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Abstract

This paper presents recent progress in inter-satellite microwave radiometric cross-calibration to 
eliminate brightness temperature measurement biases between a pair of radiometer channels operating at 
slightly different frequencies and incidence angles. The motivation of this research is to develop robust 
analytical cross-calibration techniques for inter-calibration of various satellite radiometer instruments, 
with the first projected application being the multi-satellite Global Precipitation Measurement (GPM) 
constellation to be launched in 2013. The significance of this work is that it will allow the formation 
of consistent multi-decadal time series of geophysical measurements for multiple satellite microwave 
radiometers that are free of instrumental biases and other long-term changes in radiometric calibration, 
which will allow researchers to study global climate change.

Descriptions are given for two independent calibration techniques: a Taylor series expansion of the 
oceanic brightness temperature (Tb) spectrum between dissimilar radiometer channels and a non-linear 
regression among multi-channel Tb measurements. In the first approach, predictions were made of Tb’s at 
a destination frequency from Tb’s of a close by source frequency by expansion of the oceanic brightness 
temperature spectrum in a Taylor series centered at the source frequency. The relationships between Tb’s 
and frequencies were derived from simulations using a radiative transfer model (RTM), which accounts 
for the total collected emissions from the ocean surface and the atmosphere. Further, earth incidence angle 
differences between radiometer channels were transformed in a similar manner using the partial derivatives 
of Tb with incidence angle derived from RTM simulations. In the second approach, we used a prediction 
algorithm that relies on the correlation between radiometer Tb’s at various frequencies and polarizations and 
which uses a regression on the Tb’s and their non-linear transformations developed using an independent 
radiative transfer model. 

As a demonstration, near-simultaneous pair-wise ocean Tb comparisons are presented between the 
TRMM Microwave Imager (TMI), which is not sun synchronous, and the sun-synchronous polar orbiting 
WindSat, using oceanic Tb observations from 2003-04. The corresponding results between these two inter-
satellite calibration techniques are highly correlated, and results demonstrate that fixed channel-by-channel 
differences, of order 1 – 2 K exist between TMI and WindSat. These are significant radiometric calibration 
differences, which can be removed prior to forming joint data sets of geophysical parameter retrievals.
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1.   Introduction

The monitoring of climate is important for numer-
ous socio-economic purposes, and satellite remote 
sensing provides a multi-decadal time series of geo-
physical parameter measurements from which climate 
assessments are derived. While satellites are capable 
of providing near-global distributions of measurements 
for numerical climate models, it is a major challenge 
to achieve sustained geophysical measurement accu-
racy over the lifetime of many different satellite instru-
ments contributing to a particular data time series. 
Fortunately, overlapping observations of meteorolog-
ical satellites provide the opportunity to maintain 
improved calibration accuracy, according to Goody 
(2002).

The motivation of this paper is to report on progress 
in developing robust analytical cross-calibration tech-
niques for inter-calibration of various microwave radio-
meter instruments. The first application is the Global 
Precipitation Measurement (GPM), which relies on a 
constellation of cooperative satellites with a variety of 
microwave radiometers to make global rainfall meas-
urements. Thus, it is crucial to achieve brightness tem-
perature (Tb) measurement consistency at the sub-
Kelvin level among the constellations, as well as to 
maintain sustained calibration accuracy over the life-
time of each satellite sensor. Fundamental to this con-
cept is the existence of a core satellite in non-sun-
synchronous orbit, which serves as a precipitation 
measurement transfer standard for the other coop-
erative constellation members. The issue for this radio-
metric comparison is that constellation satellite radio-
meter systems have different instrument character-
istics: frequency, bandwidth, viewing geometries, cali-
bration approaches, and antenna beam efficiencies. 
However, this paper presents two techniques that 
enable cross-calibration in spite of these instrument 
system differences. An example of the GPM appli-
cation is presented, using the Tropical Rainfall Mea-
suring Mission (TRMM) Microwave Imager (TMI) as 
a proxy for the GPM Microwave Imager, and these 
techniques are used to estimate the relative radiometric 
biases of the WindSat microwave radiometer in a sun-
synchronous orbit. 

The following section discusses the collocations of 
near-simultaneous ocean Tb’s with associated relevant 
environmental condition “match-ups”; Section 3 describes 
the Taylor series expansion model and a multi-channel 
regression model; and Section 4 presents the inter-
satellite radiometric calibration results and discusses 

errors.

2.   Radiometers and measurement collocations

2.1   WindSat and TMI microwave radiometers
WindSat is a large-aperture, conically scanning 

polarimetric radiometer on the Coriolis satellite, which 
has a sun-synchronous orbit of 840 km altitude and 
98.7° inclination. This total power radiometer operates 
at five frequencies (6.8, 10.7, 18.7, 23.8, and 37 GHz) 
with separate feed horns whose incidence angles vary 
from 50° to 55°, as described by Gaiser et al. (2004). 
Due to excellent on-orbit calibration (Jones et al. 2006; 
Ruff et al. 2006), we have high confidence in the Tbs 
from the WindSat Sensor Data Records (SDR), except 
during April to August when hot-load anomalies are 
observed near the South Pole, as noted by Twarog et 
al. (2006). Fortunately, this is not an issue for this 
paper because the TMI swath coverage exists only 
between ± 40° latitude, which is outside the region of 
this WindSat hot-load anomaly.

The TRMM conical-scanning radiometer, TMI, 
operates in a 350 km altitude (403 km altitude after 
August 2001) non-sun-synchronous orbit with a 35° 
inclination. TMI has five frequencies (10.65, 19.35, 
21.3, 37.0, and 85.5 GHz), all at a common incidence 
angle of 53.2°. Post-launch radiometric calibration by 
Wentz, Ashcroft, and Gentemann (2001) demonstrated 
a systematic along-scan error of 1 K and a warm bias 
of 5 K caused by a slightly emissive main reflector. 
The TMI data products used in this paper incorporate 
both of these radiometric bias corrections. However, 
recent inter-satellite comparisons with TMI, WindSat, 
and SSMI reported by Gopalan et al. (2008) have 
revealed a small time-variable radiometric calibration 
error of ± 2 K, which has not been corrected in the 
results herein.

2.2   Measurement collocations
For meaningful Tb comparisons between a pair of 

satellite radiometers, it is important to have benign Tb 
fields; therefore, transient weather phenomena such as 
oceanic and atmospheric fronts and precipitation should 
be avoided. Furthermore, this implies that “tight” spa-
tial and temporal collocation tolerances should exist 
between measurements. By analyzing Tb histograms 
and their statistical moments for ocean areas (“boxes”) 
of 1° by 1° in latitude and longitude, we adopted the 
procedures of removing non-uniform areas and aver-
aging Tb’s over the remaining areas before comparison. 
Doing so reduces variability of the differences between 
channels.
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The first group of collocations between TMI and 
WindSat were obtained for alternating weeks during 
November 2003 and are mapped in Fig. 1. A second 
comparison dataset was chosen to examine the sea-
sonal stability of the inter-calibration during the first 
week of each month between November 2003 and 
August 2004. Collocations during the whole month of 
June 2003 were collected to provide more samples for 
better statistical analysis. WindSat Tb’s were from 
SDR and a total of 14,865 cases from all collocation 
peri-ods. The corresponding environmental parameters 
(sea-surface temperature (SST), ocean surface wind 
speed (WS), water vapor (WV), and cloud liquid water 
(CLW)) were from WindSat Environmental Data 
Records (EDR). Atmospheric profiles of temperature, 
pressure, and moisture were spatially interpolated to 
the radiometer 1° boxes using the National Oceanic 
and Atmospheric Administration (NOAA) National 

Center for Environmental Prediction’s (NCEP’s) Global 
Data Assimilation System (GDAS) atmospheric pro-
duct; they were time coincident to within ± 1.5 hours. 
Figure 2 is an expanded view of individual Tb meas-
urements in one collocation event (single pass). For 
each WindSat Tb, the geometrically closest TMI meas-
urement (within ± 15 minutes and 25 km) was selected. 

The Tb’s from all TMI channels and WindSat radio-
meter channels were averaged over the 1° boxes. By 
examining the corresponding Tb means and standard 
deviations for each channel, we set an upper bound to 
screen outliers (Tables 1 and 2). The entire box was 
discarded if it contained only one collocated meas-
urement, if it contained a rainy pixel, or if the standard 
deviation of Tb’s was > 2 K for vertical polarization 
(V-pol) or > 3 K for horizontal polarization (H-pol). 
These criteria eliminated Tb outliers that had possible 
instrument anomalies and data that were contaminated 
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Fig. 1.  Collocations between TMI and WindSat. Blue triangles denote collocations for Nov. 1-7; green dots, 
those for Nov. 13-19; and red crosses, those for Nov. 28-Dec. 4, 2003.
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by land or rain in the field of view. 

3.   Calibration approaches

Since the WindSat and TMI radiometers had sim-
ilar, but not identical, frequencies and viewing angles, 
some translation was needed to enable comparison of 
collocated radiance measurements on a common basis. 
Fortunately, theoretical modeling of radiative transfer 
is well understood over the ocean and was used to 
provide this translation, using the following two inter-
satellite calibration approaches.

3.1   Taylor series prediction
In this approach, predictions of Tb’s were made at a 

destination (target) frequency from Tb’s of a nearby 
source frequency by expansion of the Tb spectrum in a 
Taylor series centered at the source frequency. The 
relationships between Tb’s and frequencies were 
derived from simulations using a radiative transfer 
model (RTM); earth incidence angle (EIA) differences 
were transformed in a similar manner, separately from 
the frequency adjustments. 

A block diagram of this inter-satellite calibration 
procedure is presented in Fig. 3. Because the Taylor 
series expansion was calculated at the TMI incidence 
angle, the incidence angle transform was performed 
first by converting WindSat measurements to equiv-
alent Tb’s at the TMI incidence angle. Next, the source 
frequency with the smallest difference from the target 
frequency (on the same side of the WV line) was 
selected, and then the frequency transformations were 
applied. The target TMI channels and their corre-
sponding source WindSat channels are listed in Table 3. 
To illustrate the magnitude of the Tb normalizations 
for frequency and incidence angle between the source 
and target channels, the delta-Tb nominal values are 
also listed. Of course, the actual adjustments were 
slightly different, based upon the collocated envi-
ronmental parameters within each 1° box. 

a.   Radiative transfer model tuning
Since a reliable RTM is fundamental to this approach, 

we start with tuning and validating the model to simu-
late WindSat radiometer measurements. The RTM, 
known as RadTb, was developed by the Central 
Florida Remote Sensing Laboratory (CFRSL) and was 
based on the Environmental Modeling (ENVIMOD) 
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Fig. 2.  Typical WindSat and TMI collocation 
swaths: blue dots denote individual valid 
collocated measurements; green squares, 
rain-contaminated measurements; and red 
crosses, valid 1° box centers.

Channel 6.8H 6.8V 10.7H 10.7V 18.7H 18.7V 23.8H 23.8V 37H 37V 
Tb (K) 120 200 150 200 200 250 230 260 200 250 

Channel 10.65H 10.65V 19.35H 19.35V 21.3V 37H 37V 
Tb (K) 115 185 200 230 260 210 240 

Table 1.  Upper bound for WindSat Tb’s over Tropical Ocean.

Table 2.  Upper bound for TMI Tb’s over Tropical Ocean.
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model developed by Wisler and Hollinger (1977). It is 
driven by fourteen environmental measurements of the 
ocean and atmosphere, and three radiometric param-
eters. This RadTb version uses a sea-water dielectric 
constant from Meissner and Wentz (2004), a rough 
ocean surface emissivity formulation of Wentz and 
Meissner (1999), Rosenkranz’s (1975, 1993) oxygen 
absorption model, and Stogryn’s water vapor algorithm 

developed from Gross’s formula (1955). 
Prior to inter-satellite comparison, several empirical 

adjustments are applied to the RadTb subroutines, as 
described by Hong (2007), to remove Tb biases 
between WindSat-measured and RadTb-modeled Tbs 
over the range of environmental conditions experi-
enced. The data set for tuning and validation was 
generated from WindSat and GDAS match-ups with-
out rain during October 2003 (20 days). 

After RTM tuning, RadTb gave excellent results 
between model simulations and WindSat H-pol and 
V-pol measurements. Very small biases were observed 
under the constrained training data set of environ-
mental conditions: SST < 27°C, columnar WV < 20 
mm, columnar cloud liquid < 0.1 mm, and WS < 8 m s-1. 
For RTM validation, an expanded and independent 
environmental data set with 5 million cases was used, 
and the results are presented in Fig. 4. The overall 
mean biases of the RadTb simulation were < 0.5 K for 
the 6.8, 10.7, 18.7, and 23.8 GHz channels and < 1 K 
for 37 GHz. The standard deviation of the measured 
and modeled differences increased with frequency 
from 1 K at 6.8 GHz to 4 K at 37 GHz. Included in 
these comparisons were small systematic errors (< 1 
K) associated with incorrect incidence angle correc-
tions because the WindSat instantaneous incidence 
angle varied from case to case (< ± 0.5°) and the 
RadTb simulations were performed at fixed nominal 
values.

b.   Frequency normalization
Under given geophysical conditions, the observed Tb 

is determined by the frequency and polarization of the 
radiometer channel, and the antenna incidence angle 
and azimuth angle relative to wind direction. Because 
the ocean wind direction relative to the radiometer 
azimuth look is nearly uniformly distributed over the 
ocean boxes, the latter effect averages to nearly 0 K. 

Fig. 3.  Flow chart of WindSat to TMI 
calibration using Taylor series expansion 
prediction (in dash square).

Target:  TMI f(GHz) 10.65H 10.65V 19.35H 19.35V 21.3V 37H 37V 

Source: WindSat f(GHz) 10.7H 10.7V 18.7H 18.7V 18.7V 37H 37V 
Freq. Norm. ΔTb (K) -0.10  -0.11  9.06  5.48  27.79  0.00  0.00  
EIA Norm. ΔTb (K) -3.00  6.46  0.79  -6.79  -6.79  0.04  -0.65  
Total ΔTb (K) -3.09  6.35  9.84  -1.31  21.00  0.04  -0.65  

Table 3.  Source and target channels of WindSat to TMI calibration. 
Example of DTb under L(WS)M(WV)M(SST)L(CLW) geophysical condition, ΔTb = TMI – WindSat.
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Thus, by simulating satellite radiometer Tb’s for spec-
ified geophysical conditions with a fixed incidence 
angle at V-pol and H-pol, we can derive a relationship 
between Tb’s and operating frequency as

   Tb = polynomial(freq),	 (1)

and the Taylor series expansion Tb(f) for a source fo is

n
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where, f1 is the frequency of the destination channel, 
and fo is the frequency of the source channel. 

For the range of probable geophysical conditions, 
radiometer measurements were simulated for different 
channels from 30 days of WindSat EDRs and associ-
ated GDAS match-ups. With these geophysical param-
eters as inputs to RadTb, all channels of TMI and 
WindSat were simulated at their operating frequencies 
but with the incidence angle for TMI at 53.2°. Taylor 
series coefficients (partial derivatives) were then derived 
for the frequency transforms from these simulated 
Tb’s. Frequency spectra of Tb’s varied as a function of 
geo-physical conditions and polarization, so they were 
characterized separately. Of the 14 RadTb environ-
mental inputs, only the environmental factors WS, 
WV, SST, and CLW were categorized. Considering the 
distribution of environmental conditions, the sensi-
tivity of Tb to geophysical parameters, and the desired 
accuracy of frequency normalization, we categorized 
these four geophysical parameters into different ranges 
(Table 4). Thus, over 4.7 million observed environ-
mental cases were sorted into 12,960 categories of 
geophysical conditions, corresponding to 6 WS × 36 
WV × 10 SST × 6 CLW, which neglected the sorting 
of other (minor) geophysical parameters. Unrealistic 
conditions that rarely occur (e.g., high WV and cold 
SST) were eliminated so that not all of the 12,960 
categories were used. 

Figure 5 depicts an example of the apparent Tb spec-
trum, at an EIA of 53.2°, for typical environmental 
conditions, with the frequencies of TMI and WindSat 
channels identified. For cross-calibrating WindSat and 
TMI, Taylor series expansions were derived from 
similar Tb simulations with the corresponding match-up 
of environmental conditions.

c.   Earth incidence angle normalization
Frequency and EIA transforms were performed 

sequentially (Fig. 3). For normalization with respect to 
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Fig. 4.  RadTb validation with WindSat 
measurements as the reference standard 
under all geophysical conditions(XXXX).

Classifications Wind Speed
(m/s)

Water Vapor 
(mm)

Sea Surface Temp. 
(C)

Cloud Liquid Water 
(mm)

Range 0 - 25 0 - 70 0 - 36 0 - 0.5
Transformation WS/5+1 WV/2+1 SST/4+1 CLW*10+1
Num. of Levels 6 36 10 6

Table 4.  Categorization of major geophysical parameters.
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incidence angle, the same algorithm is applied, and 
the variation of Tb as a function of incidence angle is 
derived from the RadTb with other parameters fixed. 
For the full-range of environmental conditions and 
within the range of incidence angles of TMI and 
WindSat, Tb is approximately a linear function of 
incidence angle; thus, the transformation can be 
expressed as 

Tb(θ1) = Tb(θ0) + ∂(T ) / ∂(θ ) × (θ1– θ0),	 (4)

where the partial derivative coefficients are deter-
mined for different geophysical conditions.

Because of the design of the WindSat antenna feed 
array, the corresponding incidence angle was different 
for each frequency, and the instantaneous value within 
each match-up box was used for the EIA trans-
formations. From the WindSat SDRs, the lowest inci-
dence angle was 50.4° for 10.7 GHz, and the highest 
was 55.9° for 18.7 GHz. For TMI, the nominal inci-
dence angle was 53.2° (common for all channels). 

3.2	 Multi-channel regression calibration
This alternative approach is a slightly evolved 

version of the scheme used by Wilheit et al. (1984). 
Over oceans, the inter-satellite radiometric calibration 
between a pair of near-simultaneous collocated multi-
channel radiometers is accomplished without requiring 
knowledge of the corresponding surface and atmos-

pheric geophysical parameters. For illustrative pur-
poses, a simplified block diagram is depicted in Fig. 6.

In this method, we use a prediction algorithm that 
relies on the correlation between radiometer Tb’s at 
various frequencies and polarizations, and a regression 
on the Tb’s (and a function of the Tb’s) developed using 
an independent RTM (from RadTb). The logic is that 
GDAS models and associated radiometer environ-
mental parameter retrievals have errors and all RTMs 
are imperfect; however, by using a common RTM in 
both the forward and the inverse sense, imperfections 
in the model nearly cancel out.

To simulate the training set, the starting point was 
the ensemble of geophysical parameters for input to 
the RTM. The philosophy used here was to introduce 
very little statistical information via the ensemble 
because statistically valid data sets of all of the 
relevant parameters were not available. Also, because 
we were interested in algorithms that would be robust 
in unusual situations, we preferred not to bias our 
retrievals towards commonplace situations. The ensem-
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ble was chosen to exercise retrieval over the entire 
expected range (and perhaps more) of the relevant param-
eters.

Each member of the ensemble was used as input for 
the RTM so that radiances with the viewing param-
eters (angle, wavelength, polarization, noise equivalent 
delta-T (NEDT)) of the target instrument could be 
computed. It was important that the instrument noise 
be included in this calculation, and these viewing param-
eters were to be used as input to regression analysis. 
However, since regression is an inherently linear proc-
ess and since the relationships between the radiances 
and the desired geophysical parameters are not close 
to linear, we transformed both the radiances and the 
desired parameters, choosing linearizing functions 
with knowledge of the relevant physics of the form

).285ln( TbL −= 	 (5)

This function removed the bulk of the non-linearity 
and could be justified if we approximated the 
atmosphere as an isothermal layer at a temperature of 
285 K. When predicting target Tb’s from source Tb’s, we 
used this form for the dependent variable and included 
the linear form as well for the independent variables:

0___ )( CTcLcL
i

sourcebiTsourceTbiLobjTb ++= ∑ .	 (6)

We used a synthetic ensemble of geophysical situ-
ations to generate the Tb’s of the observation (source) 
channels: 15 SSTs, 10 WSs, and 7 handbook atmos-
pheres (U.S. standard, tropical, subtropical summer, 
subtropical winter, midlatitude summer, midlatitude 
winter, and subarctic summer). Also, the ensemble was 
designed so that the resulting retrieval would be very 
robust in the presence of clouds. For this reason, we 
included nine synthetic cloud models ranging from the 
null case (no cloud) up to 80 mg cm-2 of columnar 
water content. Within the cloud, the WV was increased 
to 100% relative humidity, and portions of the cloud 
colder than 233 K (the temperature of spontaneous 
nucleation) were assumed to be ice particles too small 
to have any effect on Tb’s.

This combination of atmospheric and surface condi-
tions yielded 9,450 members for the ensemble; how-
ever, to eliminate highly improbable combinations, 
only cases with air-sea temperature differences less 
than 8 K (absolute value) were included, thus reducing 
the number of cases to less than half of the original 
size. This introduced a conservative correlation between 

SST and columnar WV. 
Regressions were then run to predict the geophysical 

parameters and other Tb (or linearized functions thereof) 
from the calculated source radiances. The matrix and 
offsets from this regression comprised the retrieval 
algorithm. As a by-product, the residuals of the regres-
sion served as an approximate performance simulation 
for the instrument and algorithm.

All the channels were not always needed due to a 
great deal of redundancy in the set of multi-channel Tb 
observations. Therefore, the process was iterated, 
deleting one channel (the one that helped least) at a 
time until the predicted retrieval uncertainty increased 
by a meaningful amount, then replacing the last chan-
nel deleted. However, when problems with the radio-
meter observations (e.g., radio frequency interference 
and instrument malfunctions) occurred, including 
unnecessary channels merely increased the captured 
cross-section for these problems. This process also 
enabled us to determine which linearizing function, or 
combination of linearizing functions, worked best.

In order to generate an algorithm for the prediction 
of the TMI Tb’s from that of the WindSat, we generated 
a database using the above ensemble, which included 
all of the TMI and WindSat channels as well as the 
logarithmic forms for each. The values of the SST, 
WS, WV, and CLW were included, as well as a few 
channels that did not actually exist (e.g., TMI 21.3 GHz 
H-pol) but maintained symmetry, for ease of program-
ming. Reasonable noise estimates were included for all 
the independent variables but not for the dependent 
variables. In total, the database consisted of 32 vari-
ables, and the covariance matrix of these data was 
used as the input for the regression analysis. 

This formalism permitted a test of self-consistency 
of the Tb’s, and the Tb of one channel of a given instru-
ment could be predicted from the remaining channels. 
In this case, we predicted the 19.35 GHz (18.7 GHz) 
channel of TMI (WindSat) from the remaining chan-
nels. Using the April and July 2003 data sets (WindSat 
IDR and TMI 1B11 v5), the mean bias (Predicted-
Observed) for these channels was 1.25 K (0.31 K) for 
April and 1.06 K (-0.62 K) for July. These results 
suggested that WindSat was somewhat better cali-
brated than TMI and, more importantly, gave us confi-
dence in the self-consistency of the method. 

4.   Results and discussion

4.1   WindSat to TMI calibration
First, three groups of collocations between WindSat 

and TMI were analyzed during November 2003. In 
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over 1000 cases in each week-long period, Tb’s were 
binned to 1° boxes and average values were calculated 
for each box, excluding rainy and noisy data where the 
standard deviation exceeded a fixed threshold. 

A typical example of the comparison between the 
WindSat-predicted and the TMI Tb for the 19V channel 
is presented in Figs. 7 (Taylor series) and 8 (multi-
channel regression). These figures present all data for 
the three periods: blue for the first week, green for the 
second week, and red for the third week. The Tb’s for 
the first and third weeks overlap at the low end of the 
Tb scale, and the second week covers the higher values. 
The reason can be seen in Fig. 1, where the collo-
cations for these three periods are grouped by latitude. 
The collocations for the second week are distributed 

within ± 20° latitude, whereas those for the first and 
third weeks have absolute latitudes > 20°. The linear 
regression fits by the weekly data sets (the right-hand 
panels of both figures) indicate similar results for both 
methods but slightly different biases (offsets).

The statistics of mean differences between predic-
tions from WindSat channels and TMI observations 
by Taylor series expansion are indicated in Table 5, 
and similar results from multi-channel regression are 
presented in Table 6. A few channels exhibit excellent 
agreement: for example, the 10.65 H-pol and the 37 
H-pol results differ by 0.2 K, as do the 21 V-pol for 
the first and third weeks. However, for most channels, 
the two methods yield significant fixed differences (1 
to 1.7 K) between biases. A closer examination of the 

Fig. 7. Example of TMI-WindSat Tb comparisons for the TMI 19.4 GHz V-pol using the Taylor Series 
Expansion method. The left panel is a scatter diagram with collocated measurements for three weeks in 
Nov. 2003, and the right panel is the linear regression by week. 
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Taylor Series Expansion Prediction, 19V
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Linear fit coefficients 1st week 2nd week 3rd week 
Slope 1.07 1.02 0.97 
Offset -13.99 -4.99 5.09 

Taylor series expansion, TMI = Slope * Pred + Offset:
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week-to-week changes reveals a very high correlation 
between channels (once constant offsets are removed), 
which is encouraging. For example, the differences 
between the corresponding weekly sets of channel 
biases exhibit a systematic decrease over the one-
month time span of 0.8 K in all channels, which sug-
gests a possible short-term drift of calibration in one 
or both radiometers. This hypothesis of time-varying 
radiometric calibration has been confirmed by Gop-
alan et al. (2008), who identified a ± 2 K systematic 
variation in the TMI radiometric calibration. This is 
consistent with the week-to-week results of both cali-
bration methods here. 

Another group of WindSat and TMI collocated data 
were analyzed by selecting one week's collocations per 

season from November 2003 to August 2004. Results 
from both calibration approaches reveal biases between 
predictions and measurements similar to those in 
Tables 5 and 6 from the November group. The sea-
sonal fluctuations of Tb biases are within a smaller 
range of 0.5 K. According to the sparse sampling of 
this year-long period, no seasonal drift was found for 
the cross-calibration between WindSat and TMI. For 
all the collocations (14,865 cases) between WindSat 
and TMI (Table 7), the standard deviations of the 
biases between predictions and measurements are at 
the same level (1 K) for both approaches, and no 
pattern of ΔTb as a function of geo-location or geo-
physical conditions is found in our analysis. For both 
approaches, the biases for most channels are greater 

Fig. 8. Example of TMI-WindSat Tb comparisons for the TMI 19.4 GHz V-pol using the multi-channel 
regression method. The left panel is a scatter diagram with collocated measurements for three weeks in 
Nov. 2003, and the right panel is the linear regression by week. 
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Multi-channel regression, TMI = Slope * Pred + Offset:
Linear fit coefficients 1st week 2nd week 3rd week 
Slope 1.07 1.03 0.95 
Offset -17.31 -9.35 6.90 
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than the 1 to 2 K absolute calibration accuracy spec-
ified by the radiometer developers; however, Table 7 is 
in general agreement with the results of Gopalan et al. 
(2008). 

4.2   Radiometric inter-calibration error analysis
The inter-satellite calibration biases are a combi-

nation of actual sensor calibration differences and 
errors associated with the comparison methodology. 
The major error sources that were considered in estab-
lishing the cross-calibration accuracy are discussed in 
the following paragraphs. Despite some unknowns, 
our conservative estimate for the overall random error 

is of the order < 1 K for both techniques.

a.   Errors common to both techniques
Two major errors are common to both prediction 

techniques. First is the Tb measurement precision or 
NEDT. This zero-mean Gaussian random error is 
reduced to a negligible value (<< 0.1 K) by the square 
root of the number of Tb observations averaged within 
a 1° box.

The second error is associated with simultaneous 
and collocated Tb observations. The antenna’s instan-
taneous fields-of-view will never be exactly the same, 
nor will the times of observation; thus, some random 

Δ= Prediction -TMI 10H 10V 19H 19V 21V 37H 37V # cases 
11/01-11/07 mean 2.32 0.09 4.34 1.26 3.50 2.87 3.26 1311 
11/13-11/19 mean 1.92 -0.32 4.04 1.19 5.21 2.38 3.17 1983 
11/28-12/04 mean 1.51 -0.78 3.50 0.58 2.69 1.77 2.37 1522 

Total 3 Weeks 
mean 1.88 -0.36 3.95 0.99 3.91 2.32 2.94 4816 
std 0.89 0.86 1.02 0.98 1.75 1.22 1.04 

Δ= Prediction -TMI 10H 10V 19H 19V 21V 37H 37V # cases 
11/01-11/07 mean 2.10 1.47 2.63 2.67 3.61 2.63 4.29 1311 
11/13-11/19 mean 1.79 1.20 2.48 2.29 3.13 2.58 4.30 1983 
11/28-12/04 mean 1.21 0.86 1.87 1.80 2.76 1.62 3.52 1522 

Total 3 Weeks 
mean 1.71 1.14 2.31 2.27 3.14 2.34 4.02 4816 
std 0.94 0.82 1.10 1.07 1.25 1.23 1.25 

Δ= Prediction -TMI 10H 10V 19H 19V 21V 37H 37V 
Taylor Series 

Expansion 
mean 1.93  -0.26  4.09  1.11  4.65  2.58  3.02  
std 0.78  0.80  0.85  0.88  1.71  1.07  0.88  

Multi-Channel 
Regression 

mean 1.78 1.18 2.59 2.30 3.18 2.69 4.14 
std 0.84 0.84 0.93 0.91 1.12 1.08 1.10 

Table 5.  ∆Tb in WindSat to TMI prediction by Taylor series expansion (3 weeks data).

Table 6.  ∆Tb in WindSat to TMI prediction by multi-channel regression (3 weeks data).

Table 7.  ∆Tb  in WindSat to TMI prediction by two approaches for all cases 14,865 cases in total.
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error will always exist in matching the scenes of 
apparent Tb’s that vary both temporally and spatially 
with existing geophysical conditions. However, our 
temporal and spatial tolerances for collocations between 
WindSat and TMI are strict enough to prevent signif-
icant changes in geophysical conditions that could 
cause large variations in Tb. Thus, the binned averag-
ing and filtering over relatively large 1° boxes and the 
removal of large random outliers mitigate these issues. 
Furthermore, the large number of collocations yielded 
Gaussian statistics and a random error estimate of < ± 
0.3 K (Hong 2007).

b.   Errors associated with Taylor series
Translation to a common frequency and incidence 

angle basis results in residual error since it uses an 
imperfect RTM and regression curve fitting to produce 
the Taylor series coefficients. Furthermore, these nor-
mal-izations depend on the actual oceanic and atmos-
pheric environmental conditions, which are estimated 
from available satellite retrievals and NOAA GDAS 
numerical weather models to provide the necessary 
RadTb environmental inputs. The resulting frequency 
interpolation errors were estimated from the modeling 
residuals to be ± 0.2 K to ± 0.7 K for frequencies 
between 10 GHz and 37 GHz, except near the WV 
channel, which is ± 1.25 K (Hong 2007). 

Also, according to RadTb model simulations, Tb 
varies linearly with the TMI incidence angle of 53.2°. 
In the frequency range of 5 to 40 GHz, the vertically 
polarized Tb varies with the incidence angle with a 
slope of 2 to 2.5 K/deg; however, the horizontally polar-
ized Tb’s are less sensitive with a slope of - 1 K/deg for 
frequencies under 10 GHz, and within ± 0.5 K/deg for 
frequencies between 10 and 40 GHz. In the 1° boxes 
where the Tb comparisons are made, the average inci-
dence angle is used to make the EIA adjustment, and 
the uncertainty of this angle is < 0.1° one sigma. Thus, 
for the WindSat channels, the Tb random error intro-
duced by the knowledge of EIA is less than ± 0.25 K 
for V-pol and ± 0.1 K for H-pol. 

Finally, the ocean surface emissivity anisotropy is 
determined by the relative wind direction (difference 
between the radiometer antenna azimuth line of sight 
and the wind direction); failure to account for this 
introduces a small error of the order a few Kelvin. 
Since the ocean emissivity anisotropy is zero mean 
when averaged over all directions and since the two 
satellites in any collocation never have the same view-
ing direction, the relative wind direction is approx-
imately uniformly distributed, and the effect on Tb 

averages to zero. However, the differential between 
collocated measurements is a known error of unknown 
magnitude, and this remains a task for future analysis.

Combining these independent sources of error, the 
overall estimated rms error is less than 1 K.

c.   Errors associated with multi-channel regression
The multi-channel regression method relies upon 

the correlation of Tb between all radiometer channels. 
The covariance matrix correlations are estimates of 
the “true correlations” that are derived using an imper-
fect RTM, which results in errors. Further errors in the 
source channel Tb’s produce errors in the derived biases, 
although this technique is less susceptible to single-
channel errors than the Taylor series technique. Finally, 
the RTM used for multi-channel regression training 
was different than the RadTb used for the Taylor series 
approach. Thus, differences between these two tech-
niques could be partially attributed to the RTMs used. 
Our error estimate for this technique, based upon the 
residuals of the self-consistency for WindSat testing 
described above, is ± 0.6 K.

5.   Conclusion

In this paper, we performed cross-calibrations on a 
sun-synchronous polar orbiting satellite microwave 
radiometer, WindSat, using the non-sun-synchronous 
radiometer TMI as a calibration transfer standard (and 
a proxy for the future GPM Microwave Imager). These 
multi-channel microwave radiometers were cross-cali-
brated using near-simultaneous, pair-wise comparisons 
of Tb measurements over rain-free tropical ocean areas 
after applying the Taylor series prediction and the multi-
channel regression Tb normalization procedures. The 
significance of this paper is in the presentation of 
these inter-satellite radiometer calibration techniques 
rather than the quantitative determination of the biases 
between WindSat and TMI. 

The Taylor series prediction approach has critical 
dependence on the radiometric calibration quality of a 
single nearby source frequency channel (Taylor expan-
sion center frequency) and a reasonable estimate of the 
corresponding environmental condition match-ups. This 
approach applies universally to the calibration of any 
radiometer channel pair, and once the Taylor series 
coefficients are produced, the RTM is no longer needed 
in cross-calibration for different radiometer pairs. This 
approach transfers the source radiometric calibration 
and enables cascaded linear calibrations with other 
polar orbiting radiometers that do not overlap in time. 

However, the multi-channel regression prediction 
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approach has the advantages that it removes depend-
ency on collocated geophysical match-ups, and it 
spreads the dependency on multiple-frequency 
channels. Therefore, a single degraded source channel 
does not seriously affect the calibration result. 

This paper presents radiometric biases between 
TMI and WindSat derived using these independent 
approaches. The corresponding results are highly cor-
related between techniques, and the fixed channel-by-
channel differences of magnitude 1 to 1.5 K are within 
the estimated error bounds. Furthermore, the Satellite 
Radiometric Cross-Calibration (X-CAL) Working Group 
of the National Aeronautics and Space Administra-
tion’s (NASA’s) Precipitation Measurement Missions 
Science Team is currently evaluating a number of tech-
niques (including the Taylor series and multi-channel 
regression described in this paper) and will eventually 
arrive at a consensus approach to be applied for the 
level-1C Tb calibration algorithms for the GPM. 
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