− kv

<
1− cosϕ′

sinϕ′
. (49)

9.2. Depth of Tension Crack (Active State)

The depth of tension crack can be taken from Equation (40) by setting Kc−ϕ
ae = 0 and solving as for

z, where:

ztc =
2c′

(1− kv)γ

sinϕm

(1− sinϕm) tanϕ′
. (50)
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By further processing Equation (50) along with Equation (19) for Kc−ϕ
ae and the necessary

trigonometric identities, the following more convenient expression for the depth of tension crack is
obtained:

ztc =
c′

(1− kv)γ tanϕ′


tan2

(
45o +

ϕ′

2

)
(
1 + 2 kh

1 − kv
tanϕ′

)2 − 1

. (51)

From Equation (51) it is inferred that cohesion is not the only precondition for the development of
tension crack. In addition, the following condition should be satisfied:

kh
1− kv

<
tan

(
45o +

ϕ′

2

)
− 1

2 tanϕ′
. (52)

For static conditions (kh = kv = 0) it stands that cm = c′ (based on Section 8.2), thus, Equation (51)
simplifies to the well-known

ztc =
2c′

γ tan
(
45o −

ϕ′

2

) . (53)

10. Discussion

10.1. Choosing a Rational f(m) Function

The use of the f (m) function (recall Equation (11)) in Equation (12) is deemed necessary because a
variation of shear stress in the form of:

τxz = τxz,OB

(
x

xOB

)m

, (54)

leads to unrealistic stress components in Zone II [34,35]. The problematic behavior of Equation (54) is
better interpreted considering that the one of the two halves of the symmetrical sand heap has been
replaced by a rigid retaining wall which is translating away from the other half (half sand heap) until
the latter to reach the active state (see Figure 5). During this translational movement, the outer zone of
the sand heap (Zone I) gradually fails as it gradually loses its support; in this respect, the failure of the
inner zone (Zone II, zone between line OB and OC in Figure 5) precedes. Thus, the shear stress τxz on
OB is not constant and equal to τxz,OB but a portion of τxz,OB which becomes lower and lower as the
soil heap fails, i.e., τxz = f (m) · τxz,OB; f (m) ranges between 1 and 0 for the state at rest and the active
state respectively.

f (m) could have the following more generalized form:

f (m) = 1−
a
m

. (55)

However, if a > 1, for values of m close to unity Equation (55) leads to intermediate earth pressures
(on the active side) greater than the respective earth pressures at rest; something that is not admissible.
For any 0 < a < 1 Equation (55) gives intermediate earth pressures less conservative as compared to
those obtained from Equation (12). Thus, Equation (12) seems to be the best choice for the function
f (m).

The two assumed shear stress functions given by Equations (11) and (54) are compared through the
coefficient Kc−ϕ

xe . The data used were c′ = 0 or 20 kPa, ϕ′ = 30◦, γ = 18 kN/m3, kh = 0.3, and kv = kh/2.
As it is shown in Figure 6, Equation (11) is not only more rational (as explained above), but also gives
more conservative results as compared to Equation (54).
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10.2. Validity of Sand Heap Hypothesis

Michalowski [34] and Pipatpongsa and Vardhanabhuti [35] infer that Jaky’s [11] derivation of Ko is
coincidental because the resulting stress distributions in Zone II look unrealistic due to the appearance
of a local minimum. Although the appearance of unrealistic local minimum is generally true, there are
two cases that the generalized parabola of Equation (54) (controlled by the empirical exponent m) leads
to admissible stress distributions. More specifically, for m→ 1 the shear stress distribution becomes
linear corresponding to the state at rest, whilst for m→∞ the shear stress nullifies inside the core of
sand heap (Zone II) corresponding to the active state of failure; that is, for 0 ≤ x/xOB ≤ 1, the (x/xOB)

∞

term in Equation (54) tends to zero and thus, the shear stress τxz becomes equal to zero. The validity
of the linear distribution (for m→ 1) was discussed in Section 6. On the other hand, the validity of
the m→∞ case is strongly supported by the fact that the proposed continuum mechanics approach
under static conditions leads to Bell’s solution for the active earth pressure for c′ − ϕ′ soils (recall
Equation (22)).

Let us now consider that the half (symmetrical) sand heap is retained by a smooth vertical wall.
Since the m→ 1 value corresponds to the state at rest (stable condition) and the m→∞ value to the
active state of failure (unstable condition), by increasing the m value from 1 to∞, failure is gradually
provoked to the core of the sand heap (Zone II). The crust of sand heap (Zone I), as it loses its support,



Appl. Sci. 2019, 9, 5291 15 of 42

will also fail, following the collapse of Zone II. Thus, both Michalowski [34] and Pipatpongsa and
Vardhanabhuti [35] in their stress distribution representations in the soil heap considered erroneously
together an unstable zone (Zone II; core of sand heap) with a stable one (Zone I; crust of sand heap),
which normally should not be stable. In other words, the so-called “unreliable local minimum” is
observed because the parabola of the vertical stresses in Zone II “dives” to reach a minimum value
“jumping” from a value (on the boundary OB) that has erroneously been kept fixed and high (see
“Figure 2c” in Michalowski [34] and “Figure 3” in Pipatpongsa and Vardhanabhuti [35]).

10.3. Comparison of the Proposed Coefficients with Existing Solutions and Experimental Results

The proposed coefficients will be compared with those given by Mononobe–Okabe (M-O) [7,8]
and Kapila [9] (Mononobe–Okabe–Kapila or M-O-K) for the active and the passive state, respectively.
These coefficients are not only the most widely used in academia and in practice, but also they are
included in numerous seismic design codes worldwide (e.g., [36,37]), since being suggested as standard
methods by Seed and Whitman [38].

A set of Kae and Kpe versusϕ′ curves were drawn for comparison purposes for various kh values and
kv = kh/2; see Figures 7–10 (the curves drawn are for cohesionless soils). Regarding M-O and M-O-K
solutions, it is very weird that both are not applicable to all kh −ϕ

′ combinations (see Figures 8 and 10).
The problems with these two solutions are known (e.g., see [39]) with the most important one being
the square root of negative number in Equations (56) and (57) for ϕ′ < ψ∓ β (the minus sign stands
for the active case whilst the plus sign stands for the passive case); this issue is further discussed in
Section 10.4.

Kae,M−O =
cos2(ϕ′ −ψ− β)

cosψ cos2 β cos(δ+ β+ψ)

(
1 +

√
sin(ϕ′ + δ) sin(ϕ′ − ψ − αs)

cos(δ + β + ψ) cos(αs − β)

)2 , (56)

Kpe,M−O−K =
cos2(ϕ′ −ψ+ β)

cosψ cos2 β cos(δ− β+ψ)

(
1−

√
sin(ϕ′ + δ) sin(ϕ′ − ψ + αs)

cos(δ − β + ψ) cos(αs − β)

)2 , (57)

where ψ is the angle of the resultant body force in the soil from vertical (Figure 11):

ψ = arctan
(

kh
1− kv

)
. (58)

On the other hand, the proposed solution gives smooth and continuous curves, being able to
calculate the active and passive earth pressure on the wall in every case (Figures 7 and 9). It is very
interesting that, following the M-O-K method, a catastrophic earthquake with kh = 0.5 and kv = 0.25,
seems to have a relatively minor effect on the reduction of passive resistance. On the contrary, when
the proposed procedure is followed the reduction of passive resistance appears to be more rational.
Indeed, negative values may be obtained under extreme seismic accelerations. In this special case of
passive failure, the horizontal pressure σ3 in Mohr’s diagram is not only to the left of σ1 (where the
circles for the active state are traditionally drawn), but also to the left of the point of origin.

Another interesting point is that, for ϕ′ = 0o, the proposed coefficients of active and passive earth
pressures equal unity. Actually, as shown in Figure 12, this value is the transition point between the
active and the passive state. Moreover, despite the noncontinuity of the original M-O and M-O-K
solutions, they are both defined for ϕ′ = 0o, giving Kae and Kpe values also equal to unity for any
kh-kv combination. Using the (arbitrary) correction given in Eurocode 8-5 [36] for the M-O and M-O-K
solutions, unity is also the transition point between the active and the passive state (see dashed lines in
Figures 8 and 10).
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Figure 12. Example curves showing the continuity of the proposed curves against the noncontinuity
between the M-O and M-O-K methods. Eurocode 8-5 ensures the continuity between the active and the
passive state with an arbitrary modification of the M-O and M-O-K methods (dashed curves).

From Figures 7–10 it is also inferred that the proposed solution is less conservative for the active
case and more conservative for the passive case. However, the question is not to find a solution that
is more conservative, but a solution that effectively reflects reality; and this because the cost of an
overconservative design can be just as much of a problem as the cost of a future failure [40]. Over the
last decades, a great number of experimental, numerical, and analytical studies led to a consensus that
the M-O method yields conservative earth pressure values and excessively conservative values for



Appl. Sci. 2019, 9, 5291 18 of 42

Peak Ground Accelerations (PGA) in excess of 0.4 g (e.g., [40–53]). Generally, these studies refer to the
active state, although some of them refer to the M-O-K solution for the passive state [47,54].

Some authorities have already recognized the conservatism of the M-O solution adopting
as standard design practice the use of a reduction coefficient for the expected peak ground
acceleration [37,39,55,56]. For example, AASHTO [37] suggests kh = (1/2)PGA, whilst the Building
Seismic Safety Council [56] suggests kh = (2/3)PGA; the latter has been based on the centrifuge model
tests of Sitar and Al Atik [46]. Centrifuge tests have the advantage of avoiding the limitations of the 1-g
shaking table, whilst scaling laws can be accurately followed. However, they also present challenges
particularly when it comes to the ability of conventional instrumentation to adequately respond at
frequencies dictated by the scaled model response characteristics [40]; this is further discussed in
Section 10.3.

The Kae-ϕ′ relation for kh values corresponding to seismic coefficients equal to the 2/3 and 1/2 of
PGA is also shown in Figure 8 (first and second values in brackets, respectively). In this respect, it is
amazing how this correction brings the M-O coefficient values so close to the coefficient values derived
by the proposed solution (please compare Figure 7 with Figure 8, but using the kh values given in
brackets in Figure 8). The proposed solution compares also excellently to the “loma prieta sc” and
“kobe tak090” centrifuge tests performed on cantilever walls by Mikola and Sitar (see “Figure 4.26”
in [44]). The specific tests were chosen due to their excellent calibration as confirmed by the static earth
pressure distributions (“Figure 4.22” in [44]).

Actually, the problem with both M-O and M-O-K solutions is found in the procedure followed
for the derivation of the well-known coefficients of Equations (56) and (57). It is reminded that both
M-O and M-O-K solutions are extensions of the well-known Coulomb’s solution for earth pressures.
For the derivation to his solution under static conditions, Coulomb performed a force polygon analysis
considering a rigid soil wedge defined by the inner face of the retaining wall, the backfill slope, and the
rapture surface (see [57]); as the soil wedge is marginally stable, Coulomb used the peak shear strength
value of soil along the rapture surface. In a similar way, Mononobe–Okabe [7,8] and Kapila [9] also
treated the soil wedge as being in the state of failure using peak shear strength values. However, as
mentioned in Section 8.2, the mobilized shear strength of soil should have been used. In this respect it is
mentioned that the reduced kh values, i.e., kh = (1/2)PGA and kh = (2/3)PGA used by AASHTO [37]
and Building Seismic Safety Council [56] compensate this error empirically.

10.4. Point of Application of the Resultant Force under Dynamic Conditions

The point of application of the resultant force under dynamic conditions is also a long-standing
problem. Indeed, over the last 80 years a great number of experimental, numerical, and analytical
studies have been proposed.

Probably the most widely spread works are the experimental findings of Sherif et al. [58] and
Sherif and Fang [59,60], the analytical solution of Prakash and Basavanna [61], and the suggestions of
Seed and Whitman [38]. Generally, all these works recommend that the point of application of the
resultant force under dynamic conditions be taken (much) higher than the one-third of the height of
the retained soil (measured from the lower point of the wall).

About the experimental works, it is noted that most of them have been conducted on very short
walls (usually up to a meter high and often of the order of a few tens of centimeters) equipped with
small earth pressure cells. In this respect, Dunnicliff [62] lists 14 “major factors affecting measurements”
with embedment earth pressure cells, plus, the need for calibration (often special calibration) prior to
each use. Indicatively, an example of erroneous measurements can be found in Sherif and Fang [60],
where the measured active earth pressure under static conditions by the upper two (out of the six)
earth pressure cells is much higher compared to the respective earth pressure at rest (please notice the
weird bulge in “Figure 5” of [59]). The latter was calculated by the author with Jaky’s Ko = 1− sinϕ′

formula, in which it is widely accepted that it performs satisfactorily in practice. It is also clear from
the same figure that the same issue seriously affected Sherif and Fang’s measurements under dynamic
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loading. It is mentioned that Sherif and Fang’s model was 1 m in height (40-in), whilst they used
diaphragm-type Kulite VM-750 soil pressure transducers (diaphragm diameter = 1.27 cm).

The author chose to present below three out of the 14 major factors mentioned by Dunnicliff [62]
affecting experimental investigations; not mentioning cell calibration.

About the size of cells Dunnicliff [62] mentions that, “small cells (50–75 mm) are, generally, not
recommended because scale effects and placement problems are likely to cause greater errors than for
larger cells (230–300 mm)”. However, large cells, by definition, were not possible to be used in models
of the order of some tens of centimeters.

The confining conditions is another major source of error (see [40,41,62–66]). The limited extend of
laboratory models in plan and cross-section view affects the measurements due to “reflection” of stresses
on the boundaries (action and reaction phenomenon). Weiler and Kulhawy [63] characteristically
mention that “the boundary conditions of the chamber in which the stress cells are calibrated are
very important to the stress-strain response of soil”. According to the author, probably the “confining
conditions” is enough reason for the earth pressure distribution to appear bloated, affecting, in turn,
the point of application.

The “dynamic stress measurements” is another important factor, with the response time, the natural
frequency, and the inertia of cell being the main causes of error [40,62–64]. Stress cells give the best
results when used in static conditions. In the case of dynamic loading, special precautions are
necessary [63]. According to Weiler and Kulhawy [63], previous studies of stress cells under dynamic
loadings failed to reveal any consistent pattern or behavior.

About analytical solutions, Prakash and Basavanna [61] imply that the assumption that the point
of application in Mononobe–Okabe’s solution lies at H/3 from the bottom is not valid because the
equilibrium of moments (in addition to the equilibrium of forces in the two directions) is not satisfied.
Working with Coulomb’s rigid wedge, they proposed a methodology for calculating the earth pressures
and the point of application of the resultant force when the equilibrium of forces ‘or’ the equilibrium of
moments is satisfied. That is, in Prakash and Basavanna [61] the equilibrium of forces and moments are
still not satisfied simultaneously, calculating (for the same problem) different resultant force and point
of application from the equilibrium of forces and different from the equilibrium of moments. Moreover,
in this work it is assumed that the shear resistance along the plane of rapture is fully mobilized.
However, during dynamic solutions, as explained previously, the shear strength of soils is not fully
mobilized. That means that, working with Coulomb’s rigid wedge, the resultant reaction force on
the assumed failure plane inclines upward at a greater angle with respect to horizontal than the one
defined by the mobilized friction angle. Indeed, this is the reason why in Prakash and Basavanna’s [61]
analysis the resultant force acts much higher than the one-third of the height of the retained soil.

About the suggestion of Seed and Whitman [38] and the broadly-known distance of 0.6H (that is,
the distance where the dynamic pressure increment ∆PAE acts on the wall), it is mentioned that this
was taken from a very early experimental work (published in 1939 under the title “Tennessee Valley
Authority Requirements for Lateral Pressures in Earthquake Resistant Design”). Actually, this is an
intermediate, rounded value of two different wall batter cases (0.67H for wall batter <4:12 and 0.58H
for wall batter >4:12). Apparently, this very early experimental work carries a lot of the disadvantages
discussed herein.

Finally, it is mentioned that the most recent experimental (centrifuge tests), numerical,
and analytical studies show that the distribution of dynamic earth pressure is triangular or near
triangular and consequently the point of application lies at H/3 from the bottom or near this point
(e.g., [40,41,43,44,48,50,53,65,67,68]). These studies agree with the outcomes of the present analysis.

10.5. How Design Codes Treat Dynamic Earth Pressures on Retaining Structures

As mentioned previously, the methods preferred by the various design codes for the calculation
of active and passive earth pressures under seismic conditions are the M-O and M-O-K. The various
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design codes recognize the limitations of these methods and they either attempt an interpretation,
dictate a modification of these equations, or propose alternatives.

In this respect, Eurocode 8 [36], for β > ϕ′ − ψ, dictates (without any explanation) the whole
square root in the M-O formula (Equation (56)) to be arbitrarily replaced by unity! This produces the
paradox, as seen in Figure 8, the earth pressure coefficient for given kh value (see dashed lines) to
appear smaller for smaller ϕ′ values. The passive case Eurocode 8 [36] does not suggest or dictate
something. However, doing the same for the M-O-K solution, a similar paradox appears. For example,
in Figure 10 (dashed lines), for ϕ′ = 25◦, the Kpe,M−O−K coefficient is smaller for kh = 0.4 as compared to
kh = 0.5.

On the other hand, for AASHTO [37], the condition of ϕ′ ≥β+ ψ =β+ arctan(kh/(1− kv)) is
thought of as specifying a limit to the horizontal acceleration coefficient that could be sustained by any
structure in a given soil. Solving the above as for kh/(1− kv), the limiting condition is

kh/(1− kv) ≤ tan(ϕ′ − β). (59)

Apparently, the above is not true, since the amount of horizontal acceleration sustained by a
structure must depend on the structure itself. More recently, Kavazanjian et al. [69] in a Federal
Highway Administration course (FHWA-NHI-11-032), discussed the number of instances where the
M-O and the M-O-K methods should not be applied. Instead, they suggest that the Trial Wedge Method
or the General Limit Equilibrium Method be used. However, these methods have their own serious
disadvantages e.g., the one related with the position of surcharge on the surface, i.e., if it is on the trial
wedge or not, and more importantly the fact that the peak shear strength along the failure plane is
again used.

Finally, Au-Yeung and Ho [70] in the “GEO Report No. 45” of Geotechnical Engineering Office
of Hong Kong connected the limitation of the M-O method with the allowable angle of backfill
slope (β ≤ ϕ′ −ψ), mentioning that the last will be unstable unless the soil has sufficient cohesive
strength. This point of view, indeed, appears in most geotechnical engineering and soil mechanics
books. However, how does Coulomb’s purely geometrical solution understand that ϕ′ is the angle of
repose of (dry) frictional soils? Should we not be able to calculate the earth pressure on a wall even
when, for example, the earthquake causes the backfill slope above the higher point of the wall to fail?
Apparently, the restrictions caused by the square root are only coincidental and the answer to these
questions can be found in the setup of Coulomb’s problem, where, the angle of the “rapture surface”
(according to Mononobe and Okabe) must austerely be greater than the angle of the backslope fill
(both measured from horizontal). Otherwise, Coulomb’s wedge cannot be formed. It is reminded
that Mononobe and Okabe treated the (rigid) soil wedge as being in the state of failure. However,
this is not true (see Section 8.2) and this is the main fault of the method in question. The problematic
ϕ′ −ψ ∓ β term just derives from a series of mathematical operations with trigonometric functions.
For the history, should this case appear, the Geotechnical Engineering Office of Hong Kong dictates the
use of the trial wedge method.

10.6. Derivation of the Earth Pressure at Rest by the Active Earth Pressure Coefficient

Actually, this has been foreseen in EM1110-2-2502 [71] with the application of a Strength
Mobilization Factor (SMF) to c′ and tanϕ′. According to this Engineer Manual, an appropriate
SMF value allows calculation of greater-than-active earth pressures using Coulomb’s active force
equation. Assuming an average SMF value equal to 2/3 along Coulomb’s failure surface, it has been
shown that for purely frictional soils the derived coefficient value of earth pressure matches quite well
with the respective one derived from Jaky’s Ko = 1− sinϕ′ equation.



Appl. Sci. 2019, 9, 5291 21 of 42

More accurately, the mobilized friction angle ϕm for purely frictional soils can be obtained by the
following equation:

1− sinϕ′ = tan2
(
45◦ −

ϕm

2

)
, (60)

which gives,
ϕm = 90◦ − 2 tan−1

√
1− sinϕ′, (61)

(the effect of backslope and wall inclination, as well as, the effect of wall friction has been ignored
for simplicity).

The latter gives SMF = tanϕm/tanϕ′ values ranging from 0.5 for ϕ′ → 0
◦

to 0.653 for ϕ′ = 45◦,
that is, values very close to the assumed 2/3 value (some intermediate values are SMF = 0.561, 0.596,
and 0.627 for ϕ′ =15◦, 25◦, and 35◦ respectively).

The “Strength Mobilization Factor” in the present solution, is the 1/ fm ratio and what has been
foreseen by EM1110-2-2502 [71], it can be calculated exactly using the proposed solution. For example,
for c′ = 20 kPa, ϕ′ = 30o, γ = 18 kN/m3, kh = kv = 0, and z = 2 m, for the state at rest Ko = 0.211,
cm = 9.00 kPa and ϕm = 14.57o. Using this (cm, ϕm) pair of values in Equation (19)

(
Kc−ϕ

ae

)
, the latter

returns a coefficient of earth pressure equal to 0.211, that is, the coefficient of earth pressure at rest.
The above leads to the interesting observation that, under static conditions, both the earth pressure

at rest and the active earth pressure are exerted by the same (Rankine’s) soil wedge.

10.7. Earth Pressures Due to External Loading

Elastic solutions for horizontal stress increase or vertical elastic stress distributions can be used.
However, the use of elasticity to predict horizontal stresses has the disadvantage that the implied
stresses and strains in the elastic material may not be possible in soils. It is therefore not unreasonable
to calculate the horizontal loads on the walls due to external loads by using the elastic theory to find the
vertical stress change, and then multiplying the vertical stress increase by the relevant earth pressure
coefficient (see [10]). In the proposed solution, this is simply done by replacing γz (where it appears in
the analysis) with (γz + q), where, q is the vertical stress increase at depth z due to external loads.

10.8. The Effect of Consolidation of Soil on the Earth Pressure at Rest

The proposed solution stands for any Mohr–Coulomb, c′ −ϕ′ material having not been subjected
in the past to stresses greater than the present ones. In relation to soils, it refers to normally consolidated
ones. According to the literature, the normally consolidated soils have small cohesion intercept values
(in terms of effective stresses in Mohr’s diagram) or close to zero (e.g., [72]). The full truth is that both
cohesion and friction angle highly depend on the imposed overburden stress. This is clear from the
Mohr’s failure envelope which, as known, is a curved and not a straight line and thus, the shear strength
parameters derive from the proper tangent (Mohr–Coulomb failure criterion) to this curve in relation
to the working stresses. Thus, the effect of cohesion in earth pressures is not only significant in the
case of overconsolidated soils but also in the effective design of deep structures (such as, deep braced
excavations, piles, “cut and cover” tunnels, and underground stations) in normally consolidated soils.

Regarding overconsolidated soils, given that these soils exert greater lateral pressure due to the
stresses “trapped” in the plastically deformed soil mass, the earth pressure at rest could be expressed
as follows:

σ◦,OC = Kc−ϕ
oe (1− kv)(γz + ∆q) = Kc−ϕ

oe (1− kv)σc

= Kc−ϕ
oe (1− kv)γz ·OCR

. (62)

Equation (62) represents the earth pressure at rest at depth z for overconsolidated soils without
considering soil volume rebound. As partial volume rebound, and thus, stress relief, always take
place in soil after removing surcharge weight, the actual earth pressure at rest of the overconsolidated
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material will be smaller than the one described above. Adopting Mayne and Kulhawy’s [73] correction,
Equation (62) becomes

σ◦,OC = Kc−ϕ
oe (1− kv)γz ·OCRa, (63)

where a = sinϕ′ < 1 is a reduction factor (since OCR > 1).
The generalized coefficient of earth pressure at rest is still given by Equation (16). However, for

computing the mobilized shear strength, the term Kc−ϕ
oe (1− kv)γz appearing twice in Equation (35)

must be replaced by Equation (63); the term (1− kv)γz in Equation (35) also remains as it is.
All shear strength parameters in this section refer to the overconsolidated material.

11. Application Examples

11.1. State at Rest, Active State, and Passive State

An application example showing the variation of 1/ fm, Kc−ϕ
oe , Kc−ϕ

ae , and Kc−ϕ
pe and σo, σa and σp

with depth z for both static and dynamic conditions is given in Figure 13. It is mentioned that the
curves drawn are typical for any c′ −ϕ′ soil. The example in question refers to a cohesive-frictional
soil with c′ = 20 kPa, ϕ′ =30◦, and γ = 18 kN/m3. Solid lines denote static conditions (kh = kv = 0),
whilst dashed lines denote dynamic conditions with kh =0.3 and kv =kh/2. The purpose of this
section is not to compare the proposed solution with existing ones. This has already been done in the
“discussion” section.

From Figure 13 some very interesting observations can be made. First, the increase (active state
and state at rest) or decrease (passive state) in dynamic earth pressure is due to the decrease of the
mobilized shear strength (expressed, herein, by the 1/ fm factor). In cohesive soils, a neutral zone exists
near the soil surface (zone of no lateral pressure). The depth of this neutral zone is smaller than the
respective tension zone in the active state for the same soil. Moreover, the depth of both neutral and
tension zones reduces as the seismic loading increases. Cohesion is also responsible for the curvature
of the horizontal earth pressure distribution near the surface. This effect weakens as z increases (that is,
the earth pressure distribution increases linearly with depth for greater z values). Finally, in the active
and passive state under static conditions, as expected, the full strength of soil is mobilized (1/ fm = 1).

In addition, an example chart giving the required displacement of a smooth translating wall for
the active state to be fully developed with respect to depth z is given in Figure 14 for the following
conditions: c′ =20 kPa, ϕ′ =30◦, γ =18 kN/m3, EYoung = 5000 or 10,000 kPa, µ = 0.3, kh = 0.3,
kv = kh/2, and wall height H =3 m. Equation (30) was used with ∆K = Kc−ϕ

oe −Kc−ϕ
ae . From this figure

it is confirmed that the active state is not developed simultaneously at all points. From Equation (30) it
is also inferred that ∆xmax is inverse analogous to both µ and Eyoung.



Appl. Sci. 2019, 9, 5291 23 of 42
Appl. Sci. 2019, 9, x FOR PEER REVIEW 26 of 47 

 

Figure 13. Application example diagrams showing the variation of 1 mf , earth pressure coefficients 

( c
oeK

ϕ− , c
aeK

ϕ− , and c
peK

ϕ− ), and earth pressure ( oσ , aσ , and pσ ) with depth z  for all states (at 

rest, active, and passive) and for static and dynamic conditions. 

Figure 13. Application example diagrams showing the variation of 1/ fm, earth pressure coefficients
(Kc−ϕ

oe , Kc−ϕ
ae , and Kc−ϕ

pe ), and earth pressure (σo, σa, and σp ) with depth z for all states (at rest, active,
and passive) and for static and dynamic conditions.



Appl. Sci. 2019, 9, 5291 24 of 42
Appl. Sci. 2019, 9, x FOR PEER REVIEW 26 of 46 

 

Figure 14. Example chart showing the variation of maxxΔ  with depth z  for YoungE =  5000 and 

10,000 kPa. 

11.2. Intermediate State 

Let a smooth wall of height 3H m=  retaining a soil with the following characteristics: 'c =20 
kPa, 'ϕ = 30°, 318  kN mγ = , YoungE = 5000 kPa or 10,000 kPa and 0.3μ = . Dynamic conditions 

are considered with pseudo-static coefficients: 0.3hk =  and 2v hk k= . The wall is allowed to slide 
horizontally away from the soil by 7.5 mm. For any depth z , the required displacement maxxΔ  for 
the active state to fully develop can be obtained using Equation (30). 

Two maxxΔ  vs. z  curves were drawn in Figure 15 (left), that is, for the YoungE = 5000 kPa and 

10,000 kPa soil. As shown, for the YoungE = 10,000 kPa soil, the 7.5 mm of wall movement are more 

than enough for the active state to fully develop along the whole height of the wall. The earth 
pressures in this case are given by the continuous curve of Figure 15 (right). 

However, for the soil with YoungE =  5000 kPa, the 7.5 mm of wall movement are not enough 

for the active state to fully develop along the whole height of the wall. As shown in Figure 15 (left), a 
zone of intermediate earth pressures exists (0.32 2.08 )m z m< <  between two active zones (at z < 
0.32 m and z > 2.08 m). The intermediate earth pressures for 0.32 2.08m z m< <  are then calculated 
using Equation (10) (along with Equations (8), (9), and (12)). The mixed distribution of earth pressures 
in this case is given by the thick dashed curve of Figure 15 (right). The distribution of earth pressures 
at rest is also given for comparison purposes (dotted line in Figure 15 (right)). 

As shown in Figure 16, a different retaining wall movement mode—in this respect rotational as 
for its base—gives a completely different distribution of intermediate earth pressures; the maximum 
yield of the wall was considered again as 7.5 mm. 

It is also interesting how the mobilized shear strength (expressed by the factor 1 mf ) is affected by 
the mode of failure of the retaining structure as well as the modulus of elasticity of soil; see Figure 17. 

Figure 14. Example chart showing the variation of ∆xmax with depth z for EYoung = 5000 and 10,000 kPa.

11.2. Intermediate State

Let a smooth wall of height H = 3m retaining a soil with the following characteristics: c′ =20 kPa,
ϕ′ =30◦, γ = 18 kN/m3, EYoung =5000 kPa or 10,000 kPa and µ = 0.3. Dynamic conditions are
considered with pseudo-static coefficients: kh = 0.3 and kv = kh/2. The wall is allowed to slide
horizontally away from the soil by 7.5 mm. For any depth z, the required displacement ∆xmax for the
active state to fully develop can be obtained using Equation (30).

Two ∆xmax vs. z curves were drawn in Figure 15 (left), that is, for the EYoung =5000 kPa and
10,000 kPa soil. As shown, for the EYoung =10,000 kPa soil, the 7.5 mm of wall movement are more than
enough for the active state to fully develop along the whole height of the wall. The earth pressures in
this case are given by the continuous curve of Figure 15 (right).

However, for the soil with EYoung = 5000 kPa, the 7.5 mm of wall movement are not enough for
the active state to fully develop along the whole height of the wall. As shown in Figure 15 (left), a zone
of intermediate earth pressures exists (0.32m < z < 2.08m) between two active zones (at z < 0.32 m
and z > 2.08 m). The intermediate earth pressures for 0.32m < z < 2.08m are then calculated using
Equation (10) (along with Equations (8), (9), and (12)). The mixed distribution of earth pressures in this
case is given by the thick dashed curve of Figure 15 (right). The distribution of earth pressures at rest is
also given for comparison purposes (dotted line in Figure 15 (right)).

As shown in Figure 16, a different retaining wall movement mode—in this respect rotational as
for its base—gives a completely different distribution of intermediate earth pressures; the maximum
yield of the wall was considered again as 7.5 mm.

It is also interesting how the mobilized shear strength (expressed by the factor 1/ fm) is affected by
the mode of failure of the retaining structure as well as the modulus of elasticity of soil; see Figure 17.
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12. Summary and Conclusions

This paper offers an extension of Cauchy’s first law of motion to deformable bodies with internal
resistance (in Mohr–Coulomb terms) and under the action of (both horizontal and vertical) pseudo-static
forces with application to earth pressures. Working with Jaky’s (1944) soil heap hypothesis, the present
analysis not only led to the derivation of the coefficient of earth pressure at rest (valid for normally
consolidated soils) but also to the active and passive earth pressure coefficients. Indeed, despite
the increased complication of the present continuum mechanics approach and the inclusion of three
additional parameters, i.e., cohesion and seismic coefficients of horizontal and vertical acceleration,
the derived earth pressure coefficients have a remarkably simple form. The “intermediate state”, that
is, the state before the active or the passive one is also introduced.

Regarding the active and passive case, the present work highlights the major drawbacks of the
theory of Mononobe–Okabe and its restrictions affecting seriously the applicability of the method
in question. The proposed coefficients are devoid of such restrictions and give rational results.
For example, during an extreme seismic event, the horizontal pseudo-static force may exceed, even
theoretically, the passive resistance of soil. This is not observed in the M-O-K solution, which steadily
gives very high, nonconservative values, even for seismic events of Armageddon scale. It is also
noteworthy that, under static conditions (kh = kv = 0), the proposed coefficients of active and passive
earth pressure are transformed to the well-known Rankine’s expressions (and also, to Bell’s extension
for cohesive soils). This is very important because a well-established theory working at point level (in
contrast to the lumped mass model of Coulomb) is proved with a totally different manner, this time,
based on the theory of continuum mechanics, offering better insight into the earth pressure theory.
The present solution also compares excellently with results obtained from centrifuge tests.

As for the earth pressures at rest, the present work fills a major gap in the literature by offering
an analytical expression for the coefficient of earth pressure at rest for cohesion–frictional soils and
horizontal and vertical pseudo-static conditions. This is very important, since the coefficient of
earth pressure at rest has a variety of applications in practice, such as, in retaining structure design,
interpretation of laboratory and field tests, especially results from in-situ devices that are pushed
into the ground, pile friction analysis, and the establishment of initial horizontal stresses in finite
element analysis.

Finally, an analytical expression for the calculation of the mobilized cohesion and friction angle in
the state at rest (at any given depth) is also provided, whilst moreover, the required displacement of
wall for the full mobilization of the active or passive state is also calculated analytically. As shown,
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the lateral displacements depend on both Eyoung and µ of soil. This is an apparent conclusion regarding
the displacements in soils, since it is known that the latter are indissoluble connected to the elastic
parameters of material (e.g., see elastic settlement of footings).

Since often the retaining structures fail partially or they are deformed to such an extend so that
the active (or the passive) state is not fully developed, the proposed research fills a major gap in the
international literature. Indeed, as part of the proposed method, the mobilized shear strength of soil at
any depth z is also calculated. Finally, the intermediate state at any depth z is related to the degree
of wall movement, again fully analytically; in this respect, it is shown that both the mode of failure
and the elastic parameters of soil Eyoung and µ affect significantly the magnitude of the intermediate
earth pressures.
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Notation List

a Positive real number
αh Horizontal pseudo-static acceleration
αs Inclination angle of sand heap or back slope inclination
αv Vertical pseudo-static acceleration
β Back face inclination angle of the structure with respect to vertical
γ Unit weight of soil
∆q Overburden stress caused over-consolidation to the underlain soil; this stratum no longer exists

e.g., due to erosion
∆K Kc−ϕ

oe −Kc−ϕ
ae or Kc−ϕ

pe −Kc−ϕ
oe (depending on the case)

∆PAE The dynamic pressure increment acting on the wall
∆x Lateral displacement of wall
∆xmax Lateral displacement of wall corresponding to the active or passive state
∆ϕm The difference between the mobilized friction angle in the active or the passive state and the

respective one at the state at rest, that is, ∆ϕm = ϕm,a −ϕm,o or ϕm,p −ϕm,o (depending on the case,
the difference may be negative)

δ Angle of friction between structure and soil
θ Inclination angle of failure plane with respect to horizontal (θa for the active state and θp for the

passive state)
κ kh/(1− kv)

λ Real number (λ = 0, 1, or 2)
µ Poisson’s ratio of soil
ξ Coefficient depending only on m
ρ Density of the material
σ Normal stress (it also appears as σx, σy, σz, σx,OB, σz,OB, and σz,o)
σ1 Vertical stress
σ3 Lateral stress
σα Active earth pressure
σi Earth pressure at intermediate state (on the active or passive “side”)
σp Passive earth pressure
σ′h Horizontal effective stress
σ′v Vertical effective stress
σh,Finn Earth pressure on retaining wall calculated with Finn’s [31] equation taking into account the

amount ∆x
σc Pre-consolidation pressure
σ◦ Earth pressure at rest
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τ Shear stress (it also appears as τxz, τyz and τxy, τxz,OB)
τR,m Mobilized resistance (shear strength) of soil
ϕ Friction angle of soil (peak effective value)
ϕm Mobilized friction angle of soil (effective value)
ϕm,i The mobilized friction angle of soil at the intermediate state
ϕm,o The mobilized friction angle of soil at the state at rest (it is also referred to as ϕm)
ϕm,x Mobilized friction angle of soil at the x state (x = o, a or p for the state at rest, the active,

and the passive state, respectively)
ψ Seismic inertia angle
C Integral’s constant
c′ Cohesion of soil (peak effective value)
cm Mobilized cohesion of soil (effective value)
Eo Resultant force of earth pressures at rest
Eae Resultant force of dynamic active earth pressures
Epe Resultant force of dynamic passive earth pressures
EYoung Young modulus of soil
Ei E1 = (e1 tanϕ′), E2,1 =

(
e2,1 tanϕ′

)
, E2,2 = (e2,2 tanϕ′), and E2 = E2,1 + E2,2

fi Body force in the i direction (i ∈
{
x, y, z

}
)

fm Mobilization factor of shear strength at the state at rest
g Acceleration of gravity
H Height of the wall (meaning the height of the retained soil)
Ko Jaky’s coefficient of earth pressure at rest
Kc−ϕ

ae The generalized coefficient of active earth pressure
Kc−ϕ

oe The generalized coefficient of earth pressure at rest
Kc−ϕ

pe The generalized coefficient of passive earth pressure
Kc−ϕ

xe The generalized coefficient of intermediate earth pressure
K Coefficient of lateral earth pressure
Ka,Coulomb It refers to the well-known Coulomb’s active earth pressure coefficient
Kβs=0

a,Coulomb As above but with zero backfill angle

Kp,Coulomb It refers to the well-known Coulomb’s passive earth pressure coefficient
Kae,M−O It refers to the well-known Mononobe–Okabe’s active earth pressure coefficient
Kpe,M−O−K It refers to the well-known Kapila’s passive earth pressure coefficient
ki Seismic coefficient along the in the i direction (i ∈

{
x, y, z

}
)

kh Seismic coefficient of horizontal acceleration
kv Seismic coefficient of vertical acceleration
M-O It refers to the Mononobe–Okabe solution
M-O-K It refers to Kapila’s solution
m Real number
n Number of planes of the material element resisting to deformation
ns Normal stress
OCR Over-consolidation ratio
PGA Peak Ground Acceleration
q Vertical stress increase at depth z
R The reaction force on the assumed Coulomb’s failure plane
Ri Internal resistance of soil in the i direction (i ∈

{
x, y, z

}
)

To Shear stress along the base of Jaky’s sand heap
ts Shear stress
..
us,i Imposed seismic force per unit mass in the i direction (i ∈

{
x, y, z

}
)

..
ux Acceleration force per unit mass in the i direction (i ∈

{
x, y, z

}
)

Vo Normal stress on the base of Jaky’s sand heap
W Weight of Coulomb’s soil wedge
x x-coordinate
xOB x-coordinate on the line OB
z Depth of soil or z-coordinate
znz Depth of neutral zone
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Appendix A. The Proposed Analysis

For static conditions, the state of stress in Zone I is known completely, and it is admissible as long
as the base AC of the prism is sufficiently rough [34]. The stress components in region ABO (Zone I) is
given by Equation (A1). The steps for the derivation to these equations (for Jaky’s Zone I) can be found
in Pipatpongsa and Vardhanabhuti [35].

σx = γ(z cosϕ′ − x sinϕ′) cosϕ′

σz = γ(z− x tanϕ′)
(
1 + sin2ϕ′

)
τxz = γ(z cosϕ′ − x sinϕ′) sinϕ′

. (A1)

Considering dynamic conditions, the above stresses should be recalculated as to include the
influence of pseudo-dynamic forces. The equations of equilibrium in Zone I will then become:

∂σx
∂x + ∂τzx

∂z = −khγ

∂τxz
∂x + ∂σz

∂z = (1− kv)γ

. (A2)

It is noted that the most unfavorable condition in the problem of earth pressures arises for
positive seismic coefficients. The resistance term is not included in these equations, because Zone I is
cohesionless, whilst, the friction resistance will be taken into account through the following Mohr’s
circles analysis. Zone I balances at its maximum friction angle.

From Mohr–Coulomb criterion, it is:

τxz = σx tanϕ′, (A3)

whilst,σx can be related to σz as follows:

σx + σz

2
− σx = τxz tanϕ′. (A4)

Substituting Equation (A3) into Equation (A4) and solving as for σz:

σz = σx + 2τxz tanϕ′ =
(
1 + 2 tan2 ϕ′

)
σx. (A5)

The stress relations of Equations (A3) and (A5) are then substituted into Equations (A2), giving

∂σx
∂x + tanϕ∂σx

∂z = −khγ

tanϕ′ ∂σx
∂x +

(
1 + 2 tan2 ϕ′

)
∂σx
∂z = (1− kv)γ

. (A6)

The first-order spatial derivatives of σx are, finally,

∂σx
∂x = −γQtan
∂σx
∂z = γQcot

, (A7)

where,
Qtan =

kh(1 + 2 tan2 ϕ′) + (1 − kv) tanϕ′

1 + tan2 ϕ′

Qcot =
kh cotϕ′ + (1 − kv) cot2 ϕ′

1 + cot2 ϕ′

. (A8)

The differential of σx with respect to x and z is given as follows

dσx =
∂σx

∂x
dx +

∂σx

∂z
dz. (A9)

Integration of dσx can be carried out due to its simple form, with an integral constant C to be left
after integration.

σx = −γQtan

∫
dx + γQcot

∫
dz + C. (A10)



Appl. Sci. 2019, 9, 5291 30 of 42

The state of stress at the apex of the granular heap (x = 0, z = 0) is zero (σx = 0), therefore, C = 0.
The stress components σz and τxz are obtained by substituting σx into Equations (A6) and (A5). Thus,
the three components become:

σx = (−Qtanx + Qcotz)γ

σz =
(
1 + 2 tan2 ϕ′

)
(−Qtanx + Qcotz)γ

τxz = tanϕ′(−Qtanx + Qcotz)γ

. (A11)

The equation of borderline OB is

z =
xOB

tan
(
45o −

ϕ′

2

) . (A12)

Substituting z from above, the three stress components given in Equation (A11) on the borderline
OB will become

σx,OB =

−Qtan + Qcot

tan
(
45o −

ϕ′

2

)
xOBγ

σz,OB =
(
1 + 2 tan2 ϕ′

)−Qtan + Qcot

tan
(
45o −

ϕ′

2

)
xOBγ

τxz,OB = tanϕ′
−Qtan + Qcot

tan
(
45o −

ϕ′

2

)
xOBγ


. (A13)

Stresses in Zone II cannot yet be characterized because the direction of principle stresses and
slide planes are both unknown. It is known, however, that the shear stress on the line OC is zero
and on OB τxz = τxz,OB. The variation of shear stress between these two values is assumed to follow
the power function of x given by Equation (11) (used along with the f (m) function of Equation (12)).
The rationality of Equation (11) and the role of the function f (m) have already been discussed in
Sections 7 and 10.1.

Substituting τxz,OB and xOB = z tan(45o
−ϕ′/2) to Equation (11),

τxz = f (m)γz tanϕ′
(
Qcot −Qtan tan

(
45o
−
ϕ′

2

)) x

z tan
(
45o −

ϕ′

2

) 
m

, (A14)

with partial derivatives

∂τxz
∂x = f (m)mγ tanϕ′

tan
(
45o−

ϕ′

2

)
 x

z tan
(
45o−

ϕ′

2

)
m−1

·

·

(
Qcot −Qtan tan

(
45o
−
ϕ′

2

))
,

(A15)

and
∂τxz
∂z = f (m)γ tanϕ′(1−m)

 x

z tan
(
45o−

ϕ′

2

)
m

·

·

(
Qcot −Qtan tan

(
45o
−
ϕ′

2

))
.

(A16)

Working first for σz, from Equation (A2)

∂σz

∂z
= (1− kv)γ−

∂τxz

∂x
, (A17)
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from where, integrating as for z

σz = γz
(
(1− kv) − f (m)Q1

(x
z

)m−1
)
+ f (x), (A18)

where,

Q1 =
m

2−m
tanϕ′

tanm
(
45o −

ϕ′

2

) (Qcot −Qtan tan
(
45o
−
ϕ′

2

))
. (A19)

On the borderline OB, it is x = xOB, z = xOB tan(45◦ + ϕ′/2) and σz = σz,OB, thus,

f (x) = σz,OB − γz
(
(1− kv) − f (m)Q1

(
x
z

)m−1
)
=

= xOBγ



(
1 + 2 tan2 ϕ′

)−Qtan + Qcot

tan
(
45o −

ϕ′

2

)
−

tan
(
45o +

ϕ′

2

)(1− kv) − f (m)Q1

 1

tan
(
45o +

ϕ′

2

)
m−1


. (A20)

For xOB = 0, σz,OB is also zero, thus f (x) = 0.
On the vertical line OC x = 0, thus, Equation (A18) simplifies to

σz,o = γz


(1− kv) − f (m) m

2−m
tanϕ′

tanm
(
45o −

ϕ′

2

)
·

(
Qcot −Qtan tan

(
45o
−
ϕ′

2

))(
0
z

)m−1

. (A21)

The last has singularity for m = 1, but for any value m > 1 (including the m→ 1), it gives the
rather expected

σz,o = (1− kv)γz. (A22)

For the determination of horizontal stress σx, from Equation (A4)

∂σx

∂x
= −

∂τzx

∂z
+

2
z
(cm + (1− kv)γz tanϕm) − khγ. (A23)

The coefficient “2” in the resistance term indicates the two horizontal planes of the element of
Figure 1 resisting to shear in plane strain conditions. Moreover, because the frictional resistance of the
material has already been taken into account in the stress components (recall Equation (A11)), it is
neglected below in order duplication to be avoided. Thus, Equation (A23) becomes

∂σx

∂x
= −

∂τzx

∂z
+

2cm

z
− khγ. (A24)

Substituting Equation (A16) into Equation (A24) and integrating as for x

σx = γx


f (m) m − 1

m + 1

(
Qcot −Qtan tan

(
45o
−
ϕ′

2

))
· tanϕ′

 x

ztan
(
45o −

ϕ′

2

)
m

+ 2cm
γz − kh

+ g(z). (A25)

For x = 0, it is σx = σx,OB and, therefore,

g(z) = σxo. (A26)

On the other hand, at xOB = ztan
(
45o
−
ϕ′

2

)
, i.e., on the line OB from Equation (A13):
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σx = σx,OB

=

−Qtan + Qcot

tan
(
45o −

ϕ′

2

)
xOBγ

=

−Qtan + Qcot

tan
(
45o −

ϕ′

2

)
 tan

(
45o
−
ϕ′

2

)
γz

. (A27)

Substituting Equation (A27) into Equation (A25) and eliminating x with x = ztan
(
45o
−
ϕ′

2

)
:

g(z) = γz
(
Qcot −Qtan tan

(
45o
−
ϕ′

2

))(
1− f (m) m − 1

m + 1 tanϕ′
)

−(2cm − khγz) tan
(
45o
−
ϕ′

2

) , (A28)

and for x = 0:
σx,o = γz

(
Qcot −Qtan tan

(
45o
−
ϕ′

2

))(
1− f (m) m − 1

m + 1 tanϕ′
)

−(2cm − khγz) tan
(
45o
−
ϕ′

2

) . (A29)

Dividing the derived expression for σx,o with the respective one for σz,o (Equations (A29) and
(A22), respectively) the general expression for the coefficient of lateral earth pressure of Equation (8) is,
finally, obtained.

Appendix B. Sign Convention

The coefficient kh is assumed always positive and such that its effect is always unfavorable
(Figure A1). In the active case, a positive kh denotes inertia action towards the wall (ground acceleration
towards the backfill). On the other hand, in the passive case, a positive kh denotes inertia action
towards the backfill. The coefficient kv may have either a positive or negative value.
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As

fm =
tanϕ′

tanϕm
, (A30)

and trigonometrically

tanϕm =
sinϕm

cosϕm
=

sinϕm√
1− sin2 ϕm

. (A31)



Appl. Sci. 2019, 9, 5291 33 of 42

Equation (36) is finally transformed to the following polynomial equation of 3rd order with sinϕm

(or, better, ϕm) being the only unknown:

a0 sin3 ϕm + b0 sin2 ϕm + c0 sinϕm + d0 = 0, (A32)

where,
ao = ±

(
1 + e2

2 tan2 ϕ′
)
, (A33)

bo = 1−
(
2e1e2 + e2

2

)
tan2 ϕ′, (A34)

co = ±
(
e2

1 + 2e1e2
)

tan2 ϕ′, (A35)

do = −e2
1 tan2 ϕ′. (A36)

The plus sign in front of ao and co, stands for the case where the earth pressure coefficient is smaller
than unity and vice versa.

Equation (A32) has the following analytical solution:

ϕm =
180o

π
arcsin

(
−

1
3ao

(
bo + ζλCo +

Do

ζλCo

))
, (A37)

where,

Co =


D1 −

√
D2

1 − 4D3
0

2


1
3

, (A38)

Do = b2
o − 3aoco, (A39)

D1 = 2b3
o − 9aoboco + 27a2

odo, (A40)

and

ζ =

(
−

1
2
+

√
3

2
i
)
. (A41)

For every z, Equation (A32) has three roots obtained, respectively, for λ = 0, 1, and 2 (λ appears in
Equation (A37)). The correct λ is chosen upon the criteria that ϕm is a real, positive number, less than
ϕ′. In addition, the same λ should stand both for static and dynamic conditions. The proper value for
the state at rest is λ = 1. In addition to the criteria for the selection of the proper λ for the state at rest,
in the active and the passive state it stands that the ϕm value should be greater than the respective one
of the state at rest. Thus, λ should be set to 1 for the active state and 0 for the passive state.

The following comments are also important. e1 and e2 (Equations (37), (38), and (41)–(46) given in
Section 8.1) need cohesion and friction angle not to be zero. Therefore, instead of zero, users should use
a very small positive value (e.g., c′ = 0.01 kPa and ϕ′ = 0.01o) without affecting accuracy. Moreover, in
homogenous c′ −ϕ′ soils, ϕm increases continuously and smoothly with z until reaching ϕ′ for z =∞

(asymptotic value). In granular soils ϕm is constant with depth.
ϕm can also be obtained graphically following the simple steps below. First, a (E1, E2) pair of

values is obtained from Figure A2, Figure A3, or Figure A4 for the state at rest, the active state and the
passive state, respectively. ϕm is then taken from the abovementioned pair of values using Figure A5
for the active state or the state at rest or Figure A6 for the passive state. Finally, fm and cm are obtained
from Equation (A30) and Equation (34), respectively. An application example is given. The question
here is the ϕm value for the state at rest for the following data: c’ = 20 kPa, ϕ′ = 30◦, γ = 18 kN/m3,
kh = 0.4, kv = 0.2 and z = 2 m. For ϕ′ = 30◦ and κ = kh/(1 − kv) = 0.4/(1 − 0.2) = 0.5, Figure A2 gives
E1·c’/[γz/(1 − kv)] ≈ 0.18, E2,1 ≈ 1.745 and E2,2·c’/[γz/(1 − kv)] ≈ 0.825, that is, E1 ≈ 0.259 and E2 = E2,1 +

E2,2 = 1.745 + 1.188 = 2.933. For this (E1, E2) pair of values, Figure A5 gives ϕm = 8.4◦.
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Appendix D. The Parameters e1 and e2 for the Intermediate State on the Passive Side

e1 = −
(1− kv)(1−A)

B 2c′
γz

, (A42)

e2 = −

 1
B tanϕ′

+
(1− kv)(1 + A)

B 2c′
γz

, (A43)

where,

A =

(
1 + sinϕ′

1− sinϕ′

)ξ1
(
(1 + ξ sinϕ′) + ξ2

kh
1− kv

tanϕ′(2 + ξ(1 + sinϕ′))
)

, (A44)

B =


tan

(
45o +

ϕ′

2

)
tan

(
45o −

ϕ′

2

)

ξ1

tan
(
45o
−
ϕ′

2

)
. (A45)

The above parameters stand for the intermediate state of earth pressures on the passive side when
Kc−ϕ

xe > 1. For Kc−ϕ
xe < 1, the sign in front of Equation (A42) needs to be inverted. The parameters ξ1 and

ξ2 have been defined in Equation (27).
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