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Abstract--Pattern classification is a very important image processing task. A typical pattern classification 
algorithm can be broken into two parts; first, the pattern features are extracted and, second, these features 
are compared with a stored set of reference features until a match is found. In the second part, usually 
one of the several clustering algorithms or similarity measures is applied. In this paper, a new application 
of linear associative memory (LAM) to pattern classification problems is introduced. Here, the clustering 
algorithms or similarity measures are replaced by a LAM matrix multiplication. With a LAM, the reference 
features need not be separately stored. Since the second part of most classification algorithms is similar, 
a LAM standardizes the many clustering algorithms and also allows for a standard digital hardware 
implementation. Computer simulations on regular textures using a feature extraction algorithm achieved 
a high percentage of successful classification. In addition, this classification is independent of topological 
transformations. 
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l. I N T R O D U C T I O N  

Pattern classification problems have been studied 
extensively and for different classes of patterns many 
classification algorithms have been proposed, m Most 
classification algorithms, however, have some com- 
mon features. Figure 1 shows a block diagram of a 
typical classification algorithm. As the first algorithm 
step, pattern features used in the classification are 
extracted. This extraction step usually varies from 
algorithm to algorithm. To provide a best fit for the 
class of patterns of interest, the way the primitives 
are chosen and extracted will differ. The second 
classification algorithm step is usually common to 
most algorithms. Here, once the pattern features are 
extracted, they are then compared with a set of stored 
reference features. These reference features, assumed 
to be a priori known, are established during a training 
phase. The process of matching the unknown features 
to one of the reference ones is carried out by one of 
the several available clustering or similarity measure 
algorithms." 31 Even though the second, classification 
algorithm phase, is somewhat uniform, because of 
the large number of implementation details, this 
standardization is lost. Furthermore, the implement- 
ation complexity depends on the method chosen. A 
dynamic clustering algorithm is time-consuming and 
is difficult to implement. A simple similarity measure 
algorithm while it is less time-consuming, in some 
situations it does not perform well. Additionally, no 
matter which method is chosen, the reference features 
have to be stored. It is desirable to have available a 

standard process that would incorporate both the 
reference feature storage and the decision making 
process. 

An alternate way of matching the unknown features 
to the reference ones, is by mapping a feature vector 
into an identifying code vector, If this memory map- 
ping is possible, then classification is accomplished. 
The required mapping matrix can be trained so that 
it will map known input and output vectors. This 
mapping requirement is best fulfilled by a linear 
associative memory (LAM) matrix. The LAM is a 
learning algorithm that is trained to map desired 
inputs into desired outputs. Additionally, because of 
the properties of LAM, this mapping is optimum in 
the least-square error sense, and it can tolerate some 
errors introduced by the feature extraction algorithm. 

The organization of this paper is as follows. In 
Section 2, the background on the LAM is presented 
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Fig. 1. Block diagram of a typical classification algorithm. 

733 



734 G. EICHMANN and T. KASPARIS 

and the proposed feature encoding is described. In 
Section 3, a feature extraction algorithm used in our 
experiments is described, and the problem of texture 
classification is discussed. Also, a discourse on linear 
independence considerations is presented, and an 
iterative feature encoding scheme is described. Finally, 
in Section 4 experimental results are presented. In 
Section 5, the paper summary is presented. 

2. BACKGROUND 

Associative recall may, in general, be defined as a 
mapping in which a finite number of input vectors 
are transformed into a given set of output vectors. In 
the case of incomplete or erroneous input vectors, it 
has been shown t~) that this mapping is a least-square- 
error-sense optimal. It is this error tolerance that 
suggests its applicability to pattern (vector) restor- 
ation and classification. There are two kinds of 
associative recalls: the autoassociative and the hetero- 
associative. In the former, an incomplete vector is 
restored into a complete version of itself, while in the 
latter, in response to a given input vector an output 
vector is produced. The mapping between the input- 
output vector pair is rather arbitrary and depends 
on the application requirements. Associative recall 
suggests a working mechanism of an error-correcting 
content-addressable memory. This means that, for all 
similar vectors, in the sense of some appropriate 
measure, the recall will be similar to the corresponding 
output vector. 

The mapping process is described by the following 
transfer relation: 

Yk = M X k  k = 1 . . . . .  P (1) 

where xk's and yk'S are given input and output column 
vectors and M is the unknown LAM matrix. The 
generation of a LAM is a problem of memorizing a 
set of responses to a set of input signals. It can also 
be formulated as a problem of finding an optimal 
matrix M solution, in the sense of least squares. Given 
an M, recognition is achieved by linearly transforming 
an unknown input, as per equation (1), and therefore 
it belongs to a scalar transform category. The matrix 
M can be determined through an iterative procedure. 
The mathematical details can be found in Appendix 
A. For the algorithm presented in Appendix A, first 
the X and Y matrices must be generated. This is 
accomplished by stacking the column feature vectors 
with the X columns representing the set of training 
features, and the Y columns the set of desired respon- 
ses. In the second, recognition phase, an unknown or 
degraded feature vector is applied to the input of a 
LAM yielding an output that is similar, in a least- 
square-error sense, to one of the trained responses. 
The LAM matrix has found many applications, t4~ in 
image correction and noise removal, in correcting for 
missing image fragments, etc. With proper training, 
the so-called novelty filter, a version ofa  LAM is able 
to detect defects in input vectors. 

J Unknown ~ AssoclaUvo 
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Fig. 2. An associative memory encoder. 

The so-called associative encoding is a process in 
which a set of input patterns are mapped into a set 
of output codes. Figure 2 is a block diagram of an 
associative encoder. Comparing Fig. 2 with the more 
general Fig. 1, we see that, basically, both processes 
perform the same task. However, when an associative 
encoding is used for classification, then it will depend 
on geometrical transformations such as rotation, 
translation, and scaling. The classification task with 
a LAM is a two-stage process. In the first, a learning 
(or training) phase to induce the proper output respon- 
ses, patterns representative of given classes are used. 
The LAM encoding is an elegant classifier in problems 
such as face recognition where geometrical transfor- 
mations are not expected. However, in a more general 
pattern classification, this geometrical independence 
is very desirable. In our scheme, the LAM does not 
transform the pattern but encodes characteristics 
(features) of the pattern into an identifying code. The 
first advantage of this process is that we can derive 
the full benefit from independence properties of the 
feature extraction algorithm. With a properly selected 
feature extraction algorithm, classification can be 
made independent of geometrical transformations. 
The second advantage is that a large variety of 
clustering algorithms and similarity measures can be 
replaced by a stored vector matrix multiplication. 
Additionally, the reference features need not be stored 
in a separate memory. One drawback of this encoding 
process is that it requires additional development 
computation since after the reference features of the 
patterns in a class are established, the LAM has 
to be calculated. However, in most applications, 
development complexity is not critical because it is 
only performed once. Figure 3 shows the block 
diagram of a LAM-based classification algorithm. 
Comparing with Fig. 1 it is obvious that a LAM- 
based classification is more standard in the sense that 
the second processing block is always the same; only 
its content is different. An additional advantage of 
this standardization is that it can be implemented in 
hardware. The different LAM coefficients could be 
stored in a read-only memory (ROM). As an imple- 
mentation example, next, a LAM-based texture clas- 
sifier will be described. 
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Fig. 3. A diagram of a LAM based classification algorithm. 
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3. A FEATURE EXTRACTION ALGORITHM 

Recently, a new feature extraction algorithm suit- 
able for regular textures has been proposed, ts) Since 
many regular textures consist primarily of straight 
lines, to detect line arrangement in the texture the 
algorithm uses a line detector. The Hough transform 
(HT) t6-8) has been used for this purpose. The HT 
maps straight lines into points in the HT domain and 
thus converts a line detection into a peak detection 
problem. The algorithm extracts texture features from 
the HT peaks and, with proper normalization, these 
extracted features are independent of topological 
transformations. The primitives used for classification 
are the total number of line orientations, and for each 
orientation the normalized average line separation. 
The texture feature vector xF is 

x~ = Ix1, x~, x~] (2) 

where xl  is the total line orientations, x2 is the 
normalized vector line orientations, x3 is the norma- 
lized vector line separations and t stands for the 
vector transpose. In many applications, it is desirable 
to minimize the feature space dimensions. In our 
case, by introducing some statistical data reduction 
analysis, the feature space can be reduced to three 
dimensions. It was found that if the vectors x2 and 
x3 are replaced by the variance of their elements, for 
correct classification this three-element feature vector 
can be used. While some classification accuracy is 
sacrificed, for most applications, the percentage of 
classification success is still high enough. 

As an illustration, in Fig. 4(a) a regular line texture 
pattern, while in Fig. 4(b) its corresponding HT are 
shown. Note that the HT peak pattern follows the 
texture line arrangement. In Fig. 5(a) the pattern of 
Fig. 4(a) under topological transformations, while in 
Fig. 5(b) the HT of Fig. 5(a) are depicted. These figures 
illustrate the effects of these transformations. With 
proper normalization steps, the same texture features 
can be extracted from either Fig. 4(b) or Fig. 5(b). 
Figure 6(a) displays the pattern of Fig. 4(a) with 
uniform "salt and pepper" noise added, while in Fig. 
6(b) the HT of Fig. 6(a) is shown. By comparing Fig. 

Fig. 4(a). An artificial texture pattern used as example. 

PR 22:5-G 

Fig. 4(b). The Hough transform of the texture of Fig. 4(a). 

6(b) with Fig. 4(b), we notice that the effect of texture 
noise is to raise the HT background level noise. 
However, it is evident from Fig. 6(b) that even in the 
presence of noise, successful peak detection is still 
possible, concluding that this feature extraction algor- 
ithm is robust. As an additional illustration, Table 
1 shows the necessary normalization steps on the 
parameters extracted from two different views of the 
same texture pattern. From Table 1, it is noted that 
after normalization, the algorithm yields almost the 
same feature vector, a vector that is characteristic of 
this texture. 

As a LAM-based feature classifier construction 
example, next, a particular texture classifier is 
described. For  this texture classification, the input 
vectors are from a given class of texture reference 
feature vectors. One approach, for the generation of 
the reference features for each class, is to exercise the 
texture algorithm with several different texture views, 
where each new view is the result of a geometrical 
transformation on the same texture. Assuming that 
the classification algorithm is invariant to such trans- 
formations, the generated features are similar, 
although some discrepancies are to be expected. An 
average of all such features could be a single reference 
representative of that texture. However, for some 
texture patterns, more than one reference representa- 
tive could be used. For this input, the output is 
assigned an orthonormal code vector, where a particu- 
lar code represents the input texture, with dimensions 
equal to the total number of textures in a class. 

An important aspect in the construction of a LAM 
is the linear independence of the input vectors. For 
LAM to be successful, the input vectors should have 
a high degree of linear independence. To insure linear 
independence, a linearly dependent input vector is 
not included in those iterations that generate the M 
matrix. Therefore, in the recall, when a degraded 
version of this vector is entered in the LAM, it will 
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Fig. 5(a). Texture of Fig. 4(a) under a topological transformation. 

Fig. 5(b). The Hough transform of the texture of Fig. 5(a). 

fail to recognize it. The result will be an incorrect 
output  resulting in a possible misclassification. 

In  the texture classification algorithm, a possible 
output  is a 3-dimensional (3D) feature vector. Since 
all the input feature vectors are 3D, for m texture 
patterns, the input X matrix is of 3 x m dimensions. 
It is now obvious that out of the m columns of the X 
matrix, no more than three can be linearly indepen- 
dent, and therefore, only three texture patterns can 
correctly be classified. This represents a major draw- 
back to this classification scheme. 

There are two ways to correct this problem. First, 
for not  too many textures in a class, we can increase 
the feature space dimensionality so that it will be at 
least m. Even though this method does not guarantee 
linear independence, for sufficiently different texture 

patterns, the resulting feature vectors will be markedly 
independent. However, for many different textures in 
a class not  many independent features will be available 
and, thus, this is not a feasible method: A second 
alternative is to form an extended input matrix X'. 
By stacking the columns of the output  below the 
columns of the input vectors, the extended input 
matrix is 

The dimension of X'  is (n + m) x m, where n is the 
number  of classification features and m is the total 
number  of texture patterns in the class. Furthermore, 
if or thonormal code vectors are used, the Y matrix is 
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Fig. 6(a). The texture of Fig. 4(a) with noise added. 

Fig. 6(b). The Hough transform of the texture of Fig. 6(a). 

an  iden t i ty  m a t r i x ,  a n d  t h e n  all t he  X '  c o l u m n s  will 

be  l inear ly  i n d e p e n d e n t .  D u r i n g  recall,  s ince  the  code  

pa r t  o f  the  i n p u t  is u n k n o w n ,  all t h o s e  e l e m e n t s  a re  

set  to  zero.  T h i s  case  the  L A M ,  ca l led  to r e c o n s t r u c t  

t he  m i s s i n g  pa r t  o f  the  i npu t ,  r e p r e s e n t s  a n  a u t o -  

a s soc ia t ive  recall. 

T h e r e  a re  two  d i s a d v a n t a g e s  to th is  scheme .  Fi rs t ,  

s ince  the  i n p u t  is o f  l a rger  d i m e n s i o n s ,  t he  M m a t r i x  

will a l so  be  o f  l a rge r  m x (n + m) as c o m p a r e d  to  

m x n d i m e n s i o n s ,  l e a d i n g  to a d d i t i o n a l  c o m p u t a t i o n .  

Second ,  s ince  n o w  t he  L A M  is r equ i r ed  to co r rec t  for  

two s o u r c e s  o f  er rors ;  c lass i f ica t ion  a l g o r i t h m  e r ro r s  

p lu s  a n  e r ro r  due  to  a m i s s i n g  code  e l e m e n t  in t he  

i n p u t  vector ,  t he  c lass i f ica t ion  p roce s s  will be  less 

accu ra t e ,  i.e. m o r e  i nco r r ec t  o r  u n s u c c e s s f u l  classif ica-  

t i ons  c a n  be  expec ted .  T h i s  s e c o n d  d i s a d v a n t a g e  can  

be  co r r ec t ed  by  u s i n g  a n  i te ra t ive  L A M  encod i ng .  

T h e  i te ra t ive  L A M  e n c o d i n g  t e n d s  to i m p r o v e  the  

p e r f o r m a n c e  o f  t he  overa l l  e n c o d i n g  s y s t e m  by  t a k i n g  

Table 1. Normalization steps applied on extracted features. 
The peak separations recorded at each orientation are first 
normalized to their max imum value, and averaged in each 
orientation. Then, they are circularly shifted so that the 
max imum value is at the leftmost position, the orientation 
angles are normalized, and the variance of each row is 

calculated 

0 52 ° 90 ° 128 ° 0 72 ° 110 ° 148 ° 

d 71 90 71 d 49 66 55 
70 0 69 51 66 54 

0 0 72 51 0 53 
0 0 53 
0 0 57 

Normalize distances 

52 ° 90 ° 128 ° 72 ° 110 ° 148 ° 

0.79 1 0.79 0.74 1 0.83 
0.78 0 0.77 0.77 1 0.82 
0 0 0.80 0.77 0 0.80 

0 0 0.80 
0 0 0.86 

Average distances 

52 ° 90 ° 128 ° 72 ° 110 ° 148 ° 

0.79 1 0.78 0.76 1 0.82 

Shift circularly 

90 ° 128 ° 52 ° 110 ° 148 ° 72 ° 

1 0.79 0.78 1 0.82 0.76 

Normalize angles 

0 o 38 ° 142 ° 0 ° 38 ° 142 ° 

1 0.79 0.78 1 0.82 0.76 

Normalize angles to 180 ° 

0 0.21 0.79 0 0.21 0.79 

1 0.79 0.78 1 0.82 0.76 

Calculate variances Form feature vector 

x = {3, 0.12, 0.41} x = {3, 0.12, 0.41} 
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into account the deterministic error of the missing 
code. In this method, during each new iteration, a 
"better" mapping M matrix is constructed. 

In the first iteration step, based on the extended 
input X' and output Y where Y = I is an identity 
matrix (for orthonormal codes), the matrix Mo is 
calculated. The dimension of Mo is m x (n + m). 
Assuming that there are no input errors, the inputs 
X~ will be of the form 

The recall will be of the form 

Yo = M o X o  (5) 

where 1:o is expected to be a close approximation of 
the desired output Y. We now use the output Yo as a 
new training input, i.e. Xl  = Yo, and with Y as 
training output (the target output) form a new associ- 
ative memory M1, so that 

Y = M1Yo. (6) 

Substituting equation (5) into (6) yields 

r = M I M o X  o. (7) 

The new LAM matrix M = M 1 M  o is now a "better" 
mapping matrix in that it will map the incomplete 
input Xo closer to the target output Y. We also note 
that since the dimension of matrix M 1 is m x m so 
that the dimension of the matrix M is still m x (n + ra). 
Also, since now the training input and output vectors 
are close to each other, the matrix M1 will be close 
to the identity matrix. 

The above procedure can be repeated. Using the 
new matrix M we can find a new output Y1, i.e. 

Yl = M 1 M o X o  (8) 

where now we expect that output Y~ will be an even 
closer approximation of the desired output Y. Using 
now Y1 as a training input and Y (the desired output) 
as the training output, a new M 2 matrix can be 
generated. Since now Y~ is even closer to Y, then we 
expect that M 2 will be even closer to the identity 
matrix, and the new, improved, mapping matrix as 
M = M 2 M 1 M o .  

If this procedure is repeated several times, then the 
training input and output will be so close to each other 
that their associative memory matrix will converge to 
the identity matrix. After k iterations the overall 
mapping matrix will be 

M = M k M  k_ 1 . . .  M 1 M o  (9) 

where M matrices with higher index are closer to the 
identity matrix. 

Two possible variations of this scheme are the 
following. To take algorithm imperfections into 
account, at the start of the iterations, in equation (4), 
noise is added to matrix X. In a second variation, 
instead of using an approximate output as a training 

input, in the next iteration, the combination of feature 
matrix-approximate code, i.e. the training input dur- 
ing the kth iteration 

,10, X k =  Y~-I 

instead of Yk-1 is used. In this case the combined M 
matrix could be the result of the kth iteration step. 
One basic problem with this iterative LAM scheme 
is still the issue of linear independence. If at any 
iteration, one training input vector is linearly depend- 
ent on the others, then that column of the M matrix 
will not converge to the correct one, and the corres- 
ponding output code will be incorrect. 

4. EXPERIMENTAL RESULTS 

Two types of experiments were performed. In the 
first type, using a nine-element feature vector, eight 
different textures were described. In the second type, 
using a three element feature vector, the same eight 
texture patterns were described. Since the test texture 
patterns add up to a maximum of four line directions, 
a nine-element feature vector, where the first element 
represents the number of detected directions, the next 
four elements are the normalized angles, and the last 
four elements are the average normalized separation 
in each direction, is formed. If less than four directions 
are detected, then the unused entries are filled by 
zeroes. For  example, for the pattern depicted in Table 
1, the nine-element feature vector is: 

x r = [3, 0, 0.21, 0.79, 0, 1, 0.79, 0.78, 0]. 

An eight element set of orthonormal vectors are used 
as code vectors. By using the algorithm four times on 
four different versions of the same texture pattern and 
averaging the resulting feature vectors, the reference 
feature vectors were generated. Using these reference 
feature vectors as the training inputs and their corres- 
ponding code vectors as the training outputs, a LAM 
matrix is calculated. The performance of this LAM 
memory was tested by either submitting an unknown 
feature vector generated by the texture classification 
algorithm, or by simply adding noise to one of the 
training inputs and using it as a test input. In both 
cases, the test input is submitted to the LAM and 
the desired information is obtained by locating the 
position of the maximum element in the output. In 
the event of two equal peaks at different locations of 
the output vector, then a "don't know" is declared. 

Extensive testing of this scheme found the LAM to 
be very successful, with an average of 9 5 0  correct 
classification. Most of the unsuccessful attempts were 
"don't know's", although some incorrect cases were 
also observed. As an illustration, the reference feature 
vector (training input) of one of the patterns used in 
our experiments was: 

xr = 1-3, 0, 0.20, 0.80, 0, 1, 0.77, 0.79, 0]. 
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The testing input for this pattern was: 

x = [3, 0, 0.26, 0.84, 0, 1, 0.70, 0.83, 0l. 

The code vector (training output) of this pattern was: 

y = [0, O, O, 1, O, O, O, 0]. 

The resulting LAM output  was 

y' = [0.4, -0 .2 ,  0.3, 0.8, 0.1, -0 .1 ,  0.6, 0.2]. 

By comparing the LAM output  with the code vector 
we see that this is a correct classification ease. 

For  the second type of experiments, to describe the 
patterns, only three numbers  were used (see Table 1). 
The training input was formed by stacking the three 
classification numbers together with the code vector 
into a single vector, while the training output  was 
again the code vector. For  testing, the unknown 
feature vector was concatenated to a zero vector and 
submitted to the LAM. The desired information was 
obtained by finding the position of the maximum 
element in the output  vector. Again, extensive testing 
found this scheme to be less successful than the 
previous one; however, its performance can be consid- 
ered satisfactory. The average percentage of class- 
ification success rate was estimated to 70%. By using 
iterative encoding, this percentage can be increased 
to about  80%. It should be noted that the reported 
classification success rate of other, far more elaborate 
algorithms, averages between 46% to an 82% 
maximum with a median value of around 60% 39) In 
addition, compared to elaborate clustering algor- 
ithms, this method is simpler to implement. One 
additional comment  is that in this type of experiments 
about  half of the failures were due to incorrect 
classification while the other half were "don't  know" 
types. Again, for the purpose of illustration, the 
training input of a pattern was: 

x = [3, 0.12, 0.41, 0, 0, 0, 1, 0, 0, 0, 0] 

where the testing input was: 

x' = [3, 0.11, 0.42, 0, 0, 0, 0, 0, 0, 0, 0]. 

The texture code vector was: 

y = [0, O, O, 1, 0, 0, 0, 0]. 

The LAM output  was: 

y' = [0.2, 0.3, 0.1, 0.7, -0 .2 ,  0.5, 0.4, 0.1]. 

When iterative encoding was used, the LAM output  
w a s :  

y' = [0.1, 0.2, --0.1, 0.8, 0.1, --0.1, 0.1, --0.2]. 

Notice that this is also a successful classification case. 

5. SUMMARY 

A new application of a LAM was introduced. In 
this application, the LAM is used as a learning 
encoder to encode pattern features into identifying 

code tag vectors. As compared to associative enco- 
ding, LAM is teamed with a feature extraction algor- 
ithm to produce a classification system. As opposed 
to previous methods, LAM replaces tedious clustering 
algorithms and similarity measures with a stored 
vector matrix multiplication. Additionally, the refer- 
ence features are part of the calculated memory, 
and need not  be stored separately. This scheme 
standardizes classification algorithms and decreases 
computat ion time, since it can be implemented in fast 
hardware as well. Extensive simulation showed a high 
degree of accuracy which can be further enhanced by 
using a new iterative encoding scheme. 
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APPENDIX 1 

The associative memory mapping of an input vector Xk 
into an output vector Yk can be described by the transfer 
relation: 

Yk = Mxk k = 1 . . . . .  p (AI) 

where M is the unknown LAM. An iterative method for the 
determination of the matrix M will now be presented. 

Let (xk,yk), k = 1 . . . . .  P, be two sets of vectors. Forming 
the two rectangular matrices X and Y, with the vectors Xk 
and Yk as their columns, as 

X = [xl ,x2 . . . . .  xv], Y= [Yl ,Y2 . . . . .  Yp], (A2) 

every pair of vectors from sets (xk,yk) can be related by the 
matrix equation 

Y = MX.  (A3) 

Using the so-called "Moore-Penrose" method, tl°> the least 
squares optimal solution of equation (A3) is found as 

M = Y X  + (A4) 
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where X ÷ is the pseudo-inverse of X. The iterative solution 
of equation (A4) has the form of a difference equation t4~ 

Mk = M k -  1 + (Yk -- M k -  l Xk) [Ck]' (A5) 
where Mk and Mk-t are the new and previous optimal 
matrices, Xk and Yk are the new observation vectors, where 
t denotes the transpose and [Ck]' is a gain vector that defines 
the correction. The iterations may be initiated with either 
Mo = 0 or Mo = I where I is the identity matrix. The 
expression for the gain factor is: 

[Ck] t = [hk]r/llhkll 2 for tlhkH # 0 (A6) 

where h k is the orthonormal projection of Xk on the subspace 
spanned by the vectors h I . . . . .  hk-  1. The orthogonal projec- 
tion of the vector x k to the set of previous columns of the 
matrix H = [h i ,h2  . . . . .  hp] can be obtained by using the 
Gram-Schmidt orthogonalization (11~ 

k 1 

hk = Xk -- ~ (Xk,hl)'hi/llhill 2, Ilhill # 0 (A7) 
i = I  

where (Xk, hl) is the vector inner product, and IIh~ll is the 
Euclidean norm of the vector h~. 
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