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Field spectroscopy for the detection of underground military structures
George Melillos, Athos Agapiou, Kyriacos Themistocleous, Silas Michaelides, George Papadavid
and Diofantos G. Hadjimitsis

Department of Civil Engineering and Geomatics, Faculty of Engineering and Technology, Cyprus University of Technology, Limassol, Cyprus

ABSTRACT
Remote sensing is considered as an increasingly important technology for military intelligence.
New satellite missions, such as Sentinel 2A, may provide systematic datasets for monitoring vast
areas of interest. However, there is a great need to understand the information retrieved from
such sensors. This paper contemplates the results obtained from a one-year field spectroradi-
ometer campaign, aiming at the detection of underground military structures in Cyprus, covered
with crops. The measurements were taken at the following test areas: (a) vegetation area covered
with vegetation (barley), in the presence of an undergroundmilitary structure, and (b) vegetation
area covered with vegetation (barley), in the absence of an underground military structure. The
ground hyperspectral signatures were resampled to the Sentinel-2A sensor using the appropriate
Relative Spectral Response Filters (RSRF). Ten vegetation indices were utilized for the identifica-
tion of the detection of underground military structures. Results have shown that differences
exist between these ten vegetation indices, thus some of them are sufficient to distinguish the
two areas. The phenological analysis of these measurements have shown the period of head
emergence stage is suitable for monitoring crop marks. Sentinel-2A results were also validated
with field spectroradiometer results which were acquired during a simultaneous in-situ
campaign.
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Introduction

For decades, research on the detection of buried
targets has led to the development of a variety of
techniques for identifying buried structures (Piper,
Lim, Thorsos, & Williams, 2009; Zhang, Liao, &
Carin, 2004). These techniques use a variety of
geophysical instruments (Apparao, Gangadhara
Rao, Sivarama Sastry, & Subrahmanya Sarma,
1992; Kelly, 2001; Mahrer, 1995; Stolarczyk,
1993) that measure gravitational, electric and mag-
netic fields, as well as sound waves to detect
underground remains (Milton & Rollin, 2006).
The premise of these instruments is that structures
can be identified by the altered features of the
Earth, such as differences in rock density and
porosity, soil moisture and magnetic fields,
thereby indicating the presence or absence of
underground structures.

A lot of attention is being paid to the development
of new methods and instrumentation for the detection
of buried targets. Field spectroscopy for the detection
of military underground structures is a major concern
for military and national security agencies (Melillos
et al., 2016a). This is evident the large budget
(Department of the Army, 2006) allocated for the
detection and monitoring of military underground

structures. Currently, national security agencies use
Human Intelligence (HUMINT) which refers to
human sources as a tool and a variety of collection
methods. HUMINT is defined as the collection of
information by a trained HUMINT collector (military
occupational specialties) (Department of the Army,
2006), from people and their associated documents
and media sources for the identification of elements,
intentions, composition, strength, dispositions, tactics,
equipment, personnel and capabilities. However, tech-
nology such as imagery intelligence (IMINT) can also
be used for gathering information. Imagery intelli-
gence (IMINT) is defined by the USA Department of
Defense (DOD) as intelligence derived from the
exploitation of collection by visual photography, infra-
red sensors, lasers, electro-optics and radar sensors
such as synthetic aperture radar, whereby images of
objects are reproduced optically or electronically on
film, electronic display devices, or other media
(Crothers, Lanphear, Garino, Konyha, & Byrne, 1967;
IOSS, 2017). Remote sensing techniques are quick,
easily manageable and involve a wide variety of tech-
niques where valuable information can be accessed
remotely (Canada Centre for Remote Sensing, 2016;
Garaba & Zielinski, 2015). Ground spectroradiometric
measurements can provide the spectral response of the
vegetation in detail (Sepp, 2000).
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Buried underground structures are difficult to detect,
especially when they are fully covered by soil (IOCCG,
2008). It is possible to detect these military under-
ground structures by means of satellite images and
aerial photographs. The concern about underground
facilities (or “hard and buried” targets) is evident from
the establishment of several purpose-dedicated compo-
nents within various intelligence and defense agencies
(Papadavid, Hadjimitsis, Michaelides, & Nisantzi,
2011). A reasonable solution may be found by combin-
ing traditional geological and geochemical techniques
with remote sensing. The initial evaluation and inter-
pretation of remote sensing data provides information
about the location (Richelson, 2013). Using
a concomitant interpretation of satellite and ground
data, maps can be compiled which can reveal areas
where “buried” underground structures are located.
This is achieved by documenting and assessing soil
anomalies and by interpreting vegetation anomalies
which may serve as indicators; this can be realized
through a combination of terrestrial and satellite data.
Therefore, surveys can be carried out at different times
to document the evolution of the area on a systematic
basis. Moreover, sensors sensitive to different ranges of
the electromagnetic spectrum allow the recognition of
different types of ground cover. A range of digital
processing procedures can be used to enhance the
images (Richelson, 2013).

Underground structures such as military struc-
tures, military bunkers and bases, tunnel networks
and archaeological remains can affect their surround-
ing landscapes in different ways, including changes in
thermal inertia (Gunn et al., 2008), localized soil
moisture content and drainage rates (KMC, 2008),
soil composition and vegetation vigor (Milton &
Rollin, 2006). Vegetation vigor is often observed on
the ground as a crop mark, a spot which can be used
to denote the presence of underground structures
(Lasaponara & Masini, 2006). Crop marks can be
formed both as negative marks above wall founda-
tions and as positive marks above the damper and
more nutritious soil of buried pits and ditches
(Lasaponara & Masini, 2006).

During the last decade, enhancements in sensor
characteristics, as well as technological achievements
in space technology, offer new opportunities for
future applications (Giardino, 2011); in this respect,
examples include the hyperspectral satellite sensor
with 30 m resolution which can be traced back in
2000 when EO1 Hyperion was launched, and the
airborne sensor AVIRIS that was developed by
NASA-JPL in 1983.

Literature review

In this context, it should be noted that, in some cases,
researchers seek to find not the target itself but rather

to identify symptoms related to the topography
(relief), crop characteristics (crop marks), soil char-
acteristics (soil marks) or even changes in snow cover
(snow marks). For instance, archaeological structures
buried beneath the soil (i.e. still un-excavated sites)
can be detected through remote sensing images as
stressed vegetation (crop marks) which can be used
as a proxy for the buried archaeological relics. Crop
marks may be formed in areas where vegetation
grows over near-surface archaeological remains.
These features modify the moisture retention com-
pared to the rest of the crop coverage of an area.
Depending on the type of the feature, crop vigor
may be enhanced or reduced by buried archaeological
features (Winton & Horne, 2010).

If vegetation grows above buried ditches or moat,
then the crop growth is likely to be enhanced. This is
due to the topsoil, which holds more moisture than in
the surrounding context (especially during periods of
water stress). This contrasting phenomenon can be
recorded from a suitable airborne or space borne
platform and is referred to as a positive crop mark
(Lasaponara & Masini, 2006; Agapiou et al., 2012a).
However, in cases where there is not enough moist-
ure in the retentive soil and there is lack of available
water for evapotranspiration (e.g. vegetation grown
above building remains or compacted ground), the
marks developed are characterized as negative crop
marks which are less common than positive crop
marks (Lasaponara & Masini, 2007; Riley, 1979). In
comparing the two different kinds of marks, the posi-
tive crop marks are normally taller with darker green
and healthy foliage than the negative crop marks,
while negative crop marks tend to be paler green
with lighter colored appearance when monitored
from the air (Johnson, 2006). However, the field
spectroscopy for the detection of such crop marks
still comprises a difficult task since these marks may
not be visible in the images if observed over different
time periods or at different spatial/spectral resolu-
tions. Previous research such as detecting and ima-
ging of underground installments (e.g. tunnels,
bunkers) in a hostile environment poses unique chal-
lenges on deployment and remote sensing methods
(ARO, 2018). Despite the technological improve-
ments, both in terms of the sensitivity of the sensors
(spectral characteristics) and in terms of spatial reso-
lution of satellite datasets, new methods and algo-
rithms are essential to improve Earth observation
remote sensing technologies for supporting military
research (Themistocleous, Agapiou, Cuca, &
Hadjimitsis, 2015). Spectral Remote Sensing is
found to be widely used in several purposes for the
detection underground structures such as agriculture
remains (Agapiou et al., 2012a)

In addition, Spectral Remote Sensing for the detec-
tion of underground military structures, is considered
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to be very precise in detecting sub-surface remains.
Different geophysical processing techniques and
equipment, such as ground penetrating radar (GPR),
magnetometer and resistivity are usually integrated to
maximize the success rate of uncovering under-
ground remains (Domínguez Galindo, Bandy,
Mortera Gutiérrez, & Ortega Ramírez, 2013; Novo,
Solla, Fenollós, & Lorenzo, 2014; Sarris et al., 2004,
2013). Moreover, the use of unmanned aerial vehicles
(UAVs, popularly known as drones) for environmen-
tal remote sensing purposes has increased in recent
years. Although the military has used UAVs in
defense applications for decades, the scientific envir-
onmental sector increasingly takes advantage of the
application of UAVs (D’Oleire-Oltmanns, Marzolff,
Peter, & Ries, 2012).

This paper investigates also the potential of apply-
ing Sentinel 2A satellite data to field data in order to
distinguish between a buried structure (existence of
underground structure) area and a vegetated area (no
existence of underground structure). The Sentinel 2A
satellite sensor is the first optical Earth Observation
satellite in the European Copernicus programme and
was developed and built under the industrial leader-
ship of Airbus Defense and Space for the European
Space Agency (ESA). The span of 13 spectral Bands,
from the visible and the near-infrared to the short-
wave infrared at different spatial resolutions ranging
from 10 to 60 m on the ground, promotes global land
monitoring to an unprecedented level. Sentinel-2A
satellite is the first civil optical Earth Observation
mission of its kind to include three Bands in the
“red edge”, which provide key information on the
vegetation state (ESA, 2018).

In the literature, it is noted that there is a gap in
the monitoring of vegetation over military under-
ground and ground structures throughout the plants’
phenological development cycle; this paper aspires to
contribute to the filling-in of this gap. This study
aims to present the results obtained from ground
spectroradiometric campaigns, using a SVC-HR1024
field spectroradiometer, carried out in a specific area
in Cyprus. Field spectroradiometric measurements
were collected and analyzed to identify a known
underground structure using the spectral profile of
the vegetated surface over the underground target
and the surrounding area for in situ observations.
Crop marks can reveal the presence and the absence
of military underground structures not visible from
the satellite images.

Materials and methods

This study proposes a methodology for detecting
underground targets using remote sensing techni-
ques. The basis of this methodology is the combina-
tion of the study of the vegetation phenology as

a proxy for buried underground structures of defense
significance. Data acquisitions were used to identify
any variations between the area over an underlying
structure and over a reference area.

For this study, certain assumptions have been
adopted. In this study, certain assumptions have
been adopted which have a critical impact on the
findings. In this project, phenological field observa-
tions were conducted at two test sites from 2016 to
2017 in order to determine the dates of completion of
different phenological phases. For actual defense pur-
poses, the characteristics of the target and especially
the area of interest are often not known, such as for
example, the depth below the ground surface at
which the military underground structures are
located, the horizontal dimensions of the under-
ground structure and the soil type. Furthermore, the
cultivation of barley in the area is for investigative
purposes and part of the experimental work for
studying the impact of underlying structures on vege-
tation. Under real scenarios, different types of vegeta-
tion (if any) will be present.

Study area

Due to security and confidentiality issues, the specific
area cannot be reported herein. The proposed meth-
odology has been applied in Cyprus over a specific
geographical area. The area is situated on a hill which
provides clear viewing from airborne and space-
borne platforms, making the area ideal for remote
sensing applications (Figure 1, left). Also, it is located
within a fenced, abandoned military area. The soil
type of the area is leptosol which contains small
amounts of gravel and with a very shallow depth.

Figure 1 (right) shows a military storage bunker
similar to the one that is in the focus of this research.
The horizontal dimensions of the underground struc-
ture are 13 m × 5 m; it is a concrete storage bunker,
located approximately 2 m below the ground surface.

Methodology

Spectral data are increasingly incorporated into pro-
cess-based models of the Earth’s surface and the
atmosphere. The area of interest was determined
first by identifying plots with a high probability of
buried targets. Such areas can be determined from
various sources, such as on-site irregular activities,
personal communication, surveys and crop marks.

The in-situ measurements were resampled to the
Sentinel-2A data using the appropriate Relative
Spectral Response filters. Several different UAVs
were used including a DJI Inspire 2 and DJI
Phantom, equipped with cameras, and flown at an
altitude of 5, 10, and 20 meters above the ground.
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In-situ measurements were taken at two test areas:
(a) vegetation area covered with vegetation (barley),
in the presence of an underground military structure
[hereafter denoted as Area (a)], and (b) vegetation
area covered with vegetation (barley), in the absence
of an underground military structure [hereafter
denoted as Area (b)].

An SVC-1024 spectroradiometer from the Spectra
Vista Corporation (SVC) with a spectral range of
350–2500 nm was used to measure reflectance values.
The spectral resolution of the Spectroradiometric
1.0 nm. The measurements were taken between
11:00 am and 13:00 pm (Local Time), under clear
and overcast skies for diffuse light to minimize any
variation of the incoming solar electromagnetic radi-
ance. In addition, a calibrated spectralon panel (with
reflectance ≈99.996%) measurement was used as
a reference, while the measurement over the crops
were used as a target (Papadavid et al., 2011).

The spectral reflectance values were used to calcu-
late vegetation indices (VIs) such as the Normalized
Difference Vegetation Index (NDVI), Enhanced
Vegetation Index (EVI), Simple Ratio (SR),
Renormalized Difference Vegetation Index (RDVI),

Red Green Ratio Index (IRG), Ratio Vegetation
Index (RVI), Optimized Soil Adjusted Vegetation
Index (OSAVI), Difference Vegetation Index (DVI),
Global Environment Monitoring Index (GEMI) and
Modified Simple Ratio (MSR), as shown in Table 1.
The wave Band reflectance was calculated from the
Relative Spectral Response (RSR) filter of theSentinel-
2A sensor (with GSD 10 m). The vegetation indices
were plotted and statistically cross compared between
the two areas of interest namely the “buried military
structure” and the “non-military structure”.

In-situ measurements were taken in a grid format
just as the dimension of the underground structure
(13 m × 5 m) over the two study areas. Measurements
were well spread in each structure, were made ran-
domly and collected in order to have a representative
sample that was statistically reliable. The measure-
ments were taken in the middle and around the
underground structure. Due to the very close proxi-
mity of the two sites (less than 20 m), the analysis was
based on the following two criteria: the first is that
both study areas have similar soil and the second is
that both areas have climatic characteristics (Agapiou
and Hadjimitsis, 2011a). The Area (a) is the area over

Figure 1. Overview of the study area (left); an example of a military bunker (right).

Table 1. Vegetation indices used in this study, where pNIR, pRED, pBLUE and pGREEN represent the atmospherically or partially
atmospherically corrected surface reflectance values of the near-infrared (NIR), red (RED), blue (BLUE) and green (GREEN)
wavelengths, respectively (Melillos et al., 2016a).
No. Vegetation Index Equation Reference

1. NDVI (Normalized
Difference Vegetation Index)

(pNIR–pRED)/(pNIR+ pRED) (Rouse, Haas, Schell, Deering, & Harlan, 1974)

2. EVI (Enhanced Vegetation Index) 2.5 (pNIR–pRED)/(pNIR +6pRED – 7.5 pBLUE +1) (Huete, Liu, Batchily, & van Leeuwen, 1997)
3. SR (Simple Ratio) pNIR/pRED (Jordan, 1969)
4. RDVI (Renormalized Difference

Vegetation Index)
(pNIR – pRED)/(pNIR + pRED)

0.5 (Roujean & Breon, 1995))

5. IRG (Red Green Ratio Index) pRED – pGREEN (Gamon & Surfus, 1999)
6. RVI (Ratio Vegetation Index) pRED/pNIR (Pearson & Miller, 1972)
7. OSAVI (Optimized Soil Adjusted

Vegetation Index)
(pNIR – pRED)/(pNIR + pRED +0.16) (Rondeaux, Steven, & Baret, 1996)

8. DVI (Difference Vegetation Index) pNIR – pRED (Tucker, 1979)
9. MSR (Modified Simple Ratio) pRED/(pNIR/pRED +1)0.5 (Chen, 1996)
10. GEMI (Global Environment

Monitoring Index)
n(1–0.25 n)(pRED −0.125)/(1 − pRED)

n = [2(pNIR
2- pRED

2)+1.5 pNIR+0.5 pRED]/
(pNIR+ pRED +0.5)

(Pinty & Verstraete, 1992)
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the underground structure itself and the area around
it. The Area (b) is the reference area; absence of an
underground military structure. The measurements
were also made when the underground structure
was covered with the existing natural soil which was
subsequently cultivated and covered with vegetation
(barley), in order to study possible differences of the
spectral signature of vegetation, as a result of the
existence of underground structures. A SVC-HR
1024 field spectroradiometer which has a spectral
range of 350–2500 nm was used to acquire in-situ
spectral data, while in-Band reflectances were deter-
mined from medium and high-resolution satellite
sensors, such as Sentinel 2A. A calibrated spectralon
panel (with reflectance ≈100%) measurement was
used as a reference, while the measurement over the
crops were used as a target. The height of measure-
ment was about 1 meter above the ground. During
the campaign, 1740 measurements were taken using
SVC-1024; an average reference spectral signal is
given for the six campaigns in Table 2.

During the in-situ measurements, meteorological
data, site characteristics and measurement methods
were recorded (Riley, 1979), including information
such as the geographical location of the site (latitude
and longitude; this data is not allowed to be presented
in this article). In addition, the following were also
recorded: time of measurement, cloud cover, details
on reference panel, viewing geometry and instrument
support (mast, tripod, hand-held), height of measure-
ments above target and the delay between target and
reference panel measurements.

The case study was monitored throughout the phe-
nological cycle of the crops (Figure 2). The phenological
cycle is defined as a series of stages or phases in the
seasonal cycle of a plant that can be defined by start and
end points. Observable changes in each crop cycle can
be identified in Figure 2 that features how barley grows
during its life-cycle. In Figure 2, each photo represents
a phenological stage of barley, starting from the stage of
cultivation and ending with the stage of “drying foli-
age”. In addition, spectral signatures for each phenolo-
gical stage, illustrated by graphs and close-up photos, as
shown in Figure 2.

Relative differences of VIs for the detection of crop
marks
For an evaluation of the performance of all VIs dur-
ing the phenological cycle of τηε barley crop, the

relative difference in contrast of the measurements
between the “buried structure area” and “vegetated
area” was examined. The maximum values for the
whole phenological cycle were calculated for the
“buried structure area” and “vegetated area”, so that
all vegetation indices were normalized. This is essen-
tial, since the absolute values of several VIs are not
normalized, while at the same time, several variations
may be recorded during the same or different pheno-
logical observations (Agapiou et al., 2012b). The fol-
lowing relationship was used to calculate the relative
difference in contrast, between the “buried structure
area” and “vegetated area”.

VI r:d:c ¼ VI b:s:a� VI v:a:ð Þ= VI v:a:ð Þ½ ��100� (1)

where:
VI r.d.c: the VI value for relative difference in

contrast;
VI b.s.a: the VI value over the “buried structure

area”;
VI v.a.: the VI value over the “vegetated area”.

Results

Waveband reflectance scatterplots

Initially, the Sentinel-2A VINIR reflectance values for
Area (a) (buried structure) and Area (b) (vegetated
area) were plotted as demonstrated in Figure 3(a–d).
This correlation takes each pair of satellite Bands and
computes the correlation coefficient between the
Bands reflectance to identify the conceptual Band.
This Figure shows the results for the green Band
(0.560 nm) versus red Band (0.665 nm) (Figure 3
(a)), blue Band (0.490 nm) versus NIR Band
(0.842 nm) (Figure 3(b)), red Band versus NIR
Band (Figure 3(c)) and green Band versus NIR
Band (Figure 3(d)). The scatter plots visualize the
difficulty to distinguish the two areas (Area (a) and
Area (b) especially in the first phenological stages of
the barley crops. In the visible part of the spectrum
(Figure 3(a)) the separability between the two sam-
ples is quite low while this is increased only with the
use of the NIR part of the spectrum (see Figure 3(b–
d)). This was expected also from the spectral profile
of the crops which tend to give very high reflectance
values at the NIR part of the spectrum compared to
the visible part.

Table 2. Number of measurements in whole phenological stage.
No. Date Phenological stage Number of Measurements Time of measurements Humidity Temp Weather

(a) 30–10–2016 Cultivation Stage 120 12:10 31% 22°C Passing clouds.
(b) 11–12–2016 Tilling Stage 120 12:05 60% 18°C Passing clouds.
(c) 23–01–2017 Flag Leaf Emerging Stage 120 12:36 77% 16°C Passing clouds.
(e) 25–02–2017 Boot Stage 460 12:48 57% 17°C Scattered clouds.
(f) 05–03–2017 Head Emerging stage 460 12:10 41% 18°C Sunny
(g) 16–03–2017 Flowering stage 460 12:15 55% 19°C Partly sunny
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Figure 2. Phenological stages of barley crops with spectral signatures and photos. (a) 20–11–2016, cultivation stage;(b) 11–12–
2016, tilling stage; (c) 21–12–2016, advanced tilling stage; (d) 21–12–2016, advanced tilling stage; (e) 18–02–2017, flag leaf fully
emerging stage; (f) 25–02–2017, boot stage; (g) 05–03–2017, head emerging stage; (h) 27–03–2017, flowering stage.
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Vegetation indices (VIs)

Figure 4(a–j) show the results of the vegetation
indices shown in Table 1 during phenological stage.
The vegetation indices were applied to the barley
crops over the buried structure (BA) (red dots) and
vegetated area (VA) (blue dots). We evaluated the
response of Vegetation index values to barley growth
with a comparison in the above-mentioned areas. The
results showed that VIs obtain distinct variation cor-
responding to barley development and they could be
used as cultivar-independent phenological indicators.
It can be observed, that there is a high correlation
between the results of VIs. Indeed, VIs could be used
as a single threshold using Field spectroscopy for the
detection of buried structures. The use of more than
one VIs for the detection of crop marks is suggested
to enhance the final results. Furthermore, it is clear
from these diagrams that VIs values vary from one
phenological stage to another. Although the same
dataset was used for all these vegetation indices,
each of the VIs demonstrates a different response at
the different phenological stages. It may be seen
clearly in the flowering stage that there is distinct
differentiation between BA and VA. There is an
upward trend of VA (blue dots) compared to BA
(red dots) which exhibits a downward trend.
Evidently, this happens in all VIs except for OSAVI
(Figure 4(g)), IRG (Figure 4(e)), RVI (Figure 4(f))
and MSR. As growth stages progress, the ground
spectral signatures of BA (red dots) for DVI (Figure
4(h)), IRG (Explicitly, using GEMI index, BA (red
dots) tends to exhibit a difference with respect to VA
(blue dots). More specifically, in target area BA (red

dots), the reflectance response is higher than area VA
(blue dots) throughout the phenological stages, which
indicates that the resulting differences reinforce the
existence/non-existence of underground structures.

Relative differences of VIs for the detection of
crop marks

Based on the formula to calculate the relative differ-
ence in contrast, between the “buried structure area”
and “vegetated area”, the following results displayed
in Figure 5 were extracted for NDVI, EVI, SR,
RDVI, IRG, RVI, OSAVI, DVI, GEMI and MSR.
Examining the results from the VIs, it was found
that the relative reference in contrast is maximized
for all indices when the crop begins to grow (from
the end of December until the end of March). There
is a high performance for all indices during the head
emerging stage. At this stage, MSR, RVI, IRG, SR,
EVI and GEMI seem to be the most suitable indices.
The DVI index is also another VI worthy to con-
sider. One other important information on this
chart is that the MSR and RVI vegetation indices
are higher than other VIs during the head emerging
stage. Also, SR and GEMI are consistently high
during all phenological stages. The most interesting
observation regarding these values is the fact that
they were observed during the same phenological
stage.
A t-test was also performed to evaluate and to com-
pare the difference between the two areas (average
values) in the different phenological stages using the
following equation:

Figure 3. Spectral scatter plots for the area (a) (buried structure – red dots) and area (b) (vegetated area -blue dots) for: (a)
green band versus red band; (b) blue band versus NIR band; (c) red band versus NIR band; and (d) green band versus NIR band.
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Figure 4. Vegetation values for the area (a) for (buried structure – red dots) and area (b) for (vegetated area -blue dots) during
phenological cycle for: (a) NDVI, (b) EVI, (c) SR, (d) RDVI, (e) IRG, (f) RVI, (g) OSAVI, (h) DVI, (i) GEMI, and (j) MSR.
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t ¼ X1 � X2ð Þffiffiffiffiffiffiffi
S1ð Þ2
n1

q
þ S2ð Þ2

n2

Where,
X1 = Mean of first set of values
X2 = Mean of second set of values
S1 = Standard deviation of first set of values
S2 = Standard deviation of second set of values
n1 = Total number of values in first set
n2 = Total number of values in second set.
As shown in Figure 6, the critical t (t-critical) was

found at 2.1. Also, the number of degrees of freedom
was found at 83 value and alpha level at 0.05 value.
Although in the first four phenological stages the
t-static is mainly lower than the t-critical, except for
IRG, SR, RDVI and DVI, and hence the difference
between the two samples (BA and VA) is not

statistically significant, the last two phenological
stages (i.e. boot stage and head emerging stage) are
considered as the most suitable for observing these
vegetation anomalies. During this period, all the
vegetation indices mentioned in Table 1 as well the
Band reflectances provide statistically significant dif-
ferences among the two samples. It should be men-
tioned that this optimum period was also reported in
Agapiou, Hadjimitsis, Sarris, Georgopoulos, and
Alexakis (2013). Similarly, examining the results
from the t-test (Figure 6), it was found that during
the phenological stage, the t-statistic is increase dur-
ing the head emerging stage. At this stage, NDVI,
EVI, RDVI, OSAVI, RVI, DVI GEMI and expressly
MSR increased dramatically. The IRG index is also
another VI worthy to note. Also, the SR and EVI
vegetation indices are higher during the flag leaf

Figure 5. Relative difference in % between area (a) (buried structure area) and area (b) (vegetated area) for NDVI, EVI, SR, RDVI,
IRG, RVI, OSAVI, DVI, GEMI and MSR.

Figure 6. Graph of the t-test for area (a) (buried structure area) and area (b) (vegetated area) using bands (band1, band2, band3
and band4) and vegetation indices (NDVI, EVI, SR, RDVI, IRG, RVI, OSAVI, DVI, GEMI and MSR).
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fully emerging stage and boot stage. One other valu-
able information extracted from this graph is that the
IRG vegetation index is higher than other VIs during
the tilling and advanced tilling stages as shown in
Figure 6. Furthermore, as mentioned above, in the
last two phenological stages (i.e. boot stage and head
emerging stage) the absolute value of the test statistic
is greater than the critical value (1.7), therefore we
reject the null hypothesis and conclude that the
research hypothesis is true. Comparing these results
with results in Figure 5 it can be seen clearly that the
boot stage and head emerging stage are most suitable
for observing these vegetation anomalies over the
buried structure.

Grid maps

The analysis of the spectral data (Figure 7) shows
some of the main vegetation indices (NDVI, SR,
GEMI, MSR) image maps for Area (a) and Area (b)
during head emerging and flowering stages. In com-
paring Area (a) with Area (b) using NDVI index,
Area (a) has lower values (average value 0.62) due
to the existence of underground structures, while
Area (b) has similar vegetation but higher NDVI
index values (average value 0.77) due to the non-
existence of structures. In addition, using MSR,
Area (a) has higher values (average values 4.25) due
to the existence of underground structures, while
Area (b) has lower values (average values 1.85) due
to the non-existence of structures. The red color
illustrates high value of indices that distinguish the
existence of structures. Τhe existence of underground

structure can be clearly seen by comparing Area (a)
with Area (b) for SR. Indeed, SR index obtains lower
values (average value 7.24) in Area (a) than Area (b)
with average value 12.58.

Using GEMI index, it can be seen that in target
Area (a), the reflectance response (average value
950.69) is lower than in Area (b) (average value
1920.61), indicating that the resulting differences
reinforce the inference of existence/non-existence
of underground structures. It can be hypothesized
that soil also contributed to the reflectance measure-
ments. The variations between the two cases,
namely, in the presence and in the absence of mili-
tary underground structures, can result in better
interpretations of images for the detection and iden-
tification of crops marks. This difference increases as
the crop is growing.

Also, spectral indices are useful when applied to
very high-resolution satellite images, aerial images
or UAV images. Figure 7 shows the comparison
using UAV image (was taken 27/3/2017) between
field data image maps. It appears that the GEMI
and MSR vegetation indices yield better results
since the presence of the underground structure
can more easily be identified. Figure 7 indicates
a distinctive outcome using the SR, NDVI and
GEMI vegetation indices.

The Vegetation Indices as determined by the in-
situ measurements in Area (b) and Area (b) are
shown in Figure 8. The average values of MSR and
RVI indices in target Area (a) are higher than those
in target Area (b); Even though, GEMI values are
higher in Area (b) than Area (a). Similarly, NDVI,

Figure 7. Comparison using UAV image between field data image maps for NDVI, SR, GEMI and MSR during head emerging and
flowering stages.
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EVI, SR, RDVI, IRG, OSAVI and DVI are slightly
higher in Area (b) than Area (a), the differences
emphasize the existence/non-existence of under-
ground structures.

Sentinel image processing

In situ spectroradiometric and UAV High resolution
data are used to validate Sentinel −2A data at lower
resolution acquired on 5/3/2017.

The modified Darkest Pixel (DP) method
(Hadjimitsis, Clayton, & Hope, 2004a) was applied
in the current study. The surface radiance of the
dark targets is assumed to have approximated zero
surface radiance or reflectance as shown by
Hadjimitsis, Clayton, and Retalis (2004b) and
Agapiou, Hadjimitsis, Papoutsa, Alexakis, and
Papadavid (2011b). The modified Darkest Pixel
(DP) atmospheric correction was applied for the

visible Bands of Sentinel data since it had been
shown that DP is the most effective one for such
spectral regions except the NIR (Agapiou et al.,
2011b; Hadjimitsis & Clayton, 2008; Hadjimitsis
et al., 2004b, 2004b). It is apparent that there is
a fully compliance between the DP atmospheric
corrected image reflectances (satellite data after
atmospheric correction) with those acquired with
the field spectroradiometer, as shown in Figure 9.
DP does not work effectively in the NIR Bands due
the water vapour absorption, as shown by Agapiou
and Hadjimitsis (2011a) and this is shown revealed
in this case; indeed, as seen in Figure 9, DP atmo-
spheric corrected Sentinel reflectance values are
lower than the field data. Meteorological data pro-
vided by the Department of Meteorology of
Cyprus, were used in order to find whether any
impact of the water vapour due to Relative
Humidity have occurred during the satellite

Figure 8. Comparison between the two study areas using the vegetation indices average values.

Figure 9. Comparison between the two study areas using satellite and field data before and after atmospheric correction on
5 March 2017.
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overpass for the Sentinel NIR Bands. The relative
humidity during the satellite overpass was 41%. As
shown by Forster (1984) and Hadjimitsis et al.
(2004a), relative humidity and temperature can be
used to provide a measure of the equivalent mass
of liquid water or water vapour thickness. Although
the DP algorithm can be applied without any aux-
iliary meteorological data, as a fully image-based
technique, the authors used these data to investi-
gate any possible water vapour absorption effect in
atmospheric correction as suggested by Agapiou
et al. (2011b). The authors used Forster (1984)
and McClatchey, Fenn, Selby, Volz, and Garing
(1984) optical thickness values of water vapor cal-
culation based on relative humidity and tempera-
ture. Indeed, the partial pressure of water vapour
was calculated based on the ideal gas law assump-
tion. Absorption, due to water vapor for wave-
lengths lower than 0.7 μm, can be ignored as
shown by Agapiou et al. (2011b) and Forster
(1984).

Therefore, the assumption that absorption of water
vapor for Sentinel blue green red Bands is zero, was
made for the objective of this study. The optical
thickness of water vapor, for the NIR of Sentinel
was found to be 0.035 μm. Based on the study by
Agapiou et al. (2011b), it has been found that for
water vapour values greater than 0.026 μm the
water vapour absorption was significant and with
a “non-additive” effect. Indeed, in this case, the
absorption affects the satellite signal in the NIR
(Band 5 to Band 8) as shown in Figure 9 but not
with an additive effect as the one occurred with the
visible Sentinel Bands in which scattering is the main
atmospheric effect. This was also confirmed by using
the Pseudo Invariant Targets (PIT’s) atmospheric
correction method (Themistocleous, Hadjimitsis,

Retalis, & Chrysoulakis, 2012), in which the intercept
of the linear regression by using standard non-variant
targets in the vicinity of this area shows a similar
absorption effect in the NIR sentinel Bands.
Correspondingly, the resulting reflectance spectrum
in Figure 9 before atmospheric correction of
Vegetated area data throughout Band 6 to Band 8
was always at a higher level than the Buried structure
data. It can clearly be seen using Satellite and Field
data. In addition, it is evident that Buried structure
Satellite data is lower than Vegetated area satellite
data after atmospheric correction. This verifies that
ground spectroradiometric data and Satellite data are
in close proximity and therefore have similar results:
the Vegetated area has higher reflectance values than
the Buried structure area, indicating the effect of the
presence/non – presence of underground structure.

In addition, Figure 10 shows the comparison
between the two study areas using Satellite (after
atmospheric correction) and Field data regarding
Vegetation Indices. It is obvious that the results are
similar. Specifically, Vegetated Area using Satellite
Data comparing with its field Data their values are
almost identical. Furthermore, Vegetated Areas
results are higher than Buried Structure Satellite and
Field data, especially using SR and NDVI vegetation
indices. Additionally, Buried Structure and Vegetated
field data are very close with the respective Satellite
Data. Overall there are differences between the two
areas using Field Data as well as in Satellite Data due
the existence and non-existence of underground bur-
ied structure.

Concluding remarks

Field spectroscopy can support Satellite Remote
Sensing studies for systematically monitoring critical

Figure 10. Vegetation indices comparison between the two study areas using satellite and field data after atmospheric
correction on 5 March 2017.
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areas of interest including detection of underground
bunkers.

The application of remote sensing in defense and
security merges the technological improvements of
remote sensing sensors with military needs to
improve the quality of information retrieved from
remote sensing data.

The advantages of using vegetation indices as
proxy variables for inter-calibration among existing
sensors are the low sensitivity to the uncertainties in
atmospheric correction and the variation in the satel-
lite viewing angle (Steven et al., 2003). As shown in
this paper, vegetation indices can corroborate areas of
possible military underground structures.

In comparing the two areas, the findings (Figure 7–10)
reveal differences between them. This is clear in Figure 7,
where image maps illustrate the differences between the
two areas. NDVI, SR andMSR, mostly GEMI vegetation
index is useful for determining areas where military
underground structures are present. Spectroradiometric
measurements can be used as an alternative approach to
identify underground military structures, since they can
provide accurate spectral signatures for a wide spectral
region. Anomalies of the crop spectral signatures result-
ing from an existing underground structure can be
recorded using a spectroradiometer.

Using the NIR Band of Sentinel-2Α could be useful
to identify the underground structure. It is apparent
that the wave Band analysis performed on Sentinel 2
data distinguishes between the two study sites.
Monitoring variations of the NIR spectrum during
the life cycle of vegetation is a key parameter in Field
spectroscopy for the detection of military under-
ground structures using remote sensing techniques.

In this study, it was demonstrated how remote
sensing can be exploited as a monitoring and deci-
sion-making tool by any agency in tackling military
and security issues related to the presence of under-
ground military structures. Field spectroscopy mea-
surements were used to detect underground military
structures through variations in vegetation indices.
Indeed, vegetation indices can be used to develop
a suitable vegetation index for detecting military
underground structures. Additionally, remote sensing
images may be used for Field spectroscopy for the
detection of those structures.

Areas covered by natural soil where underground
structures are present or absent can easily be detected
as a result of the change in the spectral signature of
the overlying vegetation; in this respect, vegetation
indices, such as the NDVI, SR, RVI, OSAVI, DVI,
GEMI and MSR, may be used for this purpose.

Further testing and field spectroradiometric mea-
surements will be performed to study other types of
military underground structures to evaluate the
above results and the satellites’ spectral sensitivity.
The development of a standard model/methodology

framework to be produced through the stages of the
study for locating military underground structures is
an innovation in military operations research.
Additionally, an unmanned aerial vehicle (UAV)
may be used to survey the area with visible and
near-infrared cameras to generate other Vegetation
Indices for comparison to the in-situ spectroradio-
metric measurements (Melillos et al., 2016b). The
methodology presented in this study can be further
extended to other satellite sensors, especially to
those on board the next new generation high-
resolution satellites.
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