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Abstract: Censoring may occur in many industrial or biomedical ‘time to event’

experiments. Efficient designs for such experiments are needed but finding such

designs can be problematic since the statistical models involved will usually be

nonlinear, making the optimal choice of design parameter dependent. We provide

analytical characterisations of locally D- and c-optimal designs for a large class

of models. Our results are illustrated using the natural proportional hazards pa-

rameterisation of the exponential regression model, thus reducing the numerical

effort for design search substantially. We also determine designs based on stan-

dardised optimality criteria when a range of parameter values is provided by the

experimenter. Different censoring mechanisms are incorporated and the robustness

of designs against parameter misspecification is assessed. We demonstrate that,

unlike traditional designs, the designs found perform well across a broad range of

scenarios.
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analysis.

1. Introduction

Optimal designs for nonlinear models have received much attention in the lit-

erature but there is little research on designs for models with potentially censored

data. Ford, Torsney and Wu (1992) consider optimal designs for nonlinear models

where the response variable is distributed as a member of the exponential family

and Sebastiani and Settimi (1997) prove the optimality of these designs for a

logistic regression model. Sitter and Torsney (1992) study D-optimal designs for

generalised linear models with multiple design variables using the geometry of the

design space as in Ford, Torsney and Wu (1992), and Sitter and Torsney (1995)

consider both D- and c-optimal designs for binary response models with two de-

sign variables. However neither of these papers considers the case where the data

are subject to censoring. Optimal adaptive designs for the survival Koziol-Green

Statistica Sinica: Preprint 
doi:10.5705/ss.2011.271



2 MARIA KONSTANTINOU, STEFANIE BIEDERMANN AND ALAN KIMBER

model with two treatments are discussed in Bandyopadhyay, Biswas and Bhat-

tacharya (2010). Xu (2009) considers designs for generalised linear models with

possibly censored observations which are robust with respect to model misspeci-

fications within a certain class. For recent results on accelerated life testing see,

for example, Wu, Lin and Chen (2006) and McGree and Eccleston (2010).

Proportional hazards models are considered by Becker, McDonald and Khoo

(1989) who find D-optimal designs for models with one or two parameters and

completely specified baseline hazard. They use geometric arguments and empir-

ical values for the hazard rate to investigate how censoring affects the D-optimal

designs for different shapes of the design region. López-Fidalgo, Rivas-López and

Del Campo (2009) propose an algorithm to find D-optimal designs conditional

on arrival time, where the design space consists of two treatments. They consider

a two-parameter exponential regression model that requires constraints on the

parameters.

Our research was motivated by the following problem. Let T1, . . . , Tn be

independent random variables indicating the survival times of the n subjects in

the experiment with t1, . . . , tn the corresponding observed values. Also let α

and β be the unknown model parameters requiring estimation and let xj ∈ X
be the experimental condition at which the jth observation is taken. In what

follows, the design space X can be either binary, that is X = {0, 1}, correspond-

ing, for example, to two different treatments, or an interval, that is X = [u, v],

corresponding, for example, to the doses of a drug.

The period of the experiment will be defined to be the interval [0, c]. We

consider two different types of censoring. Type I censoring corresponds to the

situation where all subjects enter the study at the same time and stay until time

c or until failure, whichever is earlier. Survival times greater than c are therefore

right-censored. Another scenario, relevant for many clinical trials, is random

censoring. The jth individual enters the study at a random time in [0, c] which is

independent of the survival time. Therefore the censoring time for this individual

is also random. The example we shall use to illustrate our general results is the

exponential regression model in its proportional hazards parameterisation which

is specified by the probability density function f(tj) with corresponding survivor
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function S(tj),

f(tj) = eα+βxje−tje
α+βxj

, S(tj) = e−tje
α+βxj

, (tj > 0) (1.1)

The parameterisation in (1.1), avoids the need to specify constraints on the pa-

rameters.

Optimal design is concerned with finding the experimental conditions at

which measurements should be taken in order to draw the most precise conclu-

sions from the data. In what follows, we consider approximate designs of the

form

ξ =

{
x1 . . . xm

ω1 . . . ωm

}
,

where the support points xi, i = 1, . . . ,m, m ≤ n are the distinct experimental

conditions in the design and the weights ωi represent the proportion of obser-

vations in the corresponding support point. We note that 0 < ωi ≤ 1 and∑m
i=1 ωi = 1, so a design ξ is a probability measure on the design space X . The

nωi are not necessarily integers for all i, so before an approximate design can

be run a rounding procedure (see, for example, Pukelsheim and Rieder (1992))

must be applied. Approximate designs have the advantage of avoiding discrete

optimisation during design search.

If the aim of the experiment is efficient estimation of the model parameters

or functions of them, optimal designs are found by optimising a statistically

meaningful functional of, for example, the Fisher information with respect to

the design. Such a functional, which is called an optimality criterion, maps

nonnegative definite square matrices to the real axis, and so makes matrices

comparable. Typical optimality criteria are D- and c-optimality, which will be

introduced in sections 2 and 3, respectively.

A recent trend in the optimal design literature is to solve problems in more

generality. Hedayat, Zhong and Nie (2004) characterise D-optimal designs for

a large class of two parameter models under extra assumptions on the Fisher

information. However, these assumptions are not generally satisfied. In partic-

ular, these results are not applicable to model (1.1). Yang and Stufken (2009)

consider Loewner optimality and an even more general class of models. They

obtain a series of excellent results, showing that under some conditions, for each

given design there is always a design from a simple class which is better in the
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Loewner sense. These results were then generalised to models with more than

two parameters by Yang (2010) and Dette and Melas (2011). Depending on the

model, however, these conditions can be difficult to verify even using symbolic

computational software.

The aim of this paper is to provide characterisations of D- and c-optimal de-

signs under assumptions which are less restrictive and easier to verify than those

in Yang and Stufken (2009) and which are satisfied by a large class of models,

including model (1.1). In section 2 we develop this approach for D-optimality.

Section 3 contains the corresponding results for c-optimality in the situation

where only the slope parameter β is of interest. The results are illustrated by

application to model (1.1) with Type I and random censoring in section 4. Since

the model is nonlinear in the parameters the optimal designs found depend on the

unknown model parameters, that is they are locally optimal (Chernoff (1953)).

Section 5 provides analytical characterisations of the standardised maximin D-

and c-optimal designs when a parameter space can be specified even in situations

where the locally optimal designs are not available in closed form. In section 6, we

assess the robustness of locally optimal and parameter robust designs for model

(1.1) and compare their efficiency with traditional designs currently in use. A

brief discussion is given in section 7. The more technical proofs can be found in

the appendix.

2. D-optimal designs

A D-optimal design maximises the determinant of the Fisher information

M(ξ, α, β) with respect to the design. That is, a design ξ∗ is D-optimal if

ξ∗ = arg max
ξ
|M(ξ, α, β)|.

A D-optimal design minimises the volume of the confidence ellipsoid for the

parameter estimators, so makes the estimators as precise as possible.

Hedayat, Zhong and Nie (2004) consider two parameter models with Fisher

information matrix proportional to

M(ξ, α, β) =
m∑
i=1

ωiI(xi, α, β) =
m∑
i=1

ωiQ(θi)

(
1 xi

xi x2
i

)
, (2.1)

where I(xi, α, β) is the Fisher information at the point xi and θi = α + βxi.

Many models share this form of information matrix, including generalised linear
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models (Ford, Torsney and Wu (1992), Sebastiani and Settimi (1997)), some

linear heteroscedastic models and model (1.1) for different censoring schemes.

Key assumptions in Hedayat, Zhong and Nie (2004) are that Q(θ) has exactly one

stationary point and limθ→∞Q(θ)θ2 is bounded. For many relevant situations

however, Q(θ) is strictly increasing and limθ→∞Q(θ)θ2 unbounded; see section

4 for example.

In this section, we concentrate on models with Fisher information of the form

(2.1), which satisfy the following conditions (a)-(d). Following Ford, Torsney and

Wu (1992), an equivalent problem to maximising |M(ξ, α, β)| is to maximise the

determinant of this matrix with xi replaced by θi, i = 1, . . . ,m, which will also

be denoted M(ξ, α, β) in what follows. Instead of the design space X we will

work on the transformed design space Θ = α+ βX where β 6= 0. The parameter

dependence of the design problem thus enters only via the transformed design

space. The assumptions are therefore given for θ ∈ R, so they are valid for all

possible ranges for Θ.

(a) The function Q(θ) implicitly defined in (2.1) is positive for all θ ∈ R and

twice continuously differentiable.

(b) The function Q(θ) is strictly increasing on R.

(c) The second derivative g′′(θ) of the function g(θ) = 2/Q(θ) is an injective

function.

(d) For fixed s ∈ R, the function r(θ) = Q(θ)(s − θ)2 satisfies r′(θ) = 0 for

exactly two values of θ ∈ (−∞, s].

We note that if assumptions (a) and (b) are satisfied, then assumption (d1):

“Q′′(θ) < 0 for all θ ∈ R” implies assumption (d). It is thus stronger than (d),

but may be easier to check in practice. For the case of c-optimality we require

the extra condition

(d2) : The function logQ(θ) is concave for θ ∈ R.

which also implies assumption (d) given that (a) and (b) are satisfied.

To allow estimation of both parameters, a design must have at least two

support points. For the binary design space X = {0, 1} this means that both

Statistica Sinica: Preprint 
doi:10.5705/ss.2011.271



6 MARIA KONSTANTINOU, STEFANIE BIEDERMANN AND ALAN KIMBER

points, 0 and 1, are support points of the D-optimal design. From Lemma 5.1.3

in Silvey (1980), it follows that for any model with Fisher information of the form

(2.1) and as many points as there are model parameters the D-optimal design

has equal weights. Therefore the D-optimal design ξ∗ for design space X = {0, 1}
is

ξ∗ =

{
0 1

0.5 0.5

}
.

For the remaining part of this section we will consider design spaces that are

intervals X = [u, v]. For a continuous explanatory variable x, D-optimal designs

are invariant with respect to the design space (see, for example, Silvey (1980)).

We can therefore without loss of generality consider the design space X = [0, 1].

A useful tool for characterising D-optimal designs as well as checking the D-

optimality of a candidate design is the equivalence theorem (see, for example,

Silvey (1980)).

Theorem 1. A design ξ∗ is D-optimal for a model with information matrix (2.1)

if the inequality

d(ξ∗, α, β) = tr{M−1(ξ∗, α, β)I(x, α, β)} ≤ 2,

holds for all x ∈ [0, 1], with equality in the support points of ξ∗.

From Caratheodory’s Theorem (see, for example, Silvey (1980)), there exists

a D-optimal design with at most three support points. Lemma 1 shows that this

number can be further reduced.

Lemma 1. Let β 6= 0 and assumptions (a)-(c) be satisfied. Then the D-optimal

design for a model with Fisher information (2.1) is unique and has two equally

weighted support points.

The proof of Lemma 1 modifies an idea of Biedermann, Dette and Zhu

(2006), and is given in the appendix. Dette, Melas and Wong (2006) showed

that approximate locally D-optimal designs for exponential regression models

that can be written as a sum of exponential terms are minimally supported.

Lemma 1 comes to an agreement with these results as the special case of one

exponential term. We are now ready to present the main result of this section,

an analytical characterisation of D-optimal designs.
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Theorem 2. Let assumptions (a)-(d) be satisfied.

(a) If β > 0, the design

ξ∗ =

{
x∗1 1

0.5 0.5

}
,

is D-optimal on X , where x∗1 = 0 if β < 2Q(α)/Q′(α). Otherwise x∗1 is the

unique solution of the equation β(x1 − 1) + 2Q(α+ βx1)/Q′(α+ βx1) = 0.

(b) If β < 0, the design

ξ∗ =

{
0 x∗2

0.5 0.5

}
,

is D-optimal on X , where x∗2 = 1 if β > −2Q(α + β)/Q′(α + β). Otherwise x∗2
is the unique solution of the equation βx2 + 2Q(α+ βx2)/Q′(α+ βx2) = 0.

Theorem 2, the proof of which is in the appendix, provides a complete classi-

fication of D-optimal designs. Depending on some easily verifiable conditions on

the parameters, the design problem has either been reduced to an optimisation

problem in one variable or been solved entirely.

3. c-optimal designs

For model (1.1), in the case of a binary design space, the parameter β repre-

sents the effect on the hazard of death of, for example, the new treatment whereas

for an interval design space, β represents, for example, the effect of increasing

the dose of a drug. Therefore, often interest centers on estimating the parameter

β while treating α as a nuisance parameter. In this situation, an appropriate op-

timality criterion is c-optimality for β which minimises the asymptotic variance

of the maximum likelihood estimator β̂. Thus a design ξ∗ is c-optimal for β if

the vector (0 1)T is in the range of M(ξ∗, α, β) and

ξ∗ = arg min
ξ

(0 1)M−(ξ, α, β)
(

0
1

)
, (3.1)

where M− is a generalised inverse of the matrix M .

Lemma 2, which is proved in the appendix shows that the c-optimal design for

β is supported on two points for all censoring structures.

Lemma 2. For any choice of α, β 6= 0 and any model with Fisher information

(2.1) there exists a c-optimal design for estimating β with exactly two support

points.
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From Pukelsheim and Torsney (1991), we obtain an expression for the opti-

mal weights, for example, a c-optimal design ξ∗ for β with support points x∗1 and

x∗2 is given by

ξ∗ =

 x∗1 x∗2√
Q(α+βx∗2)√

Q(α+βx∗1)+
√
Q(α+βx∗2)

√
Q(α+βx∗1)√

Q(α+βx∗1)+
√
Q(α+βx∗2)

 . (3.2)

The design problem for the binary design space X = {0, 1} has thus been solved

completely. It remains to find the optimal support points for an interval design

space X = [u, v] ⊂ R. An analytical characterisation of the c-optimal designs for

β on the interval X = [u, v] for models with information matrix of the form (2.1)

is given in Theorem 3, which is proved in the appendix.

Theorem 3. Let assumptions (a)-(c) and (d2) be satisfied.

(a) If β > 0, the design ξ∗ with support points x∗1 and v and the optimal weights

given in (3.2) is c-optimal for β, where x∗1 = u if

β(u− v) + 2Q(α+βu)/Q′(α+βu)
(

1 +
√
Q(α+ βu)/

√
Q(α+ βv)

)
> 0. (3.3)

Otherwise x∗1 is the unique solution of the equation

β(x1 − v) + 2Q(α+ βx1)/Q′(α+ βx1)
(

1 +
√
Q(α+ βx1)/

√
Q(α+ βv)

)
= 0.

(3.4)

(b) If β < 0, the design ξ∗ with support points u and x∗2 and the optimal weights

given in (3.2) is c-optimal for β, where x∗2 = v if

β(u− v)− 2Q(α+ βv)/Q′(α+ βv)
(

1 +
√
Q(α+ βv)/

√
Q(α+ βu)

)
< 0.

Otherwise x∗2 is the unique solution of the equation

β(u− x2)− 2Q(α+ βx2)/Q′(α+ βx2)
(

1 +
√
Q(α+ βx2)/

√
Q(α+ βu)

)
= 0.

4. Application to an exponential regression model

In this section we apply the previous results to model (1.1) for an interval

design space. We briefly discuss the special case of no censoring, corresponding

to c = ∞, a study running for as long as necessary to record all survival times.

From (1.1), the log-likelihood at xj is

l(α, β, xj) = α+ βxj − tjeα+βxj ,
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and thus the Fisher information at the point xj is

I(xj , α, β) =

(
1 xj

xj x2
j

)
,

since E(Tj) = 1/eα+βxj . We note that in this case the Fisher information is in

fact the same as for the linear model Yj = α+βxj+εj for independent identically

distributed errors εj ∼ N (0, σ2). It is well known (see, for example, Atkinson,

Donev and Tobias (2007)) that the D-optimal design for this model is equally

supported at the end points of the design space X . For the c-optimality case we

observe that the objective function defined in (3.1) for model (1.1) is the inverse

of the determinant of the Fisher information. Therefore the D-optimal design

allocating equal weight to the end points of the design space X is also c-optimal

for β in this case. We now consider two different types of censoring.

4.1. Type I censoring

Type I censoring means that the censoring time c is fixed and common for all

individuals. This occurs, for example, when all individuals have been recruited

at the same time to a study of duration c. If failure has not occurred by the end

of the study the observation is right-censored. Assume without loss of generality

that the first k observations are failure times. The log-likelihood for model (1.1),

l(α, β, xj), is then given by

l(α, β, xj) = log{
k∏
j=1

f(tj)
n∏

j=k+1

S(tj)} =
k∑
j=1

(α+ βxj)−
n∑
j=1

tje
α+βxj .

Now the expected survival time at xj is

E(Tj) =

c∫
0

teα+βxje−te
α+βxj

dt+ cP (Tj > c) = (1− e−ce
α+βxj )/eα+βxj ,

and hence the Fisher information at xj is

I(xj , α, β) = (1− e−ce
α+βxj )

(
1 xj

xj x2
j

)
= q(θj)

(
1 xj

xj x2
j

)
,

which is of the form (2.1). It can be verified that assumptions (a)-(d) and (d2)

are true for Q(θ) = q(θ) and hence Theorems 2 and 3 for D and c-optimal designs

respectively, hold for the case of Type I censoring.

Statistica Sinica: Preprint 
doi:10.5705/ss.2011.271



10 MARIA KONSTANTINOU, STEFANIE BIEDERMANN AND ALAN KIMBER

4.2. Random censoring

Random censoring occurs, for example, if the jth individual enters the study

at random time Zj ∈ [0, c], where Zj is independent of the survival time Tj .

Now the censoring time Cj = c − Zj for this individual is also random. In

what follows we assume that the censoring times C1, . . . , Cn follow a continuous

uniform distribution on [0, c]. The probability density function of Cj is therefore

fc(cj) = 1/c, and the conditional density of Tj given Cj = cj is given in (1.1).

The joint density of Cj and Tj is the product of f(tj |cj) and fc(cj), and thus the

log-likelihood at xj is

l(α, β, xj) = − log c+ α+ βxj − tjeα+βxj .

Using the law of iterated expectations,we find that

E(Tj) = E(E(Tj |Cj = cj)) =

c∫
0

(1− e−cje
α+βxj )/ceα+βxj dcj

=
(
ceα+βxj + e−ce

α+βxj − 1
)
/ce2(α+βxj),

and so the Fisher information at point xj is

I(xj , α, β) =
(
ceα+βxj + e−ce

α+βxj − 1
)
/ceα+βxj

(
1 xj

xj x2
j

)
= q̃(θj)

(
1 xj

xj x2
j

)
.

Again this is of the form (2.1) and it can be shown that assumptions (a)-(d) and

(d2) hold for Q(θ) = q̃(θ).

For positive slope parameter β the functions q(α + βx) and q̃(α + βx) are

increasing with x, whereas they are decreasing if β is negative. Therefore from

(3.2) the c-optimal weight corresponding to the smaller support point is greater

than the other weight if β > 0 and smaller if β < 0. This means, for example,

that more patients are allocated to the more effective dose. It is interesting to

note that the popular equal allocation rule leads to a suboptimal design.

5. Standardised optimal designs

The optimal designs found above depend on the model parameters which

are unknown in practice. Nevertheless, in many practical situations some infor-

mation about the parameter values can be provided by the experimenter. For

example, parameter α may represent the baseline hazard for a standard treat-

ment and hence even precise knowledge of its value might be available, whereas

Statistica Sinica: Preprint 
doi:10.5705/ss.2011.271



OPTIMAL DESIGNS FOR CENSORED DATA 11

for the parameter β the experimenter can specify a range of values for a clini-

cally significant improvement with new treatment. We further assume that the

experimenter has no preference for specific β-values and that the total duration

of the study, c, is known.

Following Dette (1997) we seek for designs that maximise the worst efficien-

cies with respect to the locally optimal designs over a range of parameter values.

This allows us to construct robust designs in the sense that they protect against

the worst case scenario. Dette and Sahm (1998) consider both the standardised

maximum variance criterion as well as Elfving’s maximum variance optimality

criterion for nonlinear models and showed that in some cases the optimal designs

based on the latter criterion may become inefficient. A design ξ∗ maximising the

criterion

Φ(ξ) = min
{
|M(ξ,α,β)|
|M(ξ∗β ,α,β)| β ∈ [β0, β1]

}
, (5.1)

is called a standardised maximin D-optimal design and a design ξ∗ maximising

the criterion

Φ(ξ) = min
{

(0 1)M−(ξ∗β ,α,β)(0
1)

(0 1)M−(ξ,α,β)(0
1)

β ∈ [β0, β1]
}
, (5.2)

is called a standardised maximin c-optimal design for β, where ξ∗β is the locally

optimal design. Criteria (5.1) and (5.2) seek a design that maximises the worst

D-efficiency and c-efficiency respectively, given by

effD(ξ) =

(
|M(ξ, α, β)|
|M(ξ∗β, α, β)|

) 1
2

, (5.3)

and

effc(ξ) =
(0 1)M−(ξ∗β, α, β)

(
0
1

)
(0 1)M−(ξ, α, β)

(
0
1

) . (5.4)

In the case of a binary design space the locally D-optimal design is equally

supported at 0 and 1 for any parameter values, so no further investigation needs

to be done. For an interval design space X = [0, 1], the following theorem

provides an analytical characterisation of the standardised maximin D-optimal

two point design for a given range of negative β-values and its proof is given in

the appendix.
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Theorem 4. Let β ∈ [β0, β1] where β1 < 0, α be fixed and assumptions (a), (b)

and (d2) be satisfied. The standardised maximin D-optimal two-point design is

equally supported at points 0 and x∗2 where x∗2 = 1 if β0 > −2Q(α+β0)/Q′(α+β0).

Otherwise x∗2 is the solution of the equation

Q(α+ β0x)Q(α+ β1xβ1)x2
β1

= Q(α+ β1x)Q(α+ β0xβ0)x2
β0
, (5.5)

and xβ0, xβ1 are the solutions of the equation βx+ 2Q(α+ βx)/Q′(α+ βx) = 0,

0 < x ≤ 1 for β0 and β1 respectively.

Note that Theorem 4 applies when β < 0. The proof used in this case does

not work when β > 0 and this is a topic for further investigation.

As shown in section 3, the locally c-optimal design for β for the case of

a binary design space depends on the model parameters. Theorem 5 gives an

analytical characterisation of the standardised maximin c-optimal design for β,

in the case of a binary design space and is also proven in the appendix.

Theorem 5. Let β ∈ [β0, β1], α be fixed and assumptions (a), (b) and (d2)

be satisfied. Also let the design space to be binary, that is X = {0, 1}. The

standardised maximin c-optimal two-point design is

ξ∗ =

{
0 1

ω∗ 1− ω∗

}
,

where ω∗ = (ωβ0 + ωβ1)/2 and ωβ0 and ωβ1 is the value of optimal weight on the

smaller support point for the locally c-optimal design for β given in (3.2) for β0

and β1 respectively.

6. Robustness analysis

In the following we assess the robustness of our designs by calculating their

efficiency if the parameters have been misspecified. As a starting point we used

the maximum likelihood estimates for α and β from the Freireich data (Freireich

et.al. (1963)) -2.163 and -1.526 respectively. In the efficiency calculations we

used c = 30.

To compare the performance of an arbitrary design ξ to a locally D-optimal

design ξ∗ we use the D-efficiency (5.3), whereas for the comparison of ξ to a

locally c-optimal design ξ∗ we use the c-efficiency (5.4). Type I censoring is

assumed throughout this numerical example for demonstration purposes.
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6.1. Locally D-optimal designs

Here we consider locally D-optimal designs for a vector of parameter val-

ues γ = (α, β). The value of the maximum likelihood estimator for α was used,

whereas the β-values were chosen so that we have small, medium and large treat-

ment effect. Table 6.1 gives the parameter vectors used and the corresponding

D-efficiencies of the locally D-optimal designs when the parameter values are

misspecified.

Table 6.1: D-efficiencies for some selected locally D-optimal designs

Design
Parameter vector ξγ0 ξγ1 ξγ2 ξγ3

γ0 = (−2.163,−0.1) 1 1 1 0.900
γ1 = (−2.163,−0.405) 1 1 1 0.905
γ2 = (−2.163,−1.526) 1 1 1 0.946
γ3 = (−2.163,−2.623) 0.992 0.992 0.992 1

For the first three sets of parameter values the locally D-optimal design is the

“standard design” supported at 0 and 1, with equal weights whereas ξγ3 is equally

supported at 0 and 0.9. The “standard design” has very high D-efficiency for all

the values of the parameter vectors. The lowest efficiency, 0.900, is obtained if

the true value is γ0 and the experimenter has misspecified this value as γ3 and

hence used the design ξγ3 . In other words if the experimenter has used design

ξγ3 assuming a large treatment effect when the true effect is actually very small,

the D-efficiency is 0.9 which is quite satisfying. Hence ξγ3 seems to be a good

alternative to the “standard design” if, for example, the experimenter does not

want to expose the patients at the higher drug dose.

6.2. Locally c-optimal designs

For the same vectors of parameter values used in section 6.1, the support

points of the locally c-optimal designs are always 0 and 1. The c-optimal weights

were found using (3.2) and are shown in Table 6.2. The c-efficiencies of each of

the above designs was also calculated when the parameter values are misspecified

and are presented in Table 6.3.

Generally the locally c-optimal designs have high c-efficiencies for all the

four sets of parameter values. The lowest efficiency, 0.8772, is obtained when the

Statistica Sinica: Preprint 
doi:10.5705/ss.2011.271
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Table 6.2: Weights for some selected locally c-optimal designs

Design
Weight ξγ0 ξγ1 ξγ2 ξγ3

ω1 0.498 0.491 0.425 0.323
ω2 0.502 0.509 0.575 0.677

Table 6.3: c-effficiencies for the locally c-optimal designs of Table 2

Design
Parameter vector ξγ0 ξγ1 ξγ2 ξγ3

γ0 1 0.9998 0.9782 0.8772
γ1 0.9998 1 0.9824 0.8864
γ2 0.9787 0.9828 1 0.9552
γ3 0.8908 0.8991 0.9597 1

assumed value is γ3 and the true value is γ0. We also observe that the design

ξγ2 , which is locally c-optimal for the parameter values towards the center of the

parameter space, has a lowest efficiency of 0.9597 and hence is more robust than

the other three designs.

6.3. Standardised maximin optimal designs

According to the analysis in section 5 we can find the standardised maximin

D- and c-optimal designs for the range of β-values used above which are denoted

by ξγ4 in both cases. We note that although here we consider the case of an

interval design space all the locally c-optimal designs found in section 6.2 are

supported at points 0 and 1 and so the result of theorem 5 can be used.

The standardised maximin D-optimal design is supported at 0 and 0.993,

with equal weights and is locally D-optimal for γ4 = (−2.163,−2.380), whereas

the standardised maximin c-optimal design allocates 41, 1% of the observations

at the experimental point 0 and the rest at point 1, and is locally c-optimal for

γ4 = (−2.163,−1.690). The minimum (median) efficiencies are 0.993 (0.993) for

the D-optimal design and 0.969 (0.974) for the c-optimal design. For both of the

above designs the minimum efficiencies are obtained at γ0 and γ3.
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6.4. Cluster designs

This is a modification of the method introduced by Dror and Steinberg

(2006). For each one of 1000 parameter vectors, found by drawing 1000 β-values

from a uniform distribution on the interval from −2.623 to −0.1, the locally D-

and c-optimal designs were obtained. Then a clustering algorithm was applied for

both D- and c-optimal designs and the resulting cluster designs were allowed to

have unequally weighted support points (Biedermann and Woods (2011)). The

cluster centroids are chosen as the support points and each weight is chosen to be

proportional to the corresponding cluster size, reflecting the relative importance

of each cluster.

The number of clusters for the D-optimal designs was chosen to vary from

2 to 6 and for each value the D-efficiency of a cluster design was calculated via

(5.3) relative to each of the 1000 locally D-optimal designs. The minimum and

median efficiencies are found to be the same for all the cluster designs (0.993 and

0.997 respectively) and this may be a result of the very low weight that all of our

cluster designs give to experimental points other than 0 and 1.

The support points of the 1000 locally c-optimal designs are always 0 and

1, hence the cluster design can only have two support points which will be the

experimental points 0 and 1. Also the clustering here was applied to design

points, rather than support points as the support points of the locally c-optimal

points have differing weights. The resulting cluster design allocates 43% of the

observations at 0 and the rest at 1, and performs well as the minimum and

median efficiencies found via (5.4) are 0.956 and 0.990 respectively.

6.5. Comparison of designs

First we compare the performance of the following 11 designs: the locally

D-optimal designs ξγ0 , . . . , ξγ3 , the standardised maximin D-optimal design ξγ4 ,

the cluster designs ξ1, . . . , ξ5 and the equally spaced design ξ0 with support points

0, 0.5, 1 and equal weights. The D-efficiency (5.3) of each of the above designs

is calculated with respect to each of the 1000 locally optimal designs and the

results are summarised in Figure 6.1 following Woods, Lewis, Eccleston and

Russell (2006). Design ξ0 was omitted since it was clearly outperformed.

From Figure 6.1 we observe that the standardised maximin D-optimal design

ξγ4 is indeed the one with the highest minimum efficiency but it also has a
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Figure 6.1: Boxplots of D-efficiencies calculated for 10 different designs for 1000 param-
eter vectors

lower median efficiency. Hence there is a trade off between protecting against

the worst case scenario with the lowest efficiency and having a worse median

efficiency. The cluster designs ξ2, . . . , ξ5 with more than 2 support points are

useful since they allow for linearity of the regression to be checked and they do

not perform worse than the two-point design ξ1. Also all five of the cluster designs

are good alternatives to locally optimal designs and have similar performance to

the maximin design.

The comparison of the c-optimal designs is shown in Figure 6.2. The designs

used are the locally c-optimal designs ξγ0 , . . . , ξγ3 , the standardised maximin c-

optimal design ξγ4 and the two-point cluster design ξ1.

Among the locally c-optimal designs ξγ0 , . . . , ξγ3 , only ξγ2 performs well

across the parameter space while the rest are not so good for some scenarios.

As for D-optimality we can observe the trade off between best minimum effi-

ciency and a lower median efficiency for the standardised maximin c-optimal

design ξγ4 . Overall both the standardised maximin optimal design as well as the

cluster design ξ1 are good alternatives to the locally optimal designs.
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Figure 6.2: Boxplots of c-efficiencies calculated for 6 different designs for 1000 parameter
vectors

7. Discussion

Time to event models used in biomedical and industrial applications are

usually nonlinear and hence the optimal designs depend on the unknown model

parameters. To overcome this difficulty robust designs must be constructed which

will perform well across a wide range of parameter values. Another difficulty in

finding optimal designs for these applications is that the data are often subject

to censoring.

For models with Fisher information of the form (2.1) we have provided a

complete classification of locally D- and c-optimal designs. Our assumptions are

somewhat less restrictive and easier to check than those provided by Yang and

Stufken (2009) for more general models. Our results were then applied to the

proportional hazards parameterisation of the exponential regression model (1.1),

for the cases of Type I and random censoring. For certain parameter values the

optimal design is not the “standard design” supported at 0 and 1 with equal

weights which is the one usually used in these experiments.

In order to construct robust designs we have found optimal designs based on
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standardised maximin criteria when there is some knowledge about the parameter

values (that is a range of values is specified), which maximise the worst efficiency

among all two-point designs. To the best of our knowledge, Theorem 4 is the

first analytical characterisation of standardised maximin D-optimal designs in a

situation where the locally D-optimal designs are not available in closed form.

Additionally, cluster designs were built from the locally optimal designs for a

specific set of parameter values and their computation was facilitated by our

results for the locally optimal designs. In section 6 we have shown that good

alternatives to the locally optimal designs are the cluster designs which in some

cases (see D-optimality), have more than 2 support points, thereby enabling the

linearity of the regression function to be checked.

Appendix

Proof of Lemma 1. Let α and β > 0 be fixed and α+βx = θ. The case where

β < 0 can be shown analogously and is therefore not presented. From Theorem

1, we obtain that a D-optimal design ξ∗ must satisfy the inequality

z(θ) := z1 + z2θ + z3θ
2 ≤ 2/Q(θ) =: g(θ) ∀θ ∈ [α, α+ β],

for some coefficients z1, z2, z3 ∈ R, with equality at the support points of ξ∗.

Now suppose a D-optimal design has three support points, α ≤ θ1 < θ2 < θ3 ≤
α + β. Then z(θi) = g(θi), i = 1, 2, 3. By Cauchy’s mean value theorem, there

exist points θ̃i, i = 1, 2 such that θ1 < θ̃1 < θ2 < θ̃2 < θ3 and z′(θ̃i) = g′(θ̃i).

Since z(θ) ≤ g(θ) on [α, α+ β], we also have z′(θ2) = g′(θ2). By the mean value

theorem, there exist two points θ̂i, i = 1, 2 such that θ̃1 < θ̂1 < θ2 < θ̂2 < θ̃2

and z′′(θ̂i) = g′′(θ̂i). Now z′′(θ) is constant, so can intersect with g′′(θ) at most

once on [α, α+ β], which contradicts the assumption of three (or more) support

points. Hence a D-optimal design has exactly two support points, and so the

weights must be equal.

Let ξ1 and ξ2 be two D-optimal designs. By log-concavity of the D-criterion,

the design ξ3 = 0.5ξ1 + 0.5ξ2 must also be a D-optimal. However, if ξ1 and ξ2

are different, ξ3 has more than two support points, which contradicts the result

above. Hence the D-optimal design is unique.

Proof of Theorem 2. We give only a sketch of the proof of part (a), omitting

tedious calculations. The proof of part (b) follows along the same lines using
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symmetry arguments and is therefore omitted.

Let β > 0. A careful inspection of the determinant of the Fisher information

(2.1) for a design with two support points x1, x2 ∈ [0, 1], with x1 < x2, yields

that regardless of the value of x1, the determinant is increasing with x2 and

therefore maximised for x2 = 1. It therefore remains to maximise the function

r(α+ βx1) = Q(α+ βx1)(x1 − 1)2, 0 ≤ x1 < 1.

Using assumption (d), r(α+βx1) has exactly two turning points on (−∞, 1], one

of which is a minimum at x1 = 1, hence the other one must be a maximum. If this

maximum is attained outside the design space, r(α+βx1) is maximised at x1 = 0,

which will then be the second support point of the D-optimal design. This occurs

if and only dr(α+βx1)
dx1

< 0 at x1 = 0, which is equivalent to β < 2Q(α)/Q′(α).

Otherwise the point at which the maximum is attained will be the second support

point. This is found by solving dr(α+βx1)
dx1

= 0, which is equivalent to solving

β(x1 − 1) + 2Q(α+ βx1)/Q′(α+ βx1) = 0.

Proof of Lemma 2. From Caratheodory’s theorem we obtain that there exists

a c-optimal design for β with at most two support points. We now assume that

there exists an optimal design ξ̃ with only one support point θ̃ and find a con-

tradiction. For estimability we require that (0 1)T is in the range of M(ξ, α, β),

for example there exists a vector η = (η1, η2)T ∈ R2 such that(
0
1

)
= Q(θ̃)

(
1 θ̃

θ̃ θ̃2

)(
η1

η2

)
. (7.1)

From the first equation in (7.1), we obtain that Q(θ̃)η1 = −Q(θ̃)η2θ̃. Substituting

this into the second equation yields 1 = 0, and therefore no c-optimal design for

β with only one support point exists.

Proof of Theorem 3. We give only a sketch of the proof of part (a), omitting

tedious calculations. The proof of part (b) is similar and therefore omitted.

Let β > 0. Substituting the expressions for the optimal weights from (3.2), we

obtain for the objective function defined in (3.1):

k(x1, x2) :=
(

1/
√
Q(α+ βx1) + 1/

√
Q(α+ βx2)

)2
/(x1 − x2)2.
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Holding the smaller support point x1 fixed, k(x1, x2) is decreasing with x2 and

therefore attains its minimum in the design space X = [u, v] at the upper bound-

ary v, so v is the larger support point.

The function k(x1, v) has exactly one point where the derivative is zero on

(−∞, v], that is there is at most one turning point in [u, v], which is a mini-

mum since limx1→−∞ k(x1, v) = limx1→v k(x1, v) = ∞. If this minimum is not

in the design space, its lower boundary, u, is the smaller support point. This

situation occurs if and only if dk(x1,v)
dx1

> 0 at x1 = u, which is equivalent to

condition (3.3). Otherwise, the point at which the minimum is attained is the

smaller support point and it can be found solving dk(x1,v)
dx1

= 0, which is equivalent

to solving (3.4).

Proof of Theorem 4. Using condition (d2) the function β+2Q(α+β)/Q′(α+β)

is increasing with β as the sum of two increasing functions. Hence if β0 +2Q(α+

β0)/Q′(α + β0) > 0 then β + 2Q(α + β)/Q′(α + β) > 0 for all β ∈ [β0, β1] and

using part (b) in Theorem 2 the locally D-optimal design ξ∗β is equally supported

at points 0 and 1 for all β ∈ [β0, β1]. Hence the standardised maximin D-optimal

design is also supported at 0 and 1 with equal weights.

Now let β0 ≤ −2Q(α + β0)/Q′(α + β0). Since β + 2Q(α + β)/Q′(α + β) is

increasing with β there exists β∗ ∈ (β0, β1] such that β+2Q(α+β)/Q′(α+β) > 0

for all β ≥ β∗. Again using part (b) in Theorem 2 the locally D-optimal design

ξ∗β is equally supported at points 0 and xβ where xβ = 1 for β ≥ β∗. Otherwise

xβ is the solution of the equation

βxβ + 2Q(α+ βxβ)/Q′(α+ βxβ) = 0, 0 < xβ ≤ 1. (7.2)

From (5.3) the D-efficiency of a two-point design ξ equally supported at 0 and x

is given by

effD(ξ) =

(
Q(α+ βx)x2

Q(α+ βxβ)x2
β

) 1
2

:= (u(x, β))
1
2 .

For β ≥ β∗, xβ = 1 and for fixed 0 < x ≤ 1

du(x, β)
dβ

= x2/Q2(α+ β)
[
Q′(α+ βx)xQ(α+ β)−Q(α+ βx)Q′(α+ β)

]
,

which is non-positive for all β ∈ [β∗, β1] using condition (d2). Hence for fixed x,

u(x, β) is minimised at β1.
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For β < β∗ and fixed 0 < x ≤ 1, solving the equation du(x,β)
dβ = 0 is equivalent to

solving

Q′(α+βx)xQ(α+βxβ)xβ−Q(α+βx)
[
Q′(α+ βx)(xβ + β

dxβ
dβ

)xβ + 2Q(α+ βxβ)
dxβ
dβ

]
= 0,

and using equation (7.2) becomes

βx+ 2Q(α+ βx)/Q′(α+ βx) = 0.

This has a unique solution β such that xβ = x. So the function β → u(x, β) is

unimodal for fixed x and it is minimised at β0 or β1. We note that if β1 +2Q(α+

β1)/Q′(α+β1) ≤ 0 then for all β ∈ [β0, β1], β+2Q(α+β)/Q′(α+β) ≤ 0 and xβ
is the solution of equation (7.2). Following the same arguments as in the above

case for fixed 0 < x ≤ 1, the function β → u(x, β) is unimodal and minimised at

β0 or β1.

Hence the standardised maximin design can be found by maximising

Φ(ξ) = min
{
u(x, β0), u(x, β1)

}
.

This maximisation can be divided into maximisation over the sets

M< :=
{
x ∈ (0, 1] u(x, β0) < u(x, β1)

}
M> :=

{
x ∈ (0, 1] u(x, β0) > u(x, β1)

}
M= :=

{
x ∈ (0, 1] u(x, β0) = u(x, β1)

}
Now assume that the standardised maximin D-otpimal design is in the set M<

and so we must maximise the function u(x, β0). Taking its first derivative with

respect to x and equating it to zero yields

β0x+ 2Q(α+ β0x)/βQ′(α+ β0x) = 0⇒ x = xβ0 .

Hence (u(xβ0 , β0))
1
2 = 1 < (u(xβ0 , β1))

1
2 which is a contradiction since the ef-

ficiency defined in (5.3) is always less than or equal to one. Following similar

arguments for set M> also leads to a contradiction and so the standardised max-

imin D-optimal design can be found by solving u(x, β0) = u(x, β1) which is

equivalent to solving

Q(α+ β0x)Q(α+ β1xβ1)x2
β1

= Q(α+ β1x)Q(α+ β0xβ0)x2
β0
.
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Proof of Theorem 5. For the case of a binary design space it has been showed

that the locally c-optimal design for estimating β allocates ωβ observations at

point 0 and 1− ωβ observations at 1, where the optimal weights ωβ and 1− ωβ
are defined in (3.2). From (5.4) the c-efficiency of a design ξ with support points

0 and 1 and weights ω and 1− ω respectively is given by

effc(ξ) = ω(1− ω)/((1− ω)(ωβ)2 + ω(1− ωβ)2) := u(ω, ωβ)

and the standardised maximin c-optimal criterion is

Φ(ξ) = min
{
u(ω, ωβ) ωβ ∈ [ωβ0 , ωβ1 ]

}
As in the proof of Theorem 4 it can be shown that for fixed ω the function

ωβ → u(ω, ωβ) is unimodal and the standardised maximin design ω∗ is in M=.

Hence we can find ω∗ by solving the equation u(ω, ωβ0) = u(ω, ωω1) which yields

ω∗ = (ωβ0 + ωβ1)/2.
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