
Pattern Recognition, Vol. 22, No. 6, pp. 733-740, 1989
Printed in Great Britain.

0031-3203/89 $3.00 + .00
Pergamon Press plc

Pattern Recognition Society

PATTERN CLASSIFICATION USING A LINEAR
ASSOCIATIVE MEMORY

G. EICHMANN and T. KASPARIS

Department of Electrical Engineering, City College of City University of New York, New York, NY 10031,
U.S.A.

(Received 6 June 1988; received for publication 5 January 1989)

Abstract--Pattern classification is a very important image processing task. A typical pattern classification
algorithm can be broken into two parts; first, the pattern features are extracted and, second, these features
are compared with a stored set of reference features until a match is found. In the second part, usually
one of the several clustering algorithms or similarity measures is applied. In this paper, a new application
of linear associative memory (LAM) to pattern classification problems is introduced. Here, the clustering
algorithms or similarity measures are replaced by a LAM matrix multiplication. With a LAM, the reference
features need not be separately stored. Since the second part of most classification algorithms is similar,
a LAM standardizes the many clustering algorithms and also allows for a standard digital hardware
implementation. Computer simulations on regular textures using a feature extraction algorithm achieved
a high percentage of successful classification. In addition, this classification is independent of topological
transformations.

Pattern classification
Feature extraction

Associative memory Topological transformation
Hough transform Associative encoding Iterative encoding

l. I N T R O D U C T I O N

Pattern classification problems have been studied
extensively and for different classes of patterns many
classification algorithms have been proposed, m Most
classification algorithms, however, have some com-
mon features. Figure 1 shows a block diagram of a
typical classification algorithm. As the first algorithm
step, pattern features used in the classification are
extracted. This extraction step usually varies from
algorithm to algorithm. To provide a best fit for the
class of patterns of interest, the way the primitives
are chosen and extracted will differ. The second
classification algorithm step is usually common to
most algorithms. Here, once the pattern features are
extracted, they are then compared with a set of stored
reference features. These reference features, assumed
to be a priori known, are established during a training
phase. The process of matching the unknown features
to one of the reference ones is carried out by one of
the several available clustering or similarity measure
algorithms." 31 Even though the second, classification
algorithm phase, is somewhat uniform, because of
the large number of implementation details, this
standardization is lost. Furthermore, the implement-
ation complexity depends on the method chosen. A
dynamic clustering algorithm is time-consuming and
is difficult to implement. A simple similarity measure
algorithm while it is less time-consuming, in some
situations it does not perform well. Additionally, no
matter which method is chosen, the reference features
have to be stored. It is desirable to have available a

standard process that would incorporate both the
reference feature storage and the decision making
process.

An alternate way of matching the unknown features
to the reference ones, is by mapping a feature vector
into an identifying code vector, If this memory map-
ping is possible, then classification is accomplished.
The required mapping matrix can be trained so that
it will map known input and output vectors. This
mapping requirement is best fulfilled by a linear
associative memory (LAM) matrix. The LAM is a
learning algorithm that is trained to map desired
inputs into desired outputs. Additionally, because of
the properties of LAM, this mapping is optimum in
the least-square error sense, and it can tolerate some
errors introduced by the feature extraction algorithm.

The organization of this paper is as follows. In
Section 2, the background on the LAM is presented

), Features

patlero

Reference

Feat u~es]

Similarity measure

OF

C l u s t e r i n g a l s ior l thm

Class i f icat ion

Fig. 1. Block diagram of a typical classification algorithm.

733

734 G. EICHMANN and T. KASPARIS

and the proposed feature encoding is described. In
Section 3, a feature extraction algorithm used in our
experiments is described, and the problem of texture
classification is discussed. Also, a discourse on linear
independence considerations is presented, and an
iterative feature encoding scheme is described. Finally,
in Section 4 experimental results are presented. In
Section 5, the paper summary is presented.

2. BACKGROUND

Associative recall may, in general, be defined as a
mapping in which a finite number of input vectors
are transformed into a given set of output vectors. In
the case of incomplete or erroneous input vectors, it
has been shown t~) that this mapping is a least-square-
error-sense optimal. It is this error tolerance that
suggests its applicability to pattern (vector) restor-
ation and classification. There are two kinds of
associative recalls: the autoassociative and the hetero-
associative. In the former, an incomplete vector is
restored into a complete version of itself, while in the
latter, in response to a given input vector an output
vector is produced. The mapping between the input-
output vector pair is rather arbitrary and depends
on the application requirements. Associative recall
suggests a working mechanism of an error-correcting
content-addressable memory. This means that, for all
similar vectors, in the sense of some appropriate
measure, the recall will be similar to the corresponding
output vector.

The mapping process is described by the following
transfer relation:

Yk = M X k k = 1 P (1)

where xk's and yk'S are given input and output column
vectors and M is the unknown LAM matrix. The
generation of a LAM is a problem of memorizing a
set of responses to a set of input signals. It can also
be formulated as a problem of finding an optimal
matrix M solution, in the sense of least squares. Given
an M, recognition is achieved by linearly transforming
an unknown input, as per equation (1), and therefore
it belongs to a scalar transform category. The matrix
M can be determined through an iterative procedure.
The mathematical details can be found in Appendix
A. For the algorithm presented in Appendix A, first
the X and Y matrices must be generated. This is
accomplished by stacking the column feature vectors
with the X columns representing the set of training
features, and the Y columns the set of desired respon-
ses. In the second, recognition phase, an unknown or
degraded feature vector is applied to the input of a
LAM yielding an output that is similar, in a least-
square-error sense, to one of the trained responses.
The LAM matrix has found many applications, t4~ in
image correction and noise removal, in correcting for
missing image fragments, etc. With proper training,
the so-called novelty filter, a version ofa LAM is able
to detect defects in input vectors.

J Unknown ~ AssoclaUvo

Pattorn I J Momory

Fig. 2. An associative memory encoder.

The so-called associative encoding is a process in
which a set of input patterns are mapped into a set
of output codes. Figure 2 is a block diagram of an
associative encoder. Comparing Fig. 2 with the more
general Fig. 1, we see that, basically, both processes
perform the same task. However, when an associative
encoding is used for classification, then it will depend
on geometrical transformations such as rotation,
translation, and scaling. The classification task with
a LAM is a two-stage process. In the first, a learning
(or training) phase to induce the proper output respon-
ses, patterns representative of given classes are used.
The LAM encoding is an elegant classifier in problems
such as face recognition where geometrical transfor-
mations are not expected. However, in a more general
pattern classification, this geometrical independence
is very desirable. In our scheme, the LAM does not
transform the pattern but encodes characteristics
(features) of the pattern into an identifying code. The
first advantage of this process is that we can derive
the full benefit from independence properties of the
feature extraction algorithm. With a properly selected
feature extraction algorithm, classification can be
made independent of geometrical transformations.
The second advantage is that a large variety of
clustering algorithms and similarity measures can be
replaced by a stored vector matrix multiplication.
Additionally, the reference features need not be stored
in a separate memory. One drawback of this encoding
process is that it requires additional development
computation since after the reference features of the
patterns in a class are established, the LAM has
to be calculated. However, in most applications,
development complexity is not critical because it is
only performed once. Figure 3 shows the block
diagram of a LAM-based classification algorithm.
Comparing with Fig. 1 it is obvious that a LAM-
based classification is more standard in the sense that
the second processing block is always the same; only
its content is different. An additional advantage of
this standardization is that it can be implemented in
hardware. The different LAM coefficients could be
stored in a read-only memory (ROM). As an imple-
mentation example, next, a LAM-based texture clas-
sifier will be described.

I Feature I x]Ass°clatlve I
Unknown ~ Extraction
,tt,rn / Al~orithm ~ lviem°ry I £l'"ificali°a)

Fig. 3. A diagram of a LAM based classification algorithm.

Pattern classification 735

3. A FEATURE EXTRACTION ALGORITHM

Recently, a new feature extraction algorithm suit-
able for regular textures has been proposed, ts) Since
many regular textures consist primarily of straight
lines, to detect line arrangement in the texture the
algorithm uses a line detector. The Hough transform
(HT) t6-8) has been used for this purpose. The HT
maps straight lines into points in the HT domain and
thus converts a line detection into a peak detection
problem. The algorithm extracts texture features from
the HT peaks and, with proper normalization, these
extracted features are independent of topological
transformations. The primitives used for classification
are the total number of line orientations, and for each
orientation the normalized average line separation.
The texture feature vector xF is

x~ = Ix1, x~, x~] (2)

where xl is the total line orientations, x2 is the
normalized vector line orientations, x3 is the norma-
lized vector line separations and t stands for the
vector transpose. In many applications, it is desirable
to minimize the feature space dimensions. In our
case, by introducing some statistical data reduction
analysis, the feature space can be reduced to three
dimensions. It was found that if the vectors x2 and
x3 are replaced by the variance of their elements, for
correct classification this three-element feature vector
can be used. While some classification accuracy is
sacrificed, for most applications, the percentage of
classification success is still high enough.

As an illustration, in Fig. 4(a) a regular line texture
pattern, while in Fig. 4(b) its corresponding HT are
shown. Note that the HT peak pattern follows the
texture line arrangement. In Fig. 5(a) the pattern of
Fig. 4(a) under topological transformations, while in
Fig. 5(b) the HT of Fig. 5(a) are depicted. These figures
illustrate the effects of these transformations. With
proper normalization steps, the same texture features
can be extracted from either Fig. 4(b) or Fig. 5(b).
Figure 6(a) displays the pattern of Fig. 4(a) with
uniform "salt and pepper" noise added, while in Fig.
6(b) the HT of Fig. 6(a) is shown. By comparing Fig.

Fig. 4(a). An artificial texture pattern used as example.

PR 22:5-G

Fig. 4(b). The Hough transform of the texture of Fig. 4(a).

6(b) with Fig. 4(b), we notice that the effect of texture
noise is to raise the HT background level noise.
However, it is evident from Fig. 6(b) that even in the
presence of noise, successful peak detection is still
possible, concluding that this feature extraction algor-
ithm is robust. As an additional illustration, Table
1 shows the necessary normalization steps on the
parameters extracted from two different views of the
same texture pattern. From Table 1, it is noted that
after normalization, the algorithm yields almost the
same feature vector, a vector that is characteristic of
this texture.

As a LAM-based feature classifier construction
example, next, a particular texture classifier is
described. For this texture classification, the input
vectors are from a given class of texture reference
feature vectors. One approach, for the generation of
the reference features for each class, is to exercise the
texture algorithm with several different texture views,
where each new view is the result of a geometrical
transformation on the same texture. Assuming that
the classification algorithm is invariant to such trans-
formations, the generated features are similar,
although some discrepancies are to be expected. An
average of all such features could be a single reference
representative of that texture. However, for some
texture patterns, more than one reference representa-
tive could be used. For this input, the output is
assigned an orthonormal code vector, where a particu-
lar code represents the input texture, with dimensions
equal to the total number of textures in a class.

An important aspect in the construction of a LAM
is the linear independence of the input vectors. For
LAM to be successful, the input vectors should have
a high degree of linear independence. To insure linear
independence, a linearly dependent input vector is
not included in those iterations that generate the M
matrix. Therefore, in the recall, when a degraded
version of this vector is entered in the LAM, it will

736 G. EICHMANN and T. KASPARIS

Fig. 5(a). Texture of Fig. 4(a) under a topological transformation.

Fig. 5(b). The Hough transform of the texture of Fig. 5(a).

fail to recognize it. The result will be an incorrect
output resulting in a possible misclassification.

In the texture classification algorithm, a possible
output is a 3-dimensional (3D) feature vector. Since
all the input feature vectors are 3D, for m texture
patterns, the input X matrix is of 3 x m dimensions.
It is now obvious that out of the m columns of the X
matrix, no more than three can be linearly indepen-
dent, and therefore, only three texture patterns can
correctly be classified. This represents a major draw-
back to this classification scheme.

There are two ways to correct this problem. First,
for not too many textures in a class, we can increase
the feature space dimensionality so that it will be at
least m. Even though this method does not guarantee
linear independence, for sufficiently different texture

patterns, the resulting feature vectors will be markedly
independent. However, for many different textures in
a class not many independent features will be available
and, thus, this is not a feasible method: A second
alternative is to form an extended input matrix X'.
By stacking the columns of the output below the
columns of the input vectors, the extended input
matrix is

The dimension of X' is (n + m) x m, where n is the
number of classification features and m is the total
number of texture patterns in the class. Furthermore,
if or thonormal code vectors are used, the Y matrix is

Pattern classification 737

Fig. 6(a). The texture of Fig. 4(a) with noise added.

Fig. 6(b). The Hough transform of the texture of Fig. 6(a).

an iden t i ty m a t r i x , a n d t h e n all t he X ' c o l u m n s will

be l inear ly i n d e p e n d e n t . D u r i n g recall, s ince the code

pa r t o f the i n p u t is u n k n o w n , all t h o s e e l e m e n t s a re

set to zero. T h i s case the L A M , ca l led to r e c o n s t r u c t

t he m i s s i n g pa r t o f the i npu t , r e p r e s e n t s a n a u t o -

a s soc ia t ive recall.

T h e r e a re two d i s a d v a n t a g e s to th is scheme . Fi rs t ,

s ince the i n p u t is o f l a rger d i m e n s i o n s , t he M m a t r i x

will a l so be o f l a rge r m x (n + m) as c o m p a r e d to

m x n d i m e n s i o n s , l e a d i n g to a d d i t i o n a l c o m p u t a t i o n .

Second , s ince n o w t he L A M is r equ i r ed to co r rec t for

two s o u r c e s o f er rors ; c lass i f ica t ion a l g o r i t h m e r ro r s

p lu s a n e r ro r due to a m i s s i n g code e l e m e n t in t he

i n p u t vector , t he c lass i f ica t ion p roce s s will be less

accu ra t e , i.e. m o r e i nco r r ec t o r u n s u c c e s s f u l classif ica-

t i ons c a n be expec ted . T h i s s e c o n d d i s a d v a n t a g e can

be co r r ec t ed by u s i n g a n i te ra t ive L A M encod i ng .

T h e i te ra t ive L A M e n c o d i n g t e n d s to i m p r o v e the

p e r f o r m a n c e o f t he overa l l e n c o d i n g s y s t e m by t a k i n g

Table 1. Normalization steps applied on extracted features.
The peak separations recorded at each orientation are first
normalized to their max imum value, and averaged in each
orientation. Then, they are circularly shifted so that the
max imum value is at the leftmost position, the orientation
angles are normalized, and the variance of each row is

calculated

0 52 ° 90 ° 128 ° 0 72 ° 110 ° 148 °

d 71 90 71 d 49 66 55
70 0 69 51 66 54

0 0 72 51 0 53
0 0 53
0 0 57

Normalize distances

52 ° 90 ° 128 ° 72 ° 110 ° 148 °

0.79 1 0.79 0.74 1 0.83
0.78 0 0.77 0.77 1 0.82
0 0 0.80 0.77 0 0.80

0 0 0.80
0 0 0.86

Average distances

52 ° 90 ° 128 ° 72 ° 110 ° 148 °

0.79 1 0.78 0.76 1 0.82

Shift circularly

90 ° 128 ° 52 ° 110 ° 148 ° 72 °

1 0.79 0.78 1 0.82 0.76

Normalize angles

0 o 38 ° 142 ° 0 ° 38 ° 142 °

1 0.79 0.78 1 0.82 0.76

Normalize angles to 180 °

0 0.21 0.79 0 0.21 0.79

1 0.79 0.78 1 0.82 0.76

Calculate variances Form feature vector

x = {3, 0.12, 0.41} x = {3, 0.12, 0.41}

738 G. EICHMANN and T. KASPARIS

into account the deterministic error of the missing
code. In this method, during each new iteration, a
"better" mapping M matrix is constructed.

In the first iteration step, based on the extended
input X' and output Y where Y = I is an identity
matrix (for orthonormal codes), the matrix Mo is
calculated. The dimension of Mo is m x (n + m).
Assuming that there are no input errors, the inputs
X~ will be of the form

The recall will be of the form

Yo = M o X o (5)

where 1:o is expected to be a close approximation of
the desired output Y. We now use the output Yo as a
new training input, i.e. Xl = Yo, and with Y as
training output (the target output) form a new associ-
ative memory M1, so that

Y = M1Yo. (6)

Substituting equation (5) into (6) yields

r = M I M o X o. (7)

The new LAM matrix M = M 1 M o is now a "better"
mapping matrix in that it will map the incomplete
input Xo closer to the target output Y. We also note
that since the dimension of matrix M 1 is m x m so
that the dimension of the matrix M is still m x (n + ra).
Also, since now the training input and output vectors
are close to each other, the matrix M1 will be close
to the identity matrix.

The above procedure can be repeated. Using the
new matrix M we can find a new output Y1, i.e.

Yl = M 1 M o X o (8)

where now we expect that output Y~ will be an even
closer approximation of the desired output Y. Using
now Y1 as a training input and Y (the desired output)
as the training output, a new M 2 matrix can be
generated. Since now Y~ is even closer to Y, then we
expect that M 2 will be even closer to the identity
matrix, and the new, improved, mapping matrix as
M = M 2 M 1 M o .

If this procedure is repeated several times, then the
training input and output will be so close to each other
that their associative memory matrix will converge to
the identity matrix. After k iterations the overall
mapping matrix will be

M = M k M k_ 1 . . . M 1 M o (9)

where M matrices with higher index are closer to the
identity matrix.

Two possible variations of this scheme are the
following. To take algorithm imperfections into
account, at the start of the iterations, in equation (4),
noise is added to matrix X. In a second variation,
instead of using an approximate output as a training

input, in the next iteration, the combination of feature
matrix-approximate code, i.e. the training input dur-
ing the kth iteration

,10, X k = Y~-I

instead of Yk-1 is used. In this case the combined M
matrix could be the result of the kth iteration step.
One basic problem with this iterative LAM scheme
is still the issue of linear independence. If at any
iteration, one training input vector is linearly depend-
ent on the others, then that column of the M matrix
will not converge to the correct one, and the corres-
ponding output code will be incorrect.

4. EXPERIMENTAL RESULTS

Two types of experiments were performed. In the
first type, using a nine-element feature vector, eight
different textures were described. In the second type,
using a three element feature vector, the same eight
texture patterns were described. Since the test texture
patterns add up to a maximum of four line directions,
a nine-element feature vector, where the first element
represents the number of detected directions, the next
four elements are the normalized angles, and the last
four elements are the average normalized separation
in each direction, is formed. If less than four directions
are detected, then the unused entries are filled by
zeroes. For example, for the pattern depicted in Table
1, the nine-element feature vector is:

x r = [3, 0, 0.21, 0.79, 0, 1, 0.79, 0.78, 0].

An eight element set of orthonormal vectors are used
as code vectors. By using the algorithm four times on
four different versions of the same texture pattern and
averaging the resulting feature vectors, the reference
feature vectors were generated. Using these reference
feature vectors as the training inputs and their corres-
ponding code vectors as the training outputs, a LAM
matrix is calculated. The performance of this LAM
memory was tested by either submitting an unknown
feature vector generated by the texture classification
algorithm, or by simply adding noise to one of the
training inputs and using it as a test input. In both
cases, the test input is submitted to the LAM and
the desired information is obtained by locating the
position of the maximum element in the output. In
the event of two equal peaks at different locations of
the output vector, then a "don't know" is declared.

Extensive testing of this scheme found the LAM to
be very successful, with an average of 9 5 0 correct
classification. Most of the unsuccessful attempts were
"don't know's", although some incorrect cases were
also observed. As an illustration, the reference feature
vector (training input) of one of the patterns used in
our experiments was:

xr = 1-3, 0, 0.20, 0.80, 0, 1, 0.77, 0.79, 0].

Pattern classification 739

The testing input for this pattern was:

x = [3, 0, 0.26, 0.84, 0, 1, 0.70, 0.83, 0l.

The code vector (training output) of this pattern was:

y = [0, O, O, 1, O, O, O, 0].

The resulting LAM output was

y' = [0.4, -0 .2 , 0.3, 0.8, 0.1, -0 .1 , 0.6, 0.2].

By comparing the LAM output with the code vector
we see that this is a correct classification ease.

For the second type of experiments, to describe the
patterns, only three numbers were used (see Table 1).
The training input was formed by stacking the three
classification numbers together with the code vector
into a single vector, while the training output was
again the code vector. For testing, the unknown
feature vector was concatenated to a zero vector and
submitted to the LAM. The desired information was
obtained by finding the position of the maximum
element in the output vector. Again, extensive testing
found this scheme to be less successful than the
previous one; however, its performance can be consid-
ered satisfactory. The average percentage of class-
ification success rate was estimated to 70%. By using
iterative encoding, this percentage can be increased
to about 80%. It should be noted that the reported
classification success rate of other, far more elaborate
algorithms, averages between 46% to an 82%
maximum with a median value of around 60% 39) In
addition, compared to elaborate clustering algor-
ithms, this method is simpler to implement. One
additional comment is that in this type of experiments
about half of the failures were due to incorrect
classification while the other half were "don't know"
types. Again, for the purpose of illustration, the
training input of a pattern was:

x = [3, 0.12, 0.41, 0, 0, 0, 1, 0, 0, 0, 0]

where the testing input was:

x' = [3, 0.11, 0.42, 0, 0, 0, 0, 0, 0, 0, 0].

The texture code vector was:

y = [0, O, O, 1, 0, 0, 0, 0].

The LAM output was:

y' = [0.2, 0.3, 0.1, 0.7, -0 .2 , 0.5, 0.4, 0.1].

When iterative encoding was used, the LAM output
w a s :

y' = [0.1, 0.2, --0.1, 0.8, 0.1, --0.1, 0.1, --0.2].

Notice that this is also a successful classification case.

5. SUMMARY

A new application of a LAM was introduced. In
this application, the LAM is used as a learning
encoder to encode pattern features into identifying

code tag vectors. As compared to associative enco-
ding, LAM is teamed with a feature extraction algor-
ithm to produce a classification system. As opposed
to previous methods, LAM replaces tedious clustering
algorithms and similarity measures with a stored
vector matrix multiplication. Additionally, the refer-
ence features are part of the calculated memory,
and need not be stored separately. This scheme
standardizes classification algorithms and decreases
computat ion time, since it can be implemented in fast
hardware as well. Extensive simulation showed a high
degree of accuracy which can be further enhanced by
using a new iterative encoding scheme.

Acknowledgement--The grant support of the U.S. Air Force
Office of Scientific Research is gratefully acknowledged.

REFERENCES

1. T.Y. Young and T. W. Calvert, Classification, Estimation
and Pattern Recognition. Elsevier, New York (1974).

2. E. Diday and J. Simon, Clustering analysis, Digital
Pattern Recognition, K. S. Fu, Ed., Springer, New York
(1980).

3. B. Everitt, Cluster Analysis. Halsted Press, New York
(1980).

4. T. Kohonen, Self Organization and Associative Memory.
Springer, New York (1984).

5. G. Eichmann and T. Kasparis, Topologically invariant
texture descriptors, Comput. Vision Graphics Image Pro-
cess. 41, 267-282 (1988).

6. P. V. C. Hough, Method and Means for Recognizing
Complex Patterns, U.S. Patent 3,069,654 (1962).

7. R. O. Duda and P. E. Hart, Use of the Hough Transfor-
mation to detect lines and curves in pictures, Communs
Ass. Comput. Mach. 15, 11-15 (1972).

8. J. Sklansky, On the Hough technique for curve detection,
IEEE Trans. Comput. C-24, 923-926 (1978).

9. B. P. Kjell and C. R. Dyer, Edge separation and
orientation texture measures, IEEE Conf. Rec. Pattern
Recognition, pp. 306-311 (1985).

10. T. N. E. Greville, Some applications of the pseudo-
inverse of a matrix, SIAM Rev. 2, 15-22 (1960).

11. A. Albert, Regression and the Moore-Penrose Pseudo
Inverse. Academic Press, New York (1972).

APPENDIX 1

The associative memory mapping of an input vector Xk
into an output vector Yk can be described by the transfer
relation:

Yk = Mxk k = 1 p (AI)

where M is the unknown LAM. An iterative method for the
determination of the matrix M will now be presented.

Let (xk,yk), k = 1 P, be two sets of vectors. Forming
the two rectangular matrices X and Y, with the vectors Xk
and Yk as their columns, as

X = [xl ,x2 xv], Y= [Yl ,Y2 Yp], (A2)

every pair of vectors from sets (xk,yk) can be related by the
matrix equation

Y = MX. (A3)

Using the so-called "Moore-Penrose" method, tl°> the least
squares optimal solution of equation (A3) is found as

M = Y X + (A4)

740 G. EICHMANN and T. KASPARIS

where X ÷ is the pseudo-inverse of X. The iterative solution
of equation (A4) has the form of a difference equation t4~

Mk = M k - 1 + (Yk -- M k - l Xk) [Ck]' (A5)
where Mk and Mk-t are the new and previous optimal
matrices, Xk and Yk are the new observation vectors, where
t denotes the transpose and [Ck]' is a gain vector that defines
the correction. The iterations may be initiated with either
Mo = 0 or Mo = I where I is the identity matrix. The
expression for the gain factor is:

[Ck] t = [hk]r/llhkll 2 for tlhkH # 0 (A6)

where h k is the orthonormal projection of Xk on the subspace
spanned by the vectors h I hk- 1. The orthogonal projec-
tion of the vector x k to the set of previous columns of the
matrix H = [h i ,h2 hp] can be obtained by using the
Gram-Schmidt orthogonalization (11~

k 1

hk = Xk -- ~ (Xk,hl)'hi/llhill 2, Ilhill # 0 (A7)
i = I

where (Xk, hl) is the vector inner product, and IIh~ll is the
Euclidean norm of the vector h~.

About the Author--GEORGE EICHMANN received the B.E.E. and M.E.E. degrees from The City College of
New York and the Ph.D. (E.E.) from The City University of New York, respectively. He joined the
Department of Electrical Engineering at the City College of New York in 1968 as an Assistant Professor.
At City College he held positions of Associate Professor and full Professor. He also served as Department
Chair from 1982 to 1988. Presently he holds the title of Herbert Kayser Professor of Electrical Engineering.
His research interest is in pattern analysis computer vision, and optical computing. Dr Eichmann is a
member of the IEEE, OSA, and SPIE.

About the Author--TAKlS KASPARIS was born in Cyprus in 1956. He received the Diploma in Electrical
Engineering from the National Technical University of Athens in 1980, and the M.E. and Ph.D. degrees
from The City College of The City University of New York in 1982 and 1988 respectively, also in Electrical
Engineering. While at City College, he held the positions of Graduate Fellow, Adjunct Lecturer, and
Instructor. He is currently an Electronics Design Engineer and consultant in the fields of Image Processing
and Electronics. His research interests include non-linear filtering algorithms, pattern analysis and
computer vision. Dr Kasparis is a member of the Technical Chamber of Greece.

