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Abstract:  Tool support is described for analyzing requirements and creating conceptual models from 
scenarios. A schema of scenario-based knowledge is proposed that extends the i* ontology with 
concepts to represent the system environment and natural language semantics to categorize arguments. 
Modelling tools are introduced to support the process of transforming scenarios into models and 
requirements. We illustrate use of the tools by analysis of the London Ambulance case study. The 
advisor guides the analyst with contextual appropriate advice on functional allocation of agent roles 
and generic requirements to avoid errors and system failure. The advice is based on research in human 
reliability engineering. 
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Introduction 

Scenarios have received considerable attention as a means of eliciting and validating requirements 
(Carroll, 1995; Potts, Takahashi & Anton, 1994; Rolland et al., 1998). In requirements elicitation, 
models are derived from scenarios by a process of generalization, while in requirements validation, 
scenarios can be used as examples to test a model or requirements specification. However, there are 
few methods or tools that help the transformation of scenarios to models or support the use of scenarios 
in requirements validation. 

One use of scenarios is to capture information about the system environment (e.g. Kyng, 1995) 
which is often ignored in conceptual models. Yu and Mylopoulos (Yu, 1997) emphasize the need to 
model the system environment, since lack of domain knowledge frequently leads to inadequate 
requirements and hence system failures Curtis, Krasner & Iscoe, 1988). The i* framework (Yu, 1997) 
was developed for modelling and reasoning about the impact of organizational environments on 
information systems, and i* does provide reasoning mechanisms for validating relationships between 
agents, tasks and goals; however, we argue that requirements analysis tools should go further and 
provide advice on issues such as functional allocation and socio-technical system design. In previous 
work we investigated taxonomies of influencing factors and proposed scenario-based techniques for 
diagnosing problems in communication and functional allocation in socio-technical systems (Sutcliffe, 
2000; Sutcliffe et al., 1998). To assist this modelling, we introduce tools that support the process of 
transforming scenarios into models and requirements specifications. These tools are based on schema 
of scenario-based knowledge, explained in the following section. The tools are illustrated by analysis of 
the London Ambulance case study. 

 
Knowledge Representation Schema for Scenarios 

Scenarios have many definitions and even more diverse content (Carroll, 2000, 1995; Cocchiarella, 
1995), so a general purpose ontology of knowledge (Hovy, 2001; Sowa, 2000) might seem to be an 
appropriate choice. However, we wish to build upon existing conceptual modelling languages (e.g. 
UML) and i* in particular because this is established in RE. Our schema, therefore, contains concepts 
that are familiar in many modelling languages (i.e. agents, objects, tasks, goals), but it adds new 
constructs for modelling the system environment and, more radically, for argument and 
communication. We propose a unified schema that represents arguments expressed in natural language 
and the domain of discourse (i.e. the modelled world) to which those arguments pertain. The 
motivation for this is simple. Scenarios frequently report opinions and causal arguments that explain 
aspects of the modelled world. Capturing and analyzing such arguments is often critical to discovering 
accurate requirements.  

A schema of scenario components was derived from the review of relevant literature (Carroll, 1995; 
Carroll et al., 1994; Daren, Harrison & Wright, 2000; Mylopoulos, 1998; Sutcliffe et al., 1998, 
Mylopoulos, 1998), ontologies and knowledge representation (Chung & Nixon, 1995; Guarino, 1997; 
Sowa, 2000; Van Heijst, Schreiber & Wielinga, 1997; Waterson & Preese, 1999). The schema 
categorizes scenario narratives into five areas (Actors & Structures, Intentions, Tasks, Environment, 
and Communication) and three levels (Strategic, Tactical, and Operational).  
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Semantics to express structures and properties of the system environments and argumentation were 
drawn from functional theories of language (Mann & Thompson, 1988) to augment the semantics in 
the i* model (Mylopoulos, 1998). Concepts are first order modelling primitives which have properties. 
The concepts and relationships in each of the five areas are as follows:  

 
• Actors & structures: agent, attribute, group, organization, physical structure, role; 

properties of agents: motivation, capability, dependability, power, reputation, responsibility, 
trust 

• Intentions: goal, objective, policy, strategy; 
properties of goals: importance, quality 

• Activity-related: action, event, object, procedure, resource, state, task; 
properties of tasks: predictability, complexity, criticality 

• Environmental: social, economic and physical environments including location; 
properties of environment: predictability, interruptions, weather state, stress, climate, noise; 
properties of social environment: management culture, time pressure, stress, inclusiveness 

• Communication: argument, attitude, background context, causation, consequence, decision, 
elaboration, evidence, issue, interpretation, hypothesis, justification, motivation, position, 
viewpoint. 

 
The schema concepts and relationships are shown in Figure 1. The actors, intentions, task and 

environment components all represent the modelled world and are connected to communication 
components by user-defined relationships. The communication area is not explicitly coupled to the 
modelled world because it represents arguments about the domain of discourse. In many cases, 
segments in scenario narratives may refer to argument and to properties of concepts in the modelled 
domain; for instance, a narrative that argues for system users being well trained can be described by 
properties of agents (their motivation) as well as given a motivating argument for their training.  

 

 
 

Figure 1 - Hypertext tool showing schema map interface with domain model components and 
relationships at the tactical and strategic level. 

 
Hypertext Tool for Scenario Management:  An object-oriented authoring system (Asymetrix’s Tool-
Book Instructor II), a hypertext tool, was used to construct a concept map interface of the scenario 
schema, as illustrated in Figure 1. The user could access definitions as a pop up “tool tip” text to 
explain each component with examples and synonyms to help understanding. 

 



Scenarios are marked up using the annotator editor which also functions as a model editor so that 
model components can be linked to scenario narrative segments. We illustrate use of the scenario 
modelling tools with the computer-aided dispatch (CAD) system in the London Ambulance Service 
(LAS). The aim is to show how a scenario modelling tool can be used in requirements analysis to 
identify key design issues by a retrospective analysis of the LAS CAD system starting with a narrative 
that presents a scenario-like summary of the system failure. (Finkelstein & Dowell, 1996) 

The annotation editor provides a direct manipulation interface so the user can highlight a segment of 
scenario text and then point to the schema component that describes it. This causes markup tags to be 
placed in the selected text, e.g. <agent> text editor </agent>. Text can be selected several times so 
part of a scenario narrative can be linked to communication as well as domain model components, e.g. 
<justify> to support the user’s task it was necessary to create a tool which was the <agent> text editor 
</agent></justify>. 

The annotation editor could also be used to create models by a simple pick and place dialogue. This 
allows the user to create a model of the domain with agent, task, object instances and then link the 
model components to their corresponding origin in one or more scenarios. The LAS system model 
derived from this analysis is shown in Figure 2.  Links in the annotation editor provide traceability so 
cause-consequence arguments in the scenario can be traced to the relevant system model components. 
For example, the frustration experienced by the ambulance crews which led them to poor reporting of 
call status relates to the relationship between the Crew agent and the Reporting goal/task. 
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Figure 2 - Model of the LAS system in adapted i* notation. Only goals and agents are shown for 
simplicity, with additions of organization and environment components taken from our scenario 

schema. Causal influences on the crews are modelled as means-ends links. 
 

Scenario Analysis Advisor:  The scenario analysis advisor uses rules and relationships between schema 
components to produce advice on human factor problems and generic requirements that indicate 
solutions to those problems. Three types of advice are available: 
 

• Functional allocation issues: this advice concerns the trade-off decisions about which 
functional requirements should be fully automated, partially automated or left as manual tasks. 
This advice is accessed when querying goal/task or agent components in models or scenarios. 
The knowledge is drawn from the HCI literature (Bailey, 1982; Wright, Dearden & Fields, 
2000) and contains warnings about flexibility of processes, the predictability of events, 
workload estimation techniques and social issues such as human reactions to changes in 
responsibility and authority brought about by automation. 



• System reliability and human error: this advice pertains particularly to task/goal-agent 
relationships but it may also be accessed via organization-agent relationships. The knowledge 
for this is drawn from the human reliability engineering literature (Hollnagel, 1998; Leveson, 
1995; Reason, 2000) and covers typical errors that may occur in certain task-agent 
combinations with generic requirements to prevent or contain such problems. 

• General analysis information about socio-technical system problems attached to relations 
between agents, tasks, goals, organizations, and the social/political environment. This 
knowledge is taken from the RE and studies of socio-technical systems. 

 
The advice is accessed via browsing on the schema map and selecting components. Alternatively, 

nodes in marked-up scenarios can be selected to access advice dialogues. To illustrate the process, 
assuming the user has selected four nodes: agent, task, structure and physical environment; first the 
system requests further information about the properties of the selected nodes as shown in Figure 3. For 
instance the task properties are entered as high or low estimates for the level of complexity, the level of 
training and familiarity with the task, the agent types (e.g. human or machine agent), and the 
environmental properties (e.g. interruptions, weather conditions). This information is used by the 
system to narrow its search for appropriate advice. 

 

 
 

Figure 3 - Scenario analysis advisor, showing input of properties for the selected relationship (1. top 
left) and advice (3. top right hand message box). 

 
If functional allocation advice is chosen with agent and task nodes selected then the system provides 

the advice illustrated in Table 1 which shows the setting of the properties of the schema components, 
and the advice and its justification with respect to those settings. 

Rules indicate potential constraints on agent-task combination such as the dangers of allocating 
complex tasks to poorly motivated agents. If the organization node that the agents belong to and 
properties of management culture are set to poor, this will set the agents’ motivation low, so the 
influence of property settings is propagated along schema relationships. Table 2 shows error prevention 
advice for the task-agent relationship. 

Advice is created by rules that follow the schema links from task and agent to structures and 
organization (the immediate system environment) and then to physical and social environment nodes. 
The error advice database is organized using the schema to enable access to the appropriate 
information. The advice is generated by rules that link the preconditions to types of error. A sample of 
the rules is given below, with the general format followed by an example: 



• Functional allocation rules: 
If task <property=H/L> Then allocate to <Machine or Human or Collaborative (machine 
support)>: e.g. If task <complexity=L> Then allocate to <Machine agent> 
If agent <property = H/L> Then allocate to <Machine    or Human (training advice)>: e.g. If 
agent <capability = H> Then allocate to < Human agent> 

• Error reliability rules:If organisation <property = H/L> Then agent <property = H/L>: e.g. If 
organisation <incentive = L> Then agent <motivation = L> 
If agent <property = H/L> Then errors <(slips/mistakes) probable/not probable>: e.g. If agent 
<motivation = L> Then slips are likely 
If physical environment <property = H/L> Then errors <(slips/mistakes) probable/not 
probable>: e.g. If physical environment <time pressure = H> Then slips are likely. 

The number of rules that trigger error predictions is counted to increase a confidence rating, e.g. 
slips are likely (influencing factors = 3/8). 

 
Table 1 - Functional allocation advice for Tasks and Agents according to their property settings. 

 
Component Properties if High, then Implications if Low, then Implications 
Task Complexity Capable and well trained operators; 

allocate to humans 
Little training, suitable for automation 

 Predictability Automate, if not too complex Allocate to humans 
 Importance/criticality Motivate operators, back-up, 

recovery and fail safe design 
Less training and error prevention 
needed 

Agent Motivation Allocate demanding tasks to 
humans 

Manual allocation for non-critical 
simpler tasks 

 Capability Check time for complex tasks 
Human operation 

Automate for simple, predictable tasks 

 Task knowledge Skilled tasks 
Human operation 

Decision support; training necessary 

 Dependability Allocate critical tasks to humans, or 
automate 

Automate; 
Humans for simpler, non-critical tasks 

 
 

Table 2 - System and human reliability advice for task-agent relationships. 
 

Component Properties if High, then Implications if Low, then Implications 
Task Complexity Mistakes unless operators are well 

trained 
Slips when operators become bored 

 Predictability Slips in routine operation; beware 
time pressure 

Mistakes in reacting to usual events; 
training and simulation help 

 Importance/criticality Time pressure, fatigue and stress 
cause errors 

Slips unless well motivated 

Agent Motivation Mistakes less likely, slips still 
occur 

Prone to mistakes and slips 

 Capability Fewer errors if well trained Errors unless trained and given simple 
tasks 

 Dependability Errors less likely unless time 
pressure, tired or stressed 

Prone to mistakes, lapses and slips 

 
The error advice points to high likelihood of mistakes which are errors in intention and planning, 

while slips and lapses are failures of attention and concentration. Slips and lapses occur in skilled 
operation when the user agent is familiar with the task, whereas mistakes occur more frequently in 
tasks that require more judgment and decision making. Time pressure, fatigue and stress increase error 
rates, even when agents are well motivated, capable and reliable (Reason, 1990). 

 



Case Study: London Ambulance Service 
The LAS scenario was investigated using the analysis advisor. First, a general checklist is provided 

followed by more specific advice on critical design issues through understanding relationships between 
them. The task type for “Dispatch Ambulances” is set to Critical = H, Complexity = H and 
Predictability = M. This task requires judgment and knowledge about identifying calls and ambulance 
resource availability. Since full automation of the dispatch task was planned, the agent type is set to 
machine. For the environment properties, time pressure and interruptions were set to high while the 
other environmental factors like the weather could also be poor, so the following advice checklist was 
displayed: 

• Function allocation advice is: 
Check reliability. 
Check machine has correct information/knowledge for the task. 
Ensure information/knowledge is accurate and up to date. 
Check flexibility of automated design and fallback procedures. 
With implications for the human role: 

• Check change in responsibility is acceptable to the user. 
Investigate the assignment of authority of agents for tasks/goals. 
Question the impact on users’ motivation and morale of changes in responsibility and 
authority. 
Investigate users’ trust in technology; if it is poor, then operation may be ineffective. 

• And implications of physical environment for task effectiveness: 
Investigate time for decision making. 
Check for interruptions and flexibility in handling unexpected events. 
Investigate weather impact on task operation. 

 
Clearly such advice was not followed during the development of the CAD system, so it is possible 

that provision of this knowledge might have prevented some of the design mistakes. The CAD system 
did not have the correct information in the gazetteer of London streets and the location of the 
ambulances was inaccurate because radio blackspots prevented the system from tracking the vehicles in 
some locations. Furthermore, the information on call progress was inaccurate because of the crews’ 
failure to report calls via mobile data terminals (MDTs). Implementation of the system changed the 
responsibility and authority of the dispatcher controllers because the system made the choices for them, 
with little opportunity to override decisions. This created an inflexible system. The motivation and 
morale of the dispatchers was probably impacted before the system went live, but rapidly became 
worse when the unreliability of the system became obvious.  

In the second example, the report task and ambulance crew node is selected with advice on potential 
system errors and human reliability. This delivers the following guidance organized in four areas where 
errors may occur: the human agent (i.e. the ambulance crew users), design of the computer system (in 
this case the mobile data terminal) and the environment in which the system is used. The task in this 
case involved the crews entering progress reports into the MDTs. The properties settings of the task 
and environment were: 

 
Task: Critical = High, Complexity = L, Skill = H and Predictability = M 
Environment: Time pressure = H, Stress = H, Predictability = L 
 

The task is critical because accuracy of the CAD system databases depends on it. Although the task 
of reporting in itself is not complex, its predictability can vary as some calls do not go to plan and the 
time pressure is created by crews having to attend to a higher priority task first, such as giving first aid, 
and getting the patient to hospital. The task is assumed to be a trained skill. The analysis advice is 
accompanied by generic requirements as follows: 

 
• Human Error: slips and lapses are likely with skilled tasks. Check that training is adequate, 

and that the skill has been practised recently. 
generic requirements: to prevent/remedy lapses, use timeouts to check progress, provide 
reminders, status indicators, keep routines short; to prevent/remedy slips, trap slips with 
validation routines, minimize distractions, make task operations clear, ensure objects acted 
upon cannot be confused with others, provide reminders, undo facilities, editing facilities to 
correct errors. 

• User Interface Design 
generic requirements: predictable and consistent user interface, same layout of screens, 



consistent commands, simple actions, clear and unambiguous feedback, ergonomic 
requirements of visibility, audibility of output. 

• Environment influences: slips and lapses 
generic requirements: minimize distractions and interruptions, e.g. non-essential noise, 
extraneous visual stimuli, non-essential communication. Ensure user has sufficient time to 
complete task without being pressured. Minimize fatigue and stress, which adversely affect 
user concentration. Investigate user motivation. 

• Social/political environment 
generic requirements: management culture should motivate users to complete tasks by 
encouragement and incentives. Goals and standards of performance should be clearly 
communicated and addressed by training. Users should feel that they own the system and are 
involved with its success. Avoid authoritarian management styles if possible. 

 
In this case the advice was pertinent to the LAS system at both levels. There were several user 

interface design defects in the MDT terminals which made them difficult to use, such as the order of 
entering call progress and poor visibility of the displays. The crews didn’t use their MDTs effectively 
because of motivational problems caused by a poor managerial culture which did not involve crews in 
the design of the system. Furthermore, no incentives were given for effective use, and training was 
inadequate. Finally, when failures began to accumulate in the system, crews became stressed and tired 
which led to more slips and errors. Careful design was necessary because the crews’ working 
environment was prone to interruptions and time pressures so error prevention should have been built 
into the user interface; for instance, by making the reporting sequence clear. This last point is not made 
explicit in the LAS report; however, it can be inferred as another contributing factor from the above 
checklist. 

 
Lessons Learned 

The scenario annotator/advisor is currently a prototype/concept demonstrator which we created to 
gain feedback on the suitability of developing this approach. The feedback obtained so far from 
demonstrations of the system to industrial users has been reasonably encouraging; however, several 
problems have emerged. Firstly, the advice often requires human factors knowledge to interpret it. Our 
reaction to this problem is twofold. Firstly, we intended the system to be used by software engineers 
who have received at least some HCI training, and secondly to make the advice easier to understand, 
although this will make it more verbose. The second problem was anticipated from the outset: that 
marking up scenarios is a labour-intensive task which leads to the question about whether the 
annotation and traceability between scenarios and models will provide sufficient added value for the 
effort. As yet we have no answer to this point; however, to persuade industrial users to try out the 
system, and hence allow us to capture effectiveness data, the next step is to add an information 
extraction tool to partially automate the markup. Information extraction tools work by being trained to 
recognize text segments using rules that combine domain specific vocabularies with discourses marker 
phrases; e.g. because, as a result, etc., point to cause-consequence components. Another direction is to 
restrict markup by only documenting parts of a scenario narrative that relate to important requirements. 
Other problems are concerning the readability of the complex schema graphs and understanding their 
semantics, although these problems were alleviated by follow-up explanation, so an explanation facility 
is another extension. The concept of integrating communication/argumentation and the modelled 
domain was considered worthwhile as documentation on scenarios design discussion and models 
tended to be kept separately, making traceability difficult. Reaction to the system advice was most 
favourable overall, although the users pointed out that this could be driven directly from the schema 
graph without the scenarios. 

 
Conclusions 

The contribution that the scenario advisor tool has made so far is to explore the feasibility of tool 
support for eliciting conceptual models by generalization from scenarios and delivering advice on 
human factors issues in system development. The focus on human error was motivated by our previous 
work modelling the causes of system failure and human error using Bayesian Belief Networks 
(Galliers, Sutcliffe & Minocha, 1999; Sutcliffe, 1993). BBN models enable error probabilities to be 
predicted for system operators and software components by running system models against scenarios 
describing the environment, agents and task. However, BBN models hide the knowledge that motivated 
their construction, so in validation studies users requested more explicit representation of that 
knowledge. We have reverse engineered the knowledge out of the BBN to make it available as a 
checklist. One future test of the advisor prototype is to try it in combination with the BBN tool. The 



advice contained in the current systems is preliminary and will be improved by tailoring it with more 
domain-specific evidence; however, our initial intention was to evaluate the feasibility of tool-based 
assistance for functional allocation. 

The second contribution of this work is to propose a role for model-driven advice in computer aided 
systems engineering. Our source of advice in the safety critical systems and human factors literature 
(Bailey, 1982; Hollnagel, 1998; Reason, 2000) needs to be imported into mainstream system 
development since many requirements failures, which the LAS system illustrates, could be prevented 
by more systematic analysis of functional allocation and potential causes of error. Furthermore, we 
believe that embedding such advice in model editors allows it to be delivered in the appropriate context 
during modelling activity. Further validation tests of our existing preliminary prototype are the next 
step to assess the utility and effectiveness of a scenario annotator/advisor tool. 

 
Acknowledgements 

This research was supported by EPSRC Systems Integration Programme SIMP project (Systems 
Integration for Major Projects). Special thanks to David Corrall in BAE Systems for his valuable 
comments and help with this research. 

 
References 
 
Bailey, R.W. (1982). Human Performance Engineering: A Guide for System Designers. Prentice Hall, 
Englewood Cliffs NJ. 
 
Carroll, J.M.(1995). Scenario-based Design: Envisioning Work and Technology in System 
Development. John Wiley, New York. 
 
Carroll, J.M. (2000). Making Use: Scenario-based Design of Human-computer Interactions. MIT 
Press, Cambridge, MA. 
 
Carroll, J.M., Mack, R.L., Robertson, S.P, and Rosson, M.B. (1994). Binding Objects to Scenarios of 
Use. International Journal of Human-Computer Studies 41:243-276. 
 
Chung, L., and Nixon, B.A. (1995). Dealing with Non-Functional Requirements: Three Experimental 
Studies of a Process-Oriented Approach. In Proceedings of the 17th International Conference on 
Systems Engineering. IEEE Computer Society Press, Los Alamitos, CA. 25-37. 
 
Cocchiarella, N.B. (1995). Knowledge Representation in Conceptual Realism. International Journal of 
Human-Computer Studies 43:697-721. 
 
Curtis, B., Krasner, H., and Iscoe, N. (1988). A Field Study of the Software Design Process for Large 
Systems. Communications of the ACM 31(11):1268-1287. 
 
Daren, A, Harrison, M. and Wright, R. (2000). Allocation of Function: Scenarios, Context and the 
Economics of Effort. International Journal of Human-Computer Studies,. 52: 289-318. 
 
Finkelstein, A., and Dowell, J. (1996). A Comedy of Errors: the London Ambulance Service Case 
Study. In Proceedings of the 8th International Workshop on Software Specification & Design IWSSD-
8, IEEE Computer Society Press, Los Alamitos, CA. 2-4. 
 
Galliers, J.R; Sutcliffe, A.G; and Minocha, S. (1999). An Impact Analysis Method for Safety-critical 
User Interface Design. ACM Transactions on Computer-Human Interaction 6:341-369. 
 
Guarino, N. (1997). Understanding, Building and Using Ontologies. International Journal of Human-
Computer Studies 6:293-310. 
 
Hollnagel, E. (1998). Cognitive Reliability and Error Analysis Method: CREAM. Elsevier, Amsterdam. 
 
Hovy, E.H. (2001). Comparing Sets of Semantic Relations in Ontologies. In R. Green and S.H. 
Myaeng (Eds) Semantics of Relationships. 
 



Kyng, M. (1995). Creating context for design. In J.M. Carroll (Ed.) Scenario-based Design. Wiley, 
New York. 85-108. 
 
Leveson, N.G. (1995). Safeware: System Safety and Computers. Addison Wesley, Reading, MA. 
 
Mann, W., and Thompson, S. (1988). Rhetorical Structure Theory: Toward a Functional Theory of 
Text Organization Text 8:243-281 
 
Mylopoulos, J. (1998). Information Modelling in the Time of the Revolution. Information Systems 
23:127-155. 
 
Potts, C., Takahashi, K, and Anton, A.I. (1994). Inquiry-based Requirements Analysis. IEEE Software 
11:21-32. 
 
Reason, J. (1990). Human Error. Cambridge University Press, Cambridge. 
 
Reason, J. (2000). Managing the Risks of Organizational Accidents. Ashgate, London. 
 
Rolland, C. Arhur, B.C., Cauvel, C., Ralyte, J., Sutcliffe, A.G., Maiden, N., Jarke, M., Haumer, P., 
Pohl, K., Dubois, E., and Heymans, P. (1998). A Proposal for a Scenario Classification Framework. 
Requirements Engineering 3:23-47. 
 
Sowa, J. F. (2000). Knowledge Representation: Logical, Philosophical, and Computational 
Foundations. Brooks/Cole, Pacific Grove, CA. 
 
Sutcliffe, A.G. (2000). Requirements Analysis for Socio-technical System Design. Information Systems 
23:213-233. 
 
Sutcliffe, A.G., Maiden, N.A.M., Minocha, S., and Manuel, D. (1998). Supporting Scenario-based 
Requirements Engineering. IEEE Transactions on Software Engineering 24:1072-1088. 
 
Sutcliffe, A.G. (1993). Modelling Business Goals and Requirements Acquisition: report HCID/93/10. 
City University, London. 
 
Van Heijst, G., Schreiber, A.T.., and Wielinga, B.J. (1997). Using Explicit Ontologies in KBS 
Development. International Journal of Human-Computer Studies. 45:183-292. 
 
Waterson, A., and Preece, A. (1999). Verifying Ontological Commitment in Knowledge-based 
Systems. Knowledge-based Systems 12:45-54. 
 
Wright, P.C., Dearden, A.M., and Fields, R. (1997). Function Allocation: A Perspective from Studies 
of Work Practice. International Journal of Human-Computer Studies 52:335-356. 
 
Yu, E. (1997). Towards Modelling and Reasoning Support for Early-Phase Requirements Engineering. 
In Proceedings of the 3rd IEEE Int. Symposium on Requirements Engineering. IEEE Computer Society 
Press, Los Alamitos, CA. 226-235. 


