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We propose a new description of elasto-viscoplastic fluids by relating the notion of thixotropy directly
to internal viscoelasticity and network structures through a general, thermodynamically consistent
approach. By means of non-equilibrium thermodynamics, a thermodynamically admissible elasto-
viscoplastic model is derived which introduces self-consistently and effortlessly thixotropic effects
and reproduces at both low and high shear rates experimental data usually fitted with empirical
constitutive equations, such as the Bingham and Herschel-Bulkley models. The predictions of the
new model are in very good agreement with available steady-state shear rheological data for soft
colloidal pastes and blood, i.e., systems exhibiting a yield stress, and with time-dependent rheological
data for blood, i.e., during a triangular time-dependent change in the shear rate, exhibiting a hysteresis.
The proposed approach is expected to provide the means to improve our understanding of thixotropic
fluids. Published by AIP Publishing. https://doi.org/10.1063/1.5049397

I. INTRODUCTION

Many materials of industrial interest, such as emulsions,
colloids, suspensions, and foams, exhibit a yield stress, i.e.,
they flow only above this critical stress and behave as elas-
tic solids otherwise.1,2 Such materials are encountered in
many sectors, such as in the oil industry (e.g., crude oil and
drilling fluids), the construction sector (e.g., cement pastes
and fresh concrete), the food industry (e.g., ketchup, mar-
garine, and mayonnaise), and the pharmaceutics/cosmetics
industry (e.g., blood, pastes, and foams).1,2 The yield stress
is acknowledged as an “engineering” reality and has been the
subject of ongoing debate.3 The description of yield-stress
materials has been proven to be one of the subtlest tasks in
rheology.4 However, a more in-depth understanding of their
peculiar rheological behaviour is paramount if we aspire to
optimize the processing properties of this important class of
materials.

The appearance of a yield stress is a rheological feature
strongly associated with thixotropic fluids.5 According to the
International Union of Pure and Applied Chemists (IUPAC),
thixotropy is defined as the continuous decrease of viscosity
with time when flow is applied to a sample that has been previ-
ously at rest and the subsequent recovery of viscosity in time
when the flow is discontinued.5,6 However, such a behaviour
is also encountered with viscoelastic, shear-thinning, fluids:
upon a stepwise increase in the shear rate, the viscosity, after an
initial overshoot, decreases, whereas when a stepwise reduc-
tion is applied, the viscosity gradually returns to a higher value.
Clearly, distinguishing between thixotropy and nonlinear vis-
coelasticity is important in our understanding of these phenom-
ena.7 Another characteristic rheological feature of thixotropic

a)Author to whom correspondence should be addressed: stefanou.pavlos@
ucy.ac.cy

fluids is the hysteresis experiment where the shear rate, γ̇, is
first gradually increased with time γ̇ = αt, 0 < t < tm and
then decreased following γ̇ = α(2tm − t), tm < t < 2tm, with
α = γ̇max/tm, where γ̇max is the maximum shear rate reached
(at t = tm).5 When the transient shear stress is plotted as a
function of the time-dependent shear rate, a hysteresis loop is
observed in thixotropic fluids (see, e.g., Fig. 2 of Ref. 5 and
Figs. 3 and 7).

The simplest model available for the description of yield-
stress fluids, also known as viscoplastic fluids, is the Bingham
model, which involves two material parameters (the yield
stress, σy, and the plastic viscosity, ηB)1,8




γ̇ = 0, σ ≤ σy

σ =

(
σy

γ̇
+ ηB

)
γ̇, σ > σy,

(1)

where σ is the extra (polymeric) stress tensor, γ̇ ≡ ∇u + (∇u)T

is the rate-of-strain tensor, andσ ≡
√

1
2σ : σ and γ̇ ≡

√
1
2 γ̇ : γ̇

denote the magnitudes of the two tensors (the latter denotes
the shear rate). In shear flow, the shear stress approaches the
yield stress at small shear rates and behaves as a Newtonian
fluid at large shear rates. An extension of this model is the
Herschel-Bulkley (HB) model given as




γ̇ = 0, σ ≤ σy

σ =

(
σy

γ̇
+ K γ̇n−1

)
γ̇, σ > σy,

(2)

where K is the consistency index and n is the flow behaviour
index (power-law exponent);1,8 the Bingham model is a spe-
cial case of the HB model when n = 1 and K = ηB. The HB
model is able to describe a shear thinning (n< 1) or shear thick-
ening (n > 1) behaviour. Both the Bingham and HB models,
which are routinely employed to describe the behavior of var-
ious viscoplastic materials, belong to the class of generalized
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Newtonian constitutive equations, i.e., they do not account
for viscoelastic effects.1 It should also be emphasized that,
despite their success, when fitting data using these models, the
material parameters involved are phenomenological in nature
and bear no physical meaning, i.e., they cannot be related to
the molecular characteristics of the particular material they
aim to describe. Furthermore, they exhibit an unavoidable
disadvantage: they predict vanishing normal stresses in shear
flow.5,9

The complex rheological behavior of thixotropic fluids,
in general, can be understood on the basis of a microstruc-
ture that depends on the shear history.5 For example, Car-
bopol solutions are made of high-molecular-weight structural
elements that interact forming complex network-like struc-
tures.10 The continued competition between the flow-induced
breakdown and the thermal-noise-induced buildup of the struc-
tural elements characterizes their rheological behaviour. Under
extreme flow conditions, the breakdown of the structure pre-
vails recombination, leading to a complete destruction of the
elastic network. Another example is suspensions, e.g., drilling
fluids, for which the existence of a yield stress is attributed
to the combined effect of the solid network of connected
particles and the dry friction between loose particles;11 the
destruction of the network is the result of viscous forces act-
ing on the particles due to flow. Finally, in the case of crude
oil, the elastic network is believed to be the result of crys-
talline formations composed of paraffine, asphaltane, and resin
constituents.9

From a mathematical point of view, the internal struc-
ture may be characterized by a scalar structural variable, λ,
that expresses the instantaneous degree of structure: in a fully
structured state, i.e., a complete network that deforms elas-
tically, it is equal to unity, while in a completely broken
state it vanishes.5 Thus, the equation for the shear stress is
coupled with λ, e.g., in the case of the HB model σyx(λ)
= σy(λ) + KHB(λ)γ̇n(λ).5,9,11 The rate of change in the λ is the
net result of the simultaneous rates for structure buildup and
breakdown which follow certain kinetics.5 One of the earliest
thixotropic constitutive models of this class is that proposed
by Moore12 in which the stress tensor is given as σ = η(λ)γ̇
where λ is dictated by ∂tλ = k2(1 − λ) − k1λ, where k2 and
k1 are the rates of buildup and destruction, respectively, which
could depend on (the invariants of) γ̇ and on λ. Another early
model is that of Fredrickson13 wherein the stress tensor is
given as σ = φ−1γ̇ and the structural parameter, characterized
as “fluidity” φ, obeys ∂tφ = k2(φ0 − φ) − k1(φ∞ − φ)σ : γ̇;
thus, it can be deduced that λ = (φ − φ0)/(φ∞ − φ0). Many
more viscoplastic constitutive models have been proposed in
the literature.5

However, common viscoplastic constitutive models still
ignore elastic effects once the fluids start flowing. This omis-
sion has led to the development of elasto-viscoplastic con-
stitutive models describing the rheological behavior of the
fluid above the yield stress via the use of viscoelastic mod-
els, such as the Oldroyd-B,14 the Maxwell,15 or the Phan-
Thien Tanner16 models. Even though some of these models
have proven to describe well the experimental data,12 their
connection with molecular structures is vague. Furthermore,
the mere hybridization of viscoplasticity and elasticity may

not be done appropriately, possibly lacking self-consistency.
These drawbacks are detrimental in the potential use of elasto-
viscoplastic models to enhance our understanding of the
rheological behavior of thixotropic fluids.

To remedy the above shortcomings, we herein pro-
pose a detailed model for thixotropic materials that can be
related to their molecular underpinning and provide a self-
consistent coupling between elasticity and viscoplasticity
through the consideration of an elastic free energy expres-
sion [see Eqs. (5)]. The generalized-bracket17 formalism of
non-equilibrium thermodynamics (NET) is employed to prop-
erly address three key issues: (a) selecting the proper state
variables, (b) constructing both the Poisson and dissipation
brackets, and (c) specifying the system’s Hamiltonian. The
attractive advantage of employing a NET formalism17–19 is
that the resulting constitutive model is, by construction, con-
sistent with the laws of thermodynamics.17–19 NET laws pro-
vide the means to impose restrictions to the model param-
eters. Up to date, several micro-structured systems, such as
liquid crystals,20–22 polymer melts and solutions,17–19,23,24

immiscible complex fluids,17–19,26–28 polymer nanocompos-
ites,29–34 drilling fluids,35 blood,36 and ionomers,37 have been
addressed through NET, a fact that attests to its usefulness and
applicability. To the best of our knowledge, only the model pro-
posed by Beris et al.38 for concentrated star polymer suspen-
sions, a system exhibiting a yield stress, was derived via the use
of NET principles. This model is based on an extension of the
Johnson–Segalman viscoelastic constitutive equation in which
the non-affine parameter is variable, obeying an evolution
equation that is purely phenomenological and not derived from
NET. Beris et al.38 also proposed phenomenological elastic
and viscous contributions to the shear stress, not derived from
NET.

II. NONEQUILIBRIUM THERMODYNAMICS
MODELING OF THIXOTROPY
A. The vector of state variables

Following a previous study,5 we choose to employ a scalar
structural variable, λ, to characterize the instantaneous degree
of the structure of thixotropic materials by accounting for
the number of segments or components that are attached to
the underlying network. We also employ an additional tenso-
rial structural variable, C, to characterize the deformation of
the complex structure, where each segment is modeled as an
elastic dumbbell that can be detached from the network due
to flow and attached to it due to thermal noise. The use of
NET allows for the proper coupling of these two structural
variables with the hydrodynamic ones and with each other.
Herein, we consider a homogeneous, isothermal, and incom-
pressible flow. The number density, n, and the mass density
of polymer segments, ρ, are related through n = (ρ/M)NAv,
where M denotes the segment molecular weight of each chain
(i.e., a strictly monodisperse system is considered) and Nav

is Avogadro’s constant. The conformation tensor density is
defined by C = ρc, where c = ∫ RRψ(R, t)d3R is the second
moment of the distribution function ψ(R, t) for the end-to-end
connector vector R.17–19,23 Note that as the mass density of
polymer segments is constant, due to incompressibility, the
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conformation tensor c may be employed directly.17 Finally,
we consider the momentum density m as the hydrodynamic
variable. Overall, the vector x of state variables is expressed
as x = {m, λ, c}. Since the system is isothermal, the entropy
density (or temperature) is excluded from the vector of state
variables.

B. The Hamiltonian of the system

In the present case, the mechanical part of the system’s
Hamiltonian is given by

Hm = Ken(x) + A(x), (3)

where

Ken(x) =
∫

M2

2ρ
dV . (4)

The first term on the right-hand side of Eq. (3) represents the
kinetic energy of the system, Ken(x), given via Eq. (4), whereas
A(x) represents the system’s Helmholtz free energy, given by

A(x) =
∫

a(x)dV =
∫

[ael(x) + amix(x)]dV ,

G
2

∫ [
K

kBT
tr

(
c− ceq

)
− ln det c̃

]
dV +

G
2

∫
(λ ln λ − λ + 1)dV ,

(5)
where G = nkBT = ρRT/M is the (constant) elastic modu-
lus, K is the dumbbell’s spring constant, c̃ = (K/kBT )c is the
dimensionless conformation tensor, kB is Boltzmann’s con-
stant, and T is the absolute temperature. It should be noted that
in the present approach the polymeric segments are assumed
to be below the entanglement threshold; however, there are
available free energy expressions that can be used beyond
this threshold.18,19,24 The first integral in Eq. (5) expresses the
sum of the elastic energy of the Hookean springs, wherein all
segments are deformed due to the imposed flow. The second
integral expresses the ideal entropy of mixing for segments
that are not associated with the network; the extra term is
added to ensure that the mixing free energy maximizes under
no flow conditions, i.e., when λ = 1 (see further discussion
below).

C. The Poisson and dissipation brackets

For a system for which its internal structure is described by
a conformation tensor, the expression for the Poisson bracket
is well known (see, e.g., Refs. 17–19)

{F, G} = −
∫ [

δF
δmγ
∇β

(
mγ

δG
δmβ

)
−
δG
δmγ
∇β

(
mγ

δF
δmβ

)]
dV

−

∫ [
δF
δcαβ

∇γ

(
cαβ

δG
δmγ

)
−

δG
δcαβ

∇γ

(
cαβ

δF
δmγ

)]
dV

+
∫

cγα

[
δF
δcαβ

∇γ

(
δG
δmβ

)
−

δG
δcαβ

∇γ

(
δF
δmβ

)]
dV

+
∫

cγβ

[
δF
δcαβ

∇γ

(
δG
δmα

)
−

δG
δcαβ

∇γ

(
δF
δmα

)]
dV

+
∫

gγα

[
δF
δλ
∇γ

(
δG
δmα

)
−
δG
δλ
∇γ

(
δF
δmα

)]
dV . (6)

Note that here, and throughout this work, Einstein’s sum-
mation convention for repeated Greek indices is employed.
The first four integrals represent the usual Poisson bracket
for the isothermal and incompressible flow of a viscoelastic
fluid whose structure is characterized by a conformation ten-
sor.17–19,23 The last integral in Eq. (6) introduces a general
coupling between the scalar structural variable and the veloc-
ity gradient through the tensor g.19 Since we need to impose the
requirement that the Poisson bracket fulfils the Jacobi identity,
the following restrictions are obtained when the most gen-
eral expression for g is considered, g = g1c̃ + g2δ + g3c̃−1

according to the Cayley-Hamilton theorem [where the scalar
coefficients are functions of λ and the three invariants of the
dimensionless conformation tensor: I1 = trc̃, I2 = ln det c̃,
I3 = −trc̃−1]:19

g1
∂g2

∂λ
− g2

∂g1

∂λ
= 2

(
∂g1

∂I2
−
∂g2

∂I1

)
,

g1
∂g3

∂λ
− g3

∂g1

∂λ
= 2

(
∂g1

∂I3
−
∂g3

∂I1

)
,

g2
∂g3

∂λ
− g3

∂g2

∂λ
= 2

(
∂g2

∂I3
−
∂g3

∂I2

)
.

(7)

The corresponding dissipation bracket used in this work is of
the following form:

[F, G]nec = −

∫
δF
δcαβ

Λ
c
αβγε

δG
δcγε

dV −
∫

δF
δλ
Λ
λ δG
δλ

dV

−

∫
∇α

(
δF
δMβ

)
Qαβγε∇γ

(
δG
δMε

)
dV . (8)

The first two integrals on the right-hand side of Eq. (8) account
for relaxation effects for both structural variables and are
proportional to a fourth-rank relaxation tensor, Λc

αβγε , and a

scalar relaxation factor Λλ, which, in turn, are inversely pro-
portional to some characteristic relaxation times. The third
integral accounts for the viscous dissipation of the solvent and
expresses the Newtonian rheological behavior of the solvent;
it is proportional to the fourth-rank tensor Qαβγε . Note that
the subscript “nec,” meaning “no entropy production correc-
tion,” is added to the dissipation bracket to indicate that this
dissipation bracket is without terms involving Volterra deriva-
tives with respect to entropy,17 which are not important when
considering (as we do here) isothermal systems.

D. The resulting evolution equations

Following the usual procedure,17 the following expres-
sions are obtained for the Cauchy momentum balance equa-
tion, the evolution equations for the conformation tensor
c and the scalar structural variable λ, and the extra stress
tensor:

ρ
∂υ

∂t
= −ρυ · ∇υ − ∇ · P + ∇ · σ, (9a)

ċαβ,[1] = −Λ
c
αβγε

δA
δcγε

, (9b)

Dλ
Dt
= −Λλ

δA
δλ

+ κ : g, (9c)

σαβ = 2cαγ
δA
δcγβ

+ gαβ
δA
δλ

. (9d)
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The following typical expressions, proposed in the literature
for viscoelastic fluids,17 are also used:

Λ
c
αβγε =

1
2nKτR(trc, λ)

×
(
cαγδβε + cαεδβγ + cβγδαε + cβεδαγ

)
, (10a)

Λ
λ =

2
Gτλ

, (10b)

Qαβγε = ηs

(
δαγδβε + δαεδβγ

)
, (10c)

where ηs is the (constant) solvent viscosity, τR is the character-
istic relaxation time of segments (usually of macromolecular
nature) in their non-associative state, and τλ is a characteristic
time for the scalar structural variable. Furthermore, in what
follows, we consider g = −c̃λ that duly satisfies restrictions
Eqs. (7).

Finally, the following time evolution equations are derived
for the scalar structural variable and the dimensionless con-
formation tensor, and the expression for the extra stress
tensor:

ċ[1] ≡
∂c
∂t

+ υ · ∇c − (∇υ)T · c − c · ∇υ

= −
1

τR(trc̃λ)

(
c −

kBT
K
δ

)
, (11)

Dλ
Dt
= −

1
τλ

ln λ − (κ : c̃)λ, (12)

σ = G(c̃ − δ) −
G
2
λ(ln λ)c̃ + ηsγ̇ ⇒

σ̃ = c̃ − δ −
(

1
2
λ ln λ

)
c̃ + βs ˜̇γ.

(13)

The thermodynamic pressure P is given by17

P = c :
δA
δc
− a(x), (14)

where σ̃ = σ/G, δ is the unit tensor, and κ = (∇υ)T . It should
be pointed out that since the material of interest is incom-
pressible, the pressure is no longer a thermodynamics state
variable but some arbitrary scalar field that guarantees that
the divergence-free condition automatically holds.17 Equa-
tion (11) expresses the dynamics of the conformation tensor,
where the definition of the upper-convected Maxwell time
derivative is also provided. The segment’s characteristic time
is selected to be given by

τR(trc, λ) =
τR,eq

1 − λ

(
trc

trceq

)k

, (15)

which is based on the extended White/Metzner (EWM) expres-
sion,17,39 where τR,eq is the segment’s characteristic time at
equilibrium if the segments were not able to associate, and
the exponent k should be negative to account for a decreasing
characteristic time due to flow (for shear-thinning fluids). The
concentration dependency of τR,eq follows the theory of Zimm,
according to which τR,eq ∼ c(2−3ν)/(3ν−1) where c is the concen-
tration and ν is the scaling exponent (ν = 1/2 for theta-solvents
and ≈0.588 in good solvents).40 Although other choices for
the segment’s characteristic time are, of course, possible,

our above-stated choice will be shown below to capture the
steady-state flow characteristics of the routinely employed
HB model. Equation (12) describes the evolution equation
for λ involving a coupling between λ and the velocity gra-
dient in the second term, to account for the breakup of the
network due to the imposed flow, and relaxation effects in the
first term accounting for the buildup of the network; when
making time (and the velocity gradient) dimensionless using
τR,eq, then a parameter ε ≡ τλ/τR,eq appears in the denomi-
nator of the first term which expresses the ratio between the
relaxation time associated with network buildup and the relax-
ation time of segments; thus, the parameter ε quantifies the
relative importance between two counteracting effects: regen-
eration/buildup and flow-induced breakup. This parameter is
particularly important since, as will be shown below, it is inti-
mately related to the existence of a yield stress in steady-state
shear.

Equations (11)–(13) lie at the heart of this work. This
approach leads unambiguously and self-consistently to the net-
work buildup and destruction terms as described via Eq. (12).
Thus, the necessity to resort to postulated and phenomeno-
logical expressions, as is routinely done in the literature,5,9 is
eliminated. Under no flow conditions, λ = 1 and the segment’s
relaxation time becomes infinite so that the conformation ten-
sor evolution equation reads ˙̃c[1] = 0, bearing the solution
c̃ = B(t, t ′), where B(t, t ′) = E(t, t ′) · ET (t, t ′) is the Finger
strain tensor; this is the expected solution for the deformation
of a solid network.41

III. COMPARISONS WITH PREVIOUS WORK

It is important to see how the new rheological model
as derived in the context of the generalized bracket formal-
ism of NET compares with previous models.5,9 In the case
of shear flow close to equilibrium, Eq. (12) becomes ∂tλ

= (1 − λ)/τλ − γ̇ε−
1
2 λ (since c̃xy ∼ ε−1/2), which nicely

matches previous models:5 ∂tλ = k2γ̇
c(1 − λ)d−k1γ̇

aλb when
a = b = d = 1, c = 0, k2 = 1/τλ, and k1 = ε−1/2. Of course,
these exact expressions can be obtained within the formal-
ism by choosing different expressions for g and the mixing
free energy density. For example, when g = −k1γ̇

a−2λbγ̇,
one gets exactly the afore-mentioned destruction term; how-
ever, this selection does not couple the structural variable
with the conformation tensor. In case we were to general-
ize g to include a more general tensorial function of the
conformation tensor, we should take note of whether restric-
tions imposed by the Jacobi identity [Eqs. (7) ] are duly met.
Similarly, when amix(x) = −G 1

d+1 (1 − λ)d and having the
structural variable characteristic time decreasing due to the
imposed flow as τλ ∼ γ̇−c leads to the afore-mentioned regen-
eration term. A more appropriate form, however, irrespec-
tive of the choice of amix, could be identified by considering
τλ = τλ(c, λ).

Overall, and despite the fact that previous studies invoked
phenomenological and empirical relations for the buildup and
destruction of the network and how these are related to the
deformation of the segments, it is obvious that they are similar
to the proposed model; in fact, the buildup rate is herein gener-
alized for beyond equilibrium cases, since it involves ln λ. In
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the present approach, the choice of the form of the destruction
rate in Eq. (12) self-consistently specifies the extra stress ten-
sor expression. This comes in complete contrast to previous
studies, wherein the extra stress tensor is provided (introduced)
externally. Ultimately, and given the similarity of the constitu-
tive relations employed by previous approaches (at least close
to equilibrium), the present model also stands as a verification
of these approaches from a NET perspective, thus dictating
their thermodynamic admissibility (see the Appendix).

IV. ASYMPTOTIC BEHAVIOR IN STEADY STATE
SHEAR AND UNIAXIAL ELONGATION

In this section, we proceed to analyze the asymptotic
behavior of the model in the limit of low deformation rates for
the following two types of flow: simple shear flow described
by the kinematics u = (γ̇y, 0, 0) and uniaxial elongation flow
described by the kinematics u =

(
ε̇x,− 1

2 ε̇y,− 1
2 ε̇z

)
, where ε̇

is the elongation rate. The material functions to analyze are
the shear viscosity η = σyx/γ̇ and the first normal stress coef-
ficients Ψ1 =

(
σxx − σyy

)
/γ̇2 in the case of shear (the second

normal stress coefficient is identically zero), and the exten-
sional viscosity ηE =

(
σxx − σyy

)
/ε̇ in the case of uniaxial

elongation. To get asymptotic expressions for the conforma-
tion tensor and the structural variable, and consequently for the
material functions under steady-state conditions, in shear and
uniaxial elongation, we consider the limit of small deforma-
tion rates and linearize the algebraic equations. The following
results are then obtained.

In shear flow, we have

lim
γ̇→0

c̃xx = 1 + 2ε−1 ⇒ lim
γ̇→0

σ̃xx = 2ε−1,

lim
γ̇→0

c̃xy = lim
γ̇→0

σ̃xy ≡ σ̃y = ε
−1/2,

λ ≈ 1 − ε1/2Wi,

(16)

which imply that both the shear stress and the first normal stress
difference approach a plateau in this limit, σxy = G/

√
ε, N1

≡ σxx − σyy = 2G/ε. The former expression is what is cus-
tomarily referred to as the yield stress, σy, while the latter will
be referred to as the yield first normal stress difference, N1,y. It
is easily observed that as the value of the parameter ε increases,
bothσy and N1,y decrease, and for ε � 1, neither a yield stress
nor a yield first normal stress difference is predicted. In fact,
N1,y dissipates much faster thanσy. This is anticipated as when
τλ � τR,eq the buildup of the network takes much longer than
its destruction and the network exhibits almost no resistance
to flow.

In uniaxial elongation, we get

lim
γ̇→0

c̃xx = 1 +
1
ε
θ(ε),

lim
γ̇→0

c̃yy = 2
ε + θ(ε)

2ε + 3θ(ε)
,

(17a)

leading to

lim
γ̇→0

(
σ̃xx − σ̃yy

)
≡ NE,y =

[
1 +

1
ε
θ(ε)

]
3θ(ε)

2ε + 3θ(ε)
,

λ ≈ 1 − 2

(
1 +

ε

θ(ε)

)
Wi,

(17b)

where

θ(ε) = 1 +

√
1 +

4
3
ε. (17c)

We thus note that a yielding behavior is also observed even in
uniaxial elongation, where a yield elongation normal stress,
NE,y, is noted, although the expressions are more complicated
functions of ε.

V. PREDICTIONS OF THE NEW MODEL
A. Shear flow

The predictions of the new model in the case of homo-
geneous simple shear for λ, shear stress, and first normal
stress difference are plotted vs. the dimensionless shear rate,
Wi = γ̇τR,eq, for various values of ε and k in Fig. 1. We note

FIG. 1. Predictions of the new model
for (a) λ, (b) shear stress, and (c)
first normal stress difference as a func-
tion of dimensionless shear rate for
selected values of the model parameters;
a power-law behavior at large shear rates
is observed.
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FIG. 2. Predictions of the new model for (a) λ and (b) elongation stress as
a function of dimensionless elongation rate for selected values of the model
parameters; a power-law behavior at large elongation rates is noted.

that as Wi� 1, both the shear stress and the first normal stress
difference approach their yield values, σy and N1,y, respec-
tively. As the dimensionless shear rate exceeds ∼ ε−1/2, the
destruction of the network commences [Fig. 1(a)] leading to
the increase in both the shear stress [Fig. 1(b)] and the first nor-
mal stress difference [Fig. 1(c)]. When segments deform with
a constant relaxation time, i.e., k = 0, the shear stress, when Wi
� 1, increases linearly, while the first normal stress difference
increases quadratically, with Wi. The former prediction, i.e.,
the exhibition of a constant viscosity at large shear rates, is
reminiscent of the Bingham model. On the other hand, when

k , 0, the shear stress power-law at large Wi is below the Bing-
ham model predictions, which is reminiscent of the HB model,
σyx ∼ γ̇

n; the exponent n is related to k via n = (1 − 2k)−1. As
an overall note, ε controls the behavior close to equilibrium,
and, therefore, the yielding behavior, whereas the exponent k
controls the behavior at large Wi. Note that would experimental
data for N1,y were available, the value of ε could conveniently

be calculated via ε = 4
(
σy/N1,y

)2
.

B. Uniaxial elongation

We next proceed to the case of uniaxial elongation.
Figure 2 presents the dependency of λ and the elongation stress
as a function of dimensionless elongation rate, Wi = ε̇τR,eq, for
various values of ε and k. We note, as for the shear flow, that as
Wi� 1, the elongation stress approaches its yield value NE,y,
given by Eq. (17b), whereas by increasing Wi, the network is
destroyed [Fig. 2(a)] resulting in the increase of the elongation
stress [Fig. 2(b)]. When, k = 0, the elongation stress diverges as
Wi approaches ½, as is the prediction for the upper-convected
Maxwell model.41 However, when k , 0, the power-law behav-
ior of the elongation stress at large Wi follows NE,y ∼Wi−1/k .
As in shear flow, ε controls the behavior when Wi� 1, whereas
k controls the behavior when Wi� 1.

C. Triangular change in shear rate experiments

We now turn our attention to the case of the time-
dependent triangular change in the shear rate, which, as men-
tioned in Sec. I, is a characteristic rheological feature of
thixotropic fluids. Here, the shear rate is initially increased
as Wi = Wimax(t/tm), 0 < t < tm, and then decreased follow-
ing Wi =Wimax[2 − (t/tm)], tm < t < 2tm. The predictions for
the shear stress and the first normal stress difference are plotted
in Figs. 3 and 4, respectively. By increasing the absolute value
of k, we note that the predictions for both quantities [Figs. 3(a)
and 4(a)] decrease above Wi = 0.4 in the ascending part of
the shear-rate triangular ramp, but the overall shape of the

FIG. 3. Hysteresis curve predictions
for the shear stress as a function of Wi
for selected model parameter values.
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FIG. 4. Hysteresis curve predictions
for the first normal stress difference as
a function of Wi for selected model
parameter values.

hysteresis loop remains the same, i.e., of the type depicted in
Fig. 2(a) of Ref. 5; the same is noted when increasing the max-
imum shear rate [Figs. 3(d) and 4(d)], although, as expected,
the predictions are higher as the shear rate becomes higher.
Also, the same is noted by increasing ε; however, the overall
shape of the curves is altered by having the two curves (the
ascending and descending portions of the triangular ramp)
coming closer to each other; in addition, the shear stress is
seen to exhibit a large loop when ε = 10. Such a prediction
is closer to the hysteresis curve type depicted in Fig. 2(c) of
Ref. 5. Finally, by increasing the time needed to reach the
maximum shear rate, tm, the value of the stress and the first
normal stress coefficient [Figs. 3(c) and 4(c)] increases, and
the ascending and descending portions of the triangular ramp
become more asymmetric and come closer to each other. As
an overall note, the shear stress hysteresis loops are in a quali-
tative agreement with experimental rheological data for blood
as measured by Bureau et al.42 as will be made more clearly in
Sec. VI.

VI. COMPARISON WITH EXPERIMENTAL DATA

In Fig. 5, the model prediction is compared with the
experimental steady-state shear data of Cloitre et al.43 for the

FIG. 5. Comparison of experimental rheological data of Cloitre et al.43 on
soft colloidal pastes (circles) along with the prediction (line) of the present
model (with ε = 1 and k = −3/4 or n = 0.4).

steady shear stress (scaled with the yield stress) as a function
of dimensionless shear rate. The experimental data refer to
soft colloidal pastes, consisting of polyelectrolyte microgels
made of cross-linked acrylate chains bearing methacrylic acid
units, of various concentrations in water (ηs = 1 mPa s) or in
a water/glycerol mixture (ηs = 10 mPa s).43 The characteristic
time at equilibrium for non-associating segments is consid-
ered as τR,eq = ηs/G with G = 4600(C-0.0142) given in Pa,
and the value of k = −3/4 is selected to match the power-law at
large shear rates, σyx ∼ γ̇

0.4. Figure 5 shows that the model is
capable of reproducing the rheological data quite well except
in the range 0.01 < Wi < 1. This could easily be amended by
considering a spectrum of relaxation times instead of a single
relaxation time as we have assumed here.

In Fig. 6, the model prediction is compared with the exper-
imental steady-state shear stress data of Sousa et al.44 on the
whole blood of donor A, i.e., the solvent viscosity is about
ηs = 1.25 mPa s (the average value of the normal value of
plasma viscosity is 1.16–1.33 mPa s at 37 ◦C independent of
age and gender45). Given that at large shear ratesσxy ∼ γ̇, then
we consider k = 0. We note a very good comparison with the
experimental rheological data, which were previously fitted
with the Casson model.46

FIG. 6. Comparison of the model prediction (line) with the experimental rhe-
ological data (circles) on the blood of donor A from Ref. 44 with a hematocrit
41.6% at T = 37 ◦C (with G = 0.019 Pa, τR,eq = 0.14 s, ε = 1, and k = 0).
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FIG. 7. Comparison of the prediction (continuous line) with the hysteresis
curve-rheogram B data (circles connected with a dashed line) of sample 8 of
Bureau et al.42 (with G = 0.28 dyn/cm2, τR,eq = 0.5 s, ε = 50, and k = 0).

Finally, in Fig. 7, we compare the model prediction
against the hysteresis curve-rheogram B of sample 8 (α
= 0.043 s−2, tm = 23.8 s) of Bureau et al.42 (hemat-
ocrit equal to 45% and the measurements were done at
25 ± 0.5 ◦C). We consider a plasma viscosity equal to ηs

= 1.6 mPa s45 and consider blood to become Newtonian at
large shear rates (i.e., k = 0). We note a satisfactory agree-
ment with the experimental hysteresis curve of Bureau et al.
although a slight mismatch is noted for the descending portion
between, approximately, the shear rates 0.15 and 0.5.

VII. CONCLUSION

We provided the modeling of materials exhibiting a
thixotropic behavior through NET. Our approach provides the
means to introduce a self-consistent coupling between elas-
ticity and viscoplasticity. Even though the proposed model is
simple, it has been shown to be able to capture the exhibition of
a yield stress at small shear rates, and the power-law behavior
at large shear rates in the case of steady shear, in accordance
with rheological data routinely fitted with the HB model. It is
important to say that the use of the Bingham and HB models
in computational codes results in implementation difficulties
due to the inherent singularity exhibited by the discontinuity
of these models; i.e., they only flow above the yield stress.8,47

The proposed model is free from such singularities. In addi-
tion, the proposed NET-based approach allows for checking
the thermodynamic admissibility of the model. Moreover, it
allows relating the notion of the yield stress to molecular argu-
ments, which turns out to be governed by the ratio of the two
characteristic times associated with the buildup of the network
and the relaxation of segments. The new model is in quantita-
tive agreement with steady-shear stress data of colloidal pastes
(Fig. 5) and blood (Fig. 6), and in a satisfactory agreement with
the rheological hysteresis data of blood as measured by Bureau
et al.42 (Fig. 7).

The proposed thermodynamically based approach, in
addition to guaranteeing the thermodynamic admissibility and
the internal consistency of the final transport equations, easily
allows for important modifications, omitted in the present ver-
sion of our model, to take place and thus improves its predictive
capacity. The proposed model can be extended, for example,
by considering an anisotropic hydrodynamic drag, which will

allow the prediction of a non-vanishing second normal stress
difference. Accounting for diffusion and wall effects will also
be particularly important in reproducing the stress-gradient
induced migration of red blood cells and rouleaux (column-
like aggregates of red blood cells) to address the Fåhræus
and Fåhræus–Lindqvist effects.48 Such a modification would
also be particularly important for drilling fluid flows in porous
media.49

Finally, the improved constitutive model could be
employed in direct finite element simulations which will
improve our understanding as to how various parameters,
such as temperature and pressure and the duration of stop-
ping times in crude oil pipelines, affect the properties of crude
oil.9,50 Such results are expected to shed light on the rheolog-
ical behavior of thixotropic materials and, therefore, to their
tailor design. Given that thixotropic materials are used and
consumed in everyday life, such an understanding is of great
importance.
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APPENDIX: THERMODYNAMIC ADMISSIBILITY
OF THE MODEL

Any thermodynamic system must obey the restriction of
a non-negative total rate of entropy production. In the case
of isothermal incompressible flows, the entropy production
results from the degradation of mechanical energy leading to
dHm/dt = [Hm, Hm] 6 0.17 For this to be satisfied, for the
model at hand, it can be shown that the following condition
must hold:

−[Hm, Hm] =
∫ 


δA
δCαβ

Λ
c
αβγε

δA
δCγε

+ Λλ
(
δA
δλ

)2

+∇α

(
δHm

δMβ

)
Qαβγε∇γ

(
δHm

δMε

)}
dV ≥ 0. (A1)

The first term, written in terms of the dimensionless confor-
mation tensor, gives

δA
δc̃αβ

Λ
c
αβγε

δA
δc̃γε

=
G

2τR

(
trc̃ − 6 + trc̃−1

)
, (A2a)

or when rewritten in terms of the eigenvalues of the confor-
mation tensor, µk {k = x, y, z},

δA
δc̃αβ

Λ
c
αβγε

δA
δc̃γε

=
G

2τR

∑
k

(µk − 1)2

µk
≥ 0. (A2b)

Given that both the characteristic time and the elastic modu-
lus are always positive, this is indeed a non-negative quantity.
The second term in Eq. (A1) is non-negative provided that Λλ

≥ 0 which, in view of Eq. (10b), indeed holds true for a
non-negative relaxation time τλ. Finally,
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∇α

(
δHm

δMβ

)
Qαβγε∇γ

(
δHm

δMε

)
= ηsγ̇ : γ̇ ≥ 0, (A2c)

which holds true for a non-negative solvent viscosity.
In the above description, it has been assumed that the

conformation tensor is positive definite. A sufficient (but not
necessary) condition for the conformation tensor to be positive
definite is the prefactor of the unit tensor in the conforma-
tion tensor evolution equation [Eq. (11)] be non-negative;17,51

this requires that τR ≥ 0, which holds true since characteristic
times are always non-negative. Thus, it has been demonstrated
that the derived model is thermodynamically admissible and
preserves the positive-definite nature of the conformation
tensor.
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19H. C. Öttinger, Beyond Equilibrium Thermodynamics (Wiley, Hoboken, NJ,
USA, 2005).

20B. J. Edwards, A. N. Beris, and M. Grmela, “Generalized constitutive
equation for polymeric liquid crystals: Part 1. Model formulation using
the Hamiltonian (Poisson bracket) formulation,” J. Non-Newtonian Fluid
Mech. 35, 51–72 (1990).

21B. J. Edwards, A. N. Beris, M. Grmela, and R. G. Larson, “Gener-
alized constitutive equation for polymeric liquid crystals: Part 2. Non-
homogeneous systems,” J. Non-Newtonian Fluid Mech. 36, 243–254
(1990).

22B. J. Edwards, “The dynamical continuum theory of liquid crystals,” Ph.D.
thesis, University of Delaware, 1991.

23P. S. Stephanou, C. Baig, and V. G. Mavrantzas, “A generalized dif-
ferential constitutive equation for polymer melts based on principles of
nonequilibrium thermodynamics,” J. Rheol. 53, 309 (2009).

24P. S. Stephanou, I. Ch. Tsimouri, and V. G. Mavrantzas, “Flow-induced
orientation and stretching of entangled polymers in the framework of
nonequilibrium thermodynamics,” Macromolecules 49, 3161 (2016).

25A. N. Beris and B. J. Edwards, “Poisson bracket formulation of viscoelastic
flow equations of differential type: A unified approach,” J. Rheol. 34, 503–
538 (1990).

26M. Dressler and B. J. Edwards, “The influence of matrix viscoelasticity on
the rheology of polymer blends,” Rheol. Acta 43, 257 (2004).

27M. Dressler and B. J. Edwards, “Rheology of polymer blends with
matrix-phase viscoelasticity and a narrow droplet size distribution,”
J. Non-Newtonian Fluid Mech. 120, 189 (2004).

28M. Dressler, B. J. Edwards, and E. J. Windhab, “An examination of droplet
deformation and break-up between concentrically rotating cylinders,”
J. Non-Newtonian Fluid Mech. 152, 86 (2008).

29M. Rajabian, C. Dubois, and M. Grmela, “Suspensions of semiflexible fibers
in polymeric fluids: Rheology and thermodynamics,” Rheol. Acta 44, 521
(2005).

30H. Eslami, M. Grmela, and M. Bousmina, “A mesoscopic rheological model
of polymer/layered silicate nanocomposites,” J. Rheol. 51, 1189 (2007).

31H. Eslami, M. Grmela, and M. Bousmina, “A mesoscopic tube model
of polymer/layered silicate nanocomposites,” Rheol. Acta 48, 317
(2009).

32M. Rajabian, G. Naderi, P. J. Carreau, and C. Dubois, “Flow-induced parti-
cle orientation and rheological properties of suspensions of organoclays
in thermoplastic resins” J. Polym. Sci., Part B: Polym. Phys. 48, 2003
(2010).

33P. S. Stephanou, V. G. Mavrantzas, and G. C. Georgiou, “Continuum model
for the phase behavior, microstructure, and rheology of unentangled polymer
nanocomposite melts,” Macromolecules 47, 4493 (2014).

34P. S. Stephanou, “How the flow affects the phase behaviour and
microstructure of polymer nanocomposites,” J. Chem. Phys. 142, 064901
(2015).

35P. S. Stephanou, “The rheology of drilling fluids from a non-
equilibrium thermodynamics perspective,” J. Pet. Sci. Eng. 165, 1010
(2018).

36I. Ch. Tsimouri, P. S. Stephanou, and V. G. Mavrantzas, “A constitutive
rheological model for agglomerating blood derived from nonequilibrium
thermodynamics,” Phys. Fluids 30, 030710 (2018).

37M. Kumar, B. J. Edwards, and S. J. Paddison, “A macroscopic model
of proton transport through the membrane-ionomer interface of a poly-
mer electrolyte membrane fuel cell,” J. Chem. Phys. 138, 064903
(2013).

38A. N. Beris, E. Stiakakis, and D. Vlassopoulos, “A thermodynamically
consistent model for the thixotropic behavior of concentrated star polymer
suspensions,” J. Non-Newtonian Fluid Mech. 152, 76 (2008).

39A. Souvaliotis and A. N. Beris, “An extended White–Metzner viscoelastic
fluid model based on an internal structural parameter,” J. Rheol. 36, 241
(1992).

40M. Rubinstein and R. H. Colby, Polymer Physics, 1st ed. (Oxford University
Press, 2003).

41R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of
Polymeric Liquids: Vol. 2, Kinetic Theory, 2nd ed. (John Wiley & Sons,
New York, 1987).

42M. Bureau, J. C. Healy, D. Bourgoin, and M. Joly, “Rheological hysteresis
of blood at low shear rate,” Biorheology 17, 191 (1980).

43M. Cloitre, R. Borrega, F. Monti, and L. Leibler, “Glassy dynamics and
flow properties of soft colloidal pastes,” Phys. Rev. Lett. 90, 068303
(2003).

44P. C. Sousa, J. Carneiro, R. Vaz, A. Cerejo, F. T. Pinho, M. A. Alves,
and M. S. N. Oliveira, “Shear viscosity and nonlinear behavior of whole
blood under large amplitude oscillatory shear,” Biorheology 50, 269–282
(2013).

45International Committee for Standardization in Haematology, “Recommen-
dation for a selected method for the measurement of plasma viscosity,” J.
Clin. Pathol. 37, 1147–1152 (1984).

46A. J. Apostolidis, M. J. Armstrong, and A. N. Beris, “Modeling of human
blood rheology in transient shear flows,” J. Rheol. 59, 275 (2015).

47E. Mitsoulis and J. Tsamopoulos, “Numerical simulations of complex yield-
stress fluid flows,” Rheol. Acta 56, 231 (2017).

https://doi.org/10.1016/j.jnnfm.2014.05.006
https://doi.org/10.1007/s00397-017-1055-7
https://doi.org/10.1007/s00397-016-0983-y
https://doi.org/10.1146/annurev-fluid-010313-141424
https://doi.org/10.1016/j.cis.2008.09.005
http://goldbook.iupac.org.W06691.html
https://doi.org/10.1122/1.4913584
https://doi.org/10.1016/j.petrol.2012.04.026
https://doi.org/10.1007/s00397-009-0365-9
https://doi.org/10.1016/j.jnnfm.2009.01.005
https://doi.org/10.1016/j.jnnfm.2009.01.005
https://doi.org/10.1002/aic.690160321
https://doi.org/10.1016/j.jnnfm.2007.04.004
https://doi.org/10.1016/j.jnnfm.2008.12.001
https://doi.org/10.1017/s0022112010001667
https://doi.org/10.1016/j.jnnfm.2016.11.007
https://doi.org/10.1103/physreve.56.6620
https://doi.org/10.1103/physreve.56.6633
https://doi.org/10.1016/0377-0257(90)85072-7
https://doi.org/10.1016/0377-0257(90)85072-7
https://doi.org/10.1016/0377-0257(90)85011-m
https://doi.org/10.1122/1.3059429
https://doi.org/10.1021/acs.macromol.5b02805
https://doi.org/10.1122/1.550094
https://doi.org/10.1007/s00397-003-0341-8
https://doi.org/10.1016/j.jnnfm.2004.02.009
https://doi.org/10.1016/j.jnnfm.2007.10.022
https://doi.org/10.1007/s00397-005-0434-7
https://doi.org/10.1122/1.2790461
https://doi.org/10.1007/s00397-008-0321-0
https://doi.org/10.1002/polb.22080
https://doi.org/10.1021/ma500415w
https://doi.org/10.1063/1.4907363
https://doi.org/10.1016/j.petrol.2017.11.040
https://doi.org/10.1063/1.5016913
https://doi.org/10.1063/1.4789960
https://doi.org/10.1016/j.jnnfm.2007.10.016
https://doi.org/10.1122/1.550344
https://doi.org/10.3233/bir-1980-171-221
https://doi.org/10.1103/physrevlett.90.068303
https://doi.org/10.3233/BIR-130643
https://doi.org/10.1136/jcp.37.10.1147
https://doi.org/10.1136/jcp.37.10.1147
https://doi.org/10.1122/1.4904423
https://doi.org/10.1007/s00397-016-0981-0


244902-10 P. S. Stephanou and G. G. Georgiou J. Chem. Phys. 149, 244902 (2018)

48T. W. Secomb and A. R. Pries, “Blood viscosity in microvessels: Experiment
and theory,” C. R. Phys. 14, 470 (2013).

49R. Majidi, S. Z. Miska, M. Yu, L. G. Thompson, and J. Zhang, “Modeling of
drilling fluids in naturally fractured formations,” in SPE Annual Technical
Conference and Exhibition, 21–24 September 2008 (SPE, Denver, Colorado,
USA, 2008), p. 114630.

50G. T. Chala, S. A. Sulaiman, and A. Japper-Jaafar, “Flow start-up and trans-
portation of waxy crude oil in pipelines—A review,” J. Non-Newtonian
Fluid Mech. 251, 69 (2018).

51M. A. Hulsen, “A sufficient condition for a positive definite configura-
tion tensor in differential models,” J. Non-Newtonian Fluid Mech. 38, 93
(1990).

https://doi.org/10.1016/j.crhy.2013.04.002
https://doi.org/10.2118/114630-MS
https://doi.org/10.2118/114630-MS
https://doi.org/10.1016/j.jnnfm.2017.11.008
https://doi.org/10.1016/j.jnnfm.2017.11.008
https://doi.org/10.1016/0377-0257(90)85034-v

