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ABSTRACT
Despite the large volume of societal interactions taking place
on the Internet, it is still hard to assess the credibility ofstate-
ments made by online users. The digital credentials issued
by trustworthy certificate authorities partially address this
problem, but a tedious registration and verification process
as well as its high cost hinder the wide adoption of this solu-
tion. This paper presents FaceTrust a system that leverages
online social networks to provide lightweight, flexible and
relaxed credentials that enable users to assess the credibility
of others and their assertions.

1. Introduction
Nowadays, rich social interactions take place online. Users

read, shop, chat, or even play online. Yet the Internet has
largely hidden the identity attributes of online users. “Onthe
Internet, nobody knows you are a dog,” says the famous Pe-
ter Steiner cartoon. When treading through the Internet jun-
gle, what to believe and whom to believe remains a formidable
challenge to Internet users. Unscrupulous users may easily
become victims of online scams. There have been numer-
ous incidents where scammers defrauded users [4,18,20] or
even organizations [19] through email or online social net-
works to obtain sensitive information. Users with vested in-
terest in a company have been caught creating fake positive
reviews for the company’s products or services [16,17]. Pe-
dophiles may lie about their ages in online chatrooms, and
on the other hand, underage users may also lie about their
ages to gain access to age-restricted websites.

This problem stems from the fact that there is currently
no lightweight and effective way to assess thecredibility of
assertions/statements made by online personas. In this paper,
we refer to credibility as a measure of the likelihood that a
user’s assertion is correct or true. The current paradigm to
address this problem is to use digital credentials issued by
trustworthy authorities. Users use them to authenticate at
verifying online services. For example, Digital Certification
Authorities such as VeriSign [10, 14] can validate a user’s
identity (name, and domain name) and issue a certificate that
assures the user’s identity.

These proposals, albeit effective, are heavy-weight and
not easily extensible. They often require a tedious regis-
tration process that involves manual verification. Obtaining
one is not only time consuming but also expensive. As an
example, a class one digital certificate from a trustworthy

CA costs about $20 [15]. In addition, a digital credential
only certifies a limited subset of a user’s attributes, such as
the Internet domain or name. It does not quantify the general
credibility of its holder’s assertions,e.g., online reviews or
ratings in recommendation sites such as epinions.com.

This paper presents FaceTrust, a system that enables on-
line users or services to assess the credibility of other online
personas and their assertions. FaceTrust achieves this goal
by mining and enriching information embedded in Online
Social Networks (OSNs) such as Facebook [47]. FaceTrust
extends an OSN to provide lightweight, extensible, and re-
laxed digital credentials throughsocial tagging. We observe
that OSNs already allow users to express a limited form of
trust relationships using friend links. FaceTrust extendsthis
ability by allowing users to tag friend links with how credi-
ble they consider their friends’ assertions (such as their pro-
files). For instance, a user that wishes to obtain an age cer-
tificate from his OSN provider may state that he is above
18 years old in his profile. The OSN provider will request
his friends to tag this assertion with a credibility value. The
OSN provider analyzes the annotated social graph to obtain
the overall credibility of a user’s assertion. It can then issue
a credential in the form of (assertion, credibility). Websites
or other online users may use this OSN-issued relaxed cre-
dential to inform their interactions with this user.

FaceTrust’s design aims to use social tagging to replace
centralized, heavyweight, and restricted verification of user
credentials. We face several main challenges in realizing
this vision. First, what types of assertions is social tag-
ging able to verify reliably(§2.1)? Second, how can an OSN
provider extract the overall credibility information and ex-
port it to verifiers without violating a user’s privacy (§2.2,
2.4)? Third, how can an OSN provider effectively and ef-
ficiently analyze a multimillion-node social graph to extract
robust credibility assessments (§2.2, 2.3, 4.2)? Lastly, how
can we evaluate the feasibility and performance of such a de-
sign (§4)? The main body of this paper describes our initial
approaches towards addressing these challenges.

2. FaceTrust Design
Figure 1 presents an overview of FaceTrust. The FaceTrust

design consists of three main components: a) an OSN provider
that maintains the complete social graph and its users’ pro-
files; b) online users that maintain an account with the OSN
and attempt to access other online services or communicate
with other users by presenting OSN-issued credentials; and
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c) verifying services or users that regulate access to their
resources or characterize user inputs based on their creden-
tials. Next, we describe each component of FaceTrust and
how they interact in more detail.

2.1 Social Tagging
In FaceTrust, OSN users annotate the social links between

them and their friends with additional credibility informa-
tion. By “social tagging”, we refer to the process in which
an OSN user assigns a credibility value to a friend or the as-
sertions made by that friend. Tagged values are only known
to the OSN and the taggers. Tagging is requested only for
users that wish to obtain credentials from the OSN.

FaceTrust relies on social tagging to assess the credibility
of online personas. Our assumption is that people usually do
not lie on behalf of others. Therefore, the collective infor-
mation gathered from a user’s social acquaintances is likely
to correlate positively with the truth. Of course, this assump-
tion does not hold if one user can create multiple fake OSN
accounts, an attack known as Sybil attacks [28], For clarity,
we assume that each OSN account corresponds to a unique
user for the moment, and describe how to mitigate Sybil at-
tacks in § 2.3.

The FaceTrust design categorizes user assertions into dif-
ferent types such as age, address, profession, etc. A user
stores his assertions of assorted types in his OSN profile. For
instance, for the type age, a user may assert that he is older
than 18; for the type profession, he may assert that he is a
faculty member at Duke University. For each assertion type
k made by a userj, j ’s friend i may tag a direct credibility
score asdk

i j . Moreover, the useri also tags his friendj with
a transitive trust scoreti j that indicates how muchi trusts j
to correctly assessj ’s friends’ assertions of all types.

In our current design, assertion types are mainly identity
attributes present in a user’s OSN profile, but they can be ex-
tended to include other attributes’ of users such as fields of
expertises. Both direct credibility and transitive trust scores
can be discrete values such as “highly trustworthy,” “fairly
trustworthy,” and “untrustworthy” for usability purposes. Presently,
we make them continuous values between[0,1] for ease of
analysis.

We note that the FaceTrust design assumes that users are
willing to tag their friends. There is abundant evidence that
suggests such social tagging may be adopted by users. For
example, the “Best-friends” [3] Facebook application en-
ables users to tag and order their friends and has amassed
330K active users. It is our future work to conduct a usabil-
ity study to validate the adoptability of social tagging.

2.2 Assessing Credibility
In the FaceTrust design, an OSN provider plays the role

of inexpensive and relaxed credential-issuing authorities. By
relaxed, we mean that unlike a conventional certificate au-
thority, the OSN does not guarantee that an assertion is ab-
solutely correct. Instead, each credential is associated with a
credibility metric that either resembles “wisdom of crowds”
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Figure 1: FaceTrust architecture and an age verification example. We
used to denote direct credibility and r to denote SocialRank.

(global credibility § 2.2.1), or the pairwise transitive trust be-
tween a verifier and a user (pairwise credibility § 2.2.2). An
OSN provider analyzes an annotated social graph to assess
the credibility of a user’s assertion, and issues a credential
that includes the assertion and its credibility score. For in-
stance, in Figure 1, the OSN provider issues a credential that
says the global credibility score of the user assertion “age
> 18” is 0.87. We describe how an OSN might obtain the
global and pairwise credibility assessments in the next.

2.2.1 Global Credibility

Let Fj denote the set of friends a userj has. To compute
a global credibility score (gk

j ) on a userj ’s assertion of type

k (Ak
j ), FaceTrust computes the weighted average among the

direct credibility measures of allj ’s friends:

gk
j = ∑

i∈Fj

wi j ·dk
i j / ∑

i∈Fj

wi j (1)

User ratings are weighted bywi j because they are not equally
credible,e.g., a teenager’s rating on another teenager’s age
assertion should carry less weight than those from his par-
ents.

How can FaceTrust reliably determine the weightswi j ?
To address this issue, we design a social graph analysis al-
gorithm, SocialRank, to rank the trustworthiness of a user
i among all other OSN users based on the transitive trust
scores users assign to each other. SocialRank is similar to
PageRank [22], which is an iterative algorithm that com-
putes the likelihood that a random walk following the hyper-
links ends up at a page. In SocialRank, we replace PageR-
ank’s directed hyperlinks with directed and weighted social
links that correspond to the transitive trust assignments from
a useri to another userj. Let V be the set of nodes in the
annotated social graph. Formally, a useri’s social rankr i at
each iteration is computed as:

r i =
1−g
|V| +g ∑

x∈Fi

rx · txi

∑y∈Fx txy
(2)

The parameterg is a damping factor, which we set to 0.9.
To initialize the iterations, an OSN provider selects a few
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(W) well-connected users and assigns1
W social rank to each.

The computation terminates when the difference between
the current social rank vector’s norm and the norm in the
previous iteration is below a specified threshold.

Intuitively, the higher a user’s social rankr i is, the higher
its weightwi j should be. But we can not simply setwi j to
r i , because a user with a large number of low-ranked friends
may also obtain a high credibility score. To mitigate this is-
sue, FaceTrust assigns a zero weight to a useri if its social
rankr i is in the bottomb percentile of the entire user popula-
tion. This design assumes that the bottomb percent of users
are untrustworthy. For the rest of the users, the weightwi j

of a useri in determining another userj ’s global credibility
(Eq. 1) is set to its social rank:wi j = r i .

2.2.2 Pairwise Credibility

Global credibility has the drawback that a user’s credibil-
ity is not directly determined by how much a verifier trusts
the friends of the user. In certain cases,e.g., a userj invites
a userv to become his friend in an OSN, it may be desirable
for the verifierv to use a trusted social path from itself to
verify j ’s assertions. This is a robust technique forv to pre-
vent manipulation from malicious users that collude to boost
j ’s credibility. To this end, FaceTrust’s design also includes
an algorithm to compute the pairwise credibilitypk

v j, which

assesses the credibility of a userj ’s assertionAk
j from the

verifierv’s point of view.
Pairwise credibility relies on the assumption that trust is

largely transitive [31,32]. There have been various proposals
to model how trust propagates through a network with a dis-
counting factor,e.g., Guha et al. [32] employ matrix multi-
plications. Inspired by Credence [45], we use the maximum
trust path between the verifier and the user. We choose this
approach because the maximum trust path can be computed
efficiently using Dijkstra’s algorithm.

To computepk
v j, the OSN provider finds the pathPi from

v to i ∈ Fj such thatΠm→n∈Pi tmn · dk
i j is the largest. The

pairwise credibilitypk
v j is set to this product. This design as-

sumes that the most useful credibility assessment is the max-
imum one. Alternatively, to computepk

v j, the OSN provider
can find the friendi of a user j that the verifier trusts the
most. That is, it finds the pathPi from v to i ∈ Fj for which
Πm→n∈Pi tmn is the largest. The pairwise credibilitypk

v j is

set topvi ·dk
i j . This alternative design assumes that the most

useful credibility assessment is the one by the most trusted
friend of j. Our implementation uses the first definition for
its simplicity.

2.3 Mitigating Sybil Attacks
When malicious users create numerous fake online per-

sonas, FaceTrust’s credibility assessment can be subverted.
For instance, SocialRank is a variation of PageRank and
shares its vulnerabilities, but Cheng et al. [25] have shown
that PageRank is manipulable using Sybil strategies. A mali-
cious usera with high pairwise credibility with another user

u may create Sybils and assign high transitive trust or credi-
bility to them and their assertions. As a result, all the Sybils
of the attacker would gain high pairwise credibility with user
u. Furthermore, an attacker may create Sybil friends that as-
sign high credibility to it.

We therefore need a mechanism to combat Sybils when
obtaining the pairwise or global credibility. Fortunately, there
exist effective algorithms that that can mitigate Sybil attacks
on social graphs. These algorithms take advantage of the
feature that most social network users have a one-to-one
correspondence between their social network identities and
their real-world identities. Malicious users can create many
identities or connect to many other malicious users, but they
can establish only a limited number of trust relationships
with real humans. Thus, clusters of attackers are likely to
connect to the rest of the social graph with a disproportion-
ately small number of edges. The first systems to exploit this
property were SybilGuard and SybilLimit [49, 50], which
bound the number of Sybil identities using a fully distributed
protocol.

FaceTrust adapts the SybilLimit algorithm to determine
an identity-uniqueness scoreq j for each userj. The value of
q j is between 0 and 1, indicating the likelihood that an OSN
user j corresponds to a unique user in the real life. To be
Sybil-resistant, FaceTrust multiplies the identity-uniqueness
scoreq j to obtain the final global or pairwise credibility
score of a user assertionAk

j : gk
j ← gk

j ·q j or pk
j ← pk

j ·q j .
First, we provide informal background on the theoreti-

cal justification of SybilGuard and SybilLimit. It is known
that randomly-grown topologies such as social networks and
the web are fast mixing small-world topologies [21, 33, 46].
Thus in the social graphS(V ,E), a walk ofΘ(

√

|V| log|V|)
steps containsΘ(

√

|V|) independent samples approximately
drawn from the stationary distribution. When we draw ran-
dom walks from a verifier userv and the suspects, if these
walks remain in a region of the network that honest (non-
Sybil) users reside, both walks drawΘ(

√

|V|) independent
samples from roughly the same distribution. It follows from
the generalized Birthday Paradox [50] that they intersect with
high probability. The opposite holds if the suspect residesin
a region of Sybil attackers that is not well-connected to the
region of honest users.

SybilGuard replaces random walks with “random routes”
and a trusted verifier user accepts the suspect if random routes
originating from both users intersect. In random routes, each
user uses a pre-computed random permutation as a one-to-
one mapping from incoming edges to outgoing edges. Each
random permutation, generates a unique routing table at each
user. As a result, two random routes entering an honest user
along the same edge will always exit along the same edge
(“convergenceproperty”). This property guarantees that ran-
dom routes from a Sybil region that is connected to the hon-
est region through a single edge will traverse only one dis-
tinct path, further reducing the probability that a Sybil’sran-
dom routes will intersect with a verifier’s random routes
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SybilLimit [49] is a near-optimal improvement over the
SybilGuard algorithm. In SybilLimit, a user accepts a sus-
pect only if random routes originating from both users in-
tersect at their last edge. Foro(

√

|V|/log|V|), attack edges,
SybilLimit bounds the number of Sybils that are accepted
for each attack edge toO(log|V|), while SybilGuard bounds
it to O(

√

|V|log|V|) For two honest users to have at least
a shared last edge with high probability, the required num-
ber of the random routes from each user should be approxi-
matelyr = Θ(

√

|E|). The length of the random routes should
bew = O(log|V|).

FaceTrustdetermines the uniqueness of a social network
user’s identity using a version of SybilLimit that can be effi-
ciently computed in a large cluster of an OSN provider. This
algorithm is executed solely by the OSN provider over the
social graphS(V ,E). At initialization time, the OSN picks
a small setVv ⊂ V of random trusted verifier users, where
|Vv| = 100. It also createsr = 3sqrtE independent random
permutations. All suspects share the samer permutations
For each users∈V, the OSN performs the following steps:

1. For each of the verifiersv∈ VV , pick a random neigh-
bor of v. Draw along the random neighborr random
routes of lengthw = O(log|V|), for each instance of
the r permutations. Store the last edge (tail) of each
verifier’s random route.

2. Pick a random neighbor ofs and draw along itr ran-
dom routes of lengthw = 3log|V|), for each instance
of ther permutations. Store the last edge (tail) of each
random route. We refer to steps(1) and(2) of the al-
gorithm asrandom routing.

3. For each verifierv ∈ Vv, if one tail from s intersects
one tail fromv, the verifierv is considered to “accept”
s. We refer to this step asverification.

4. Compute the ratio of the number of verifiers that accept
s over the total number of verifiers|Vv|. That ratio is
user’ss identity uniqueness scoreids.

The OSN performs the above computations off-line and
periodically to accommodate for social graph changes. The
OSN stores the result of this computation for each user as a
separate attribute.

2.4 OSN-Issued Credentials
For an open system such as the web to operate reliably, as-

sesment of the credibility of user statements is of the utmost
importance. Existing Certification Authorities (CA) are not
suitable for open, large scale networks because they require
users to pay a certification fee (∼$20 for class 1 certificate).
Even when the certification process requires additional steps
for authentication (e.g. class 3 digital certificate), in prac-
tice manual verification can also be error-prone [5]. In ad-
dition to CAs being expensive, they currently represent a
monopoly for a very important Internet primitive, and we
consider breaking this monopoly beneficial.

Moreover, in many realistic Internet settings absolute ac-
curacy of the credentials is not required. It is critical to use

accurate credentials issued by authentication schemes such
as Kerberos [42] or OpenID [12] to control access to an
email account. It is also important for a bank to obtain a
highly trusted (and expensive) certificate using the standard
PKI infrastructure [10] so that it prevents man-in-the-middle
attacks. On the other hand, the FaceTrustcredential system
is suitable for use cases such as providing a relying service
(e.g.Netflix) with a measure of the probability that a user
is old enough to download an R-rated film. Another exam-
ple of a suitable FaceTrustuse case is for informing a user
who posted a classifieds ad that the person responding to it
does not reside in a country associated with an advance-fee
fraud [1].

After an OSN obtains the credibility scores for a userj ’s
assertionAk

j , it can issue a credential for this assertion ofj.
As shown in Figure 1, a credential issued by an OSN will
include the assertion typek, the assertionAk

j , the type of
credibility score, and the credibility score.

A credential must be authenticated by cryptographic prim-
itives such as an OSN’s public key signature. In the FaceTrust
design, we use theidemix [23] anonymous unlinkable cre-
dential system because users may desire to preserve their
anonymity and untraceability of online activities. Theidemix
system is based on an efficient non-transferable anonymous
and unlinkable credential scheme introduced by Camenisch
et al. [24]. An idemixcredential does not reveal any iden-
tifying information of a user that possesses the credential,
which is ideal for online verifications such as age checking.
It also prevents one user from transferring his credentialsto
other users.

When a verifierv requests a credential from a useru with
a global credibility score, it does not need to reveal any iden-
tity information tou. However, when a verifierv requests a
credential with pairwise credibility from a useru, the verifier
v must reveal its social network ID to the useru so that the
OSN can compute the pairwise credibilitypk

vu. To prevent
revealing its true identity, a verifier should use a pseudonym
that by itself does not reveal anything about his real identity,
e.g., a Facebook 64-bit semantic-free user ID. In this design,
a useru can remain anonymous and unlinkable, but the ver-
ifier v can be surveyed if he requests credentials from mul-
tiple users. We do not expect that this will become an issue
for deployment, because the verifier can choose to request
a credential with global credibility to remain unlinkable,or
because the multiple users with whom a verifierv interacts
may not be aware of each other.

Figure 2 presents an overview of the idemix system. Par-
ticular to the FaceTrustsetting, the role of the certificateis-
suer in assigned to the FaceTrustOSN provider, which ex-
tracts the credibility of user statements by analyzing the so-
cial network. The OSN provider in our scheme acts as a
Pseudonymous Certification Authority,i.e.the user does not
have to register with its real identity, but has the option to
register only a few of its real attributes. The role of the ver-
ifier is assigned to the relying service. A useru can obtain a
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Figure 2: High level description of idemix anonymous credential scheme.

credentialcr from the issuer, and subsequently presentcr to
a verifier relying service. A credential is always issued on a
pseudonymn under whichu is registered with the issuer . A
useru has one master secret keysu, which is linked to all the
pseudonyms and credentials issued to that user.

The credential concerns an assertion made byu. The is-
suer assesses the credibility of the assertion and assigns a
credibility value to it. The issuer of the credential has a pub-
lic/private key pair. The issuer uses its private key to issue
the credentialcr to u. cr contains the pseudonymn, the as-
sertion and its credibility as assessed by the issuer, whichis
the FaceTrustOSN provider.

The verifier also has a public/private key pair. When the
user presents a credential to the verifier, she uses the public
key of the verifier. The verifier then uses its private key and
the public key of the issuer to verify the credential. At the
core of the desirable nature of the protocol is the fact thatu
does not send to the verifier its pseudonymn. Insteadu con-
vinces the verifier that the credential is issued to her, using
its master secret. Thus the protocol ensures the unlinkability
between distinct presentations of the credentials as well as
between the credential and the pseudonym used. Therefore,
the user remains anonymous to the verifier.

The certifying OSN provider can either be the provider of
existing popular OSN (e.g. Facebook) or a third-party OSN
application (e.g. Facebook application [6]) provider. In the
first case, the popular OSN provider has access to the com-
plete social network, and augments the OSN application API
to allow applications to query the identity trust of the OSN’s
users. OSN providers are incented to provide this service be-
cause it adds value to their service, making the service more
attractive to subscribers. In the second case, a third-party de-
ploys FaceTrust as an OSN application and has access only
to the social network of users using FaceTrust. Although the
FaceTrust-only social network is not as complete as the OSN
provider’s one, the fact that it is smaller makes its analysis
less computationally expensive. In addition, it does not re-
quire the adoption of the service by the OSN provider. For

ease of exposition, for the rest of the paper we refer to both
the popular OSN provider and the third-party OSN applica-
tion provider asOSN.

3. Sample Applications of FaceTrust
Next, we briefly describe how FaceTrust’s global and pair-

wise credibility can be used in various scenarios. Unlike
Certificate Authorities [10] or access control systems suchas
Kerberos [42] and Shibboleth [29], OSN-issued credentials
can not be completely trusted. However, we argue that in
many real world situations, they provide valuable and other-
wise unavailable information for access control and identity
verification.

3.1 Age Verification
A concrete example of FaceTrust credentials is age verifi-

cation in online settings. Figure 1 shows an example. User
u attempts to access an age-restricted movie at the Netflix
website. At the same time,u is concerned with his anonymity
and does not wish to reveal neither his real identity nor a
linkable pseudonym to Netflix.

Since Netflix as an entity may not be a user of an OSN,
it will demand an age crendential with a global credibility
score. To obtain this credential, useru issues a credential
request for global credibility of assertion type “age”. This
request typically happens beforeu attempts to access an on-
line service. Useru’s friends on the OSN who have seen this
assertion can judge whether it is correct, and tag this asser-
tion with a credibility score.

In Figure 1, there are three friends that have taggedu’s
age credibility. These friends, usersx, y, z, have social ranks
equal to 0.05, 0.025 and 0.01 respectively. In addition, users
x, y, andzassign direct credibility scores tou’s age assertion
(“I am 21”): 1.0, 0.8 and 0.4, respectively. The global credi-
bility of u is derived using Equation 1. At this point, the OSN
provider considers that there is 0.87 probability thatu’s age
assertion is correct, assuming thatu’s identity uniqueness
has been determined to be 1.

The OSN compares the assertion for which the credential
is requested (age> 18) with the assertionu’s friends have
tagged. It determines that the requested assertion does not
contradict the assessed one (21> 18). Consequently, the
OSN issues the credential depicted in Figure 1 andu presents
it to Netflix. Netflix uses this credential to decide whether to
allow u to download the movie.

3.2 Fraud Detection
FaceTrust can help a user to detect malicious intentions

when he is contacted by an unknown user. Scammers com-
monly respond to online postings alleging to be prospective
participants in legitimate transactions but in reality aiming to
commit “advance-fee” fraud [11]. Misbehaving users may
create fake OSN personas to defraud other users [18, 20].
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Such attacks could be averted if scammers were unable to
lie about their location, affiliation, age,

In this example, suppose a userv receives a message from
u in response to his Craigslist posting offering a room to rent.
Both users are members of an OSN that supports FaceTrust.
Useru is actually a scammer residing in a suspicious coun-
try. On the other hand,u claims in his message that he cur-
rently resides in US.

With FaceTrust, userv can requireu to present a creden-
tial on the pairwise credibility regardingu’s location:ploc

vu . If
v is not worried about other users tracking his activities (be-
cause other users may not know each other), he can release
to u his semantic-free OSN ID. Useru then requests from
the OSN a pairwise credibility credential with respect tov.
For this example, we assume that the maximum trust path is
v→x→y→u, and the transitive trust scorestvx andtxy are 1.0
and 0.5, respectively. Also,y’s direct credibility rating on
u’s locationdloc

yu is 0.3. According to § 2.2.2, the pairwise
credibility ploc

vu is 0.15. Subsequently, the OSN issues the
following credential foru:

[pairwise credibility, location, USA, 0.15]
Useru can then present the credential tov. Likely, the user
v will be alarmed byu’s low credibility and refrain from any
further dealings withu.

4. Preliminary Evaluation
To gain a better understanding on how our initial design

works, we would like to evaluate all of the following aspects
of FaceTrust:

• Effectiveness: How well do credibility scores correlate
with the truth?

• Computational feasibility: A social network may consist
of several hundreds of millions of users. Will an OSN
provider have sufficient computational resources to mine
the social graph and derive credibility measures?

• Robustness: How robust is the design in withstanding
various malicious attacks or incorrect user tagging?

• Usability: How often and how accurate will a user tag
his friends to help them obtain credentials?

It will take a full system implementation and experimen-
tation on a real-world OSN to answer these questions. The
question regarding effectiveness is particular difficult,be-
cause trust is inherently subjective, and it might not even
be feasible to obtain the ground truth. In this section, we de-
scribe our preliminary approaches to evaluate the effective-
ness and feasibility of the design. We defer the robustness
and usability study to future experimentations on an OSN
such as Facebook.

4.1 Effectiveness

4.1.1 Effectiveness of Pairwise Credibility

FaceTrust’s design uses the SocialRank algorithm to de-

rive global credibility, and the maximum trusted path to de-
rive pairwise credibility. As the SocialRank algorithm is
similar to PageRank, which has been shown to be effective in
ranking pages regarding their relevance to users, we assume
that it is also effective in ranking users they are trustwor-
thy. Real-world experimentation is required to validate this
hypothesis,i.e., to verify whether the highly ranked users
are indeed more likely to make a correct rating than lowly
ranked ones. We defer this study to future work.

As a first step, we evaluate the effectiveness of pairwise
credibility (§ 2.2.2) in verifying identity assertions made by
online personas, using a well-known and deployed social
graph that embed identity assertions: the PGP Web of Trust
(WoT) [7]. In WoT, each userx corresponds to a unique pub-
lic key. Each edge betweenx and another usery corresponds
to a signature byx ony’s public key. The signature includes
an annotation indicating the level of trustx places ony, both
in terms ofy’s identity and in terms ofy’s ability to evaluate
the identity of others.

Recall that pairwise credibility is derived from the maxi-
mum transitive trust. Thus, we use the WoT graph to study
how effective the maximum transitive trust is in predicting
the true trust level between two users. To do so, we ran-
domly remove an edge between a nodex andy (x→ y) in the
WoT graph. We then compute the maximum transitive trust
pxy as described in § 2.2.2 betweenx andy, and comparepxy

with the original trust leveltxy. If they match, it indicates
that transitive trust is effective in predicting the truth.

The WoT data we use are PGP key certificates stored at
the Swiss keyserver [13]. The data set represents a snapshot
of the WoT between July 19 2008 and July 21 2008, and in-
cludes 39625 keys and 398660 signatures. The trust levels
specified in a certificate have four discrete values: unknown,
untrusted, marginal, and full. We map the discrete trust lev-
els to credibility values in[0,1] to facilitate transitive trust
computation. The level “unknown” and “untrusted” are both
mapped to 0; the level “marginal” is mapped to 0.5; and
the level “full” is mapped to 1.0. The percentages of full,
marginal, and unknown/untrusted edges in the WoT graph
are 29.47%, 6.8%, and 63.73%, respectively.

Each signature has a certificate level which corresponds to
the signer’s trust on the identity of the signee. There are 10
levels (0/1/2/3/a/b/c/d/?/!), but in practice only the first eight
are used. We treat levels 0/1/2/3 and a/b/c/d in an identical
manner because they are different only in terms of which ID
of the key they represent - a key can be used with multiple
user IDs if the user wants to use the key in multiple contexts.
Level 0/a is uncertain, 1/b, is untrusted, 2/c is marginal, level
3/d is full. The number of signatures for 0/a, 1/b, 2/c and 3/d
are 253187, 872, 27104 and 117497, respectively.

Table 1 depicts how well transitive trust predicts the orig-
inal trust level for each removed edgex→ y. The results
are averaged over 1000 randomly removed edges for each
trust level. Note that if a nodey has only one incoming edge
x→ y, we do not remove that edge becausey will be dis-

6



Orig. Trust Level 1.0 0.5 0.0
Exact (%) 92.6 22.9 68.1

Fair (%) 1.7 70.2 3.7
Wrong (%) 5.7 6.9 28.2

Table 1:Prediction performance of transitive trust.

connected from the WoT graph and we can not use transitive
trust to predict the trust level onx→ y. In the table, “Ex-
act” means that the maximum transitive trustpxy between
nodesx andy is exactly the same as the original trust value
txy on edgex→ y. “Fair” means that the obtained pairwise
trust value has fairly accurately predicted the original trust
level. For the full trust level 1.0, a prediction above or equal
0.5 is considered a fair match; for the marginal trust level
0.5, a prediction above 0.5 is considered fair; for the un-
trusted/unknown trust level 0.0, any value below or equal
to 0.5 is considered fair. Predictions in all other ranges are
considered “Wrong.”

We observe that maximum transitive trust predicts the orig-
inal trust level satisfactorily. For the original trust level 1.0
and 0.0, the transitive trust prediction has 92.6% and 68.1%
exact matches respectively. For the original trust level 0.5,
the transitive trust prediction yields 70.2% marginal matches.
These results suggest that pairwise credibility computed us-
ing transitive trust is likely to predict the level of credibility
that a userx itself would directly assign to a usery, if x and
y were acquainted.

4.1.2 Effectiveness of Identity Uniqueness

We now evaluate how effective FaceTrust’s identity unique-
ness primitive is in mitigating Sybil attacks. In our evalua-
tion, Sybil attackers form a single well-connected cluster.
The honest region consists of a 100K-node sample of the
Facebook [47] social network. This Sybil cluster has a ran-
dom graph topology under which Sybil nodes have average
degree 14. The Sybil cluster is connected to the honest re-
gion throughattack edgesbetween a Sybil node and an hon-
est node. We vary the number of nodes in the Sybil cluster
from 100 up to 1500, as well as the number of attack edges
from 1 up to 300. We set the lengthw of random routes equal
to 17, the number of routing tablesr at each node equals
2600 and the number of verifiersl equal to 100. With these
settings, the average identity uniqueness of 1000 randomly
chosen honest nodes is 0.89 with 0.10 standard deviation.

In Figure 3(a), we observe that as the number of nodes
in a Sybil cluster increases, the average identity uniqueness
of Sybil nodes decreases and stabilizes at around 0.01. The
reason is that as the Sybil cluster increases in size, the proba-
bility that random routes from Sybil nodes cross attack edges
decreases. Figure 3(b) shows that when the number of attack
edges increases, the average identity trust of Sybil nodes in
the cluster increases logarithmically.

The above results suggest that the identity uniqueness scheme
is effective; it assigns much lower identity uniqueness to
Sybil nodes than to honest nodes. when the number of at-
tack edges is not too high.
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Figure 3: The effectiveness of identity uniquenesss. a) average identity
uniqueness of all Sybil nodes as a function of the number of Sybils using
one attack edge. In contrast, the average identity uniqueness of honest
nodes nodes is∼ 0.89; (b) average identity uniqueness of all Sybil nodes
as a function of the number of attack edges in the Sybil cluster with
1000 Sybil nodes.

4.2 MapReduce Feasibility Evaluation
Next, we evaluate whether OSN providers that typically

employ clusters of thousands of machines can efficiently an-
alyze large social graphs and provide FaceTrust’s credential
service. To this end, we implement the algorithms to com-
pute pairwise credibility and identity uniqueness for Sybil-
resistance using MapReduce [27], and test the efficiency of
the implementation using a 500K user crawled Facebook so-
cial graph sample, which we obtain from a previous study [30].
We also sample the crawled Facebook graph using the “for-
est fire” [36] sampling technique to create social graphs of
different sizes to study the implementation’s scaling factor.
The size of the Facebook sample graph varies in 10K to
500K nodes and the average node degree varies in 8 to 30.

We have not evaluated the SocialRank algorithm because
it is based on PageRank whose feasibility has been thor-
oughly proven in practice.

4.2.1 MapReduce Implementation

MapReduce is a programming framework for performing
distributed processing of large data sets using a large number
of machines (nodes). We use the EC2/S3 [2] cluster and the
Hadoop [9] Java-based MapReduce framework. Our cluster
uses at most 20 machines at any time. Below, we provide an
overview of our MapReduce implementation.

Our MapReduce pairwise credibility implementation copies
the complete credibility-annotated social graph for typek to
all nodes in the cluster. The computation is performed over
M MapReduce stages. We assign to each Map task a disjoint
subsetD⊂V, where|D|= |V|/(#nodes in cluster). At stage
M, each Map task performs a single iteration of Dijkstra’s
algorithm on the trust graph. This iteration involves finding
the pairwise credibility between all users inD and all other
users inV that use at mostM edges. The Map tasks then
emits the pairwise credibility values. At stageM, the Reduce
task is responsible for creating a compact representation of
the pairwise credibility values between all users, creating a
new trust graph. The new trust graph is then copied to all
nodes in the cluster to be used in theM +1 stage. This pro-
cess is repeated until pairwise credibility values cannot be
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Figure 4: (a) Computation time to derive pairwise credibility for all
pairs of users as a function of the number of users in social graphs of
various sizes; (b) Computation time to derive pairwise credibility for
all pairs as a function of the number of machines in the EC2/S3cluster.

obtained.
The MapReduce identity uniqueness implementation also

copies the complete social graph to all nodes in the cluster.It
assigns to each Map task a disjoint subsetD ⊂V. For each
permutation, the Map task updates the routing tables once
and performs random routing for all nodes inD, emiting the
pairs (d∈D, list of r tails ford) (§ 2.3). Each Reduce task is
also assigned a disjointD ⊂V and a list of (verifierv∈Vv,
r tails ofv) pairs. It then performs verification and emits the
identity uniqueness of eachd ∈D

4.2.2 Pairwise Credibility Cost

We evaluate the time needed to compute the pairwise cred-
ibility between all pairs of users. The complexity of this
computation on a credibility-annotated social graphS(V,E)
is O(|V|2log|V|). The computational cost increases propor-
tionally to the square of the network size. Therefore it is
CPU bound, rather than bandwidth or memory bound.

We now evaluate the time needed to compute the pair-
wise credibility between all pairs of users using the EC2/S3
Hadoop cluster. The assertion and assesment credibility val-
ues assigned to the edges are uniformly randomly distributed
in [0.0,1.0].

Using our MapReduce implementation (§ 4.2.1), the cost
of computing pairwise credibility values between all pairsin
the credibility-annotatedsocial graphS(V,E) isO(|V|2log|V|).
Therefore the cost increases proportionally to the square of
the network size. The computation cost also depends on the
number of EC2 machines employed.

In Figure 4(a), we observe that the computational cost
grows dramatically as the network size increases. In Fig-
ure 4(b), we observe that for|V| = 500k the time needed
to complete the parallel computation decreases almost lin-
early with the number of machines. With a 2000-node clus-
ter, the computation time for a 500K graph is likely to be
∼ 30 minutes, shortened by 100-fold. In addition, an OSN
only needs to perform the social graph analysis periodically
(such as daily) as a background task because the social graph
structure is likely to remain largely unchanged in a short
period of time. Furthermore, OSN providers can partition
multimillion-user social networks into subgraphs of more
manageable size (e.g.1 million). Such partition could be

Generatingr permutations 6473
Random Routing usingr routes 197
Verification using 100 verifiers 9.1

Table 2: Average times (msec) for computing the identity unique-
ness of a suspect in a 500K node social network with the
SybilLimit-like technique.

achieved by exploiting the group structure of OSN fan clubs,
interest groups and applications. Finally, the all-pair maxi-
mum trust algorithm could be optimized for sparse graphs to
further reduce the computation time, a step we are currently
pursuing.

4.2.3 Identity Uniqueness Cost

We now evaluate the time needed to compute the iden-
tity uniqueness of all users in the social graph using the
EC2/S3 Hadoop cluster. We aim at demonstrating the practi-
cality and efficiency of identity uniqueness when employed
by OSN providers. The identity uniqueness of nodes is com-
puted as a background task at the OSN provider’s datacenter.
Therefore, it is critical for the scalability of the system that
the cost of this computation is not prohibitively expensive.

Table 2 shows the average required time for the routing
and verification portion of the identity uniqueness computa-
tion for one node in a 500K-node sample of the Facebook
social network. We profile the identity trust computation
implemented in Java on a Intel Pentium D, 3.40GHz CPU,
2048KB cache and 2GB RAM machine, running Linux 2.6.25-
2-68.

The identity uniqueness computation consists of three parts:
a) the cost of generating the random permutations at each
node; b) the cost of drawing random routes from the suspect
and the verifiers (random routing); and c) the cost of deter-
mining intersections between the verifiers’ and the suspects’
tails (verification).

In our MapReduce implementation the computation time
is dominated by the random permutation generation, which
costsΘ(|V|∗

√

|E|). This computation cannot be parallelized
because permutations need to be re-computed at each node.
On the other hand, random routing and verification are highly
parallelizable. This means that as number of nodes in the
cluster increases, the permutation cost becomes even more
dominant.

The number of traversed edges during random routing for
all nodes isΘ(|V| log(|V|)

√

|E|).
The verification comparesr tails of a suspect withr tails

of l verifiers and its cost in our implementation isΘ(l ∗
log(

√

|E|) ∗
√

|E|). Similar to random routing, the cost of
the verification increasesΘ(

√
R× log(

√

R∗ |E|)/ log(
√

|E|)
times, when the size of the social network increasesR times.
The cost of creating permutations increases linearly with the
number of nodes, since the system generatesr permutations
for all nodes. The number of permutationsr for the social
graphS(V,E) should beΘ(

√

|E|). Consequently, the total
cost of creating all permutations isΘ(|V| ∗

√

|E|) (§ 2.3).
We profile the MapReduce computation of identity unique-
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ness using the EC2/S3 cluster and Hadoop. We use social
graphs of size varying in 10K to 500K nodes. Figure 4(b)
shows that the cost of random routing decreases with the
number of machines. Using Figure 4(a) we observe that
the computation cost increases proportionally to the network
size times the square root of the network size.

From the above, we conclude that OSN providers with the
capacity to host million of users would be capable of per-
forming the identity uniqueness computation. They would
probably need to partition the network into smaller 1 million
node social subgraphs and avoid performing this computa-
tion frequently.

5. Related Work
Overview: FaceTrust adapts several link analysis algo-

rithms from previous work such as PageRank [22], transi-
tive trust analysis algorithms [45], and Sybil-resistanceal-
gorithms [49]. However, our contributions are not the graph
algorithms per se. Instead, they lie in the novel idea of using
OSNs to provide lightweight, extensible, and relaxed cre-
dentials, and the overall design and preliminary evaluation
of FaceTrust. A variety of systems have employed trust in
social networks to improve system security [26, 38, 40, 41,
43, 44, 48]. To the best of our knowledge, this is the first
work that proposes to use OSNs to provide credentials for
online personas.

Social Web of Trust: To circumvent the expensive and
less scalable identity verification by Certificate Authorities,
Zimmerman proposed the PGP Web of Trust [51]. With PGP
WoT, users do not rely on a trusted third party to verify their
identity, instead they sign each other’s public keys, assigning
several levels of trust to them. Users perceive the trust levels
of the signatures on public-key certificate in two ways [7]:
a) as the signer’s trust on the validity of the binding between
the public-key and the claimed owner of that key; and b) as
the signer’s trust on the signees ability to assess the validity
of other keys.

Users can derive the authenticity of a public key issued
by a user with which they have no direct acquaintance by
analyzing the corresponding trust graph. Users submit their
key signatures to “key servers” and a user can query those
servers for the trust paths between her and other users. Typ-
ically users analyze the trust graph using tools, such as the
gpg command or using non-standardized guidelines such as
[8].

FaceTrust’s social tagging and credibility metrics are in-
spired by the PGP WoT. However, PGP’s on-demand solu-
tion does not scale in the case of very large trust graphs with
long trust chains. Instead of requiring users to sign keys,
FaceTrustemploys social tagging using the intuitive OSN in-
terface. In addition, the limited number of PGP trust lev-
els (four) does not allow users to express nuances regard-
ing how exactly they trust each other. On the other hand,
FaceTrustusers can tag each other with respect to multiple
types of trust using a continuous value between 0 and 1.

The concept of the web of trust has also been explored
in [32, 35], where the goal is to derive trust values for any
two users in the trust graph, which similar to FaceTrustthey
describe ways to compute pairwise reputations/trust. Web-
of-trust pairwise reputations systems should not be confused
with EigenTrust [34] or PageRank [22], which produce global
reputation values. Unlike FaceTrust, they do not describe a
protocol that enables verifiers to assess the credibility ofuser
assertions they do not defend against Sybil attacks.

Similar to FaceTrust’s social rank, NodeRanking [39] uses
the same underlying idea as PageRank. The main differences
with FaceTrust are: a) we weigh links based on user anno-
tations, while NodeRanking relies solely on the social net-
work topology; b) NodeRanking derives global trust values,
whereas pairwise credibility produces pairwise trust values;
and c) we further process the ranking of users to derive ab-
solute measures of their credibility (Equation 1).

Social Sybil Attack Defenses:FaceTrust’s identity unique-
ness is based on SybilGuard and SybilLimit [49, 50]. These
systems defend against Sybil attacks by exploiting the fact
that OSNs can be used for resource testing, where the test
in question is a Sybil attackers ability to create and sustain
social acquaintances. FaceTrust’s Sybil defense is designed
for centrally maintained online social networks (e.g. Face-
book). It is conceptually simpler because it leverages infor-
mation available to the OSN provider (i.e. the complete so-
cial graph topology). In addition, FaceTrust does not intend
to completely ignore input from not well-connected nodes,
but it assigns a low identity uniqueness to it.

A SybilGuard-like technique is used by Leshniewski et
al. [37] to limit the Sybil attack in one-hop DHTs. SumUp [44]
uses the social network of users to significantly limit the
number of fake ratings submitted by Sybil users to no more
that the number of edges that connect the Sybil region with
the honest region. Similarly, Ostra [38] uses the social net-
work of email senders and receivers to limit the amount of
communication that is not flagged as wanted by its receivers.
FaceTrust can also be used to build more trustworthy recom-
mendation systems by using credentials that assess a user’s
ability to recommend/rate correctly.

Authentication via Social Networks: Authentictr [40] is
an OSN substrate that provides an API for user authentica-
tion and secure communications among users and groups.
It exploits a user’s access control settings in his OSN ac-
count. However, its does not provide primitives for Sybil
attack mitigation, and assesment of the credibility of generic
user assertions.

Kaleidoscope [41] disseminates the addresses of censorship-
preventing proxy relays over a social network, such that each
user is aware of only a small subset of the proxies. In this
way it ensures that no single censor can block a large number
of proxies.

6. Conclusion
Despite the large volume of social interactions taking place
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on the Internet, it is still hard to assess the credibility ofstate-
ments made by online users. This paper presents FaceTrust,
a system that leverages online social networks to provide
lightweight, flexible, and relaxed credentials that enableusers
to assess the credibility of others and their assertions. Inthe
FaceTrust design, OSN users explicitly tag transitive trust
and credibility scores to their friends and their identity as-
sertions available in their social network profiles. An OSN
provider analyzes the annotated social graph to assess the
credibility of a user’s identity assertions, and issue creden-
tials annotated by credibility scores. Our preliminary evalu-
ation suggests that FaceTrust is feasible and could be effec-
tive in obtaining credible and otherwise unavailable identity
information for online personas.
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