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Abstract
Taxonomies are semantic resources that help to categorize and add meaning to data. In a
hyperconnected world where information is generated at a rate that exceeds human capacities
to process and make sense of it, such semantic resources can help to access relevant
information more efficiently by extracting knowledge from large and unstructured data sets.
Taxonomies are related to specific domains of knowledge in which they identify relevant
topics. However, they have to be validated by experts to guarantee that its terms and relations
are meaningful. In this paper, we introduce a semiautomatic taxonomy generation tool for
supporting domain experts in building taxonomies that are then used to automatically create
semantic visualizations of data. Our proposal combines automatic techniques to extract, sort
and categorize terms, and empowers domain experts to take part at any stage of the process by
providing a visual edition tool. We tested the tool’s usability in two use cases from different
domains and languages. Results show that all the functionalities are easy to use and interact
with. Lessons learned from this experience will guide the design of a utility evaluation
involving domain experts interested in data analysis and knowledge modeling.
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1 Introduction

Living in the so-called Information Age, we find ourselves constantly surrounded by ever-
growing volumes of information [6]. Every second, large volumes of information are available
online in platforms like news channels, social networks or blogs, making it rather time
consuming to access, collect and process.

Such platforms are a great source of public information that is generated by a wide range of
heterogenous sources. Being able to monitor this information might be useful in different
scenarios, including political elections, emergency response, and marketing. For instance,
monitoring political elections, it could reveal the voters’ opinions on the candidates and parties
and provide more accurate predictions on electoral outcomes [3, 11, 24, 42]. It would be also
useful during emergency situations in which the users often turn to social networks to gather
and share information about a crisis [22, 29]. Another relevant scenario is monitoring social
media for marketing and human resources purposes, which could augment our understanding
of public opinion regarding products or services [14].

These scenarios require new ways to process and visualize information published online in
order to extract useful knowledge that could assist users in understanding the situation and
taking informed decisions. In previous research [29, 30], we have proposed the use of semantic
analysis to identify and categorize concepts in a specific domain of interest with a view to
giving meaning to unstructured data. This approach is based on modeling the domain
knowledge using structures like ontologies or taxonomies. These semantic models, which
contain representative terms for the considered domain [37], are used in our research to
identify which terms extracted from large volume of data are semantically relevant in a
specific domain. From the semantic taxonomies, semantic visualizations are generated where
data are organized according to their meaning and semantics. The quality of domain specific
semantic resources will determine the utility of the visualization, since semantic categories
need to be close to the user understanding of the domain.

The domain-specific nature of taxonomies makes it necessary to build new ones whenever
the domain of interest changes [7] and involve the domain experts to know which concepts
have to be included. As a result, building these knowledge models becomes a very time-
consuming and resource-demanding task. For this reason, there is an increasing interest in
proposing semiautomatic approaches to create domain-specific taxonomies, where part of the
process is automatized but the domain experts continue to play a crucial validation role.

In this paper, we propose a semiautomatic tool for building domain-oriented taxonomies
from a corpus of documents chosen by the experts from any source of information (e.g. blogs,
social network messages, news channels) in multiple languages (e.g. English and Spanish). We
combine automatic techniques for extracting, sorting, and categorizing concepts based on their
semantics, with manual filter mechanisms that the experts can apply to review, adapt and
change the resulting taxonomy. The usability and the applicability of the tool have been
evaluated in two case studies, varying both the domain and the language: the politics domain
in Spanish and biotechnology domain in English. In the first case study, the tool generated a
taxonomy from a collection of documents in Spanish about the 2017 Catalan constitutional
crisis. The unilateral independence referendum of Catalonia in October 2017 was an extremely
polarising political event in Spain. As we know from the literature, staging such contested
sovereignty referendums can rapidly spiral into conflict escalation and outbreaks of violence,
as was the case in Catalonia or generate military conflict as was the case in Chechnya. Since
these political events can polarise society and generate competing political discourses, many
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stakeholders, including journalists, politicians, political scientists or citizens need to be able to
analyse all the available information. Since this option is not affordable giving the quantity of
data generated, the use of a semantic taxonomy as the one we propose here might help to focus
the analysis on specific issues and separate the wheat from chaff. The second case study
focuses on a different application of taxonomies as interactive dictionaries to learn more about
a subject. In particular we used the tool to generate a taxonomy about New Plant Breeding
Techniques (i.e. NPBTs) in order to transfer knowledge on this scientific and controversial
topic to the general public. In this context, it is crucial to offer an engaging experience to foster
the curiosity and the interest of the users. For this reason, the taxonomy generation tool offers
both a textual and a visual representation. A visualization can offer a more intuitive way to
explore the concepts included in the model and how they are semantically grouped into
categories. Whilst in the first use case the corpus is built in Spanish, the second one deals
with documents and data in English.

The structure of the paper follows with an overview on the literature about development
tools for taxonomies, focusing in particular on the semiautomatic approaches (Section 2).
Next, we introduce our proposal for generating taxonomies (Section 3) and we present the
results obtained from the usability evaluation (Section 4). Finally, some conclusions and future
works are drawn (Section 5).

2 The development of taxonomies

As the volume of information published on online platforms (i.e. blogs, news channels, social
networks, to name a few) keeps growing, the need to find ways to take advantage of these
unstructured data in order to make sense of them and exploit their value becomes more
important [2]. Mining techniques, like natural language processing, information retrieval, data
mining, or machine learning, are applied for organizing, navigating, retrieving, and summa-
rizing content shared on online platforms [2, 13, 36]. These techniques can be applied and
combined to analyze different aspects of a large dataset. One of them is the semantics to
identify and extract the most meaningful information and build a sort of dictionary with
representative concepts related to a specific subject of interest. An approach to semantically
analyze a dataset is based on modeling the domain using structures like taxonomies or
ontologies. These knowledge models contain a set of domain-relevant concepts and relations
that can be used to categorize and filter the most relevant information in the dataset [16, 17,
37].

The key challenge of using knowledge models lies in their development, in particular in the
extraction of the right concepts and relations from unstructured datasets and in measuring their
relevance in the domain. Zilli has identified three main approaches to deal with this challenge
[47]: manual, semiautomatic, and automatic. The manual techniques involve domain experts
to organize and structure the knowledge based on their expertise. They can start from scratch
filtering and structuring manually the most relevant concepts from the data, or reuse and adapt
existing taxonomies about similar topics. Semiautomatic methodologies reduce the human
effort required by manual techniques and involve the experts in limited scope actions, like
collecting the data to analyze, or refining the selected categories. Finally, the automatic
taxonomy generation avoids the participation of domain experts and employs a top-down
approach. Starting from clustering the dataset depending on its specificity or generality, these
tools focus on identifying an initial set of labels as possible candidate nodes for the taxonomy,
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and successively filtering them applying different criteria (e.g. term frequency, document
frequency, or Tf-Idf).

In this work, considering that our aim is to develop taxonomies that could be used for a
wide variety of applications (e.g. social media mining, interactive dictionaries, or knowledge
exploration), our focus is on developing a semiautomatic taxonomy generation tool. In the
literature, it is possible to find several examples of this kind of tools, where end users play a
crucial role in the development process contributing with their expertise in the domain of
interest. The semiautomatic tools combine the advantages of automatizing part of the process
of building taxonomies, with the active contribution of the domain experts interested in
designing models that could suit their needs. Consequently, the end users are involved in
different phases of the development process mainly to improve the quality of the generated
taxonomies. Kolterman et al. propose a method for building taxonomies based on the
Wikipedia Category Hierarchy with an interactive tool to support the users in the post-
editing [19]. In this way, they can remove unnecessary categories, modify their content or
add new ones, improving the quality of the initial taxonomy.

Similar to Kolterman’s contribution, in [45] the author proposes several techniques to
model the document collection based on the tasks performed by the users. In this case, the
users not only contribute to the improvement of the generated taxonomies, but they are also a
source of information for the algorithms to learn about their preferences to organize concepts.
Another way to involve the experts is during the term extraction to include not considered
entities from other sources or taxonomies before starting the categorization [12].

Focusing on the considered sources for extracting relevant knowledge for the taxonomy,
end users can also contribute indirectly as Tsui et al. propose [9], with a tool that generates a
hierarchical structure of terms based on a folksonomy, built real-time by people collaborating
on the categorization of the same documents using tags.

To the best of our knowledge, there is a lack of tools where the end users are involved
as active contributors in the whole knowledge modelling loop. Mainly, the research works
in this direction limit the human participation to a specific phase or a set of actions within
the development process. Our proposal offers end users the possibility to explore the
results obtained from each phase (i.e. from the collection of the document corpus to the
selection of the term candidates and the categorization) and contribute with their expertise.
To support their involvement and to help them in understanding the defined categorization,
the tool provides both a textual and a graphical representation of the defined taxonomy as
described below.

3 The taxonomy generation tool

As introduced in [46], the taxonomy generation tool has been designed as a 4-step process (see
Fig. 1): document corpus, term extraction, term categorization and taxonomy visualization.
Each one of these steps combines different well-known techniques in the area of data mining,
taking into account that the final result has to work for any domain and in multiple languages.
The first step of the architecture (see step 1 – Document corpus in Fig. 1) consists of collecting
a set of documents (i.e. corpus) from different sources, like domain-specific material (e.g.
handbooks, brochures, blog posts, or news articles), or social network messages. The corpus is
analyzed in the second step (see step 2 – Term extraction in Fig. 1) to extract the most relevant
terms using parsing techniques. For each term N, the relevance is determined based on two
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measures: the frequency FN (i.e. how many times a term occurs in the corpus) and the domain
consensus or weight WN (i.e. whether a term is highly frequent in each document of the
corpus). In the third step (see step 3 – Term Categorization in Fig. 1), the terms are grouped in
categories using several semantic relations, like synonyms, antonyms, co-occurrences, and
multiword terms, generating the domain-specific taxonomy. Finally, the taxonomy is visually
represented to provide users with an alternative way to explore it (see step 4 – Taxonomy
visualization in Fig. 1).

The architecture in Fig. 1 combines the advantages of an automatic process for
extracting and categorizing knowledge with the experience of the domain experts. The
proposed semiautomatic approach consists of automatizing the first three steps of the
process to reduce the effort of the experts while still allowing them to get involved in the
upload of the document corpus, the selection of the most meaningful terms and the
categorization of the extracted terms. Involving the domain experts in this kind of
applications has shown to provide major control and a higher precision over the definition
of concepts and relations among them [37].

The taxonomy generation tool has been implemented as a web application to guarantee its
portability to different operating systems and devices. More details about each step of the
architecture are explained in the next subsections.

3.1 Step 1 – Document corpus

The first step of the architecture aims at gathering a set of documents, called corpus, that the
experts consider significant for their domain of expertise. These documents are going to be
used for modeling the taxonomy based on the extraction of meaningful concepts for the
considered domain.

The experts can use a great variety of sources, including handbooks, brochures, blog posts,
social network messages, news articles and magazines, and upload them to the web application
as pdfs or web addresses (see options File and URL in Fig. 2). Moreover, they can keep track
of the imported documents, checking their content and eventually removing them from the
corpus (see options preview and delete for each item of the file list in Fig. 2).

PARSE &

EXTRACT

STEP 2 – TERM EXTRACTION

TERM 1 - F1, W1

TERM 2 - F2, W2

...

TERM N - FN, WN

SEMANTIC

GROUPS

STEP 3 – TERM CATEGORIZATION

TERM NTERM 1CATEGORY A ...

TERMMTERM 2CATEGORY B ...

CATEGORY X …

STEP 4 – TAXONOMY VISUALIZATION

A
B

X

…

STEP 1 – DOCUMENT CORPUS
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WORKS

OTHER
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Fig. 1 The architecture for the Taxonomy Generation Tool
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The cost in terms of time of collecting a corpus depends on the number of documents that
the experts want to include. To speed up this step, the architecture also integrates an automatic
tool called BootCat [1] to gather reference texts about a topic, running ad-hoc queries in a
search engine.

3.2 Step 2 – Term extraction

Once the corpus has been uploaded, the user can move to the second step of the architecture,
organized into two phases (see Fig. 3): the parsing, and the relevance.

3.2.1 Phase 1: Parsing

Parsing consists of extracting the domain lexicon from the corpus. A domain lexicon is
defined as a list of semantically relevant terms for a given community of interest [41].
Considering that the collected corpus could contain a great variety of unstructured data, a
preprocessing phase is crucial to prepare the texts to improve the quality of further analysis
[4].

The parsing phase follows the four-stage approach by LeTs [39]: tokenization, part-of-
speech tagging, lemmatization, and chunking. In particular, the proposed architecture

Fig. 2 Document corpus (step 1): the users can upload a document from a local file or a web address, list the
imported documents, preview or delete them

Fig. 3 The architecture for the step 2 – Term extraction
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integrates the Stanford POS tagger [17] to tokenize and tag the words with the corresponding
part of speech (POS) or syntactic category (e.g. noun, verb, adjective, adverb, or determiner);
the Stanford CoreNLP [23] to obtain the root forms of the tagged words; and the Dias et al.’s
definition of multiword [9] to identify sequences of nouns occurring together as chunks (e.g.
Donald Trump, Eiffel Tower, or concert hall).

Among the tagged terms, the lexicon will include just a reduced set of syntactic categories.
The selection of the POS to consider is based on the assumption that not all of them carry out
the same semantic value: some (e.g. nouns) can have more semantic value than others (e.g.
determiners). This issue has been extensively discussed in the literature on knowledge
modeling, and even if no consensus has been reached, the focus is on nouns [9], nouns and
adjectives [34], nouns, adjectives, verbs and adverbs [25]. Our tools collects the four POS like
in [25], and we let the users choose which ones they wish to keep in the taxonomy (see the
green filter panel in Fig. 4).

3.2.2 Phase 2: Relevance

The second phase of the term extraction is the relevance where the lexicon is filtered based on
the meaning of the terms respect to the domain of interest (see Fig. 3). The proposed
architecture offers two different selection criteria to measure the relevance: the frequency
and the weight. The frequency is defined as the number of times a term appears in the corpus:
the most frequent terms can be considered as the most representative ones for the domain [26].
The weight or domain consensus is an indicator of the consensus of the corpus on using
frequently a term [28]: a high weight means that the term is highly frequent in each document
included in the corpus. The user can choose the criteria to establish a hierarchy among the
terms and the threshold to determine the number of candidates for generating the taxonomy
(see the green filter panel in Fig. 4).

Fig. 4 Term extraction (step 2): the users can select the parts of speech to include, the selection criteria to use for
the relevance and how many terms to filter (i.e. threshold)
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3.3 Step 3 – Term categorization

The third step of the architecture consists of categorizing the domain lexicon previously
extracted and filtered. The categorization is performed in three different phases (see Fig. 5):
the NER tagger, the semantic relations, and the expert categorization.

The Stanford Named Entity Recognition (NER) Tagger [17] identifies words with
special meanings referring to known entities, like people, nationalities, institutions, time,
or events. These entities and the tagged terms or groups of terms are recognized as
categories by the tool.

The remaining categories are defined based on the semantic relations established among the
terms extracted from the corpus. Lefever has identified five different approaches to detect
relations between terms [20]: pattern-based [15] (i.e. the related terms matches a previously
defined set of patterns), statistical and machine learning [35] (i.e. the terms are related
following a probability distribution), distributional [40] (i.e. the terms are related depending
on their distribution in the dataset), morpho-syntactic [38] (i.e. the related terms have similar
syntactic properties) and word class lattices (i.e. a directed acyclic graph where the words are
edges and the vertices are weights, used by Navigli and Velardi to model textual definitions)
[27]. Our method follows the morpho-syntactic approach, taking into account both the
syntactic function and the thesaurus relations to categorize the terms. If two terms are
semantically related, they will be included in the same category. In particular, we consider
four semantic relations: synonyms, antonyms, co-occurrences, and multiword terms. The co-
occurrences have been identified using the Wilks’s method [44]: if two words co-occur in the
dictionary (i.e. one appears in the definition of the other), they are related. The semantic
relations and the definitions have been extracted using the API provided by the Oxford
Dictionary [33]. The multiword relation is based on the chunks identified during the step 2
as sequences of nouns stored as single terms.

Once the taxonomy is generated automatically from the NER tagger and the semantic
relations, the architecture offers a visual tool for exploring and eventually modifying collected
categories and terms (see Fig. 6).

The interface has three panels: the working space on the right, the categories on the left, and
the actions in the center. The working space contains the initial categorization generated
automatically, while the categories panel is used to structure the final version of the taxonomy.
The categories are also associated to a color and the same color will be used in the next step for
the visual representation of the taxonomy. Interacting with the different options provided by
the central panel, the user can move a group of terms or a single term from the right to the left
to be included to the final version of the taxonomy. It is also possible to add a new term or
category, modify an existing one or merge two or more categories. A detailed list of the
available actions is shown in Table 1.

Fig. 5 The architecture for the step 3 – Term categorization
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3.4 Step 4 - Taxonomy visualization

The last step of the architecture offers a visual representation of the generated taxonomy. We
have designed a Zoomable Circle Packing (see Fig. 7), a technique for representing hierarchi-
cal datasets with a tree structure, where the branches and the leaves are circles of different sizes
[43]. The main categories of the taxonomy are colored circles containing white smaller circles
(i.e. the individual terms). The size of the categories depends on the number of contained
terms, while the size of the individual terms is a measure of their relevance in the domain.
Zooming on a category, it is possible to explore the contained terms and, clicking on them, the
list of documents where they appear.

Fig. 6 Term categorization (step 3): the users can explore the groups of terms generated automatically (right
panel), modify them (central panel), and include them to the final version of the taxonomy (left panel)

Table 1 List of all the buttons available in the action panel described by the icon, the label and the associated
action

Icon Label Action

New
category

Create a new category

Move left Move a group to the panel of categories

Move right Move a category to the panel of groups

Merge Merge selected groups or terms into a category if selected in the left panel, or a new group
otherwise

Delete Delete the selected terms, groups or categories
Download Download the taxonomy in JSON format

Save Save all the changes made in the categorization

Select Highlight the selected groups, terms or categories

Doubt Highlight the terms marked with doubt.
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In case of representing a knowledge model like a taxonomy, the Circle Packing gives a
visual overview of the main elements in the representation, their relevance and how they are
related, keeping visible even the smallest node (see the node media in Fig. 7). The colored
circles represent the main categories, while the white ones are the individual terms. The size of
each circle depends on their relevance (i.e. frequency or weight, as selected by the end users in
the second step), and the color can be changed by the end users in the third step. In this way,
users can visually check whether the resulting taxonomy is adequate or not, and eventually go
back and improve it until it fits their needs.

4 Uses of the taxonomy

Taxonomies are semantic structures used to model knowledge about a domain of interest. In
the Big Data era, where information is generated massively from a wide range of sources, these
models can represent a useful exploration tool serving different purposes. Here, we describe
three scenarios where the taxonomies play a key role: visual analytics, interactive dictionaries,
and semantic searches.

Nowadays, people are used to sharing information, opinions, and experiences through
online platforms like social networks, blogs or news channels. This practice generates large
amounts of unstructured data that are difficult if not impossible to process. For instance, in an
emergency like a typhoon, an earthquake or a terrorist attack, publishing a message on social
media can be the only way that victims and witnesses have to communicate [22]. Emergency

Fig. 7 Taxonomy visualization (step 4) for the NPBTs use case of the evaluation (see Section 5): colored circles
are the main categories of the taxonomy, while the white circles are the individual terms
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operation centers could find helpful information on these citizen generated information as far
as they can quickly identify relevant information and integrate it into their protocols [10].
Similarly, during an election campaign both political parties and political analysts could take
advantage from the content shared by citizens to have a clearer picture of their preferences. In
these kinds of situations, taxonomies can be used as part of visual analytics tools to seman-
tically analyze large volumes of data and filter out the most relevant knowledge about a topic
of interest [30]. The resulting knowledge is then represented as a visualization that users can
explore according to their needs, whether to support sense-making, decision-making or even
learning on a specific domain.

In previous research, we have developed a tool for semantically analyzing and visualizing
large datasets of social networks content based on the usage of domain- specific taxonomies
[29]. The tool has been tested with real datasets in the domains of emergency [31] and politics
[32]: changing the domain means the definition of different knowledge models. A semi-
automatic tool for taxonomy generation can be a solution to reduce the effort, but still keeping
the end users as active contributors of the modeling process.

Another interesting usage of the taxonomies is building interactive dictionaries. In this case,
the domain is modeled applying the same semantic approach of the generation tool presented
in this work, extracting terms and categories from a representative corpus of documents (e.g.
blogs, news channels, or handbooks). The users can explore an interactive visualization of the
resulting taxonomy to see the included concepts and how they are semantically related. The
aim is to foster the curiosity and create more engaging learning experiences in multiple
contexts: an audience interested in a topic of general interest, a student doing research about
a subject, or a group of collaborators that needs to share a common language.

For instance, the European Community is investing in New Plant Breeding Techniques (i.e.
NPBTs) that will guarantee a more sustainable application of biotechnologies in agriculture.
Even if this topic is of great interest for the general public, it could be rather demanding for the
general public to understand while there is also a lot of controversial and fake information on
smart crops. The generation tool described previously made it possible to generate a NPBT
taxonomy from a collection of news articles and blog entries, that was presented to a general
audience during a science fair as part of the H2020 project CHIC [8]. In this case, the
visualization chosen to represent the taxonomy was a bubble chart designed for a virtual
reality space [32]. The immersive experience surrounds the users with concepts and categories
from the taxonomy, isolating them from the reality and fostering the exploratory task. As a
result, the attendees could easily learn about this particular biotechnology, focusing on the
most relevant information needed to understand its advantages and disadvantages.

The third example of scenario where the taxonomies can represent a helpful instrument, is
the development of personalized search engines [18]. In this case, taxonomies are used to
match the organization of the results with the users’ preferences. Consequently, the users
improve their expressional power in terms of search queries, and the engine offers a more
precise retrieving mechanism.

5 Evaluation

The taxonomy generation tool has been designed to work for multiple languages and any
domain of interest. For this reason, we have analyzed its applicability in two different real
scenarios, varying both the domains and the languages: the 2017 Catalan constitutional crisis
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in Spanish, and the implementation of New Plant Breeding Techniques (i.e. NPBTs) in
English. We run a usability evaluation on both case studies, as detailed in the next subsections.

5.1 First use case: Politics

In collaboration with experts in political science from the Department of Communication and
Internet Studies of the Cyprus University of Technology and in the context of the NOTRE
H2020 project, we tested the tool with a collection of documents in Spanish about the 2017
Catalan constitutional crisis. This event has polarized the Spanish society generating a growing
volume of publications on several online media platforms that we have selected as sources for
our tool.

In terms of the methodology used for our data collection, we first implemented a web
scraper in Python to retrieve the most relevant articles from the Google Custom Search (GCS)
service. The search inputs were a set of keywords related to the event of Catalonia’s
independence referendum 2017 (in both Catalan and Spanish) and a series of media sources.
The latter were chosen to reflect the territorial diversity in Spain. Thus, we had the following
number of sources per territorial group: 5 National media, 4 Catalan media, and 5 regional
media. We also paid attention to ideological diversity by incorporating media from the left and
right of the political spectrum. The end result was a corpus of 120 documents in Spanish
containing one article from each source for every month in the year 2017.

5.2 Second use case: Biotechnology

In the H2020 project CHIC [8] transferring knowledge on NPBTs using creative and novel
ways is established as a main goal to be able to engage citizens, and in particular teenagers, in
this scientific challenge. In this context, we used the tool to create a taxonomy for generating
semantic and engaging visualizations about the NPBTs and biotechnologies. To avoid too
technical documents whose vocabulary will not be understood by a general audience, we
selected two main sources: the CHIC website and Google News. From the CHIC website, we
collected several brochures and blog posts aimed at presenting the scope of the project and its
impact on the society. From Google News, we have searched for the keyword NPBTs and
stored articles and general-purpose documents from the last month. Considering the specificity
of selected sources, in this second use case we have limited the volume of the corpus to 30
documents in English.

5.3 Usability evaluation

The goal of this evaluation is to measure the usability of the taxonomy generation tool. The
evaluation was carried out by 16 participants in two groups: 10 of them worked on the first use
case, and the remaining on the second. The participants were not required to have any previous
knowledge on taxonomy generation or knowledge models, but they were required to be fluent
in Spanish or in English, depending on the language of the use case.

The evaluation had three phases:

1. Pre-test questionnaire: a questionnaire to gather the demographic data
2. Test: list of tasks to perform with the tool
3. Post-test questionnaire: a questionnaire about the usability of the tool
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5.3.1 Pre-test questionnaire

In the first place, the participants were asked to fill out a questionnaire to collect their
demographic data. The majority were PhD researchers, Master or PhD students, between 25
and 44 years old, with a high technological background and a low level of expertise using
knowledge models (e.g. taxonomies, ontologies).

5.3.2 Test

The participants were briefly introduced to the tool and its main functionalities before starting
the test. Later, they were asked to complete a set of tasks designed to evaluate the usability of
the different actions supported by the tool and to identify strengths and weaknesses. The
complete set of tasks is listed in Table 2: each task is related to the stage of the development
process where it is performed.

After performing each task, participants were asked to give feedback about their experience
filling out the post-test questionnaire, focusing on the interaction with the elements in the
interface. Mainly, we were interested in collecting opinions about the interface design and how
to improve it.

5.3.3 Post-test questionnaire

The last stage of the usability evaluation consisted of answering a post-test questionnaire
based on the SUS (System Usability Scale) [5]. The questionnaire had a total of 9
statements about the tool, alternating between negative and positive ones. Participants
were asked to specify their agreement (or disagreement) with the statements using a 5-
point Likert scale, where 5 corresponds to strongly agree and 1 to strongly disagree. We
omitted one of the items from the original questionnaire: “I think that I would like to use
this system frequently” since the participants of the evaluation were not experts and
therefore categorizing information is not part of their routine. The final list of statements
is as follow:

Table 2 List of tasks performed during the test in relation to the stage of the development process

STAGE TASK

Document corpus Upload a document to the tool
Upload a document from a URL
See the content of a document
Remove a document from the corpus

Term extraction Modify which parts of speech are included in the taxonomy
Adjust the value of the threshold
Order the terms alphabetically

Categorization Move a group of terms to the panel of categories
Create a new category
Add new terms to the new category
Merge several groups or categories
Mark several items with doubt
Review the terms marked with doubt
Remove a group or category
Save all changes
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1. I found the system unnecessarily complex.
2. I thought the system was easy to use.
3. I think that I would need the support of a technical person to be able to use this system.
4. I found the various functionalities in this system well integrated.
5. I thought there was too much inconsistency in this system.
6. I would imagine that most people would learn to use this system very quickly.
7. I found the system very cumbersome to use.
8. I felt very confident using the system.
9. I needed to learn a lot of things before I could get going with this system.

To evaluate the obtained results for each one of the questions, we have compared them with the
regression equations (R2) defined by Lewis and Sauro to understand how each SUS item is
related to the overall SUS score [21]. They have built a curved grading scale from F (the
lowest) to A+ (the highest) analyzing 241 SUS studies and modeled two regression equations
to associate the SUS score 68 to C, and 80 to A-. We have used these equations to evaluate the
results obtained from the post-test questionnaire. Table 3 shows the mean value (μ) for each
statement of the questionnaire, the standard deviation (σ), the values of the regression
equations (R2) for the SUS score 68 and the SUS score 80.

Overall, the participants showed a positive response to the tool, with all the mean values
included in the limits defined by the regression equations. In particular, the highest comparison
with a SUS score of 80 has been obtained for the first statement about the complexity of the
tool, the fourth about the integration of offered functionalities, the fifth about the inconsis-
tencies, the eighth about the users’ confidence in carrying out the tasks on their own, and the
ninth about the needed learning effort. This means that the participants have found the
interface of the tool simple to interact with, visually consistent and intuitive.

The remaining statements have reached the limits for a SUS score greater than 68, meaning
that the participants could easily use the tool and understand the different options offered in the
interface without requiring an excessive learning effort. The only statement with an outlier
value respect to the two regression equations is the third item suggesting that the users can
have some initial difficulties in learning all the possible functionalities offered by the tool and
they could appreciate the support of a technical person. This is mainly related to the low
experience they have working with knowledge modeling and data analysis processes.

Table 3 Mean and standard deviation for the nine statements in the post-test questionnaire

STATEMENT μ σ R2

SUS = 68
R2

SUS = 80

1. I found the system unnecessarily complex. 1.75 0.77 ≤ 2.44 ≤ 1.85
2. I thought the system was easy to use. 4.19 0.75 ≥ 3.67 ≥ 4.24
3. I think that I would need the support of a technical person to be able to use

this system.
1.94 1.06 ≤ 1.85 ≤ 1.51

4. I found the various functionalities in this system well integrated. 4.00 1.03 ≥ 3.55 ≥ 3.96
5. I thought there was too much inconsistency in this system. 1.44 0.73 ≤ 2.20 ≤ 1.77
6. I would imagine that most people would learn to use this system very

quickly.
4.00 0.89 ≥ 3.71 ≥ 4.19

7. I found the system very cumbersome to use. 1.75 0.58 ≤ 2.25 ≤ 1.66
8. I felt very confident using the system. 4.25 0.77 ≥ 3.72 ≥ 4.25
9. I needed to learn a lot of things before I could get going with this system. 1.56 0.73 ≤ 2.09 ≤ 1.64
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5.3.4 Learned lessons and future works

Analyzing the results obtained from the usability evaluation, we have learned useful lessons
for improving the tool and defining the next steps to take.

The involvement of participants with no particular experience in modeling knowledge and
working with data analysis has shown that the tool and the available options are easy to use
and interact with in both use cases. Moreover, the participants have found useful the possibility
to interact with the interface using both direct manipulation (i.e. drag-and-drop mechanism)
and buttons. They have also appreciated the usage of feedback (i.e. progress bar and inspection
window) to be informed about the current status of the building process and, in particular, how
the tagging of the terms works.

Based on this experience, we are going to further evaluate the tool focusing on its utility in a
real scenario. We want to involve domain experts interested in data analysis and knowledge
modeling to analyze the applicability and effectiveness of the proposed solution for generating
taxonomies. This kind of evaluation will require an extra effort, in particular in terms of time.
For this reason, to assess the usability of the tool we have decided to involve non-expert users
working on a predefined set of tasks.

Domain experts will use the tool to create a taxonomy from scratch, decidingwhich documents
to include in the corpus, which criteria to apply for selecting the terms, and how to categorize the
resulting groups of terms. Another result we will expect to obtain from the expert evaluation is the
accuracy of the taxonomy resulting from the automatic categorization. In particular, we will focus
onmeasuringmissing or redundant terms and categories, as well as terms in the wrong category or
categories with non-representative names. Finally, the domain experts will be also involved in the
design of the taxonomy visualization. Based on the proposed circle packing and using a
participatory approach, we want to understand what they expect from a graphical representation
of the taxonomy and which technique best fits with their needs.

6 Conclusions and future works

In the Big Data era, a key challenge is represented by the growing interest in collecting,
analyzing and extracting useful knowledge from the large volumes of unstructured data
published every day on online platforms. Among proposed approaches, knowledge models
aim at adding semantics to data and focusing on the most meaningful information. For that
purpose, what is meaningful in a domain has to be identified. Automatic and intelligent tools
can build semantic taxonomies but to be adopted in decision making or knowledge exploration
processes they need to be validated by human experts. The collaboration of end users is crucial
to guarantee the quality of the resulting model and its value as a tool to transmit and acquire
knowledge about a subject. In this paper we have described a tool that put experts and end
users in the knowledge modelling loop. In our semiautomatic generation tool, users can
contribute at any stage of the semantic modeling process: from deciding which documents
have to be included in the corpus, to the selection of the most relevant terms and their
organization in categories. The ability to check the taxonomy using a visualization helps end
users to understand better the impact of their decisions in the previous stages (selection of
documents, terms and categories, and relevance metrics). For instance, if after a first round
using the tool, a very relevant topic for the end user is presented in the visualization as a
marginal topic, she can go back and include more documents related with that term or check
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whether it is correctly categorized. Therefore, end users can act upon all the knowledge
modeling processes and quickly get visual feedback on the consequences of their actions.

The tool here presented works for multiple languages and any domain of interest, as shown
by the two use cases of the evaluation: the documents collected during the 2017 Catalan
constitutional crisis and the information on smart crops and NPBTs. After a usability evalu-
ation, we can conclude that even though some initial effort is required to learn how to operate
with the tool, participants felt confident and comfortable using it and found the tool useful to
create meaningful relations among terms. Since participants had no experience in knowledge
modeling and data analysis, we are planning to perform further evaluations to test the
applicability and the effectiveness of the tool in real scenarios. We are also interested in
involving domain experts in the design of new visualizations and scenarios for interacting with
the taxonomy. Following a participatory approach, we are specifically interested in under-
standing what the users look for in a graphical representation of a knowledge model.
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