



### Potential of the PTC use in the industry of Cyprus: Current status and proposed scenario

Panayiotis K. Ktistis, Rafaela A. Agathokleous, Soteris A. Kalogirou



5<sup>th</sup> International Conference on 'Energy, Sustainability and Climate Change' ESCC 2018 Mykonos, Greece, June 4-6,2018

> Presentation by: Rafaela Agathokleous, PhD (rafaela.agathokleous@cut.ac.cy)

## Presentation Outline

#### I. Introduction

- I. Energy Situation
- II. Solar Energy Potential
- III. Energy for the industrial sector

#### II. Main Body

- I. Case study
- II. Simulation Dynamic Modelling
- III. Cost analysis
- III. Conclusions

## Presentation Outline

#### I. Introduction

- I. Energy Situation
- II. Solar Energy Potential
- III. Energy for the industrial sector

#### II. Main Body

- I. Case study
- II. Simulation Dynamic Modelling
- III. Cost analysis
- III. Conclusions

## Energy Situation

SEEP2018- CUT

- Cyprus has a small and isolated energy system which is not connected with other energy networks
- There are no fossil fuel resources
- Very dependent on imported fuels
- Cyprus has 3 Power stations of Dekelia, Moni, and Vasilikos





## Energy Situation

SEEP2018- CUT

- 94% of the country's energy needs are covered by oil  $\rightarrow$  Need for better alternatives: RES 1.800 1.600 ` 1.400 Installed Capacity (MW) 1.200 1.000 800 600 400 200 1962 1963 1963 1964 1971 1975 1973 1975 1977 1975 1976 1977 1976 1977 1976 1977 1976 1976 1976 1976 1976 1976 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 2001 2000 2000 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2000 2001 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 Years
- The last years there is a shift to RES but there is a large space of improvement, education and motivation about energy from RES

II. Main Body

## Energy Production by RES



## Solar Energy Potential

#### SEEP2018- CUT

#### Monthly average temperature in Nicosia, Cyprus



#### Sunhours in 2016



#### Solar Energy Potential – Solar Radiation



- Daily average solar radiation of about 5.4 kWh/m<sup>2</sup> on a horizontal surface.
- The amount of global radiation falling on a horizontal surface with average weather conditions = 1727 kWh/m<sup>2</sup> per year.

## Solar Energy Potential

### Shift to Photovoltaics



#### Solar parks



SEEP2018- CUT

## Solar Energy Potential

- Solar thermal collectors for hot water are widely used
- Worldwide leader country for the use of solar water heating systems per capita
- The total capacity of glazed water collectors in 2012 was 546.4 kW<sub>th</sub> per 1000 inhabitants



SEEP2018- CU1

## Energy for the Industrial Sector

- Industrial Sector:
  - 4<sup>th</sup> biggest energy consumer
  - 3<sup>rd</sup> biggest electricity consumer
  - 2<sup>nd</sup> biggest thermal energy consumer (oil consumption) ——

Need to reduce oil consumption for thermal energy in the industrial sector



## Energy for the Industrial Sector

#### SEEP2018- CUT



#### Electricity consumption

- Manufacture of Rubber and Plastic Products
- Manufacture of Furniture, Other Manufacturing and Repair and Installation of Machinery and Equipment
- Manufacture of Motor Vehicles and Other Transport Equipmnet
- Manufacture of Machinery and Equipment
- Manufacture of Electronic and Optical Products and Electrical Equipment
- Manufacture of Basic Metals and Fabricated Metal Products
- Manufacture of Other Non-Metallic Mineral Products
- Manufacture of Refined Petroleum Products, Chemicals and Chemical Products and Pharmaceutical Products and Preparations
- Manufacture of Paper and Paper Products and Printing Activities
- Manufacture of Wood and Wood Products
- Manufacture of Textiles, Wearing Apparel and Leather Products
- Manufacture of Food Products, Beverages and Tobacco Products



#### Oil products for thermal energy production

## Energy for the Industrial Sector

SEEP2018- CUT

- The thermal load of the food industry and the non-metallic mineral products industry can be classified in relation to the required temperature range as follows:
  - Low temperature (<100°C)
  - Medium temperature (100°C 300°C)
  - High temperature (>300°C)

Thermal demand of various factories from the food and beverage and non-metallic mineral products industries in Cyprus

| Factory                | Process                                    | Temperature range (°C) | Hot water/<br>steam | Average load (tons/h) |  |  |
|------------------------|--------------------------------------------|------------------------|---------------------|-----------------------|--|--|
| Wine                   | Sterilization                              | 90                     | Hot Water           | 1.5                   |  |  |
| Mille & Dairy products | Sterilization                              | 120                    | Ctoom               | 2.2                   |  |  |
| whik & Dairy products  | Drying                                     | 120                    | Steam               | ۷.۷                   |  |  |
| Soft drinks            | Pasteurization                             | 95                     | Steam               | 2 5                   |  |  |
| Soft drinks            | Cleaning / disinfecting process            | 150                    | Steam               | 3.3                   |  |  |
| Meat                   | Cooking                                    | 90-100                 | Steam               | 1                     |  |  |
| Beer                   | Cleaning / disinfecting process/ hot water | 80-90                  | Steam               | 5                     |  |  |
|                        | Separation                                 | 200-220                | Steam               |                       |  |  |
| Plastics               | Drying                                     | 180-200                | Steam               | 2                     |  |  |
|                        | Blending                                   | 120-140                | Steam               |                       |  |  |
| Bricks and blocks      | Curing                                     | 60-140                 | Steam               | 4                     |  |  |

## **Presentation Outline**

#### I. Introduction

- I. Energy Situation
- II. Solar Energy Potential
- III. Energy for the industrial sector

#### II. Main Body

- I. Case study
- II. Simulation Dynamic Modelling
- III. Cost analysis
- III. Conclusions

#### SEEP2018- CUT

- Site/Factory scenario
  - Location: Limassol, Cyprus

Case study

- Industry: Food and beverage industry
- Factory: Soft Drinks
- Thermal demand: 500 kW<sub>th</sub>
- Thermal needs: Steam, 150°C
- Demand: 10 hours/day, 7 days/week



• System Selection



## Simulation Dynamic Modeling



## Life Cycle Cost Analysis

SEEP2018- CUT

#### LCCA Assumptions:

| System components & fuel                                       | Cost                                                 |
|----------------------------------------------------------------|------------------------------------------------------|
| Collectors                                                     | 270 €/m² (11.25 m²/collector)                        |
| Steam generator, steam boiler, control system, pipes and pumps | €34,000                                              |
| Fuel                                                           | 20 €/GJ (+1% cost added per year)                    |
| Maintenance cost                                               | 7% (+1% cost added per year)                         |
| Storage tank cost                                              | depending on the size (15, 20, 25, 30 and 35 $m^3$ ) |

#### LCCA Method General Assumptions:

- Return of investment: 7%
- Pre-payment: 20%
- Loan interest rate: 7%
- Loan duration: 20 years

## Feasibility analysis

#### Results of 35 simulation runs

|                                  | Case 1                         |                         | Case 2                         |                         | Case 3                         |                         | Case 4                         |                         | Case 5                         |                         |
|----------------------------------|--------------------------------|-------------------------|--------------------------------|-------------------------|--------------------------------|-------------------------|--------------------------------|-------------------------|--------------------------------|-------------------------|
| St<br>Number<br>of PTC Si<br>fra | Storage tank: 15m <sup>3</sup> |                         | Storage tank: 20m <sup>3</sup> |                         | Storage tank: 25m <sup>3</sup> |                         | Storage tank: 30m <sup>3</sup> |                         | Storage tank: 35m <sup>3</sup> |                         |
|                                  | Solar<br>fraction              | Present                 | Solar<br>fraction              | Present                 | Solar<br>t fraction            | Present                 | Solar<br>fraction              | Present                 | Solar<br>fraction              | Present                 |
|                                  |                                | worth of                |
|                                  |                                | solar                   |
|                                  |                                | savings 1 <sup>st</sup> |
|                                  |                                | year                    |
| 100                              | 0.511                          | 16,140.52               | 0.511                          | 15,909.33               | 0.508                          | 15,309.73               | 0.503                          | 14,478.12               | 0.499                          | 13,714.92               |
| 110                              | 0.547                          | 16,430.62               | 0.549                          | 16,445.03               | 0.549                          | 16,213.84               | 0.547                          | 15,750.64               | 0.544                          | 15,110.24               |
| 120                              | 0.574                          | 15,615.48               | 0.58                           | 16,121.11               | 0.582                          | 16,135.53               | 0.583                          | 16,040.74               | 0.581                          | 15,523.14               |
| 130                              | 0.597                          | 14,309.13               | 0.604                          | 14,937.56               | 0.609                          | 15,320.39               | 0.611                          | 15,348.41               | 0.611                          | 15,076.42               |
| 140                              | 0.615                          | 12,388.75               | 0.624                          | 13,262.80               | 0.63                           | 13,768.43               | 0.633                          | 13,919.25               | 0.635                          | 13,892.87               |
| 150                              | 0.631                          | 10,222.78               | 0.642                          | 11,342.43               | 0.648                          | 11,848.06               | 0.653                          | 12,244.48               | 0.655                          | 12,218.10               |
| 160                              | 0.645                          | 7,811.19                | 0.657                          | 9,053.64                | 0.664                          | 9,682.08                | 0.669                          | 10,078.50               | 0.672                          | 10,174.93               |





Number of collectors

## Feasibility analysis

#### Results of 35 simulation runs

| Number<br>of PTC | Case 1                         |                         | Case 2                         |                         | Case 3                         |                         | Case 4                         |                         | Case 5                         |                         |
|------------------|--------------------------------|-------------------------|--------------------------------|-------------------------|--------------------------------|-------------------------|--------------------------------|-------------------------|--------------------------------|-------------------------|
|                  | Storage tank: 15m <sup>3</sup> |                         | Storage tank: 20m <sup>3</sup> |                         | Storage tank: 25m <sup>3</sup> |                         | Storage tank: 30m <sup>3</sup> |                         | Storage tank: 35m <sup>3</sup> |                         |
|                  | Solar<br>fraction              | Present                 |
|                  |                                | worth of                |
|                  |                                | solar                   |
|                  |                                | savings 1 <sup>st</sup> |
|                  |                                | year                    |
| 100              | 0.511                          | 16,140.52               | 0.511                          | 15,909.33               | 0.508                          | 15,309.73               | 0.503                          | 14,478.12               | 0.499                          | 13,714.92               |
| 110              | 0.547                          | 16,430.62               | 0.549                          | 16,445.03               | 0.549                          | 16,213.84               | 0.547                          | 15,750.64               | 0.544                          | 15,110.24               |
| 120              | 0.574                          | 15,615.48               | 0.58                           | 16,121.11               | 0.582                          | 16,135.53               | 0.583                          | 16,040.74               | 0.581                          | 15,523.14               |
| 130              | 0.597                          | 14,309.13               | 0.604                          | 14,937.56               | 0.609                          | 15,320.39               | 0.611                          | 15,348.41               | 0.611                          | 15,076.42               |
| 140              | 0.615                          | 12,388.75               | 0.624                          | 13,262.80               | 0.63                           | 13,768.43               | 0.633                          | 13,919.25               | 0.635                          | 13,892.87               |
| 150              | 0.631                          | 10,222.78               | 0.642                          | 11,342.43               | 0.648                          | 11,848.06               | 0.653                          | 12,244.48               | 0.655                          | 12,218.10               |
| 160              | 0.645                          | 7,811.19                | 0.657                          | 9,053.64                | 0.664                          | 9,682.08                | 0.669                          | 10,078.50               | 0.672                          | 10,174.93               |

| Nu. of collectors | Storage tank volume<br>m <sup>3</sup> | Overall cost<br>€ | Present worth value 1st year<br>€ | Solar fraction |
|-------------------|---------------------------------------|-------------------|-----------------------------------|----------------|
| 110               | 15                                    | 373,125           | 16,430.62                         | 0.547          |
| 110               | 20                                    | 374,825           | 16,445.03                         | 0.549          |
| 110               | 25                                    | 376,525           | 16,213.84                         | 0.549          |
| 120               | 25                                    | 406,900           | 16,135.53                         | 0.582          |
| 120               | 30                                    | 408,500           | 16,040.74                         | 0.583          |
| 120               | 35                                    | 410,500           | 15,523.14                         | 0.581          |

Final selected system:

- Collectors: 120 (1350 m<sup>2</sup>)
- Solar fraction: 0.583
- Storage tank: 30 m<sup>2</sup>

## Feasibility analysis

Annual thermal energy production of the selected system: 7420 GJ

- 4700 GJ by the PTC system
- 2720 GJ from the auxiliary steam boiler





## Cost Analysis

- Final selected system:
  - Total cost: €408,500.00
  - Payback period: 5-6 years
  - Overall savings: € 142,690.24



## Presentation Outline

#### I. Introduction

- I. Energy Situation
- II. Solar Energy Potential
- III. Energy for the industrial sector

#### II. Main Body

- I. Case study
- II. Simulation Dynamic Modelling
- III. Cost analysis
- III. Conclusions

## Summary

- The climate of Cyprus has a great potential for solar energy systems
- The industrial sector has high thermal energy demand
- PTC is proposed for industrial process heat generation due to the temperature range
- Different storage tank sizes and collector's area are tested.
- The payback period is acceptable, 5-6 years.
- 58% of the thermal load is covered by the solar system.

## Future work

SEEP2018- CUT

- ✓ Validation: On-site measurements from the first pilot PTC system on the island
- ✓ **Storage:** Test the model with different storage types
- Scale-up: Optimise the system for more industrial factories in different locations with different thermal needs
- ✓ **Experimentation:** Build a pilot PTC system for performance monitoring



#### Acknowledgements

The work is supported by the project 'Evaluation of the Dispatchability of a Parabolic Trough Collector System with Concrete Storage' with acronym 'EDITOR' from technological development and innovation 2009-2010, KOINA/SOLAR-ERA.NET/0114, which is co-financed by the European Development Fund, and the Research Promotion Foundation of the Republic of Cyprus.

# Thank you for your attention..

Rafaela Agathokleous

Email: rafaela.agathokleous@cut.ac.cy