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The authors of the present study have recently presented evidence that the tumbling-snake model for
polymeric systems has the necessary capacity to predict the appearance of pronounced undershoots
in the time-dependent shear viscosity as well as an absence of equally pronounced undershoots in the
transient two normal stress coefficients. The undershoots were found to appear due to the tumbling
behavior of the director u when a rotational Brownian diffusion term is considered within the equation
of motion of polymer segments, and a theoretical basis concerning the use of a link tension coefficient
given through the nematic order parameter had been provided. The current work elaborates on the
quantitative predictions of the tumbling-snake model to demonstrate its capacity to predict under-
shoots in the time-dependent shear viscosity. These predictions are shown to compare favorably with
experimental rheological data for both polymer melts and solutions, help us to clarify the microscopic
origin of the observed phenomena, and demonstrate in detail why a constant link tension coefficient
has to be abandoned. Published by AIP Publishing. https://doi.org/10.1063/1.4991935

I. INTRODUCTION

Since its introduction, back in the 1970s, the tube model
of de Gennes and Doi-Edwards (DE)1–3 has been proven
able to enhance our understanding of the dynamical behav-
ior of high molecular weight (MW) entangled polymer melts
and concentrated polymer solutions, both under equilibrium
and flow conditions.4,5 Its notions, like those of the confin-
ing mean-field tube and the primitive path (PP), have today
been obtained from lower-level simulations. These simulations
have provided the means to study the entanglement statis-
tics6–9 and to follow the dynamics of the PP network,10–13

leading eventually to the reevaluation of modern tube mod-
els14–16 and allowing for multi-scale modeling approaches to
emerge.17–20

An extended single-segment kinetic theory model, later
coined the tumbling-snake model,21 has been obtained by
Curtiss and Bird (CB) by following a completely different
approach and without making the same assumptions as those
made by DE.22–27 Yet, the tube/reptation formulation is a spe-
cial case of the tumbling-snake model when two of its param-
eters, (i) the link tension coefficient (ε), which arises from the
anisotropy of the friction tensor, and (ii) the dimensionless ori-
entational diffusion coefficient of polymer segments (ε′), are
both set to zero. Up until recently, the tumbling-snake model
had only been solved for an analytically tractable case, i.e.,
in the absence of rotational diffusion, ε′ = 0. We recently
filled this void by solving the full tumbling-snake model in
the case of simple shear flow.21,27 We further suggested that
it bears the necessary characteristics to quantitatively com-
pare against high-shear-rate startup experimental data that
reveal an undershoot, right after the overshoot, in the transient
shear viscosity.21 The appearance of the undershoot, as first
proposed by Costanzo et al.,28 had been associated to the

tumbling of polymer chains.29,30 Along these lines, it was
conjectured to be more pronounced in concentrated polymer
solutions than in entangled polymer melts21,28 despite the fact
that undershoots have been noted in polymer melts as well.31

Via rheological measurements of a polystyrene solution, we
had shown21 that such a behavior is absent (within statistical
uncertainty) in the two normal stress coefficients. Furthermore,
we illustrated that the tumbling-snake model is able to capture
the observed behavior qualitatively only (i) for non-vanishing
orientational diffusion and (ii) if complemented by a link ten-
sion coefficient related to the nematic order parameter S2.32

It is worthwhile mentioning that there exist simulation results
and complementary theoretical evidence for the appearance of
such undershoots, namely, the single-segment models of Gra-
ham, Likhtman, Milner, and McLeish (GLaMM),33 the ther-
modynamically admissible reptation model of Fang et al.,34

as well as slip-link simulations by Schieber et al.35

In the present work, we provide a more thorough
parametrization of the tumbling-snake model compared with
previous work.21 The structure of the paper is as follows:
Sec. II introduces the model. In Sec. III, we provide the expan-
sion of the material functions with respect to the dimensionless
shear rate and time. In Sec. IV, we solve the tumbling-snake
model numerically using Brownian dynamics (BD) simula-
tions and proceed in Sec. V to compare its predictions with
the experimental data of Costanzo et al.28 The paper concludes
with Sec. VI where we discuss the significance of our work
and elaborate on future research endeavors.

II. MODEL

Within the tumbling-snake model, each polymer chain is
primarily modeled as a Kramers freely jointed bead-rod chain
with N beads linearly connected by N − 1 rods each of fixed
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length a,22–26 subjected to flow. The evolution equation for
the single-link distribution function f (σ, u, t), also denoted as
Fokker-Planck (FP) equation, describes the probability to find
a tangent unit vector u at time t at the relative polymer contour
position σ ∈ [0, 1]. It is given by27

∂f
∂t
=

1 − ε′

λ

∂2f

∂σ2
+
ε′0
λ

∂

∂u
·
∂f
∂u
−

∂

∂u
· (Γf ), (1)

where ε′ = ε′0(N − 1)−2 characterizes the orientational diffu-
sivity relative to one-dimensional curvilinear diffusion along
the polymer contour, Γ = (δ −uu) · κ ·u is a torque associated
with flow, where κ denotes the transposed velocity gradient
tensor and δ is the unit tensor, λ = ζa2(N − 1)2N1+β/2kBT
is the characteristic time of the chain related to the repta-
tion time τd introduced by DE via λ = π2τd , where ζ is the
bead friction coefficient and β is the chain constraint expo-
nent.22–26 By requiring that the stress tensor expression of the
tumbling-snake model with ε′ = ε = 0 matches the DE
model,23,36 the number of beads per chain can be related
to the number of chain entanglements, Z , employed by DE
via the relation N = 3Z . Note that Eq. (1) is slightly more
general than Eq. (19.3-26) in Ref. 26 as it does not assume
N � 1. The first term on the right hand-side of Eq. (1) is
the reptation term describing curvilinear segment diffusion
along the polymer’s contour. When ε′ = 0 the segments
strictly reptate along their own chain contour, whereas for
ε′ > 0 segments are also allowed to explore the surround-
ing space. The second term describes orientational diffusion,
capturing the constraint release (CR) mechanism. It is con-
trolled by the parameter ε′0 ∈ [0, 1].27,36 The third term repre-
sents the deterministic effect of the applied homogeneous flow
field. The single-link distribution function is normalized to
unity, ∫

1
0 ∫ f (σ, u, t)dudσ = 1, for all t. Chain ends are always

oriented at random,

∀t f (0, u, t) = f (1, u, t) =
1

4π
. (2)

This assumption is done here in accord with both CB and
DE21,27 while it can be expected to fail under flow conditions
in which case chain ends experience the anisotropy of the sur-
rounding matrix.32,37 The tumbling-snake model reduces to
the DE model for ε′ = 0, while for ε′ = 1, it coincides with
the orientational diffusion equation for rigid dumbbells, rods,
ellipsoids, or multibead rods.22–27 It should be noted that only
the model with ε′ = 0 bears an analytical solution.22–26 The
tumbling-snake model with ε′ > 0 can be solved via the use
of Brownian dynamics (BD).21,27

The (extra or polymeric) stress tensor τ of the tumbling-
snake model for an incompressible, monodisperse polymer
melt at monomer number density n is given by26,27

τ(t)
G
= −(1 − ε′)

(
〈uu〉(1)(t) −

1
3
δ

)
− 3ε′0

(
〈uu〉(2)(t) −

1
18

δ

)
− εB(t), (3)

with modulus G = nkBT (N − 1). The stress tensor involves
the following orientational averages calculated with the time-
dependent single-link orientational probability distribution
function f (σ, u, t),

〈uu〉(1)(t) =
∫ 1

0
dσ

∫
duf (σ, u, t)uu,

〈uu〉(2)(t) =
∫ 1

0
σ(1 − σ)dσ

∫
duf (σ, u, t)uu,

B(t)= κ̃ :
∫ 1

0
σ(1 − σ)dσ

∫
duf (σ, u, t)uuuu,

(4)

with κ̃ ≡ λκ. During BD, these moments are evaluated as
ensemble averages, and a calculation of f is not required to
evaluate the stress tensor. In Eq. (3), ε is the link tension coef-
ficient that controls the anisotropy of the friction tensor within
the kinetic theory derivation of CB.22–26 In the original treat-
ment, ε was considered to be a constant coefficient. It is this
assumption which rendered the model apparently unrealistic:
it leads to a violation of the stress-optic law (expected to hold
close to equilibrium), the transient, both shear and elonga-
tional, viscosities approach a finite value in the limit t → 0, and
the transient second normal stress coefficient exhibits spurious
sign changes with time before eventually becoming negative
under steady-state conditions (see also Figs. S1 and S4 of
the supplementary material). To remedy these inconsistencies,
we proposed in Ref. 21 to employ a time- and shear-rate-
dependent link tension coefficient given as ε = ε0S2

2 , where
ε0 is a constant coefficient characterizing the material and
S2 ∈ [0, 1] is the uniaxial order parameter,

S2
2 =

3
2

tr(〈uu〉ani · 〈uu〉ani), (5)

calculated from the anisotropic orientation tensor 〈uu〉ani

≡ 〈uu〉(1) − 1
3δ, that vanishes at equilibrium and approaches

unity in a totally aligned state. For the case of incompressible
shear flow, κ̃ is traceless and contains the dimensionless flow
strength, the Weissenberg number, Wi ≡ γ̇λ, on one of its
non-diagonals.

The model can be solved numerically, and its stress tensor
evaluated for both steady and time-dependent incompressible
flows, via Brownian dynamics as described elsewhere.21,27

The numerical results are validated against exact analytical
solutions available for weak flows, to be summarized next.
Since BD noise is especially disturbing at low rates and
small times, the analytical results can also be used in these
regimes. In two limiting cases, the tumbling-snake model must
reduce to known results for rigid rods and the original tube
model.

III. SMALL SHEAR RATE EXPANSION
A. Steady-state predictions

We begin by considering a steady-state spherical harmon-
ics expansion of the single-link distribution function around
equilibrium under steady-state shear. To this end, we can
merely overtake the strategy presented in Ref. 27 while newly
accounting for a link tension coefficient ε = ε0S2

2 with S2

given by Eq. (5).

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-010741


174903-3 P. S. Stephanou and M. Kröger J. Chem. Phys. 147, 174903 (2017)

Up to second order in Wi, we obtain

ε = ε0
4
75

(Γ1Wi)2 , (6)

where Γ1 is defined in Eq. (A1b) of the supplementary material.
The link tension coefficient is thus expected to vanish in the
absence of shear. The corresponding shear viscosity η and
viscometric functions are given as

η

Gλ
=

1
60
−

2
245

(
4∆3 +

23
3
∆2

)
Wi2 +

2ε0

3375
(Γ1Wi)2 ,

Ψ1

Gλ2
=

2∆1

15
−

4
63

(
∆5 +

3
35
∆4

)
Wi2,

−Ψ2

Gλ2
=

4∆1

105
− 2

(
4∆4

5145
+
∆5

63
−
∆6

3773

)
Wi2,

(7)

where the coefficients∆i, i = 2, .., 6, are defined in Eq. (A1b) of
the supplementary material. It is readily seen that the analytical
results for the viscometric functions Ψ1 and Ψ2, at least up
to second order terms, are identical to the predictions when
ε = 0, cf. Eq. (6) in Ref. 27. The use of a variable link tension
coefficient∼S2

2 thus implies that−Ψ2,0/Ψ1,0 = 2/7 irrespective
of ε′ and ε0.

B. Transient predictions

Next, we consider a time-dependent spherical harmonics
expansion of the single-link distribution function around equi-
librium to be able to obtain the linear viscoelastic (LVE) ana-
lytical predictions. The methodology employed is described
in Sec. C of the supplementary material of Ref. 21, and the
final expression for the expansion, up to 2nd order in Wi, is
given in their Eq. (A8). Upon inserting the expansion into Eqs.
(4) and by furthermore inserting ε = ε0S2

2 into the stress ten-
sor expression Eq. (3), one obtains the LVE expansion of the
material functions. The final result, first presented in Ref. 21,
reads (see Sec. A2 of the supplementary material)

η(t)
Gλ
=
η0

Gλ
−

1
15
∆0(t),

Ψ1(t)

Gλ2
=
Ψ1,0

Gλ2
−

2
15

(
∆1(t) +

t
λ
∆0(t)

)
,

Ψ2(t)

Gλ2
=
Ψ2,0

Gλ2
+

4
105

(
∆1(t) +

t
λ
∆0(t)

)
,

(8)

FIG. 1. Predictions for the link tension coefficient, ε/ε0, as a function of
dimensionless shear rate Wi for N = 100 (Z ≈ 33) and various values of ε′0.
The thick lines give the predictions of Eq. (6) when ε′0 = 0 (dark blue) and
0.9 (dark yellow).

where η0,Ψ1,0, andΨ2,0 are the corresponding zero-rate quan-
tities of the material functions given by Eq. (7) with Wi = 0,
and ∆i(t) are defined in Eq. (A3b) of the supplementary
material.

It is insightful to verify that the above expressions cor-
rectly capture the rigid rod case. By taking the limit ε′ = 1
and N = 2 with G = 6Grd and λ = 6λrd in Eq. (A4a) of the
supplementary material, we obtain

η(t)
Grdλrd

=
η0

Grdλrd
−

3
5

exp(−t/λrd),

Ψ1(t)

Grdλ
2
rd

=
Ψ1,0

Grdλ
2
rd

−
6
5

(
1 +

t
λrd

)
exp(−t/λrd),

Ψ2(t)

Grdλ
2
rd

=
Ψ2,0

Grdλ
2
rd

+
12
35

(
1 − ε +

t
λrd

)
exp(−t/λrd),

(9)

where η0,Ψ1,0, andΨ2,0 are the corresponding zero-rate quan-
tities of the material functions for the rigid rod, cf. Eq. (11) of
Ref. 27 for Wird ≡ γ̇λrd = 0,

η0

Grdλrd
=

3
5

(
1+

2
3
ε

)
,

Ψ1,0

Grdλ
2
rd

=
6
5

,

Ψ2,0

Grdλ
2
rd

=−
12(1−ε)

35
.

(10)

FIG. 2. Predictions for the shear viscosity η as a function of dimensionless shear rate Wi for N = 100 (Z ≈ 33) and various values of ε′0 and ε0. The thick lines
give the predictions of Eq. (7), whereas the straight lines depict power laws at large Wi.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-010741
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FIG. 3. Predictions for the first viscometric function Ψ1 as a function of dimensionless shear rate Wi for N = 100 (Z ≈ 33) and various values of ε′0 and ε0.
The thick lines give the predictions of Eq. (7), whereas the straight lines depict power laws at large Wi.

FIG. 4. Predictions for the second viscometric function Ψ2 as a function of dimensionless shear rate Wi for N = 100 (Z ≈ 33) and various values of ε′0 and ε0.
The thick lines give the predictions of Eq. (7), whereas the straight lines depict power laws at large Wi.

The time-dependent expressions for the material functions dur-
ing start-up of shear flow, Eq. (10), are identical with those
that can be obtained for the rigid rod when ε = 1. To see this,
one has to identify ε = λ(2)

2 /λ(1)
2 in Eqs. (11.8)–(11.10) of

Ref. 38.

IV. COMPLETE SOLUTION USING BROWNIAN
DYNAMICS SIMULATIONS
A. Steady-state behavior

We first present a parametrization of the steady-state pre-
dictions of the tumbling-snake model with time-dependent and
shear rate-dependent coefficient ε = ε0S2

2 . Figure 1 shows the
squared order parameter, or reduced link tension coefficient,
ε/ε0, as a function of the dimensionless shear rate Wi along
with the analytical results for small Wi given by Eq. (6). As
can be seen, the link tension coefficient varies quadratically
with Wi at small shear rates, in accord with Eq. (6), and the
order parameter seems to approach unity at large shear rates,
independently of the value of ε′0.

The steady-state shear viscosity as a function of the
dimensionless shear rate Wi is depicted in Fig. 2 along with
the analytical results for small Wi according to Eq. (7). As
expected, the zero-shear rate limit is seen to be independent of
ε0 and equals Gλ/60, whereas employing a constant link ten-
sion coefficient as suggested within the original CB treatment,
the same limit is known as Gλ(1 + 2

3ε)/60.26,27 At large shear
rates, the slopes of ln η with respect to ln Wi are the same as
those (Fig. 1 in Ref. 27) we had measured when ε remains a
constant: when ε0 > 0, the slope is seen to be decreasing from
the value of −1, for the non-tumbling model (ε′ = 0), to −1/3

when ε′0 approaches unity (see also Fig. 4 in Ref. 27). The
simple underlying reason is the order parameter that saturates
at large shear rate at a high value close to unity, implying ε ≈ ε0

(see Fig. 1).
The steady-state first and second normal stress coefficients

as a function of Wi are presented in Figs. 3 and 4, respectively.
Again, in agreement with Eq. (7), the zero-shear-rate limit of
both coefficients is seen to be independent of ε0. Actually, for
the first normal stress coefficient, we obtain the same zero-
shear rate limit as that obtained assuming a strictly constant
link tension coefficient [see also Eq. (6) in Ref. 27]. On the
other hand, the prediction for the second normal stress is now
seen to be independent of ε0. The power laws at high shear

FIG. 5. Predictions for the link tension coefficient, ε/ε0, as a function of
dimensionless time for N = 100 (Z ≈ 33) and various values of the parameter
ε′0 and dimensionless shear rates Wi. The thick lines give the predictions of
9
75 (γ̇t)2.
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FIG. 6. Predictions for the transient shear growth viscosity η(t) as a function of time for N = 100 (Z ≈ 33) and various values of the parameter ε0 and
dimensionless shear rate Wi for (a) ε′0 = 0, (b) ε′0 = 0.1, (c) ε′0 = 0.5, and (d) ε′0 = 0.9. The thick lines give the predictions of Eq. (8).

rates are, similar to those for the shear viscosity, the same
as those obtained when a constant link tension coefficient is
employed (see Fig. 4 in Ref. 27).

B. Transient behavior

Figure 5 shows the link tension coefficient, ε/ε0, as a
function of the dimensionless time t/λ for various values of the
shear rate Wi and ε′0 along with the analytical results for small
times, provided in Eq. (A5) of the supplementary material. It
varies quadratically with γ̇t at small times; when Wi = 10,
we find a monotonic approach toward the steady-state value,

which is seen to decrease with ε′0, in agreement with the shift
of the steady-state curve to larger shear rates by increasing ε′0
(Fig. 1). At larger shear rates, a damping behavior is seen in the
approach to the steady-state when ε′0 > 0, which is particularly
obvious when Wi = 1000 (see inset).

Figure 6 shows the transient viscosity η(t) as a function of
the dimensionless time for various dimensionless shear rates
along with the LVE prediction, cf. Eq. (8). The LVE pre-
diction captures the time behavior of all material functions
shown in Figs. 6, 9, and 10 for Wi . 1. For all shear rates,
the viscosity vanishes at t = 0 irrespective of the value of the
parameters ε′0 and ε0. This numerical finding is consistent with

FIG. 7. Predictions for (a) the dimen-
sionless undershoot time, tu/λ, and (b)
the relative undershoot depth (under-
shoot value divided by steady-state
value), du, for various values of ε′0 and
ε0 as a function of the dimensionless
shear rate Wi. Slopes of −1 and −1/2
are depicted in (a).

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-010741
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FIG. 8. Predictions for (a) the time
course of the orientational angle of
the polymer chain end-to-end vector,
φ/(2π), when Wi = 1000, and (b) the
dimensionless tumbling time, given as
the absolute inverse slope of φ/(2π)
with time, as a function of the dimen-
sionless shear rate Wi, for various values
of ε′0. Lines are guide to the eye and
depict slopes of −1/2 and −2/3.

the analytical Eq. (8) because ∆0(0)= 24
∑∞
ν=1,3,..(νπ)−4 = 1/4

[see Eq. (A4b) of the supplementary material]. At the same
time, it is the behavior supported by experiments.21,28,31 In con-
trast, the model with a constant link tension coefficient predicts
that as t → 0 the reduced shear viscosity approaches the con-
stant value ε/90 irrespective of the value of the parameter ε′0
(see Fig. S1 of the supplementary material). This unappealing
feature of the original model was already recognized by Bird
et al. in their studies.24 Irrespective of the shear rate imposed
and the values of the parameters ε′0 and ε0, the growth of the

viscosity strictly follows the LVE prediction, Eq. (8), at small
times. Focusing on the smallest shear rates (Wi ≤ 10), the
viscosity monotonically reaches the steady-state value at large
times irrespective of the parameters ε′0 and ε0. The steady-state
value is seen to be independent of ε′0 and ε0, in agreement with
Fig. 2. As we increase the shear rate further up to Wi = 100, the
shear viscosity reaches an overshoot before visually approach-
ing the steady-state value from above; note that the predictions
for ε′0 = 0 and 0.1 are almost indistinguishable. The overshoot
shifts upwards upon increasing ε′0, but as ε0 is increased, this

FIG. 9. Predictions for the shear growth first normal stress coefficient as a function of time for N = 100 (Z ≈ 33) and various values of the parameter ε0 and
dimensionless shear rate Wi for (a) ε′0 = 0, (b) ε′0 = 0.1, (c) ε′0 = 0.5, and (d) ε′0 = 0.9. The thick lines give the predictions of Eq. (8).

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-010741
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difference becomes smaller. By increasing the dimensionless
shear rate to Wi = 1000, an undershoot is clearly observed for
ε′0 > 0 following the overshoot; actually, a tiny undershoot is
also measurable when Wi = 100, as we will illustrate later. It
is worthwhile noting in Fig. 6(a) that the non-tumbling model
(ε′0 = 0) completely fails to predict such a damping behavior
since, following the overshoot, curves approach the steady-
state value monotonically from above, as first mentioned in
Ref. 21.

To better quantify the impact of the two parameters, ε0

and ε′0, on the position and depth of the undershoot in η(t),
we extract and plot the dimensionless time tu/λ at which the
undershoot occurs in Fig. 7(a), and the relative undershoot
depth, du, as a function of the dimensionless shear rate in
Fig. 7(b). Subjected to constant ε0 and shear rate, the under-
shoot position shifts toward smaller times when ε′0 is increased.
At constant ε′0, the undershoot position is seen to be indepen-
dent of ε0 at small shear rates, but it shifts to smaller times at
shear rates Wi & 200. When ε = 0 the shift to smaller times
seems to follow a power law behavior with an exponent of
about −0.67 and is seen to be quite insensitive to ε′0. On the
other hand, when ε0 > 0, the exponent seems to be decreasing
to a value of about −0.8 and remains approximately indepen-
dent of ε′0. The relative undershoot depth, du, approaches unity
upon decreasing Wi irrespective of the chosen ε′0 and ε0 values

[Fig. 7(b)]. For the case of constant ε′0 > 0, du with ε0 = 0.1
reside above the corresponding results for ε0 = 0 initially (i.e.,
exhibiting a shallower undershoot), but at larger shear rates,
the prediction for ε′0 = 0.1 decreases much more steeply (in
concert with a deeper undershoot). On the other hand, at con-
stant ε0, du is again seen to decrease upon increasing ε′0. The
corresponding predictions for tu/λ and du in the case of a con-
stant ε0 are provided in Fig. S2 of the supplementary material.
They seem to share their qualitative behavior with the results
shown in Fig. 7.

A more thorough investigation of the undershoot under-
pinnings can be undertaken by monitoring the time course of
the unbound orientation angle φ of the polymer chain end-to-
end vector in the shearing plane and the number of completed
tumblings φ/2π,39 illustrated in Fig. 8(a). Upon increasing the
value of ε′0, the slope of the φ(t) curve increases. Since this
slope can be identified as the tumbling time,40 tumbling inten-
sifies with increasing ε′0. While the FP equation contains a
rotational drift term, the fully aligned segment does not expe-
rience any torsion in the absence of Brownian motion.21,27

Thus at first glance, surprisingly, tumbling does occur even
in the absence of rotational diffusion, i.e., for ε′0 = 0. This
feature can be traced back to the boundary condition, Eq. (2),
and the corresponding randomization of link orientations once
a link has reached either chain end (within BD). This allows,

FIG. 10. Predictions for the shear growth second normal stress coefficient as a function of time for N = 100 (Z ≈ 33) and various values of the parameter ε and
dimensionless shear rate Wi for (a) ε′0 = 0, (b) ε′0 = 0.1, (c) ε′0 = 0.5, and (d) ε′0 = 0.9. The thick lines give the predictions of Eq. (8).

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-010741
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over time, for the chain to leave a fully aligned metastable
state and to tumble. For comparison, we recall that a sin-
gle non-Brownian infinitely thin rod would not tumble if the
rotational component of the FP equation for the orientational
distribution function was omitted. By plotting the tumbling
time as a function of Wi [Fig. 8(b)], we do note that when
ε′0 = 0 the tumbling time decreases with the square root of Wi,
whereas for ε′0 = 0.5 and ε′0 = 1, it decreases as γ̇−2/3, exactly
coinciding with the theoretical scaling for a single Brownian
rod.39

Figure 9 shows the transient first viscometric function
versus dimensionless time for various dimensionless shear
rates along with the LVE prediction, Eq. (8). The analytical
expression for the LVE envelope allows us to disregard the
simulation results for small times which come with large sta-
tistical uncertainties for both normal stresses. For this reason,
all data at small times are not shown in Figs. 9 and 10 and
Figs. S3 and S4 of the supplementary material. At the small-
est shear rates (Wi = 10), the first viscometric function Ψ1

monotonically approaches its steady-state value at large times
irrespective of the parameters ε′0 and ε0. The predictions are
seen to be practically independent of the value of ε′0 and ε0 (see
also Fig. 3). The same is true when Wi = 100. For the largest

rate investigated, Wi = 1000, we do note that for any finite
ε′0 > 0, the overshoot is followed by a modest undershoot.
The depth of the undershoot slightly increases with increasing
ε0 but is generally seen to be considerably less pronounced
compared with the one the model yields for the transient shear
viscosity (Fig. 6). The corresponding predictions under a con-
stant ε are presented in Fig. S3 of the supplementary material.
The main difference between the two sets is as follows: at large
shear rates, the curves, irrespective of the value of ε′0, go over
the LVE prediction when the link tension coefficient is a con-
stant (cf. Fig. 9); this is not substantiated by rheological data
[see Fig. 2(a) of Ref. 21].

In Fig. 10, we compare the predictions of the second
viscometric function after start-up of shear flow from an
isotropic sample. In selecting physically meaningful values
of the parameter ε0, we need to make sure that they do not
lead to a change of sign for Ψ2(t) at small times. To respect
this constraint by construction, we have derived an approxi-
mate criterion for the largest value of ε0 that can be employed
so that Ψ2(t) does not exhibit a change of sign (see Sec. C of
the supplementary material). For this reason, the values of ε0

in Fig. 10 are different from those of Figs. 6 and 9, where we
explored a wider ε0 range. We find that the predictions under

FIG. 11. Comparison of experimental data for the polymer melt PS185k by Costanzo et al.28 at 160 ◦C (symbols) with the tumbling-snake model predictions
(lines) for the storage and loss moduli (a), the steady-state shear viscosity (b) (along with the predictions of the DE model, ε′0 = ε = 0), and the start-up
shear viscosity (c) and (d). In (c) and (d), the thick gray line depicts the LVE envelope and different colours have been employed to denote predictions and
measurements. In (b)-(d), the short-dotted lines depict the predictions of the DE model (with ε = 0) for 1, 3.16, 10, and 31.6 s−1.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-010741
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constant ε′0 are practically insensitive to the value of ε0. This
was also the case for the steady-state value presented in Fig. 4.
In addition, we observe a slight increase of the curves upon
increasing ε′0. And, contrary toΨ1, no undershoot is detected at
large shear rates. Finally, it should be stressed that by employ-
ing the non-constant ε = ε0S2

2 , we avoid the spurious sign
changes of Ψ2 at early times that are evident when a constant,
non-vanishing ε is employed (see Fig. S4 of the supplementary
material).

It is worth a remark that the material functions scaled
by N-dependent modulus G and relaxation time λ,21,24,26,27

calculated for constant values of the parameters ε′0 and ε, but
with a different number of Kuhn segments, N are found to be
basically identical for all N ≥ 10 (comparison not shown).
This trend was also noticed for the steady-state values (see
Ref. 27).

V. COMPARISON WITH EXPERIMENTAL DATA

As we illustrated recently,21 the tumbling-snake model is
able to compare well with experimental rheological data when
it is supplemented by a non-constant link tension coefficient.

Here, we compare against the experimental data provided
by Costanzo et al.28 for the PS185k polymer melt and the
PS285k/2k-65 polymer solution which exhibit the same num-
ber of entanglements Z = 13.9 (thus, in the following N = 42).
The corresponding predictions for the storage and loss moduli
are independent of the value of the parameter ε0 (see Sec. B
of the supplementary material of Ref. 21).

At first, we compare against the storage and loss mod-
uli and the steady-state and transient shear viscosities for the
PS185k polymer melt, depicted in Fig. 11. Since the tran-
sient viscosity curves do not exhibit a damping behavior,
we should take ε′ = 0;21 the corresponding predictions for
the storage and loss moduli are therefore those of the DE
model. The values G= 600 kPa and λ = 25 s (or G0

N =G/5
= 120 kPa, τd = λ/π

2 = 2.53 s) compare favorably with the
storage and loss moduli [Fig. 11(a)], whereas using ε0 = 0.2
provides a very good prediction for the steady-state shear vis-
cosity [Fig. 11(b), where the predictions of the DE model
are also presented]. The selected values for G= 600 kPa
and λ = 25 s predict a zero-shear-rate viscosity equal to
η0 =Gλ/60= 2.5 ×105 Pa s, which is basically identical with
the one reported experimentally (η0 = 2.48 ×105 Pa s).28

FIG. 12. Comparison of experimental data for the polymer solution PS285k/2k-65 by Costanzo et al.28 at 150 ◦C (symbols) with the tumbling-snake model
predictions (lines) for the storage and loss moduli (a), the steady-state shear viscosity (b), and the start-up shear viscosity for shear rates (c) and (d); in (c) and
(d), the thick gray line depicts the LVE envelope and different colours have been employed to denote predictions and measurements. In (b)-(d), the short-dotted
lines depict the predictions with ε′0 = 0.1 for γ̇ ≥ 1 s−1.
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FIG. 13. Same as Fig. 12 but for (a) the
undershoot time, tu, and (b) the relative
undershoot depth du. Same parameter
values as in Fig. 12.

All parameters have thus been chosen, and the discriminat-
ing task is to compare against the transient shear viscosity
measurements. This is illustrated in Fig. 11(c) for shear rates
below 5 s−1 and in Fig. 11(d) for shear rates above 5 s−1.
The predictions are seen to be quite favorable for almost all
shear rates although the overshoot is missed at large shear
rates.

We next compare against the PS285k/2k-65 polymer solu-
tion by the same authors, depicted in Figs. 12 and 13. We
choose the values G= 220 kPa and λ = 30 s by comparing
with the storage and loss moduli [Fig. 11(a), where a compari-
son with the DE model is also shown]. The modulus is equal to
that given from the expression G(φ) = G(1)φ1+α, where G(φ)
and G(1) (=600 kPa) are the modulus of the polymer solution
and polymer melt, respectively, using a value for the dilution
exponent equal to α = 4/3. The computed η0 = 110 kPa s is
very close to the experimental value (104 kPa s28). Finally, for
the two remaining parameters, we make the choice to depict
the predictions for ε′0 = 0.1 and 0.5, whilst keeping ε0 = 0.15,
as can be seen from the comparison with the steady-state data
[Fig. 12(b)]. From the same data, we also see that a better
comparison could be obtained if ε′0 were to be a decreasing
function of shear rate, a proposition not new as it was first
proposed by Bird et al.26 Such a conclusion is also reached
from the transient shear viscosity data [Figs. 12(c) and 12(d)]
with primary interest in the undershoot. The value ε′0 = 0.5 is
able to reproduce accurately the experimental measurements
at small shear rates, below approximately 20 s−1, whereas the
value ε′0 = 0.1 seems more appropriate at larger shear rates
[see Figs. 12(c), 12(d), and 13]. This discrepancy could possi-
bly be amended by considering convective constraint release
(CCR) effects,41–45 which would be quite severe at large
shear rates. Another possible reason for the deviation at large
shear rates may be the omission in our present treatment of
flow-induced alignment of chain ends which are particularly
important in the case of shear viscosity.32,37

Overall, the tumbling-snake model with a link tension
coefficient given by ε = ε0S2

2 appears able to capture the
LVE behavior and the steady-state and transient behavior of
the shear viscosity for entangled polymer melts (Fig. 11).
The same holds true for concentrated polymer solutions as
well (Figs. 12 and 13), but at larger shear rates (after about
20 s−1 for PS285k/2k-65), it fails to provide a good fitting,
which may be due to the omission of important mecha-
nisms particularly relevant at large shear rates, as mentioned
above.

VI. CONCLUSIONS

In this work, we provided and discussed the solution of
the Curtiss-Bird model for concentrated solutions and entan-
gled polymer melts (the tumbling-snake model) subjected to
both steady-state shear flow and start-up shear flow. We first
discussed the predictions of the tumbling-snake model and
the reasons for employing a non-constant link tension coef-
ficient in Ref. 21. In the present work, we provided a very
thorough parametrization of the predictions of the model.
We illustrated that the use of a constant link tension coeffi-
cient is not in line with various experimental data,21,28,31 as
the model then predicts that the shear viscosity approaches
the constant value ε/90 as t → 0 and that Ψ2 spuriously
changes sign in the course of time (See Sec. B of the supple-
mentary material). The use of a time- and Wi-dependent link
tension coefficient completely fixes both of these unnatural
predictions.

Overall, we feel that the tumbling-snake model has shown
the necessary capacity to compare well with experimental data
and should be considered as a possible framework for further
refinement in the future. We plan accounting for contour length
fluctuations (CLFs),4,5 that have been neglected in the treat-
ment of CB (and of the original work of DE). One way to
account for CLF is by considering a σ-dependent curvilinear
segment diffusion along the polymer’s contour (see e.g. Refs.
14–16 and references therein), which is expected to improve
the comparison of the storage and loss moduli with rheologi-
cal data at intermediate frequencies. Also, the consideration of
CCR effects41–45 is today known to affect quite significantly
the rheological properties at intermediate and large shear rates.
Finally, and as alluded to in Sec. II, we should elaborate further
as to how flow-induced alignment of chain ends32,37 affects the
boundary conditions for the single-link distribution function
[cf. Eq. (2)]. Given the capacity of the tumbling-snake model,
defended in this work and in Ref. 21, to compare rather well
with available rheological data, particularly for polymer melts,
its further refinement is expected to improve it even more and
therefore, in time, elevate its constitutive maturity to that of
the tube model.

SUPPLEMENTARY MATERIAL

See supplementary material for additional analytical pre-
dictions of the tumbling-snake model and BD predictions for
the transient material functions of the tumbling-snake model
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when a constant link tension parameter is employed, and the
derivation of a criterion that helps avoiding a sign change in
the transient second normal stress coefficient.
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