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Our experimental data unambiguously show (i) a damping behavior (the appearance of an undershoot
following the overshoot) in the transient shear viscosity of a concentrated polymeric solution, and (ii)
the absence of a corresponding behavior in the transient normal stress coefficients. Both trends are
shown to be quantitatively captured by the bead-link chain kinetic theory for concentrated polymer
solutions and entangled polymer melts proposed by Curtiss and Bird, supplemented by a non-constant
link tension coefficient that we relate to the nematic order parameter. The observed phenomena are
attributed to the tumbling behavior of the links, triggered by rotational fluctuations, on top of reptation.
Using model parameters deduced from stationary data, we calculate the transient behavior of the stress
tensor for this “tumbling-snake” model after startup of shear flow efficiently via simple Brownian
dynamics. The unaltered method is capable of handling arbitrary homogeneous flows and has the
promising capacity to improve our understanding of the transient behavior of concentrated polymer
solutions. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4982228]

It is today well accepted that the dynamical behav-
ior of entangled polymer melts and concentrated solutions
is triumphantly predicted by an effective medium theory,
the tube/reptation model proposed by Doi, Edwards, and de
Gennes.1–3 In essence, the dynamics of a high-molecular-
weight chain is confined within an effective mean-field tube
defined by the topological constraints imposed by surrounding
chains. Thus, escape from the tube can only occur via a curvi-
linear diffusion (termed reptation) along the tube’s centerline
after an amount of time approximately equal to the reptation
or disengagement time, τd .1–5 Numerical algorithms able to
extract the primitive path network from lower-level simula-
tions have provided the means to study both the entanglement
statistics6–9 and dynamics,10–13 providing invaluable informa-
tion to reassess modern tube/reptation models.14–17 Overall,
both experiments and simulations have unambiguously doc-
umented that the tube/reptation framework today stands as a
powerful tool necessary to understand the linear viscoelastic
(LVE) behavior of entangled polymer melts and solutions.

Under flow conditions, as illustrated by Doi-Edwards
(DE),2,18–20 its treatment requires the solution of a Fokker-
Planck (FP) equation for the single-link distribution function,
f (σ, u, t), which describes the probability that at time t a chain
segment at reduced contour positionσ ∈ [0, 1] along the chain
is oriented in the direction u, while u and σ are independent
dynamical variables. Curtiss and Bird (CB), a few years after
DE, employed a phase-space formulation for the kinetic theory
of undiluted polymers21 to develop a kinetic theory for poly-
mer melts and concentrated solutions composed of multi-bead
chains21–25 that we coin as the “tumbling-snake” model.
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The assumptions of this model are completely different
from those made by DE.21,26 An additional term, correspond-
ing to a rotational Brownian contribution with a parameter
ε′ ∈ [0, 1] controlling its significance, is added to the FP equa-
tion.21,26 The tumbling-snake model includes a contribution in
the extra stress tensor containing the fourth moment of f that
arises from the anisotropy of the friction tensor within their
kinetic theory derivation and is controlled by the link tension
coefficient ε ∈ [0, 1]. In addition, the stress tensor contains
two contributions related to the plain and σ(1 − σ)-weighted
second moment of f, whose relative significance is given by ε′.
The DE model is recovered as a limiting case of the tumbling-
snake model (when ε = ε′ = 0), and the time constant of
the tumbling-snake model, denoted as λ, is proportional to
the reptation time, λ = π2τd . CB and their co-workers had
solely employed the analytically tractable non-tumbling limit
of their model, with ε′ = 0 and ε > 0.21–25,27 The tumbling-
snake model involving non-vanishing ε and ε′ has since then
been apparently overlooked.

As two of us have demonstrated very recently,26 the
tumbling-snake model can readily be solved via Brownian
dynamics (BD). We have explicitly shown that the tumbling-
snake model allows for a better description of more recent
rheological data that exhibit power-law slopes larger than those
predicted by the non-tumbling model. In this work, based on
our experimental results that serve to test the nonequilibrium-
dynamical properties, we are led to suggest an expression
for the calculation of the link tension coefficient through the
nematic order parameter,28 ε ∼ S2

2 (see below for details).
There is accumulated evidence today revealing that under

high-shear-rate startup experiments the time-dependent shear
viscosity η(t) exhibits a damped oscillatory behavior, in which
η(t) first overshoots and then undershoots the steady-state
value before eventually reaching it.29,30 Such evidence has
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only recently been brought to light since accurate rheological
measurements at high shear rates have been, for quite some
time, a challenge for rheologists due to edge fracture. This
damping behavior seems to be more pronounced in polymer
solutions rather than polymer melts. The reason for its appear-
ance has thus far evaded a clear explanation. Such a behavior
for η(t) is predicted by a thermodynamically admissible rep-
tation model,31 although this work did not further elaborate as
to which mechanism is responsible. More recently, Costanzo
et al.30 proposed that the reason for this trend is the tum-
bling of entangled polymer chains and accounted for this via a
phenomenological modification to a tube-based model which
allows for tumbling32,33 to occur through the introduction of
a “tumbling” function. In our present work, we account for
this tumbling via the rotational Brownian contribution of the
tumbling-snake model.

In this Communication, we present experimental data
for all transient rheological properties of a polymer solution
subjected to shear. The results unequivocally reveal the appear-
ance of a damped oscillatory behavior of η(t) and, within
statistical uncertainty, absence of any oscillatory behavior in
the transient first and normal stress coefficients, Ψ1(t) and
Ψ2(t), respectively. Furthermore, motivated by the fact that
such a damping behavior is known to occur in rigid rods,34

we solve the tumbling-snake model for ε′ > 0 in startup shear
flow (using BD simulations) and show that it does bear the
adequate capacity to capture these observations.

The nearly monodisperse polystyrene (PS) solution was
prepared and characterized as described in Section A of the
supplementary material. The rheological measurements were
performed at 30 oC with a partitioned plate setup, connected
to two measuring motors, that provides two normal forces and
two torque signals, one for the entire sample and one for the
inner partition. Transient rheological measurements are pro-
vided for η(t) (Fig. 1) and Ψ1(t) and Ψ2(t) (Fig. 2) for various
shear rates γ̇, whereas their steady-state values are collected
in Fig. S2 of the supplementary material. As the statistical
uncertainties for the transient measurements are difficult to
quantify, we depict in Figs. 1 and 2, their lower limits, the

FIG. 1. Comparison of transient shear viscosity η(t) PS solution measure-
ments (symbols) with the tumbling-snake model predictions (lines) for dif-
ferent shear rates γ̇. The added statistical uncertainties are those calculated at
steady-state conditions. System parameters: N = 3Z = 42 (since Z ≈ 14, see
Table S-I of the supplementary material), ε0 = 0.1 (Fig. S2 of the supplemen-
tary material), ε′0 ≡ (N − 1)2ε′ = 1, G = 45 kPa, and λ = 105 s (Fig. S1 of
the supplementary material). The thick black line depicts the LVE envelope,
Eq. (C11a) of the supplementary material.

FIG. 2. Same as Fig. 1, using strictly identical parameters, but for the transient
(a) first,Ψ1(t), and (b) second,Ψ2(t), viscometric function. Experimental data
(symbols) versus theory (lines).

steady-state statistical uncertainty, at the last transient data
point.

We unambiguously see that for γ̇ ≥ 1.6 s�1 an undershoot
occurs in η(t) which deepens and whose position is shifted
towards smaller times as γ̇ increases. It should be noted that
a PS polymer melt with almost the same number of entangle-
ments (Z ≈ 16) does not present any undershoots,35 suggesting
ε′ = 0 for melts (see below for more details). The considerable
hindrance for links to rotate in polymer melts as compared to
the relative easiness in a dilute polymer solution may serve as
the underlying reason. A negligible or vanishing ε ′ for melts
is also in accord with our recent work26 where we needed to
employ an ε′ parameter that decreased with increasing poly-
mer concentration to successfully compare the tumbling-snake
model predictions with steady-state shear viscosity data of an
entangled DNA solution. ConcerningΨ1(t) andΨ2(t) (Fig. 2),
although some oscillations at large γ̇ are indeed observed,
their amplitudes are small and comparable to the statistical
uncertainty; for this reason, our conclusion is that a damping
behavior is not observable in these viscometric functions. Data
are generally shown up to times where edge fracture sets in.

The LVE envelopes, presented in Figs. 1 and 2, are
calculated analytically by considering a spherical harmon-
ics expansion of the single-link distribution function around
equilibrium, using the methods of Ref. 26 (see Section C of
the supplementary material). Analytical expressions were also
derived for the frequency-dependent storage and loss moduli
(Section B of the supplementary material). We take the num-
ber of beads to be equal to N = 3Z = 42 since the number
of entanglements is Z ≈ 14 (see Table S-I of the supplemen-
tary material). The relation N = 3Z is deduced by requiring
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that the stress tensor expression of the tumbling-snake model
when ε′ = ε = 0 matches that of the DE model.23,26,36 The
values for the modulus, G = 45 kPa, and the relaxation time,
λ = 105 s, were both obtained by fitting the storage and loss
moduli (Fig. S1 of the supplementary material) and the η(t)
LVE envelope (Fig. 1) of the polymer solution under study. The
choice ε′0 = ε′(N − 1)2 = 1 is necessary so that the under-
shoots are comparable to those found in our experimental
data.

Finally, concerning the link tension coefficient, we can
deduce that it cannot be taken as a constant as originally
considered by Bird et al.21–25,27 At early times, the poly-
mer chain would not have had enough time to respond to the
applied flow field, and tension in each entanglement strand
should be approximately equal to the equilibrium one, just
like the DE model; this directly suggests that limt→0 ε(t) = 0
(see also Example 19.1-1 in Ref. 21). This reasoning is
in accord with the fact that experimental data (Fig. 1) for
η(t → 0) always approach zero instead of a finite non-zero
value εGλ/90, as predicted by the original CB model for a
positive constant ε (see Ref. 24). In addition to this, Ψ2(t)
is seen to change sign at small times when the link ten-
sion coefficient is treated as a constant.24 On the other hand,
a non-zero asymptotic value limt→∞ ε(t) is needed to cor-
rectly capture the steady-state experimental data. However,
the use of a finite, constant ε is known to lead to a viola-
tion of the stress-optic law,37 which is expected to hold close
to equilibrium (far away from equilibrium, the chain stretch
becomes nonlinear and a failure of the stress-optic law is mea-
sured38). We thus have convincing evidence that the tumbling-
snake model has to be used with a non-constant link tension
coefficient.

In principle, we would expect the scalar link tension coef-
ficient to be affected by S4, the nematic scalar order parameter
of the fourth rank orientation tensor,28 as the corresponding
contribution to the stress tensor involves this moment of f.
Here we employ the simplest possible closure approximation,
the so-called quadratic approximation S4 = S2

2 ,28 involving
the nematic order parameter S2 of the 2nd moment 〈uu〉(1) of
f, 〈uu〉(1) = ∫

1
0 dσ ∫ du f (σ, u, t)uu and propose an expression

for the link-tension coefficient of the form ε = ε0S2
2 . The link-

tension coefficient ε thus vanishes for an isotropic ensemble,
approaches ε0 for a fully aligned sample, and can be calculated
from the anisotropic orientation tensor 〈uu〉(1)

ani = 〈uu〉(1) − 1
3 I,

where I is the unit tensor, via S2
2 =

3
2 tr

(
〈uu〉(1)

ani · 〈uu〉(1)
ani

)
. This

expression alleviates all drawbacks coming with the use of a
constant ε: it vanishes at equilibrium, and its steady-state value
increases with the imposed flow rate, which is the expected
qualitative behavior. The value of ε0 can be obtained from a
comparison with the steady-state material functions (from Fig.
S2 of the supplementary material, we obtain ε0 = 0.1 for our
data). By using this expression, we depict the transient link
tension coefficient in Fig. 3 (in Fig. S2(d) of the supplemen-
tary material, we depict the steady-state ε). At early times, the
link tension coefficient increases as (γ̇t)2. This can be shown
by first expanding S2 at small shear rates

ε =
4
75
ε0(γ̇λ)2(Γ1(0) − Γ1(t))2, (1)

FIG. 3. The transient link-tension coefficient, ε = ε0S2
2 , using strictly iden-

tical parameters as in Fig. 1; the dotted lines are those obtained from the small
shear rate expansion, see Eq. (1).

where

Γ1(t) = 12
∞∑

ν=1,odd

1

(νπ)2K2
exp

(
−K2

t
λ

)
, (2)

and then by expanding Γ1(t) at small times we get ε
≈ 9

75ε0(γ̇t)2. K2 is defined in the supplementary material.
As noted in Fig. 1, the tumbling-snake model bears the

sufficient capacity to predict η(t): at small γ̇, it predicts a mono-
tonic approach to the steady-state viscosity η following the
overshoot, whereas at larger γ̇, an undershoot appears which
deepens and moves towards smaller times as the shear rate
increases. The position of both the undershoot and the over-
shoot is seen to agree well with the experimental data. Such
a behavior is possible only when ε′ > 0 whereas the non-
tumbling limit (ε′ = 0) always predicts a monotonic approach
to η after the overshoot (see Fig. 4 of Ref. 24). This clearly
suggests that the origin of the undershoot is the additional rota-
tional diffusion term in the FP equation which enhances the
occurrence of tumbling.

This will be more pronounced at large shear rates since
the tangent unit vector u, at any position along the chain, will
then reside close to the shearing plane, and the random rota-
tional Brownian forces will be sufficient to force it to start
a tumbling cycle after residing in a flow-aligned state dur-
ing a short period only. Tumbling arises much more naturally
in the tumbling-snake model, compared to other treatments,
through the rotational Brownian term. Note that the predic-
tion of undershoots is possible even for a constant ε; the use
of ε ∼ S2

2 is relevant for correcting both the LVE behavior at
small times and the violation of the stress-optic law close to
equilibrium.

For Ψ1(t), the tumbling-snake model predicts no under-
shoots in accord with the experimental measurements
(Fig. 2(a)) and it also captures the steady-state values Ψ1 [see
also Fig. S2(b) of the supplementary material]. Similarly, the
tumbling-snake model captures the steady-state Ψ2, within
statistical uncertainty [see also Fig. S2(c) of the supplemen-
tary material], and again predicts no undershoots (Fig. 2(b)).
It should be emphasized that the non-tumbling model (ε′

= 0) predicts for both viscometric functions a strictly mono-
tonic approach towards the steady-state value following the
overshoot (see Figs. 5 and 6 of Ref. 24).
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161101-4 Stephanou, Schweizer, and Kröger J. Chem. Phys. 146, 161101 (2017)

FIG. 4. Comparison between experimental data (squares) and the predictions
of the tumbling-snake model (circles connected by lines) for (a) the undershoot
time, tu, and (b) the relative undershoot depth (undershoot depth divided by
steady-state value), du. Both quantities are obtained from the transient η(t)
and shown as a function of shear rate γ̇ (error bars smaller than symbol sizes
are omitted).

To come up with quantitative measures, we explored more
closely the tumbling-snake model predictions for the position
and the depth of the undershoot in η(t). The time at which
the undershoot occurs, tu, is depicted in Fig. 4(a) where we
note that the tumbling-snake model is capable of predicting
tu quantitatively. We further observe a quantitative agreement
of the tumbling-snake prediction for the relative undershoot
depth, du [Fig. 4(b)], except for the largest rate.

When elongational flows are considered, such a damped
oscillatory behavior should be absent from all observables as
these flows have no rotational component. A useful constitu-
tive model should bear evidence of this feature without any
further readjustments. Indeed, by using parameters as those
mentioned above in startup shear, the tumbling-snake model
does predict the absence of a damping behavior in the transient
uniaxial elongational viscosity (results not shown). Thus, its
use in mixed flows poses no additional complication.

In light of these findings, the present work stands as a
call to the scientific community to take a closer look into the
tumbling-snake model and to consider it as a possible frame-
work for further refinement in the future. It has shown the
necessary capacity to predict undershoots in startup shear flow.
Further, it can readily be solved using simple BD algorithms for
homogenous flows26,36 and thus also be used in numerical sim-
ulations of inhomogeneous flows through the CONNFFESSIT
or related approaches.36,39,40

See supplementary material for additional details about
the polymer solution, comparison with the LVE and steady-
state experimental data, and the derivation of the shear relax-
ation modulus and the LVE dynamic behavior of all material
function for the tumbling-snake model.

This work was co-funded by the Republic of Cyprus
through the Research Promotion Foundation (Project No.
KOYLTOYRA/BP-NE/0415/01) granted to P.S.S. through the
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