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Abs t r ac t Is it possible to break down natural porous material systems down to a 
scale where materials no longer change from one material to another, and upscale 
('nanoengineer') the behavior from the nanoscale to the macroscale of engineering 
applications? - This is the challenging question we address in these lecture notes 
through a review of tools and methods of experimental microporomechanics. The 
combination of advanced experimental indentation techniques and microporomech
anics theory provides a unique opportunity to understand and assess nanoproperties 
and microstructure, as a new basis for the engineering prediction of macroscopic 
poromechanical properties of natural composites. This is illustrated for cement-
based materials and shales. 

1 Introduction 

Inarguably, natural composite materials (concrete, soils, rocks, bones, etc.) are mul
tiphase and multiscale material systems. The multiphase composition of such materials 
is permanently evolving over various scales of t ime and length, creating in the course of 
this process the most heterogeneous classes of materials in existence, with heterogeneit
ies tha t manifest themselves from the nanoscale to the macroscale. The most prominent 
heterogeneity of such natural composite materials is the porosity which is the space left 
in between the different solid phases at various scales, ranging from interlayer spaces in 
between minerals filled by a few water molecules, to the macropore space in between 
microstructural units of the material in the micrometer to millimeter range; and which 
are all detrimental to the mechanical behavior of natural composite materials. 

Recent advances in both experimental and theoretical microporomechanics provides 
a rational means to quantitatively address multiphase and multiscale material systems. 
The underlying idea of continuum micro(poro)mechanics is tha t it is possible to separ
ate a heterogeneous material into phases with on-average constant material properties 
(Suquet, 1997; Zaoui, 2002). A phase, in the sense of continuum micromechanics, is not 
necessarily a material phase such as a specific mineral as used in physical chemistry, but 
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a material domain that can be identified, at a given scale, with on-average constant ma
terial properties, so that a continuum mechanics analysis can be performed, with some 
confidence and accuracy, at the considered material scale. Such phases are referred to 
as microhomogeneous phases. Provided the existence of such microhomogeneous phases, 
a combination of novel nanomechanical testing of materials and upscaling methods is a 
powerful tool to 'break the code' of natural composites: identify material invariant prop
erties and explain, by upscaling, the macroscopic diversity of natural composite materials 
systems. 

The first part of these lecture notes provides an introduction to theory of instru
mented indentation, and the application to heterogeneous material systems. By way of 
application, two case studies are presented in a second and third part, dealing with two 
natural material systems: cement-based materials and shales. 

2 Nanoindentation 

Indentation tests go a long way back, as early as 1722 (Reaumur, 1722), and started out 
with hardness measurements (for a review see Borodich and Keer (2004) and references 
cited herein). More recently, thanks to progress in hardware and software control, depth 
sensing techniques were introduced that allow a continuous monitoring of the displace
ment of the indenter into the specimen surface for both loading and unloading. The 
idea of depth sensing techniques and its implementation down to the nanoscale appears 
to have developed first in the former Soviet Union from the mid 1950ies on throughout 
the 1970ies, and received considerable attention world-wide, ever since Doerner and Nix 
(1986) and Oliver and Pharr (1992) in the late 1980ies and early 1990ies, also identified 
this technique for analysis and estimation of mechanical properties of materials. While 
the chronology of events of discovery may still be in debate^, there is little doubt, at least 
as far as the elastic behavior is concerned, that it is the Hertz type contact problem that 
forms much of the theoretical background of modern indentation analysis. An indenta
tion test provides a continuous record of the variation of the indentation load, P , as a 
function of the depth of indentation, /i, into the indented specimen, and the extraction 
of material properties, from the P — h curve, is achieved by inverse analysis. 

2.1 Hardness 

To motivate the forthcoming developments, we consider a three-dimensional, rigid, 
conical indenter of a given half-angle a, indenting normally into a homogeneous elastic 
perfectly plastic cohesive-frictional material half-space, Xi > 0. The origin (O) of the 
Cartesian system is put at the point of the initial contact between the conical indenter 
and the half-space (Fig. 1). The indentation test consists of (at least) two phases, a 
loading phase and an unloading phase, during which either the force, P , or the rigid 
displacement of the indenter, /i, is prescribed. Conical indentation leads to geometrically 
self-similar indentation states. That is, for a given half-angle, the average pressure below 

^ The chronology of events of discovery of depth-sensing indentation and indentation anlaysis 
has only recently been revealed by Borodich in several remarkable publications (Borodich and 
Keer, 2004). 
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the indenter is independent of the indentation load and the true contact area. Using 
the projected current contact area, which is proportional to the true contact area for 
geometrically self-similar indenters (ze. AM = A/ sin a for conical indenters), yields the 
classical definition of hardness H, which can be determined at any point along the P — h 
curve for which the contact area is known: 

de_f Pi P2 _ P / ^ -, X 

where A = TTO^ is the projected contact area, and a— he tan a is the contact radius. 
The main problem in the analysis is that the contact surface A (respectively the 

contact depth he) is not known a priori^ but is a solution of a boundary value problem. 
In fact, the rigid displacement h of the indenter is generally not the contact depth, 
he (Fig. 1), corresponding to the maximum projected contact surface of the indenter 
with the deformed half-space surface: hc/h < 1 corresponds to what is referred to, in the 
indentation literature, as sinking-in; and hc/h > 1 as piling-up (Fig. 1). Hence, there are 
a priori two independent measurements to be carried out: the force P and the projected 
contact surface A. It is instructive to perform a dimensional analysis (Chen and Chen, 
2004): The two dependent quantities of interest that define the hardness, force P and 
contact area A (respectively the contact depth he), depend on the material properties 
(stiffness Cijkh cohesion c, friction angle (/?), the indenter geometry (which in the case of 
conical indentation reduces to the half-apex angle a) , and the indentation depth h: 

P = f{Cijki,c,^,a,h) (2.2a) 

A = g{Cijkuc,^,a,h) (2.2b) 

From a straightforward application of dimensional analysis (or more precisely the Pi-
Theorem) to relations (2.2), it is readily found that the two dimensionless relations, 

^ = n,(%!,^.c.) (2.3.) 

I = n^(5aa_^,„^ (2.3b) 

define a unique third dimensionless relation, the hardness-to-cohesion ratio as a unique 
function of the stiffness-to-cohesion ratio, the friction angle and the half-apex angle: 

- = ̂ =n(^^,^,o) (2.4) 
C 11/3 V C / 

The dimensionless relations have two limits: 
For conical indentation into a perfectly elastic material {Cijki/c —̂  0, (/: = 0), it is 

readily recognized that the dimensionless relation (2.3b) is independent of the elasticity 
constants, and that the contact depth to indentation depth ratio is a constant (Swadener 
and Pharr, 2001): 

hm ^ = - (2.5) 
Cijki/c^O h TT 
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Indentation depth, h 

Figure 1. Principle of Indentation Test. 
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Relation (2.5), which is a general property of the Hertz contact problem into a perfectly 
elastic material (whether isotropic or anisotropic), states that perfect elasticity always 
produces sink-in, hc/h < 1. 

For conical indentation into a rigid plastic material {c/Cijki -^ 0), yield design ap
proaches are suitably employed to determine the H/c ratio for specific strength criteria. 
Yield design is based on the assumption, that plastic failure occurs when the material 
system has exhausted its capacity to store the externally supplied work rate, ie. Ph into 
recoverable elastic energy, so that the supplied work rate is entirely dissipated within 
the material bulk and along surfaces of discontinuity through kinematically admissible 
velocity fields U_ (see e.g. Salengon (1983), Ulm and Coussy (2003) Chapter 9); ie. for 
the indentation test: 

Ph= [ 7T{d)dn^ f7r{[[U]])dT (2.6) 
Jn Jr 

where TT (d) = super : d and TT ([[£/]]) = supT- [[U]] is the maximum dissipation capacity 
the material can develop in the material bulk Q and along surfaces of discontinuity F; a 
is the statically and plastically admissible stress field, and T = cr • n is the stress vector, 
satisfying: 

a = V ; divtr = 0; [[T]] = [[a • n]] = 0 (2.7a) 

/ ( ^ ) < 0 ; / ( r ) < 0 (2.7b) 

where superscript t stands for transpose; and / (cr) and / (T) are the yield function de
fining the strength domain of the material system respectively in continuous material 
sub-domains and on surfaces of discontinuity; while d is the solution strain rate field in 
continuous material sub-domains, and [[U_]] is the velocity jump over surfaces of discon
tinuity F, which are kinematically compatible with the velocity field [/, and compatible 
with the plastic flow rule of the material: 

d = i (gradi/ + ' grade/) = A | ^ (2.8a) 

[[U]] = U-^-U-=X^ (2.8b) 

For a cohesive-frictional material of the Mohr-Coulomb type, the problem to be solved 
reads (Ganneau et al., 2004): 

Ph = -^— I U-nda (2.9) 

where C/ • n is the normal component of the velocity field at the surface 9Q of the half-
space, which includes the cone mantel AM = A/ sin a, and the stress-free surface outside 
the contact radius r > a =^ y/A/n. The previous relation can be recast in the form of 
(2.4): 

lim —=niip,e) = —^ / U^-nda (2.10) 

with U_ — U!/h the normalized surface velocity field. Exact axi-symmetric yield design 
solutions for indentation in Mohr-Coulomb materials are scarce: Hopkins et al. (1961) 
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Figure 2. Upper-Bound Yield Design Approach (compiled from Ganneau et al., 2004): 
Hardness-Gohesion ratio as a function of friction angle for different semi-apex angles: 
a = 70.32° is representative of a Berkovich indenter; and a = 42.28° is representative of 
a Cube Corner indenter, when assimilating the three-sided pyramidal indenters to cones 
of same projected contact area. 

provided a yield design solution for the smooth punch and Matar and Salengon (1982) 
provided a heuristic solution for the perfectly rough punch. Not surprisingly, as one re
duces the cone angle, the amount of energy that is dissipated at plastic failure decreases 
(Figure 2). Making use of this property, it is possible to determine from two indenta
tion tests with different apex angles the two strength properties of rigid-plastic cohesive 
frictionless materials. Figure 2 displays the hardness-to-cohesion ratio as a function of 
the friction angle for two apex angles (a = 70.32° and a = 42.28°) obtained from a 
computational implementation of the upper bound limit theorem (Ganneau and Ulm, 
2004; Ganneau et al., 2004). The figure also displays the hardness ratio vs. the friction 
angle, displaying an almost linear relation. 

Finally, in between these two Umit cases (purely elastic - rigid plastic), the con-
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Figure 3. Hardness-to-cohesion ratio vs. strength-to-stiffness ratio for pure cohesive 
materials, ip = 0 (generated from Cheng and Cheng (1999)). 

tact depth - to indentation depth ratio needs to be solved for any particular material 
behavior. Closed form solutions are generally not available, so that use of numerical 
methods to solve the nonlinear elastoplastic contact problem becomes necessary. For 
elastoplastic non-frictional materials {(p = 0) with and without strain hardening, Chen 
and Chen (1999,2004) showed, by means of finite element simulations, that hc/h is in
sensitive to the Poisson's ratio, but dependent on the strength-to-stiffness ratio c/E and 
on the power-strain coefficient. For this class of materials, the dependence oi hc/h on 
the material properties translates into the dependence of the hardness-to-strength ratio 
on the strength-to-stiffness ratio (Figure 3). A similar dependence is expected to char
acterize cohesive-frictional materials, but to our knowledge, the dependence of hc/h on 
the strength properties of frictional materials has not been studied. 

For geomaterials, for which typically c/E ~ 10""^ — 10~^ it is most likely that yield 
design solutions of the form H/c = H {cp, a) are highly relevant. In return, it requires an 
independent measurement of the projected contact surface, in order to determine -with 
high accuracy- the exact value of the hardness, and hence the strength parameters, c 
and (p. 

2.2 Indentation Stiffness Measurements 

The quantity that is measured upon unloading is the slope S that is fitted to the P — h 
curve at the maximum indentation depth /imax (Fig. 1), and the mechanical property 
that is extracted is the indentation modulus M, from the so-called Bulychev-Alekhin-
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Shoroshorov equation, in short BASh-equation (see e.g. Borodich and Keer, 2004): 

dP dg 2 ^ ^2.11) 

Again, it is instructive to perform a dimensional analysis. Provided a pure elastic beha
vior upon unloading, slope S depends on the elastic constants, as well as on the force 
^max, the maximum indentation depth /imax, and the half-cone angle a. Dimensional 
analysis yields: 

^^"'max -j-r / (^ijklf^m: 

~P ~ ^ I ~~P' 
^max \ ^m 

or equivalently, using definition (2.11) and the invariants (2.4) that characterize the 
loading indentation response right upon unloading: 

S 2 M f^=r- ^ (Cijkl^-\ 
- = - = v ^ X n , - F n ^ \ a (2.13) 

^ ^ n ^ f i l i ^ i V a x ^ ^ ^ (2.12) 

where U is the hardness during loading. The r.h.s. of (2.13) is readily found to be 
independent of indentation depth /imax, at which unloading takes place; as is the MjR 
ratio, which depends on the stiffness-to-cohesion ratio, the friction angle and the half-
apex angle. For instance, in the case of a perfect elastic behavior, the elastic Hertz 
contact solution yields: 

lim f ^ ^ = 2 t a n a (2.14) 

In this case, Xwndj^ilc-^^^ii — | tan^ a and lim^^^^/c^on^ = 2. In general, however, 
MjE. is a dimensionless number that characterizes, for a given cone angle, the stifl"ness-
to-strength ratio of the intended (homogeneous) material. 

Similar to the extraction of strength properties from hardness measurements, the 
key to a successful determination of the elastic properties from indentation relies on the 
determination of the correct projected contact area. This is not an easy task. Tradi
tionally, the contact area has been determined by direct optical measurement of the size 
of the residual hardness impression after a complete unloading. For practical reasons, 
however, some means other than direct observation of the hardness impressions is needed 
to measure contact areas, since imaging very small indentations is both time-consuming 
and difficult (Fig. 4). Making use of the BASh relation (2.11), the contact surface can 
be scaled, for a given material (same M), from two unloading slopes: 

For instance, if the contact area for a specific indentation depth or indentation geometry 
(half-apex angle a) is measured, it is possible to either determine the contact area or 
contact depth for another indentation depth for the same indenter (same a) , or scale the 
contact area from one indenter geometry to another. In the latter case, use of (2.15) 
allows one to determine e.g. the hardness ratio from: 
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Figure 4. Gradient Images (Top) and AFM Images (Bottom) of residual impressions 
after microindentation in a shale material. 

An original method for conical indentation that circumvents the necessity to measure 
the contact area, was suggested by OHver and Pharr (1992), by applying relation (2.5) 
to the pure elastic recovery during unloading: 

he- hf = — (/imax - hf) (2.17) 

where hf is the residual indentation depth. Since /imax is measured, the key to the 
analysis becomes the determination of the residual displacement hf. This is achieved by 
considering that the elastic unloading is scaled, for conical indentation, by a power-two 
function: 

2 . . .P P = c{h — hf) ; h — hf 

Finally, a combination of (2.17) and (2.18) yields: 

^^ = 1 ^ 
hn Shri 

(2.18) 

(2.19) 

where 6 = 2 (1 — 2/7r) = 0.73. Relation (2.19) is also valid for other indenter shapes: 
6 = 1 for a flat punch (P oc /i), and e = 0.75 for a parabola of revolution (P oc /i^/^; 
Sneddon, 1977). 
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The main problem of the Oliver and Pharr method is that is assumes the shape of 
the deformed solid outside the area of contact to be elastic. This is not true when plastic 
deformations occur around the indenter to form pile-ups, hc/h > 1, which cannot be 
predicted by (2.19). Several modifications have been proposed to the original method 
(Pharr, 2002; Chen and Chen, 2004, Ohver and Pharr, 2004), and the topic continues to 
be focus of intensive research in the indentation mechanics community. 

2.3 Indenter Geometries 

An essential feature of indentation analysis is the self-similarity of Hertz-type contact 
problems. The conditions under which frictionless Hertz type contact problems possess 
classical self-similarity were stated by Borodich (1988 according to Borodich et al., 2003); 
and include: 

1. The shape of the indenter is described by a homogeneous function whose degree 
is greater or equal to unity. Using a Cartesian coordinate system 0x1X2X3 whose 
origin O is at the indenter tip and X3 is the orientation of the indentation, the 
shape of the indenter (height) is defined by: 

f(Xxu\x2) = X''f{xuX2) (2.20) 

for arbitrary positive A. Here d is the degree of the homogenous function / ; in 
particular d = 1 for a cone and d = 2 ior the elliptic paraboloid considered by 
Hertz. Such axi-symmetric indenters can be described by monomial functions of 
the form (first introduced by GaUn, 1946 according to Borodich and Keer, 2004): 

/ = / (xi = r cos (9, X2 = r sin 9) = Br"^ (2.21) 

where B is the shape function of the indenter at unit radius, and d is the degree of 
the homogeneous function. For a conical indenter [d = 1), having a semi-vertical 
angle a; B = cot a. For a spherical indenter of radius R, d = 2 and B = 1/ {2R). 
The previous expression was recently extended to indenters of non-axi-symmetric 
shape, such as pyramidal indenters that are frequently employed in depth-sensing 
indentation tests (Borodich et al., 2003): 

f = B{6) r^ (2.22) 

where B {6) describes the height of the indenter at a point (^, r = 1). For a three-
sided pyramid, d = 1, and making use of the triple symmetry: 

B (0) = cot ao sin (TT/G + 6) (2.23) 

where QQ is the angle in vertical cross-sections. For a Berkovich indenter, having a 
face angle of 115.13°, ao = 65.3°; and for a cube corner indenter of 90° face angle, 
a o = 35.26°. 

2. The operators of constitutive relations F for the indented material is a homogeneous 
functions of degree K, with respect to the components of the strain tensor: 

F (Ae) = X^F (s) (2.24) 
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Evidently, a linear elastic law satisfies this relation since /̂  = 1; as does any nonlin
ear secant elastic formulation of the form G — C(£:) : e for which the secant elastic 
stiffness tensor satisfies: 

C(A£) = A'^-^C(£) (2.25) 

A similar reasoning applies to the dissipation function TT (Ad) — A'̂ TT (d) for yield 
design solutions based on expression (2.6). 

Then provided the homogeneity of material properties and that the stress-strain re
lation remains the same for any depth of indentation, the whole load-displacement curve 
in a depth-sensing test can be scaled by (Borodich et al., 2003): 

where A is the projected contact area, which appears to be not affected by the constitutive 
relation. In return, the hardness is scaled with the indentation depth by: 

KJd-l) 

We verify that the load-displacement relation is scaled by P oc /i^ for conical and ideal 
(sharp) pyramidal indentation, for which d = 1, irrespective of the constitutive relation 
(2.24). As a consequence, the hardness is a constant over the loading process, as defined 
by (2.1). On the other hand, the constitutive relation power K significantly affects the 
load-displacement relation for spherical or elliptic paraboloid indenter geometries, for 
which d = 2, and must be known in advance in order to analyze the load-displacement 
curve. For instance, for an elastic behavior, P oc h (which corresponds to d —^ (X)) 
is indicative of flat indentation, and is described by Boussinesq's solution; P (x h^'^ is 
indicative of linear elastic spherical or paraboloids of revolution. 

Finally, given the same o? — 1 degree of the homogeneous shape function of three-
sided pyramidal (Berkovich, corner cube) and conical indentation, it is common practice 
to consider, instead of the original three-dimensional pyramidal shape, an equivalent 
cone of revolution in sharp indentation analysis, such that the projected contact area 
with respect to indentation depth of the cone is the same as that for the real indenter, 
ze. from (2.26): 

A{h) = Coh^ =7r{htSinaeqf =^ tan^eq -= J— (2.28) 

where Co is a constant characterizing the specific pyramidal indenter, and aeq is the 
equivalent half-apex cone angle. Using (2.28), the flat Berkovich indenter (ao = 65.3°), 
for which Co = 24.56, can be assimilated to an equivalent cone of semi-apex angle 
afq = 70.32°; and a Corner Cube Corner indenter (ao = 35.26°; Co = 2.598) to one 
with a^^ = 42.28°. The hardness-to-cohesion ratio vs. friction angle relation displayed 
in Figure 2, are the equivalent conical indentation results for a Berkovich and a Corner 
Cube indenter. 
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2.4 Link between Indentation Modulus and Elastic P roper t i e s of Transverse 
Isotropic Materials 

Provided the contact area is known (as a function of the indentation depth), the 
hardness H and the indentation modulus M can be determined. As we have seen above, 
except for very specific behaviors, these two quantities are not material properties, but 
provide rather a snapshot of some strength behavior {H) and elasticity behavior (M), 
that needs to be linked to actual material properties: cohesion c, friction angle (f^ elastic 
stiffness tensor C, etc. 

We restrict ourselves to linear elastic indentation analysis, for which the measured 
initial unloading slope S and the measured (or estimated) contact surface give access to 
the indentation modulus through the BASh equation (2.11). The analytical hnk between 
the indentation modulus and the elastic constants is provided through elastic solutions 
of the Hertz-type contact problem for specific indenter geometries. For rigid indenter, a 
convenient way of solving this problem consists of two steps: (1) determination of the 
Green's surface function, that is the displacement field corresponding to a concentrated 
unit load; and (2) integration of the Green's function to find the displacement field 
resulting from an assumed pressure distribution under the indenter, and verifying that 
the result matches with the boundary conditions of a rigid indenter. These boundary 
conditions are defined by the shape of the rigid indenter. 

To illustrate the procedure, we consider first the conical indentation into a linear 
elastic isotropic half-space. The Green's surface function reads: 

rj{r) = ^ (2.29) 

The contact area is a circle of radius a, and the pressure distribution is of the form: 

p ( r ) = p o c o s h - ' ( - ) (2.30) 

where po = P/ (7ra^) is the average pressure w.r.t. the projected contact area. The 
displacement at any point Q{ri^6) situated on the projected contact surface is: 

ui{ri,e) = / j p{r) r/dn - r | ) rdrdO (2.31) 

The indentation depth h is equal to the displacement ui at the cone tip. Evaluating 
(2.31) for r = 0 gives: 

h = ui{ri - 0) = 27rWpo / cosh"^ (a/r) dr = nH- (2.32) 
Jo « 

or equivalently, after rearrangement: 

P=^^;5=Ayi_L (2.33) 

A comparison of the expression (2.33) with the BASh equation (2.11) allows us to identify: 

M = ± (2.34) 
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The simple example shows that the key to the establishment of the link between the 
indentation modulus M and the elastic constants of the indented half-space is the Green's 
surface function expression (2.29). In the general case, the Green's surface function reads 
(Vlassak and Nix, 1993, 1994): 

v{y) = 
7r2 \y\ 

=^v{r.0) me) (2.35) 

where y is the position vector of Q relative to the load point P; (r, 9) are polar coordinates 
of Q on the surface; a i , a 2 , a 3 are the cosines of the direction normal to the indented 
surface; B is a second order tensor defined by (Barnett and Lothe, 1975): 

1 f'^'' 
Bjsit) = Bsjit) = ^ / ((mm)^-, - (mn)^/e (nn) J (nm) (2.36) 

where (ab)j/c — aiCijkih (with the summation of repeated indices); t = ^ / |^| is the 
normalized form of y] {jn^n^t) forms a right hand cartesian system, and 0 is the angle 
between vector m and the unit normal outward to the surface (Figure 5a). And finally, 
rj{r^9) is the surface Green's function, homogenous in r~^. For isotropic materials, it is 
convenient to employ the following form of the elastic stifi"ness tensor: 

C = (Cii + 2C12) J + (Cii - C12) K (2.37) 

where JJ = ^ 5 0 5 and K = I — J are the spherical and the deviator tensor projection of 
the 4th order unit tensor, and Cn = C i m and C12 = ^1122 are the elasticity constants, 
related to the bulk and shear modulus by: 

3K = C i i+2Ci2 ; 2G = Cn-C, 12 

Use of (2.37) in (2.36) and (2.35) yields after some transformations, 

n='- Cn 
n CI,-CI 

M = 
fy2 
^ 1 1 

C^ 12 

12 Cu l-v^ 

(2.38) 

(2.39) 

Things are more complicated when it comes to anisotropic materials. Much of the 
recent contributions to the analysis of the Hertzian contact for anisotropic solids can 
be traced back to the 1966 work of Willis, who reduced the problem to the evaluation 
of contour integrals for parabohc indenters. Vlassak and Nix (1993, 1994) simphfied 
the solution using the surface Green's function expression (2.35), and provided implicit 
solution schemes for other indenter shapes. To our knowledge, the most refined (recent) 
solution schemes for general anisotropic materials are those proposed by Swadener and 
Pharr (2001) for conical and parabolic indenters and by Vlassak et al. (2003) for conical 
and spherical indenters. Both solution schemes involve computational demanding oper
ations even in their approximated versions. For orthotropic materials indented in the 
axes of symmetry, some easy implementable explicit expressions can be given, based on 
some approximations of the Green's function (Delafargue and Ulm, 2004). The principle 
is briefly evoked below for transversely isotropic materials. 
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(c) 

A2 /Sol ic / 

x3 
/ 

'b 
Figure 5. (a) Coordinate system; Indentation into (b) the axis of symmetry, and (c) 
into the plane of symmetry of a transversely isotropic material. 

Let direction xZ be normal to the planes of isotropy of a transversely isotropic ma
terial; and directions x\ and x2 be parallel to the planes of isotropy so tha t the resulting 
coordinate system is a right-hand cartesian one, with the first indented point as origin O 
(Figure 5b). In this coordinate system, the elastic stiffness tensor is wri t ten in the form: 

C, ijkl 

c 11 C12 

C i i 

C l 3 

C l 3 

C33 

0 
0 
0 

2G44 

0 
0 
0 
0 

2C44 

0 
0 
0 
0 
0 

sym 

where we use the reduced notations:^ 

Cn - C 12 

(2.40) 

Cii = C i i i i 

Cl2 = ^^1122 = ^2211 
C'13 = C'1133 = C3311 

C'li — C12 = 2C1212 
C44 = C2323 — ^"1313 
C'31 = y/CiiCss > C13; with C33 = C3333 

(2.41) 

^The last condition in (2.41), C31 
symmetric positive definite. 

VCii C33 > Ci3, ensures that the stiffness tensor is 
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We are first interested in an indentation in direction xS, ie. normal to the planes of 
isotropy. For this case, an analytical solution of the Hertz contact problem for conical 
indentation is available. The Elliot-Hanson solution reads (Elliot, 1949; Hanson, 1992): 

irm 

where H is the constant: 

h'^ tan(a) (2.42) 

(2.43) 

A derivation of (2.42) w.r.t. to h yields the BASh equation (2.11), together with the 
indentation modulus in the axis of symmetry x3: 

J_ 4_ - \ (2.44) 
C44 Csi -h Ci3 / 

It is interesting to note that the solution does only depend on four of the five elastic 
constants of a transversely isotropic material (Cn, C33, C44, C13). The fifth independent 
constant C12 = C1122 = Cuu — 2 C1212 does not appear in the expression of H. 

When the half-space surface is orthogonal to the material's planes of isotropy, the 
problem is no longer axi-symmetric and the projected contact area is no more circular. We 
consider an indentation into axis xl of the half-space. The indentation axis (xl) belongs 
to two planes of symmetry (Fig. 5c): (xl, x3) is orthogonal to the planes of isotropy, and 
(xl, x2) is parallel to them. In this case, an evaluation of (2.35) for (ai , 0̂ 2, (^3) = (I5 O5 0) 
yields the exact values of the the Green's function rj in the x2—direction (6 = 0), and in 
the x3—direction {0 = 7r/2): 

C33 / I 2 
n, = «(» = 0) = ^ , / ^ ^ ^ [j^ + ^-^J (2.45) 

It is interesting to note, from a comparison of (2.43) and (2.45), that H2 = y C W ^ i i ^1 
while H3 turns out to be the Green's function constant for an isotropic material with 
stiffness constants Cu = Cuu and C12 = ^1122, as defined by (2.39). Furthermore, 
since the Green's function is 7r-periodic by definition and even by symmetry, H2 and H3 
are extreme values oiH{9). Restricted to indentation in principal material axes, it seems 
appropriate to consider a first order approximation H{9) that interpolates the Green's 
function r]{r, 6) ĉ  n{0)/r so that W(6> = 0) = H2 and n{9 = ^) = W3: 

n^0) = 2 k ^ + ? k ^ cos(2^) (2.47) 

Finally, to complete the determination, we need to specify the shape of the contact area 
and the pressure distribution. It is generally assumed that the projected contact area 
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is elliptical for conical indentation of general anisotropic materials. By symmetry, the 
axes of the elliptical contact area must coincide with x2 and x3. If a2 and as are the 
ellipse dimensions in the respective directions x2 and x3, then the ellipse eccentricity 

is e = Wl — ( ^ j if a2 < a3, and e = Wl — f ̂  J otherwise. We assume that the 

pressure field p{y2^y^) at point P of coordinates (2/2,^3) has the form (Swadener and 
Pharr, 2001): 

( 2 2 \ ~^l^ 
% + % (2.48) 

^2 ^ 3 / 
The displacement in any point Q{z2^ ^3) situated on the projected contact surface is: 

^1(^2,^3) = / / Piy^iVs) r]{z2 - ^2,^3 - ^3) dy2dys (2.49) 

Substituting in rj the Green's function approximation (2.47), and proceeding as in the 
isotropic case, we evaluate the indentation depth h from the displacement ui at the 
cone tip, and express it as a function of the load P = 7Ta2aspo. Deriving this expression 
yields together with the BASh equation (2.11) the following expression of the indentation 
modulus Mi: 

where £{e) is the complete elliptic integral of the second kind, and e the eccentricity, 
which for the Green's function approximation (2.47) reads: 

We note that 0.99 < ^(e) < 1 if e < 0.6, which corresponds to an ellipse axis ratio smaller 
that 1.25. Hence, using ^(e) ^ 1 in (2.50) simplifies the expression of the indentation 
modulus normal to the axis of symmetry: 

M ~ ^ ^ / ^ll^IuL^IlM (2.52) 
7ry/H2H3 y V ^̂ 33 ^n 

where M3 is the indentation modulus in the axis of symmetry. 
In summary, relations (2.44) and (2.52) highlight that indentation moduli provide an 

intriguing snapshot of the elasticity activated in an indentation test. They also highlight 
the difficulty to directly determine for non-isotropic materials the elastic constants from 
indentation tests, as it would require five tests in different directions in order to de
termine five 'snapshots' of the transversely isotropic elasticity. The feasibility of such an 
endeavour can be checked using the two indentation moduli. Mi and M3, in the principal 
material axes, as they are expected to provide the highest contrast in elastic behavior of 
the material. 
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2.5 Indentation on Natural Composites 

Is it possible to apply continuum indentation analysis to heterogeneous materials, and 
if - how? 

Continuum indentation analysis is generally based on the assumption of homogeneity 
of material properties and that the stress-strain relation remains the same for any depth 
of indentation. Like all continuum analysis, continuum indentation analysis is based on 
the concept of a representative elementary volume (r.e.v.) of characteristic size C that 
needs to obey to the scale separability condition: 

d<t:C<^ max (/i, a) (2.53) 

where (/i, a) is the indentation depth and the indentation radius that define the order 
of magnitude of the variation of the position vector x; and d is the characteristic size of 
the (largest) heterogeneity contained in the r.e.v. Provided that (2.53) is satisfied, an 
indentation test operated to a penetration depth h gives access to the material proper
ties that are characteristic of a materials system at a length scale of C On the other 
hand, since most indentation solutions are based on the similarity approach, and derived 
from the infinite half-space model (which by definition has no length scale), and from 
the assumption of uniform material properties, the properties extracted -by means of 
an inverse analysis- from indentation tests are averaged quantities characteristic of a 
material length scale defined by the indentation depth or the indentation radius. A good 
estimate is that the characteristic size of the material domain sensed by an indentation 
is on the order of max (/i, a); roughly 3/i for Berkovich indentation and h for the corner 
cube. Given the self-similarity of the indentation test, choosing the indentation depth, 
therefore, comes to choose the length scale of material investigation. 

The heterogeneity of most natural composite materials down to very fine scales calls 
for a statistical analysis of indentation results. This requires that a large number of 
indentation tests be performed on a surface. A convenient way is to employ a grid 
indentation technique, defined by a grid size i that should be larger than the charac
teristic size of the indentation impression, so to avoid interference in between individual 
indentation tests (Fig. 6). 

Thought Experiment Consider a material to be composed of two individual phases 
of characteristic size Di and D2, and different material properties. If the indentation 
depth is much smaller than the characteristic size of the phases, h <^ {Di,D2), then a 
single indentation test gives access to the material properties of either phase 1 or phase 
2. If, in addition, a large number of tests is carried out on a grid size that is much 
larger than the characteristic size of the two phases, so that the locus of indentation 
has no statistical bias w.r.t. the spatial distribution of the two phases, the probability of 
encountering one or the other phase is equal to the surface fraction occupied by the two 
phases on the indentation surface. Provided that a similar distribution is found equally 
on other surfaces, the surface fraction can be assimilated with the volume fraction of the 
two phases present in the material. 

Consider next an indentation test performed to a maximum indentation depth that 
is much larger than the characteristic size of the individual phases, h ^ (Di,D2)- It 
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Figure 6. Optical microscope images of indentation grid: (left) example of microindent-
ation grid on a cement paste; (right) residual impression after unloading (magnification 
xlOO). 

is readily understood, from the scale separability condition (2.53), that the properties 
extracted from such an indentation test are representative in a statistical sense of the 
average properties of the composite material. 

The simple thought-experiment has all the ingredients of statistical indentation ana
lysis that need to be performed when it comes to natural composite materials. The 
key results of such analysis are distributions and their derivatives {ie. histograms or 
frequency plots) of mechanical properties determined by a large number of indentation 
tests at a specific scale of material observation defined by the indentation depth. Gener
ally speaking, small indentation depths give access to mechanical phase properties, and 
potentially to volume fractions, from (Constantinides et al., 2003): 

N. f. = ^; J:^^ = N (2.54) 
i=l 

where Ni is the number of indentations on material phase i, that can be identified by 
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Figure 7. Principle of statistical indentation analysis of natural composites: small in
dentation depths give access to properties of individual phases; large indentation depths 
yield a homogenized response of the material. 

the difference in material properties; that is fi is the volume fraction of a 'mechanically' 
identifiable material phase. In turn, greater indentation depths give access to homo
genized material properties of the composite (Fig. 7). Finally, a mapping of mechanical 
properties allows one to identify (if any) characteristic morphologies within the resolution 
defined by the grid size. These are all inputs required for microporomechanics analysis. 
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3 Experimental Microporomechanics of Cement-Bcised Materials 

A nanoindentation investigation starts with an understanding of the microstructure of 
the investigated material, and vice versa^ nanoindentation provides a means to identify 
the microstructure and the hnk between microstructure and material properties; and 
ultimately material invariant material properties. This is illustrated here for cement-
based materials.^ 

3.1 Multiscale Microstructural Think-Model of Cement-Based Materials 

Cement-based materials, hke many geomaterials, are highly heterogeneous materials, 
with heterogeneities that manifest themselves from the nanoscale to the macroscale. For 
purpose of a poromechanics analysis, it is convenient to break this highly heterogeneous 
material system down into different scales defined by characteristic sizes of heterogeneities 
which are often the porosity. Figure 8 displays a four-level microstructural think-model 
of cement-based materials, which is detailed below. 

Level '0': Nanoscale The lowest level of a mechanical representation of the complex 
microstructure of cement-based materials is the largest scale at which the material prop
erties do not change from one cement-based material to another. It is the scale, where 
physical chemistry meets mechanics; that is the material properties are solely defined by 
the physical chemistry of the formation process of the material. This scale is typically 
situated above the atomic scale. In the case of cement-based materials, it is the scale of 
the C-S-H solid that forms at early ages by the hydration of C3S and €28.^ We refer 
to this scale as level '0', since this scale is currently not accessible to mechanical testing. 
This scale has been the focus of many theoretical and experimental cement chemistry in
vestigations, starting with the groundbreaking works of Powers and his colleagues at the 
Portland Cement Association (Powers and Brownyard, 1948) recognizing the colloidal 
and gel-like properties of the C-S-H component. Powers attributed a porosity of roughly 
28% to this solid phase. Ever since, many models have been devised to characterize the 
microstructure with an emphasis on a layered structure of C-S-H. To cite a few, the well 
known Feldman-Sereda model postulated the existence of 'interlayer spaces' in the C-S-H 
gel, containing strongly adsorbed water (Feldman and Sereda, 1970). Wittmann's Mu
nich model is based on some concepts of colloidal science, relying particularly on the idea 
of a disjoining pressure that develops in the interlayer space as a consequence of hindered 
adsorption (Wittmann, 1974, 1988). Similar conclusions were arrived at by other authors 
as well (see e.g. Ba^ant (1972)): given the characteristic size of the interlayer space of 

^The investigation of the fundamental properties of cement-based materials was carried out 
in a collaborative research project with the Lafarge Corp., with Dr. Paul Acker as Scientific 
Advisor and Jean-Francois Batoz as manager. The financial support of this study by the 
Lafarge Corporation is gratefully acknowledged. The investigated heat-cured specimen were 
provided by the Northwestern University team of Profs. Hamlin Jennings and Jeffrey Thomas 
(Civil Engineering and Materials Science), whose collaboration, comments and suggestions is 
gratefully acknowledged. 

^The cement's chemistry abbreviation will be used in this paper (C3S = 3'CaO-Si02, C2S = 
2.CaO-Si02, C3A - 3-CaO-Al203, C4AF = 4CaO-Al203.Fe203). 
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LEVEL 

0: C-S-H solid 
Basic Building Block 

Globules 

L C-S-H matrix 

C-S-RLD 

C-S-RHD 1 

IL Cement paste [ 
CsS-Clinker 

C2S-Clinker 

CsA-Clinker 

C4AF-Clinker 

CH 1 

HI: 1/lortar ^ [ 
Sand 

1 Density [kg/m ] 

rsat Pdry 

1 2,800 
2,480 2,300 

1,930 1,440 
2,130 1,750 

1 ^ "^^3S {d) 

2 .̂ -" 
^C2S Jd) 

1 n ^C^A (Ĉ ) 

1 ?^C4AF jd) 

J 2,240 

1 2,650 

Porosity [%] Source 

V ô̂ ô 
-

18(W 
Jennings, 2004^"^^ 

Jennings, 2004^"^^ 

37.3 ±0.1^^^ 
23.7 dz 0.1^^^ 

Jennings, 2004^''^ 

Jennings, 2004^'') 

-

-

-

-

-

- Heukamp and Ulm, 2002 

Table 1. Intrinsic properties of cement paste and mortar constituents: 
^ Density values of C-S-H as predicted from the quantitative colloidal model of C-S-H by Jennings (2000, 
2004). 
^ Nanoporosity (intra-globules porosity) filled by structural water; 
^ Gelporosity (inter-globules porosity) of low density and high density C-S-H (excludes nanoporosity); 
^ p = total porosity = change in mass content due to drying at 105° C; includes structural water in 
nanoporosity and bulk water in gelporosity; 
^ Clinker density determined from cement density p^ = 3,150 kg/m^, and the mass proportions mx of 
the four clinker phases {X — C3S, C2S, C3A, C4AF) in the cement which are provided by the cement 
producer. 

less than ten water molecules in size (elementary dimension of water is distance between 
0-atoms 0.284 x 10~^ m), it was quickly recognized that the water in this space cannot 
be considered to be a bulk water phase, to which e.g. Stokes equations apply. Instead, 
the mechanical response at this scale is dominated by the surface properties of the C-
S-H gel, and the water present at this scale is structural water. Very recently, Jennings 
in a number of papers (Jennings, 2000; Tennis and Jennings, 2000; Jennings, 2004), 
provided qualitative and quantitative evidence of an amorphous colloidal structure of 
the C-S-H, organized in 'globules' (see Fig. 9), composed of basic building blocks and 
an intra-globules porosity. The way by which the porosity can be assessed, at this scale, 
is from mass density measurements (see Table 1). This porosity which manifests itself 
at a scale smaller than the characteristic solid dimension of 2.2 x 10"^ m, is (̂ Q = 1^% 
irrespective of the type of C-S-H. Instead, it is intrinsic to the C-S-H solid phase, and 
can be associated with the nanoporosity filled by structural water (and not bulk wa-
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LEVEL III ^ ^ ^ ^ ^ H Cement paste plus 
Mortar, 1 ^ ^ ^ ^ ^ H sand and Aggregates, 
Concrete 1 ^ ^ ^ ^ ^ H eventually Interfacial 
> 10'̂  m 1 H H H H I Transition Zone 

LEVEL II 
Cement Paste 
< 10-4 m 

LEVEL I 
C-S-H matrix 
< 10-6 in 

LEVEL '0' 
C-S-H solid 
10-9_io-io m 

• • *• * 

^ ^ ^ ^ ^ H C-S-H matrix plus clinker 
^ ^ ^ ^ ^ H phases, CH crystals, and 
^ ^ ^ ^ ^ H macroporosity 

^ ^ ^ ^ ^ H Low Density and High 
^ ^ ^ ^ ^ H Density C-S-H phases 
^ ^ ^ ^ ^ H (incl. gel porosity) 

f^^^^^^\ C-S-H solid phase (globules incl. 
: ^ ^ ^ ^ ^ ^ / m/ra-globules nanoporosity) plus 
*^^^^^W m/er-globules gel porosity 

Figure 8. Four-level microstructural think-model of cement-based materials. 

ter). Above this scale, there is a second type of porosity, the gel porosity, but which 
was found to differ from one type of C-S-H to another, as detailed below. Hence, from 
a poromechanics point of view, it is appropriate to consider this solid phase ('globules' 
in Jennings terminology) which includes a 18% intra-solid porosity filled by structural 
water, as the elementary sohd phase of a poromechanics representation of cement-based 
materials. This solid phase has been found to be of a characteristic size of 5.6 x 10~^ m. 

Level 'I': C-S-H phases - Gel Porosity - C-S-H matrix The solid phase of level '0' 
together with gel-porosity forms different types of C-S-H phases. These phases manifest 
themselves in units roughly larger than 16.6 x 10"^ m (Jennings, 2004), as sketched in 
Figure 9. We refer to this level as level I, as it represents the smallest material length scale 
that is presently accessible by mechanical testing, ie. nanoindentation (Constantinides 
et al., 2003; Constantinides and Ulm, 2004). At level I, the C-S-H exists in at least 
two different forms, a low density (LD) and a high density (HD) form (Fig. 9). The 
difference between the two types of C-S-H relates to the gel porosity of roughly 24% for 
HD-C-S-H, and 37% for LD-C-S-H (Jennings, 2000), due to the different packing density 
of the C-S-H solid of the two types of C-S-H; in addition to the 18% nanoporosity within 
the C-S-H solid phase (at level '0'); see Figure 9. In contrast to the nanoporosity, the gel 
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LEVEL I: 
C-S-H matrix < 10-̂  m 
Two types of C-S-H 

LEVEL *0': 
C-S-H solid 
+ Gel porosity 

d > 16.6 nm 

Globules': 
Basic Bldg. Block 
+ Nanoporosity 

Courtesy: K. Scrivener 

LD C-S-H 
37% gel porosity 

HD C-S-H 
24% gel porosity 

nm 
Basic Building Block 

18% nanoporosity 
(structural water) 

Figure 9. The Jennings colloid model of the two-types of C-S-H (Jennings, 2000; Tennis 
and Jennings, 2000; Jennings, 2004). 

porosity has a characteristic dimension of the solid phase, ie. on the order of 5.6 x 10~^ m, 
in which the water present can be considered as a bulk water phase - in the sense of 
poromechanics theory. The gel porosity can be defined in a standard manner: 

00 
Vf,LD 

VLD 
= 0.37; ^HD^]^^^^^ 

Vj HD 
(3.1) 

where Vf^ is the pore volume, and Vj the reference volume (J = HD.LD). The gel 
porosity values are also intrinsic to all cement-based materials: they are a consequence 
of the formation process of C-S-H in the course of hydration. That what changes from 
one cement paste material to the other is the volumetric proportion of HD-C-S-H and 
LD-C-S-H, within the C-S-H matrix. 

It is intriguing to remark that the LD-C-S-H packing density, 1 — 0o ̂  = 0.63, almost 
coincides with the random packing density of spheres of 64%, which corresponds to the 
maximum packing density in the random close-packed limit (known as RCP)^. In return. 

^More recent concepts refer to the RCP as the maximally random jammed state (MRJ), cor
responding to the least ordered among all jammed packings, which has been shown to have 
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the HD-C-S-H packing density, 1 — c/)^^ = 0.76 exceeds by little the densest possible 
spherical packing in three-dimensions of 74% (a problem known as the Kepler problem 
(Jaeger and Nagel, 1992; Sloane, 1998; Donev et al., 2004), which is the close-packed 
hexagonal or cubic structure. This is significant as it would confirm the underlying 
conjecture of the Jennings colloid model, that the two types of C-S-H are manifestations 
of the same solid, the only diff'erence being an unstructured (random) order of the LD-
C-S-H vs. a highly structured order of the HD-C-S-H. 

Level 'II': Capillary Porosity — n Solid phases Level II refers to the cement 
paste, which manifests itself at a characteristic length scale of 10~^ — 10~^ m (Fig. 8). 
At this scale, the porous C-S-H matrix composed of two types of C-S-H together with 
the unhydrated cement products {ie. the four clinker phases C3S, C2S, C3A, C4AF), large 
Portlandite crystals (CH = Ca(0H)2), aluminates and the macro-porosity (f)^ (which is 
often referred to as capillary porosity, and which is generally present only in high w/c— 
materials) form the cement paste. The total porosity p of a cement paste is the sum of 
the nanoporosity, the gel-porosity and the capillary porosity (Ulm et al., 2004): 

/ ^ = [V̂o (1 - ^LD) + ^LD] hn -f [iPo (1 - (PHD) + ^ / / D ] IHD + ^o (3-2) 

where fio and fno represent the volume fractions of the LD-C-S-H phase and the HD-
C-S-H phase present in the cement paste. The total porosity is the relative change of 
mass that is measured by means of weighting experiments on a fully saturated and a dried 
cement paste oven dried at 105°C. By contrast, other techniques such as poromercury 
intrusion (PMI), do not allow to assess the total porosity, as the technique typically fails 
for pore throat radii smaller than 7 x 10~^ m. From a poromechanics point of view, the 
porosity which is filled by a bulk water phase is the total porosity minus the nanoporosity 
(filled by structural water): 

<̂ ô  = ^LDILD + (t^Hufno + 00 (3-^) 

The dominating phase, at this scale, is the porous C-S-H matrix, which can occupy up 
to 90% of the volume of a cement paste. 

Level ' I I I ' : Mortar and Concrete Level HI of a characteristic length scale greater 
than lO^'^m refers to mortar and concrete; that is a composite material composed of 
a porous cement paste matrix, and sand particle inclusions in the case of mortar, and 
additional aggregate inclusions in the case of concrete. Some authors consider in addition 
the Interfacial Transition Zone (ITZ) between inclusions and matrix, which has been focus 
of many micromechanical modeling attempts (e.g. Garboczi, 1993; Li et al., 1999; Hashin 
and Monteiro, 2002; Heukamp and Ulm, 2002). From a poromechanics point of view, 
the cement paste matrix is a porous matrix, while -except for special applications- any 
porosity contained in the aggregates is rather of occluded nature. The total porosity at 
level HI, that can be assessed by weighting experiments, is: 

p'" = (1 - h)p" + {hrz - P") fiTZ (3.4) 
a density of 63.7%, which is very close the traditional definition of the random close-packed 
limit; see Donev et al. (2004), and references cited herein. 
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where / / and firz represent the volume fractions of the inclusions and of the ITZ, while 
(t>iTz is ^^^ porosity of the ITZ, which has been argued to differ (in some cases) from the 
porosity of the cement paste. A lower bound of the inclusion volume fraction is obtained 
by letting (t)jj^z ^P^^-

3.2 Indentation Analysis 

Indentation tests on cementitious materials have been reported by several authors: 
Igarashi et al. (1996) used a Vickers indenter (four-sided pyramid) with a maximum pen
etration depth on the order of /i^ax — 10~^m, which gives access to the bulk properties of 
cement paste at a sub-millimeter to millimeter material length scale. To our knowledge, 
the first nanoindentation results of constituents of Portland cement were provided by 
Velez et al. (2001) and Acker (2001). The first reported nanoindentation results of the 
elastic modulus and hardness of the major clinker phases (€28,038, C3A, C4AF), and 
the second provided values for Portlandite (CH=Ca(0H)2) and the C-8-H gel for differ
ent C/8-ratio. These results were obtained on an ultra-high performance cementitious 
composite material, DUCTAL^^, with a Berkovich indenter with penetration depths of 
about /imax — 0.3 — 0.5 X 10~^m; corresponding thus to bulk properties of the different 
phases at a characteristic length scale in the micrometer range. The stiffness value for 
CH was confirmed by Const ant inides and Ulm (2004), who provided stiffness values of 
the two types of C-8-H of an ordinary Portlandite cement paste prepared at a water-
cement ratio of w/c = 0.5, in a non-degraded and an asymptotically leached state. The 
key result obtained by this investigation was that the stiffness property of the two types 
of C-8-H obtained by nanoindentation at level I are independent of the mix proportions 
of the material (see also Const ant inides et al. (2003)). Ever since, the question has been 
raised why? 

Recently, we performed a series of tests on heat-cured cement paste samples, that 
provide some hints as to the origin of the invariant nature of the C-8-H properties (Con-
stantinides and Ulm, 2004b). The general interest in the behavior of heat treated cemen
titious materials stems from the use of high-temperature curing in concrete technology 
for obtaining both a high early-strength and a significant decrease of time dependent 
deformation (creep and shrinkage), particularly in the precast concrete industry. How
ever, it was quickly recognized that long-term properties are often negatively influenced 
by elevated curing temperature, as strength and other mechanical properties are often 
reduced and permeability increased. Beyond this particular industrial context, what 
we aim to show is the synergy of nanoindentation and microporomechanics analysis for 
understanding and assessment of the properties of complex natural composites, such as 
cementitious materials. 

The cement paste samples were prepared using a white portland cement with a low 
aluminates content (U8 Gypsum Co., Chicago, IL) at a water/cement ratio oiw/c — 0.5, 
to form bars measuring 0.25 m x0.025m x0.025m. The paste was hydrated under lime-
water at room temperature (Control specimen, labeled 'C'), and at a temperature of 
60°C for 28 days (Heat-cured specimen, labeled 'HC-28'). The heat curing was per
formed using the procedure described by Thomas and Jennings (2002): specimen were 
placed into a programmable water bath of limewater, and the temperature was controlled 
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Specimen 1 

w'/c [1] 
Heat-curing duration [d] 

Age [mth] 
No. of Micro-Tests 
No. of Nano-Tests 

1 Control (C) 

0.5 
0 
5 

10 (MM*) 
200 (HYS**) 

HC-28 

0.5 
28 
5 

30 (MM*) 
509 (HYS**) 

Table 2. Specimen description and experimental program. Control specimen was cured 
at 20° C. Heat curing temperature was 60° C. After heat-curing specimens were kept at 
20° C. Micro-Tests refer to microindentation tests operated with a maximum indenta
tion depth of 10 X 10~^ m, Nano-Tests refer to nanoindentation tests operated with a 
maximum indentation depth of 300 nm. Machines: (*) MM = MicroMaterials, (**) HYS 
= Hysitron. 

using a thermometer placed next to the specimen. The maximum temperature of 60 °C 
was chosen to avoid secondary high-temperature reactions, such as the decomposition of 
ettringite into monosulfate, which would hamper interpretation of the results. After the 
heat curing, the specimen were cooled to room temperature under sealed conditions, and 
kept in limewater until testing. The tested specimen, w/c ratio and age at testing are 
reported in Table 2. For the indentation testing, the square plate specimens were cut into 
slices of approximate thickness 5 — 10 mm. The surfaces were ground and polished with 
silicon carbide papers and diamond particles to obtain a very flat and smooth surface 
finish. This was achieved in 6 stages of decreasing fineness with the last one being in 
the range of 0.25 x 10~^ m. Such a smooth surface is of critical importance for nanoin
dentation tests, so to avoid introducing another length scale in the similarity analysis: 
the surface roughness. Furthermore, special attention was paid to keep the specimens 
flat and parallel on both sides, since this could influence the angle of indentation and 
thus the result of the measurements. After polishing, the samples were placed in an 
ultrasonic bath to remove the dust and diamond particles left on the surface or in the 
pore structure. 

Nanoindentation: Frequency Plots The flrst investigation focusses on level I and 
n , ie. on the material properties of the two-types of C-S-H. Given that the gel porosity 
has a characteristic dimension < 10~^ m (see Fig. 9) an indentation test that captures 
the composite behavior of the two types of C-S-H must be on the order of /i > 10~^ m. 
Following previous experience with nanoindentation on cementitious materials (Acker, 
2001; Constantinides et al., 2003; Constantinides and Ulm, 2004), a maximum penet
ration depth of 300 nm was chosen in the nanoindentation campaign carried out with a 
Berkovich indenter. 100 to 500 nanoindentation tests (see Table 2) were programmed 
with a grid-size of 10~^ m so to avoid interference in between single indents (see Fig. 6). 
The results are analyzed in terms of histograms of the mechanical properties (frequency 
plots). 

Frequency plots of the nanoindentation stiffness are displayed in Figures 10 for the 
control specimen ('C') and the 28 day heat cured specimen ('HC-28'). The histograms 
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display the frequency with which a specific stiffness is encountered in the experiment. The 
figures display a clear multi-modal distribution of the mechanical properties. Each peak 
corresponds to the mechanical manifestation of a chemical-morphological unit present in 
the microstructure. The intensity of each mechanical manifestation is representative of 
the intrinsic property of the phase. These are the macro-porosity, the LD-C-S-H, the 
HD-C-S-H, and Portlandite (CH) and residual clinker phases. The clear multi-modal 
distribution of these phases in Figure 10 makes it easy to graphically determine from a 
combination of the frequency plot and the cumulative distribution (ie. integral of the 
frequency plot), the intrinsic properties of the different phases and the volume fractions. 
These values are summarized in Table 3. 

The indentation modulus of the LD-C-S-H and HD-C-S-H is in perfect agreement 
with previous reported results obtained on other cement it ious materials: Acker (2001) 
reported two nanoindentation stiffness values for DUCTAL^^, a thermally treated Ultra-
High-Performance Cementitious Composite Material with w/c < 0.20, for which MLD = 
20 =b 2 GPa and MHD = 31 ib 4 GPa. In a previous nanoindentation test campaign on 
another w/c = 0.5 hardened cement paste (Constantinides et al., 2003; Constantinides 
and Ulm, 2004), we found MLD = 23±2 GPa and MHD = 31ib2 GPa. These indentation 
moduli are almost not affected by the thermal curing: the LD-C-S-H remains at a value 
of MLD = 20 GPa, and the one of HD-C-S-H shifts only sUghtly from MHD = 29 GPa 
for the control specimen to MHD = 31 GPa for the thermally cured specimens, which 
is surely smaller than the standard deviation; and hence statistically insignificant. The 
almost perfect agreement with previous reported values clearly confirms that the stiffness 
values of the two C-S-H phases are independent not only of the mix proportion, but as 
well of the thermal curing in the considered temperature range and of thermal treatment 
(DUCTAL-^^). Instead, these properties are intrinsic to the formation process of the 
C-S-H phases. 

That what changes due to thermal curing are the volumetric proportions of the differ
ent phases. The heat curing appears to favor the formation of high-density C-S-H. The 
relative proportion of LD-to-HD C-S-H shifts from 55/30 = 1.8 in the control specimen 
to 33/45 = 0.73 in the 28-day heat cured specimen ('HC-28'). Heat treatment, therefore, 
appears to be associated with a densification of the C-S-H matrix at Level I. In return, 
this densification of the matrix appears to occur at the expense of an increase in poros
ity at the considered scale. Given the indentation depth of 300 nm, this porosity has a 
characteristic size equal or greater than 300 nm. If we attribute an indentation stiffness 
< 5 MPa to a nanoindentation into a bulk phase dominated by this macroporosity, the 
volume fraction obtained from the cumulative distribution in Figure 10 increases from 
2% for the control specimen, to 8% for HC-28. What is interesting to note is that the 
total porosity as defined (3.2) does not change. Indeed, using the volume fractions from 
Table 3 in (3.2) yields a total porosity for the control specimen oi p^^ (C) = 40% and for 
the heat-cured specimen of p^^ (C) = 41%. The almost perfect agreement of the total 
porosity of control specimen and heat-cured specimen confirms that the creation of the 
macroporosity due to heat curing is a consequence of the conversion of LD-C-S-H (hav
ing a gelporosity of 37%) into HD-C-S-H (having a gelporosity of 24%). This conversion 
reduces the mesoporosity, ie. the total gelporosity in both LD-C-S-H and HD-C-S-H, 
but is compensated by the creation of macroporosity, so that the total porosity remains 
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Figure 10. Frequency plot and cumulative distribution of indentation modulus determ
ined by grid-nanoindentation: (top) control specimen (w/c=0.5) (No. of tests = 200); 
(bottom) heat cured specimen (No. of tests = 508). 
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Level I Macroporosity 
LD-C-S-H 
HD~C-S-H 

CH + Clinker 

Level I LD-C-S-H, H 
HD-C-S-H, H 

Level II M^ 1 
exp 

|| Control ('C') 
M 

[GPa] 

1 <5 
20 
29 

1 >40 
1 ̂  

[GPa] 
0.52 

1 L07 
1 19.1 

1 0.50 

Vol. Fr. 
[%] 
2 

55 
30 
13 

0-//X 

[%] 
68 
63 

9 
2 

HC-28 
M 

[GPa] 
< 5 
20 
31 

> 4 0 

M 
[GPa] 
0.45 
0.87 

19.5 
0.41 

Vol. Fr. 
[%] 
8 
33 
45 
14 

a/n 

[%] 
47 
40 

25 
4 

Table 3. Summary of indentation results. The maximum nanoindentation depth (level 
I) was 300nm, and the maximum microindentation depth was 10/xm. 

almost constant. 

Mechanical Mapping of Nanoindentation Results A second way of analyzing 
the nanoindentation test results consists in mapping the mechanical properties obtained 
on a grid of indentation tests. Each indentation result is assigned to a point on the 
grid that corresponds to the center of the indent. The discrete data points are linearly 
interpolated in between grid points to obtain continuous fields of mechanical properties, 
with a resolution defined by the grid-size of 10~^ m. The results are displayed on the x—y 
plane in form of contour plots that capture ranges of mechanical properties. Based on 
the frequency plots and the values summarized in Table 3, we map the nanoindentation 
stiffness values into four domains: 

1. Macroporosity domain 0 — 13 GPa: Values situated in this range are associated 
with regions for which the mechanical response is dominated by high porosity. For 
purpose of comparison, these areas are indicative of the macroporosity. 

2. Low-Density C-S-H domain 13 — 26 GPa : Values situated in this range are situated 
around the first peak in the frequency plots 10, and are associated with regions in 
which the mechanical response is dominated by the LD-C-S-H (having a charac
teristic gel porosity at a scale below of 37%). 

3. High-Density C-S-H domain 26 — 39 GPa: Values situated in this range correspond 
to the second peak in the frequency plots 10, and are attributed to the dominant 
mechanical effect of the HD-C-S-H (having a characteristic gel porosity at a scale 
below of 24%). 

4. Unhydrated clinker and CH domain > 40 GPa: The higher stiffness values are 
indicative of unhydrated clinker phases and Portlandite. While the latter tends to 
grow in regions of high w/c ratios adjacent to macropores and in between LD-C-
S-H, the residual clinker phases are generally rimmed by HD-C-S-H. 
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Figure 11 displays maps of 100 nanoindentation results for the control specimen and 
the 28-day heat cured specimen. The contour plots provide evidence of the creation of 
a new pore class and of a substantial change of percolation of the C-S-H phases as a 
consequence of the heat curing. Indeed, while almost absent in the control specimen 
' C (a single point in Fig. 11 represents rather a statistical event than a morphological 
pattern), the macroporosity domain becomes an identifiable morphological pattern in the 
map of the 28-days heat cured specimen , in which the macropores occupy regions sev
eral times the grid size of 10~^ m. Furthermore, in the control specimen, the continuous 
(percolated) solid phase appears to be the LD-C-S-H, which forms a matrix that accom
modates residual clinker phase encapsulated into a rim of HD-C-S-H. By contrast, in the 
heat cured specimen, there is a larger proportion of HD-C-S-H present which tends to 
percolate throughout the microstructure, while the LD-C-S-H appears to be disconnect 
and situated around the large macropores. It almost appears as if the HD-C-S-H forms 
a continuous matrix that accommodates the macroporosity encapsulated into a rim of 
LD-C-S-H. 

Nanohardness Measurements Figure 12 shows a log-log plot of the hardness vs. the 
stiffness. Besides showing a large scattering of the hardness values for a given indentation 
stiffness, the general trend is that the hardness increases as the stiffness increases. This 
correlation, however, should not be seen as a physical link between hardness and stiffness, 
but should be rather attributed to the fact that both stiffness and strength properties 
are affected by the microstructure^. The high scatter of the H — M relation in Figure 
12 highlights the sensitivity of the hardness w.r.t. the microstructure. The figure also 
displays fitted power functions for the tested specimen. The exponent of the power 
function is found to decrease as a result of heat curing: it is iJ oc M^'^^ for the control 
specimen ' C , and H oc M^-^^ for the 28-day heat cured specimen 'HC-28'. This power 
relation cannot be explained by the determination process, since the hardness scales with 
H ~ A~^ and the indentation modulus with M ~ ^~^/^, so that any bias induced by 
application of relations (2.1) and (2.11) should be visible in a quadratic power relation, 
H ~ M^. The hardness-stiffness scaling, therefore, should be rather of microstructural 
origin. In fact, since H/M is a constant for a homogeneous material {ie. relation (2.13)), 
the scaling H oc M^ is an expression of the heterogeneity of the material investigated by 
nanoindentation. It is higher for the control specimen {8 = 1.49) than for the heat cured 
specimen {6 = 1.28), which is an indication that heat-curing, on-average, 'homogenizes' 
the microstructure. This observation is consistent with the contour plots in Figure 11. 

Using the stiffness values that characterize the LD-C-S-H domain {ELD ^ [13,26] 
GPa) and the HD-C-S-H domain {EHD ^ [26,39] GPa), we can determine the corres
ponding hardness values, representative of the two-types of C-S-H. Mean values and 
standard deviations are given in Table 3 for the LD-C-S-H phase and the HD-C-S-H 

^We recall that the stiffness relates to the recovery (in form of deformation) of the elastic energy 
stored into the microstructure during loading; while the hardness relates to the irreversible 
dissipation of the external work during loading into heat form. In the absence of fracture 
processes, the only link that exists between the two quantities is the geometry and morphology 
of the microstructure. 
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Control 'C (w/c = 0.5) 

Control 'C (w/c = 0.5) 
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Figure 11. Contour plots of the spatial distribution of stiffness (in GPa) in the mi-
crostructure obtained by grid nanoindentation (grid-size = 10~^m). Each grid point 
corresponds to a single nanoindentation test (unloading from a maximum indentation 
depth of 3 X 10~^m). The numbers in the figure are attributed to 1 = porosity, 2 = 
LD-C-S-H, 3 = HD-C-S-H, 4 - CH and clinker phases. 
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Figure 12. Hardness vs. indentation stiffness determined by nanoindentation. 

phase. There is a trend that heat curing reduces the intrinsic hardness of the two C-
S-H phases, as the hardness of the heat cured specimen is roughly 10% smaller than 
the one of the control specimen, and a hardness reduction by roughly 20% is found for 
the HD-C-S-H phase. On the other hand, this decrease is somewhat smaller than the 
standard deviation, so that it is difficult to conclude on the statistical significance of the 
heat-curing induced hardness drop. Two observations deserve particular attention: (1) 
The mean hardness values of the HD-C-S-H is roughly twice the value of the LD-C-S-H; 
and (2) the standard deviation, which can be seen as a measure of the microstructural 
disorder, reduces as a consequence of heat curing. Both observations are consistent with 
the disordered vs. ordered packing densities of the two types of C-S-H, or more precisely 
with the number of contacts that characterize the two types of packing densities. In
deed, it has been recently shown that the random packing of spheres which appears to 
characterize the LD-C-S-H, is characterized by on-average 6 points of contacts (Donev 
et al., 2004), while a high-density packing of spheres has a maximum of 12 points of 
contacts (Sloane, 1998), that is twice as much as the one in the random close-packed 
limit (RCP), which almost perfectly correlates with the measured nanohardness ratio 
HHD/HLD ^ 2. It is then not surprising that the overall scatter of the hardness values 
decreases as the amount of ordered HD-C-S-H increases in the material system. Rather 
than a coincidence, we see here a second evidence (in addition to the packing density) of 
the characteristic packing patterns of the LD-C-S-H and the HD-C-S-H. It suggests that 
the hardness (and thus the strength properties) of the two types of C-S-H is a mere con
sequence of the packing density, and more precisely of the number of contacts stabilizing 
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each solid sphere in the system. The higher the packing density and thus the number of 
contact points, the greater the number of degrees of freedom along which the system can 
dissipate energy at the limit state associated with strength, and which translates into 
the measured nanohardness values. 

Microindentation Analysis To complete the analysis, we performed a series of mi-
croindentation tests on the control specimen ('C') and the heat cured specimen ('HC-28'), 
with a maximum penetration depth of roughly 10"^ m. Table 3 summarizes the indenta
tion results (level II), which are average values and standard deviation of respectively 10 
indentation tests for the control specimen ' C , and 30 indentation tests for the 28-days 
heat cured specimen 'HC-28' (see Table 2). The higher number of indentation tests for 
the HC-28 sample was necessary because of a higher standard deviation of the elasti
city, which is due to the large macropores that interfere at the micro-indentation scale of 
10~^ m. While the mean values obtained for the control specimen allow an interpretation 
as characteristic properties of the homogenized material, ie. cement paste, given the size 
of the macropores generated in heat-cured specimen, a continuous interpretation should 
be handled with care. Nevertheless some interesting trends become apparent. 

The elastic stiffness remains practically unaffected by heat curing, as the slight in
crease in mean value from 19.1 GPa for the control specimen ' C to 19.5 GPa for 'HC-28' 
is smaller than the standard deviation. It appears that the two competing mechanisms 
that characterize the mechanical effect of heat curing at a scale below, that is the dens-
ification of the C-S-H matrix and the generation of a macroporosity, cancel each other 
out. In return, the higher standard deviation for heat cured specimens is indicative for 
a higher degree of disorder at level II, induced at a scale below by the creation of the 
macroporosity. 

The hardness which is a measure of strength properties, decreases by roughly 20% as 
a consequence of heat curing. This decrease in strength performance of heat cured speci
men seems to be a consequence of the macroporosity generation which is not compensated 
by the densification of the C-S-H matrix. This 'coarsening of the macroporosity', as it 
is often referred to in the literature (Bentur, 1980), leads to high stress concentrations 
in the C-S-H matrix, leading to a lower overall material strength, particular in high w/c 
ratio cement-based materials. Moreover, the microhardness is roughly on the same order 
of magnitude of nanohardness of the LD-C-S-H phase at a scale below. This may not 
be a coincidence. In fact, regarding the control specimen, with almost non-detectable 
macroporosity, the closeness of nano- and micro-hardness values would hint towards rel
evance of the weakest link theory, according to which the strength behavior is governed 
by the weakest phase in the material system, which is the LD-C-S-H phase, and which 
appears to dominate the strength behavior of the cement paste. A similar argument can 
be made for the 28-day heat-cured material ('HC-28'): the generation of the macroporos
ity leads to higher stress concentrations in the C-S-H matrix; and in particular in the 
LD-C-S-H surrounding the macropores (see Fig. 11), which therefore becomes dominant 
in the strength behavior of the cement paste. Finally, it is also worth mentioning that 
the scatter of the microhardness values, expressed by the standard deviation, reduces 
significantly compared to the nanoindentation results. The smaller scatter is a clear 
indication of the homogenized nature of the properties obtained by indentation at the 
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scale of the cement paste, but as well an indication that one detrimental phenomenon 
is at work governing the strength properties of the cement paste: the coarsening of the 
macroporosity. 

3.3 Microporoelastic Analysis of Cement-Based Materials 

Microporomechanics is a powerful framework to analyze and model indentation data, 
and ultimately to predict macroscopic material properties from the mere knowledge of 
some material independent phase properties, phase morphologies and volume fractions, 
determined either experimentally (e.g. nanoindentation and/or chemical analysis (Con
stantinides and Ulm, 2004)) or by modeling the physical chemistry processes that lead 
to the formation of the phases (see e.g. Bernard et al., 2003). Microporomechanics can 
start at the smallest scale, at which the composite material manifests itself composed of 
a continuous solid phase and a pore space that is large enough for water to be present 
as a bulk phase, characterized by a hydrostatic stress field, cr = —p5, where 'p is the 
fluid pressure. In the case of cement-based materials, this is the scale of the two-types 
ofC-S-H (Ulmet al., 2004). 

Level '0': Invariant Material Properties of C-S-H The information that is avail
able about the two types of C-S-H are the porosities (3.1) determined by mass density 
measurements (see Table 1), and composite stiffness values determined independently by 
nanoindentation (see Table 3). The overall picture that emerges from a combination of 
these independent measurements is that the difl'erence in mechanical performance of the 
two types of C-S-H is a consequence of their packing density, while the solid phase is the 
same, having the same mass density and as a consequence same mechanical properties. 
The poroelastic behavior of the two types of C-S-H is defined by the classical poroelastic 
state equations (Biot, 1941; Coussy, 1995; Coussy, 2004): 

E ^ = KE^ - bp; Sij = 2GEfj (3.5a) 

0 - 0 0 = ^ ^ . + ^ (3.5b) 

where S ^ = ^Tiu is the mean stress, Sij = T^u — T>m^ij is the stress deviator, Ey = En is 
the volume strain, and Efj = Eu — ^EySij is the strain deviator. Using standard relations 
of microporoelasticity (Chateau and Dormieux, 2002; Dormieux et al., 2002; Dormieux 
and Bourgeois, 2003; and the contribution of Dormieux in this book), the poroelastic 
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properties, K^G^b^N, are estimated from:^ 

K = 9 s ' ^ ' 7 , y , , , (3.6a) 

G ^ ( l - 0 o ) ( 8 ^ . + 9 M 

1 = ^ ^ Q ( ^ ~ ^ Q ) (3.6d) 

where /cg and ^5 are the sohd bulk modulus and the solid shear modulus. These nanomech-
anical properties are currently still out of reach to direct mechanical measurements; and 
that what is measured are the homogenized properties of the two types of C-S-H. The 
determination of the nanomechanical properties, therefore, can only be achieved by an 
inverse application of the homogenization relations. As input we have values for the in
dentation modulus, MHD and MLD, and for the porosity, 00^ and (j)^^. The unknowns 
are the stiffness properties of the C-S-H solid phase, kg and ^5, and one 'homogenized 
property' per type of C-S-H; e.g. the Poisson's ratio, VHD and VLD- This approach (Ulm 
et al., 2004) leads to identifying a solid bulk and shear modulus of kg — 32 GPa, gs — 19 
GPa, which corresponds to a Young's modulus of Es ^ 48 GPa, a Poisson's ratio of 
Vs — 0.25, and a Biot coefficient of the C-S-H phases situated in between: 

h^j^ = 0.61 < 6 < 0.71 = bli) (3.7) 

Level 'I': Poroelastic Properties of C-S-H Matrix - Double Porosity Model 
The C-S-H matrix is composed of two porous materials, the LD-C-S-H phase and the 
HD-C-S-H phase, each of which is described by poroelastic constitutive equations of the 
form (3.5). To derive the poroelastic constitutive equations of the C-S-H matrix, we 
adopt a continuous description of the stress field in the heterogeneous r.e.v.: 

inV-.am {z) = k{z)e (z) + a^ {z); 5,, {z) = 2g (z) e,, (z) (3.8) 

together with the distributions of the elastic properties {k{z) ^g {z)) and the eigenstress 
e^ U): 

(fcU),PU)) = | S't"'^.^.!i\t'^."„ -^fe) = ( 1 ^ ' . l ? 3 " (3-9) 
{kHD.QHD) in -^%[DP2 in VHD 

where e = sa is the microscopic volume strain; and cij = Sij — \edij is the microscopic 
deviator strain, {kj.gj), (j := LD, HD) are the elastic properties of the LD- and HD-C-
S-H phases that occupy domains VLD and VHD in the r.e.v. For purpose of argument, 
we will assume that the fluids present within the two types of C-S-H are not at the same 
pressure. 

^Relations (3.6) are the poroelastic constants that can be derived from the Hollow Sphere 
Model, or by application of a Mori-Tanaka scheme to an isotropic solid-porosity composite. 



242 F.-J. Ulm, A. Delafargue and G. Constantinides 

Following the linear microporomechanics approach (Dormieux and Bourgeois, 2003), 
we decompose the problem in two sub-problems: 

1. The first sub-problem corresponds to overall drained conditions, for which pi = 
P2 = 0. We assume that the r.e.v. is subjected to a uniform displacement bound
ary condition, so that the solid boundary conditions to which the solid phase is 
subjected read: 

on a y : ^{z) = E-z (3.10a) 

onlsf : cr-n = 0 (3.10b) 

Here, dV stands for the boundary of the r.e.v., and Xgf represents the solid-fluid 
interfaces. ^' (z) stands for the microscopic displacement field, and E is the mac
roscopic strain tensor, which is related to the microscopic strain by an isotropic 
strain localization condition: 

e' {z) = e' [z) + ^e' {z) S = a^ (z) E^ + ^a^ (z) EJ (3.11) 

where a^ (z) and a^ (z) are the deviator strain and the volumetric strain localization 
factors. Use in (3.8) together with the elastic distribution (3.9) yields after volume 
averaging the macroscopic stress: 

^'^ = 0;;; = K'E,; K' = fLDkLoAlr) + fnokHDA^HD (3.12a) 

S = s = 2G^Erf; G' = / L D ^ M ^ I / + /i^D^HD^^D (3.12b) 

where A^j — {a^ {z))y and Aj = {ci^{z))y stand for volume averages of the 
localization factors over the C-S-H subdomains, and fj = Vj/V represent the 
volume fractions satisfying /^.D -h /HD = 1- On the other hand, the change of the 
gelporosity in the subproblem reads (J = LD^ HD)\ 

{<t>-<i>^)'j\ = fj[{4>-4>ofj\ = b'jEv (3.13a) 

b'j = fjb'jA} (3.13b) 

where superscript 0 , / indicates the scale ('level') at which the quantity is defined. 
For instance, 6j stands for the Biot coefficients given by (3.7). 

2. The second sub-problem we consider is the zero-displacement boundary problem, 
while the gelporosity is pressurized. From linear microporoelasticity, it is known 
that the problem is conveniently solved using Levine's theorem, delivering a re
lation between the macroscopic and the microscopic eigenstresses (Chateau and 
Dormieux, 2002; Dormieux et al., 2002; Dormieux and Bourgeois, 2003): 

^'' ^(TP{Z):A{Z) (3.14) 

where A (z) is the forth-order strain localization tensor. Application of the ei-
genstress distribution (3.9) in (3.14) yields the macroscopic mean stress in this 
subproblem: 

S:; = -bioPi - h'HDP2 (3.15) 
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where we verify that 6£^ = ILD^^LD^^D ^^^ ^^HD ~ IHO^^HD-^^HD obtained in 
the first sub-problem (3.13) are the Biot coefficients associated with the pressures 
in gelporosity of the two type of C-S-H. Because the constitutive equation for the 
change of the porosity in each subdomain is given by (3.5b), the change of porosity 
reads: 

{<t>-4>,)'j\' = fj(b'j{e")y^ + ^ ^ (3.16) 

We need to eliminate {e")y in (3.16). To this end, we determine the stress average 
in this sub-problem on account of (3.8) and (3.9): 

Then, we use (3.15) in (3.17) to express the average strain in the porous matrix 
{^")YJ as a function of p j : 

{fLDblo - bin) Pi + {fnob^D - bno) P2 = hokLD {^")VLD + fHokuD (e 'V^^ 
(3.18) 

which suggests, using (3.13) or (3.15): 

{e")y^ = ^l{l-A^j)pj (3.19) 

with no summation on repeated subscripts. Finally, use of (3.19) in (3.16) yields: 

Last, a superposition of the two subproblems yields the macroscopic state equations 
of the C-S-H matrix: 

S „ = T.'^ + ^J'= K'E,-hii,pi-h'HDP2 (3.21a) 

(0 - 4)^^ = h'jE, + ^ - J = LD, HD (3.21b) 

The resulting state equations are recognized as the state equations of a double-porosity 
material without interaction of the fluid pressures on the deformation of the solid part 
of the porous subdomains {ie. relation (3.19)). Given the similar size of the porosity in 
the LD- and HD-C-S-H, as defined by the packing densities, it can be suggested that 
there should be little difference in pressure in between the two types of C-S-H. In this 
case, the poroelastic state equations of the C-S-H matrix reduce to: 

^rn = K^Ey-b^p (3.22a) 

( 0 - 0 0 ) ' = ^ '^^ + ^ 7 (^•22b) 
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and the poroelastic constants are given by: 

K' = fLDkLuAlo + fHokHDA^HD (3-23a) 

b' = bij, + h'HD = fLDhlDAlD + iHob^DA^HD (3-23b) 

Level ' I I ' : Poroelast ic P roper t i e s of Cement Pas te - Two-Scale Double Poros
ity Model Let us turn now to cement paste: a composite of a porous C-S-H matrix 
and macroporosity, in addition to some inclusion phases (residual clinker, Portlandite). 
In contrast to the C-S-H matrix (level I), the main feature here at level II is that the 
porosity manifests itself at two different scales, a microporosity situated within the por
ous matrix and the macroporosity. We want to derive the poroelastic state equations of 
the cement paste. For purpose of clarity, we set any additional inclusion phases aside 
(see Ulm et al. (2004) for an account of multiple solid phases), and restrict ourselves, for 
a microporoelastic analysis, to a porous matrix and a macroporosity. The constitutive 
equations of the porous matrix are assumed to be defined by (3.22). Given the differ
ence in size of the porosities involved, we assume a different pressure in the micro- and 
macroporosity. 

Proceeding as before, we adopt a continuous description of the stress field in the 
heterogeneous r.e.v., of the form (3.8), together with the following distributions of the 
elastic properties {k {z) ,g{z)) and the eigenstress a^ {z}: 

(k (z),, (.)) = I K ; ^ ' y ^ ^^ aP (z) = ( -^'P} Z ^^ (3.24) 
V V_y,i/V_;; | ( 0 , 0 ) m V02 ^ \ - P 2 m 1/̂ 2 ^ ^ 

where VM stands for the volume occupied by the porous matrix in the r.e.v., and V 2̂ 
for the macroscopic pore space. We decompose the problem in (the meanwhile classical) 
two sub-problems: 

L The first sub-problem corresponds to overall drained conditions, for which pi = 
P2 = 0. The boundary conditions are still defined by (3.10), and an isotropic 
strain localization condition of the form (3.11) is apphed. This yields after volume 
averaging the macroscopic stress in the form: 

E ; , = K''E,; K'' - (1 - 002) K'Al, (3.25a) 

S = 2G^^Ed; G^^ = ( 1 - ( / ) O 2 ) G M ^ (3.25b) 

where A ^ = (a^ U))VM ^^^ ^ M — (^'^U))^ ; 1 ~ 0O2 ^ VM/V is the volume 
fraction of the porous matrix in the r.e.v. K^^ and G^^ are recognized as the 
macroscopic drained elastic stiffness properties of the cement paste. On the other 
hand, there are two associated changes of porosity; the microporosity and the mac
roporosity. The microporosity is defined per unit of (undeformed) matrix volume 
VM SO that the change of porosity at the macroscale in the considered subproblem 
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is: 

(01 - 001 
JI 

= {l-4>o2)[i4>i-<f>oi)'\ =bi'E, 

bi' = {1-<!>,,) b'Al, 

In return, the change in macroporosity reads: 

(3.26a) 

(3.26b) 

(02 - 002) / / 

kii 

(3.27a) 

(3.27b) 

62 Ey 

002^02 

where A^2 — (^^ (^))y 2* Herein, hl^ and 62^ are the Biot coefficients associated 
with the micro- and the macroporosity, respectively. 

2. The second sub-problem we consider is the zero-displacement boundary problem, 
for which Levine's theorem (3.14) applies. Application of the eigenstress distribu
tion (3.24) in (3.14) yields the macroscopic stress in this subproblem: 

S:; = - (1 - 002) 6^A^ Pi - </>02^>2 = -h{'vx - bi'p2 (3.28) 

There are two changes of porosity to be considered; the change in microporosity, 

[(< î - 'PoiY']" = (1 - -/-ô ) {bM {e")y^ + §j) (3.29) 

and the change in macroporosity: 

(02 - 002)' ' = 002 W%,, - - (1 - 002) W') VM 
(3.30) 

We need to eliminate W)y^ in (3.29) and (3.30). To this end, we determine the 
stress average in this sub-problem on account of (3.24): 

^m = (1 - 002) {(^m)vM + 002 {^m)v^2 

= {1- 002) K' {e")y^ - (1 - 002) ^ V - 0O2P2 

(3.31) 

Then, we use (3.28) in (3.31) to express the average strain in the porous matrix 
(e'')y^ as a function of pi and p2-

( l - 4 2 ) ( e ' V = ; ^ [ S ™ + (l-</'02)&V+<A02P2] (3.32) 

= YJ [((1 - <Ao2) b' - b{') Pi + (<̂ 02 - bi') P2] 

Finally, substitution in (3.29) and (3.30) yields the change of the microporosity: 

(0.-001)" = 1 ^ + 1 ^ (3-33a) 

] ^ = ( l - ' A o 2 ) ( | r ( ^ ^ - ^ n + ^ ) (3.33b) 

(3.33c) ] ^ - I f (̂ 02 -MO Ri 
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and the change of the macroporosity: 

(02-</'o2)" = ^ + f - (3.34a) 

iti ^ ^i'^"-(^-'(>02)b') (3.34b) 

1 _ 1 
{bi' - </'o2) (3.34c) 

The symmetry of the skeleton Biot moduU A î2 = Â 2i is readily shown, by substi
tuting (3.27b) in (3.33c) and (3.26b) in (3.33b): 

] ^ = ' / '02;^ ( 1 - ^ 5 2 ) (3-35a) 

^ = ( l - < A o 2 ) | r ( ^ M - l ) (3-35b) 

Then, use of the strain locahzation compatibihty condition in one of the two rela
tions yields the other one. For instance, replacing (J)Q2^12 = 1 — (1 — </^02)^M ^^ 
(3.35a) gives: 

^ = ( 1 - 0 O 2 ) | 7 ( ^ M - 1 ) = ^ (3.36) 

Last, a superposition of the two subproblems yields the macroscopic state equations 
of the isotropic double-porosity system: 

S„ = E'^ + ^J' = K"E,-bi'pi-bi'p2 (3.37a) 

<Ai-<^oi = b{'E, + ^ + ^ (3.37b) 
iVii iVi2 

02-002 = bi'E, + ^ + - ^ (3.37c) 
1\21 iV22 

where all seven poroelastic constants are known here as functions of the poroelastic 
properties of the porous matrix, and of two strain localization factors, A^2 (^^ ^ M ) ^^^ 
Aj^. An estimate of these factors provided e.g. by a Mori-Tanaka scheme reads: 

30O2i^^ + 4G^' "" 1-002 
^02 — "̂ 7 W T T T T T ^ ^ M — ^ 7 (3.38a) 

^02 

For purpose of comparison of the poroelastic properties, it is useful to evaluate the 
poroelastic constants for the same pressure in both meso- and macroporosity, for which 
the state equations are given by (3.5), with: 

b" = bi' + bi' = b' + {l-b')^02^l^ (3.39a) 
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Summary of Microporoelastic Analysis The poroelastic analysis of cement-based 
materials at different scales illustrates the important role of microporoelasticity theory 
in the understanding and assessment of material properties at different scales of cement-
based materials. Table 4 summarizes the poroelastic properties of the w/c — 0.5 control 
specimen and thermally cured specimen, determined from the presented theory. The 
error of the prediction of the Young's modulus is smaller than the standard deviation of 
the microindentation results. The input to the analysis are the indentation stiffness and 
the volume fractions determined by nanoindentation: 

• Level '0': On very small scales of cement-based materials, a combination of nanoin
dentation results and microporomechanics provides a means to determine material 
invariant mechanical properties, that are readily employed as a starting point for 
the application of microporomechanics theory From a materials science point of 
view, cement-based materials, at this scale, are organized in two characteristic pack
ing features, leaving a pore space behind that is at the origin of the pronounced 
porous material behavior of cement-based materials at larger scales. 

Level L The C-S-H matrix manifests itself, from a poromechanics point of view, 
as a double porosity material system, one representing the LD-C-S-H phase, the 
other the HD-C-S-H phase. At this scale, the poroelastic properties depend on the 
relative proportion of the LD- and HD-C-S-H phase present, which depends on 
the mix proportions, curing conditions, and so on. It is not surprising that thermal 
curing which increases the amount of HD-C-S-H on the expenses of LD-C-S-H 
yields a higher stiffness of the C-S-H matrix, and a (slightly) lower Biot coefficient. 

• Level H: Cement paste is a double porosity material system as a consequence of the 
porosity at (at least) two different scales; the mesoporosity in the C-S-H matrix, 
and the macroporosity Despite an increase of the stiffness of the C-S-H matrix 
due to heat curing, it is found that stiffness of the cement paste is almost the 
same for both control specimen and thermally cured specimen. Microporoelastic 
theory thus confirms that the stiffening of the C-S-H phase is compensated by the 
macroporosity generation in its overall effect on the (drained) elasticity of heat 
cured materials. As a result of the macroporosity generation, the Biot coefficient 
increases. 
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Level 0 LD-C-S-H 
HD-C-S-H 1 

Level I C-S-H Matrix 
Level II Cement Paste 

Error 1 - Ehom/^e'xo 

1 Control ('C') 

I [GPaL 
18.8 
27.3 
21.5 

1 20.5^ 
1 -7% 

[1] 
0.71 
0.61 
0.68 
0.70 

-

HC-28 
-^hom 

[GPa] 

18.8 
29.2 
24.2 
20.2 

-3 .5% 

^hom 

[1] 
0.71 
0.61 
0.66 
0.72 

-

Table 4. Summary of microporoelastic analysis. The input are experimentally determ
ined nanoindentation stiffness and volume fractions from Table 3. The assumed Poisson's 
ratio for the LD- and HD-C-S-H is 0.24. 

4 Experimental Microporomechanics of Shales 

Is shale anisotropy a consequence of the intrinsic anisotropy of the clay minerals or rather 
an effect of texture, or both'^ -

Shales are probably one of the most complicated and intriguing natural materials 
present on earth. Shales make up about 75% of sedimentary basins (Jones and Wang, 
1981) and cover many hydrocarbon-bearing reservoirs. Knowing and predicting the aniso
tropy plays a critical role in many fields of exploitation, ranging from seismic exploration 
(log-data interpretation), to well drilling (well bore stability) and production (Thomsen, 
2001). But the properties of shales are still an enigma that has deceived many decoding 
attempts from experimental or theoretical sides. Two schools of thought exist: 

• The shale geomechanics school of thought, which is based on observational tech
niques, such as Scanning Electron Microscopy (SEM), Environmental Scanning 
Electron Microscopy (ESEM), Transmission Electron Microscopy (TEM), etc., con
siders the elastic anisotropy as a result of the microfabric signature of clay that 
originates from physicochemical, electrochemical, thermomechanical, interface dy
namics, bioorganic and, most importantly, burial diagenesis processes (Bennett et 
al., 1991; Mitchell, 1993). 

• The basis of a second school of thought is the existence of the 'perfect' shale, 
a concept introduced in a 1994 paper by Hornby et al. (1994), and which has 
found strong support particularly in the shale acoustics community (Jacobsen et al., 
2003). The origin of anisotropy, in this concept, is attributed to a perfect alignment 
of shale particles at very small scales, that is eventually disturbed at larger scales 

The investigation of the sources of anisotropy of shale materials was suggested to us by Prof. 
Younane Abousleiman (Oklahoma Uinversity) and was carried out in a collaborative research 
effort between MIT, the Poromechanics Institute at Oklahoma University at Norman, and the 
Chevron Texaco team led by Dr. Russ Ewy. The financial support of the study by Chevron 
Texaco is gratefully acknowledged. The investigated shale specimens, mineralogy, porosity 
and UPV measurements were provided by the Chevron Texaco team, Drs. Russ Ewy, Luca 
Duranti, Douglas K. McCarty, whose collaboration, comments and suggestions were critical 
in this multidisciplinary project. 
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LEVEL III 1 
Deposition scale 
> 10-3 m 

LEVEL II ('Micro')l 
Flake aggregation 
and inclusions 
10-5 _ 10-4 m 

LEVEL I CNano') 
Mineral 
aggregation 
10-̂  - 10-6 m 

LEVEL '0 ' 
Clay Minerals 
10-9-10-8 m 

L^^^BHI 

HjjjH Scale of deposition layers 
H H Visible texture. 

H S B ^ H ^ S Flakes aggregate into layers, 
• H ^ H ^ H H Intermixed with silt size 
H ^ ^ ^ ^ ^ ^ H (quartz) grains. 

1 c < ^ : ^ 

^ ^ H Different minerals aggregate 
^ ^ H to form solid particles (flakes 
^ 9 | which include nanoporosity). 

^^^Elementary particles (Kaolinit 
Y Smectite, lUite, etc.), and 
p Nanoporosity (10-30 nm). 

Figure 13. Four-level microstructural think-model of shale materials. 

through a partially oriented distribution of clay minerals (Sayers, 1994; Johansen 
et al., 2004), and by the presence of (almost spherical) silt inclusions that reduce 
the intrinsic anisotropy of shale materials. 

Shale anisotropy is a formidable play ground for an experimental microporomech
anics approach, combining nanoindentation with advanced microporoelasticity theory 
(Delafargue and Ulm, 2004b). 

4.1 Multiscale Indentation Analysis of Shale Materials 

Inarguably, shale materials are highly heterogeneous multiphase natural composite 
materials. Figure 13 displays the four-level think model of the multiscale structure of 
shale materials, which forms much of the backbone of our experimental and theoretical 
microporomechanics approach. 

Level '0': Scale of Elementary Particles The lowest level we consider is the scale 
of the elementary clay particles at a length scale of some nanometer. This scale has been 
focus of much research in clay mineralogy; and it is now well known (Velde, 1993), from 
both XRD-analysis and high resolution TEM-images, that the clay crystals (kaolonite, 
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illite, smectite, etc.) form platelets with typical aspect ratios of 1/20. 
However, unlike many other minerals, clay stiffness values are extremely rare in hand

books (Mavko et al., 1998). To our knowledge, the only direct measurements of the an
isotropic elasticity of clay minerals were reported for large muscovite crystals, possessing 
transversely isotropy: Cn = 178 GPa, ^33 = 55 GPa, C44 = 12 GPa, C12 = 42 GPa, 
C'13 = 15 GPa, or equivalently expressed in terms of indentation stiffness (2.44) and 
(2.52), 

Mi%,p = 118 GPa; M^,,^ = 46 GPa; - ^ = 2.6 (4.40) 

The main difficulty of measuring the mineral elasticity stems from the fact that clay 
particles are too small to be tested in pure solid form. Several attempts to overcome this 
difficulty have been reported (Table 5): 

• The stiffness of compacted clay samples has been measured and extrapolated to 
a zero porosity assuming that this extrapolation technique yields a 'pure clay' 
stiffness value (Marion et al., 1992; Hornby et al., 1994; Vanorio et al., 2003). 
There is quite some difference in stiffness values obtained with this technique, which 
makes it difficult to state with certainty whether such extrapolation techniques give 
access to intrinsic stiffness values or not. In particular, depending on the degree 
of saturation of the sample and other parameters influencing surface forces, the 
interactions between clay particles might exhibit different compliances which may in 
turn modify the extrapolated stiffness value. In order to have relevant experimental 
measures of clay minerals stiffness, Prasad et al. (2002) have recently made some 
dynamic measurement of clays using Atomic Force Acoustic Microscopy (AFAM). 
They reported a very low Young's modulus for dickite of 6.2 GPa. 

• Ultrasonic velocities of composite mixture of individual clay particles (powder) 
diluted, at various concentrations, in an epoxy matrix have been measured (Wang 
et al., 2001). Using a backward homogenization derivation, the Young's modulus 
for randomly distributed clay particles was found to be on the order of 50 — 60 
GPa for Kaolonite, 65 — 80 GPa for illite, 40 — 50 GPa for montmorillonite, and 
greater than 100 GPa for Chlorite. These results appear to be very consistent 
with theoretical estimates of single crystal elastic properties by Katahara (1996) 
for kaolonite, illite and chlorite, based on data of Alexandrov and Ryzhova (1961; 
cited from Wang et al. (2001)). 

• Very recently, Steered Molecular Dynamics simulations of pyrophyllite clay provided 
an order of magnitude of the interlayer stiffness of 130 GPa, while the clay layers 
are almost rigid (Katti et al., 2003), with a stiffness value of 547 GPa in the dir
ection perpendicular to crystal planes for a simple structure of two crystal layers 
with an interlayer space. 

The scarcity of experimental values for solid clay stiffness and the large range of repor
ted values highlight the difficulty to assess the intrinsic elasticity of single clay crystals. 
This has been recognized as one current major weakness of existing micromechanical 
models of shales (Jacobsen et al., 2003). We performed some nanoindentation tests on 
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a kaolin powder composed of 97% kaolonite (EPK Kaolin^, Feldspar Corporation, At
lanta Georgia) having an average particle size of 1.36 x 10~^ m, a specific surface area 
of 24.25 m^ / g, and a loose (dense) mass density of 519 - 740 kg / m^. Using indentation 
depths of 70 — 90 nm, that is an order of length magnitude smaller than the grain size, 
we obtain indentation stiffness values of 

EPK Kaolin: M°^p = 40.3 =b 8.8 GPa (4.41) 

Figure 14 displays an Atomic Force Microscopy image of a kaolin powder grain on which 
we indented, together with five force-indentation depth curves, from which we determine, 
from the unloading branch, the indentation stiffness. The order of magnitude of the 
indentation stiffness of kaolin powder is found to be situated in between the values 
reported by Marion et al. (1992) and Wang et al. (2001), respectively; and on the order 
of the weak axis indentation stiffness of Muscovite (see Table 5). 

Level 'I': Porous Clay Composite Clay particles with nanoporosity form a porous 
clay composite at a characteristic length scale in the hundreds of nanometer range. ESEM 
images (Fig. 15) of the porous clay composite reveal that the porous clay composite in 
shale materials comes in a large variety of forms and shapes, ranging from highly ordered 
sheet bundles to wavy flake structures and highly pressed and crushed structure of clay 
sheets. The characteristic dimension of the clay sheets visible in these pictures is on the 
order of 500 - 1000 nm, and 20 - 50 nm thick, which confirms the aspect ratio of roughly 
1/25 — 1/20, as generally admitted in the clay literature. However, the microphotographs 
in figures 15 also display a high degree of disorder of the clay sheet orientation, and this 
both normal to the bedding direction (labeled 'x3') and in bedding direction (labeled 
'x l ' or 'x2'). At the considered scale of the porous clay composite, it is quite frequent 
that clay packages are found to strongly divert from the deposition orientation. 

Furthermore, the space in between the clay sheets forms almost the totality of the 
porosity of shales, as poromercury intrusion studies show, displaying a very low charac
teristic pore access radius^^ of some nanometers; thus situating the porosity of shales at a 
scale below the porous clay composite. This justifies considering shales at a length scale 
of 500 — 5,000 nm as porous composites. This is level T of shale materials, ie. the lowest 
scale currently accessible to mechanical testing. Prasad et al. (2002) used atomic force 
acoustic microscopy (AFAM) to determine the Young's modulus of a thin layer of dickite 
to be on the order of 6.2 GPa. The authors concluded from this and a subsequent study 
(Vanorio et al., 2003), in which P— and S— wave velocity megisurements on cold-pressed 
clay aggregates of different porosity/grain density were extrapolated to zero porosity val
ues, that the actual stiffness of clay crystals was on the order of 10 — 15 GPa, which is 

^For detailed chemical and mineralogy information on EPK Kaolin, see 
http://www.feldspar.com/minerals/epk.html. 

^The poromercury intrusion model is based on a pore cylinder model, and it is generally 
admitted that MPI allows invasion of (cylindrical) pores of pore radius 3.6 x 10~^ m to 60 x 
10~^ m. Given the sheet shape of the clay particles, it is most unlikely that the pores in shales 
are cylindrical, as the porosity is the space in between the sheets, so that the pore geometry 
should be similar to the sheet geometry. 
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Figure 14. Nanoindentation on kaolin powder: (top) AFM image; (bottom) load-
displacement curves. 
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Clay 
Mineral 

Muscovite 
Kaolinite 

Dicktite 
Kaolinite Smectite 

Montmorillonite 
Kaolinite 

Elite 
Smectite/Illite 
Montmorillonite 

Chlorite 
Pyrophyllite 

Sample 

nat. crystal 
clay mixture 

clay mixture 
clay-mixture 
suspensions 

powder 
in epoxy 

— 

Experim. 
Techn. 

acoustic 
(MicroMech) 

AFAM 
acoustic 

(Extrapol.) 
acoustic 

(MicroMech) 

Mol. Dyn. 
E / ( A L / L ) 

Stiffness [GPa] 
M ^ ^ p 1 M3-,,, , 

118.1 46.2 
30.3 

E = 6.2 
1 0 . 4 - 1 6 . 8 

57.9 - 85.9 
73.9 - 84.3 

51.5 
4 4 . 7 - 5 4 . 5 
82.2 - 214.0 

weak axis 
interlayer 

547 
130 

Source 

Mavko et al., 1998 
Marion et al., 1992 
Hornby et al., 1994 
Prasad et al., 2002 
Vanorio et al, 2003 

Wang et al., 2001 
Wang et al., 2001 
Wang et al., 2001 
Wang et al., 2001 
Wang et al., 2001 

Katti et a l , 2003 
Katti et al., 2003 

Table 5. Reported elastic stiffness 
values are expressed, if possible, as 

values of clay minerals. For purpose of comparison, 
indentation stiffness. 

much smaller than typical values reported previously. Given the inarguably small size 
of the porosity of clay materials, which is a consequence of the packing density, and our 
confirmation of the clay crystal stiffness by nanoindentation (ze. Eq. (4.41) and Fig. 14), 
it appears to us very Hkely that the reported values by Prasad et al. (2002) are those 
of the porous clay composite rather than the ones of the clay crystals themselves! Clear 
evidence is provided by nanoindentation on shale materials: 

Table 6 reports the indentation results on three types of shale materials of different 
mineralogy and porosities. The shale materials are labeled 1,2 and 3, 'N' respectively 
'M' stands for respectively nanoindentation and microindentation test, and 'xi (i=l,2,3)' 
stands for the indentation axis. Each series of tests consist of a hundred force driven 
indentation tests performed on a grid of 50 /xm grid size. The maximum indentation depth 
in the nanoindentation tests is on the order of 150 — 400 nm, and the derived properties, 
therefore, should be representative of a bulk material size on the order of l,000nm. 
This is the scale of the porous clay composite at level I, that includes the inter-grain 
clay porosity. We remark that the order of magnitude of the average nanoindentation 
stiffness is in deed on the same order of magnitude as the values reported by Vanorio et 
al. (2003): 

M 4 P = 8 - 1 4 GPa (4.42) 

Moreover, depending on the specific shale material, there are some anisotropy effects 
present. Quantified in terms of the indentation stiffness ratio, we find that the anisotropy 
ratio of the three materials at level I is roughly half the value of the clay minerals: 

Mf,e 

^i,exp 
= 1.06 - 1.46 - 1.16 (4.43) 

Three particular experimental observation deserve attention: 
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Figure 15. SEM and ESEM images of three shale materials, viewed normal to the 
deposition direction (x3) and in the deposition plane (xl and x2). 

1. What is sensed in a force driven indentation test on natural composites, is the 
highly heterogeneous nature of such materials, which translates into a stiffness 
scaling relation as a result of the BASh equation (2.11), as shown in Figure 16 for the 
three shale materials. While the mean value of the indentation stiffness shows some 
anisotropy feature, the continuity of the scaling relation for different indentation 
directions is an indication that the same material is present -on-average- in different 
indentation directions. 

2. The maps of the nanoindentation stiffness values for different indentation directions 
(Figure 17) display a highly heterogeneous spatial distribution. There is no visible 
morphology at the grid size scale of 50 /im that could explain the (small but existing) 
anisotropy of the average stiffness values obtained at level I. 

3. There is some difference in frequency distribution of the stiffness values obtained 
by grid indentation on different material planes, as shown in Figure 18. Recalling 
that the same distribution in different indentation directions is a condition for 
isotropy, we recognize that it is the frequency distribution which is at the origin of 
the observed anisotropy of shale materials at a nanoscale. 
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Shale # 

1 

2 

3 

Scale 
(Level) 

Nano (I) 
4>^ = 0.31 
Micro (II) 
<f>" = 0 . 3 1 

Macro (III) 
(})"' = 0.26 

Nano (I) 
/ = 0.18 

Micro (II) 
(f)" - 0.18 
Macro (III) 
<^^" ^ 0.13 

Nano (I) 
0-^=0.10 
Micro (II) 
0 " = 0.10 
Macro (III) 
/ ^ ^ = 0.075 

Name 
#-N/M-dir 

1-N-X3 
1-N-xl 
1-M-X3 
1-M-xl 
1-M-X2 

1-UPV-X3 
1-UPV-xl 
2-N-x3(l) 
2-N-x3(2) 

2-N-xl 
2-M-x3 
2-M-xl 

2-UPV-X3 
2-UPV-xl 

3-N-X3 
3-N-xl 
3-M-X3 
3-M-xl 

3-UPV-X3 
3-UPV-xl 

Pm^x [MN] 

a 1 n 
' 262 

256 
12,348 
12,363 
12,332 

~ 

257 
251 
265 

12,305 
12,206 

: 

251 
260 

12,255 
12,268 

: 

21 
18 
111 
98 
96 

: 

17 
18 
12 
70 
31 

: 

18 
12 
80 
107 

_ 

/imax [nm] 1 
a 1 

230 
275 

2,183 
2,252 
2,310 

: 

270 
302 
219 

1,947 
1,414 

_ 

306 
254 

1,634 
1,735 

: 

M 1 

109 
618 
533 
593 

: 

100 
107 
70 

396 
194 

_ 

107 
73 

452 
607 

— 

M [GPa] 
^ 1 M 

9.5 1 
10.1 
6.9 
9.5 
9.4 
10.9 
14.7 
9.7 
8.0 
14.2 
8.0 
15.0 
13.8 
22.9 
10.2 
11.8 
10.1 
14.9 
21.0 

1 31.7 

3.1 
5.4 
2.5 
2.7 
3.0 

NaN 
NaN 
4.3 
4.3 
5.5 
1.9 
2.8 

NaN 
NaN 
5.1 
3.9 
2.5 
4.0 

NaN 
NaN 

Table 6. Overview of experimental results. 

Bringing these three observations together provides evidence for the origin of the 
anisotropy at level I: Given the continuity of the stiffness scaling relation and the absence 
of any specific morphology in the stiffness maps, the origin of this anisotropy cannot be 
attributed neither to the anisotropy of different clay minerals, nor to the difference of 
porosity (see Table 6); but rather to some privileged orientation of clay minerals at level 
I, as a consequence of the deposition history of each shale material. Indeed, while almost 
absence in shale 1 (0^ = 0.31), and rather weak in shale 3 (0^ = 0.10), the nanoscale 
shale anisotropy is quite strong for shale 2 (0^ = 0.18). 

Level 'II': Textured Clay Layer Composite The porous clay composite from level 
I forms a layered textured matrix at level II that is representative of shales at a scale of 
tens of micrometers. This microfabric signature of shale materials, which is most likely 
a consequence of the deposition history is clearly visible in SEM images of 100 to 1000 
times magnification, as shown in Figure 19 for the three shale materials. Some trendlines 
have been superimposed on the microphotographs to highlight the layered texture at the 
considered scale, as well as the perturbation of the layered structure through the presence 
of silt inclusions of micrometer size. The smaller the magnification the more regular and 
homogeneous the visible layered structure, which suggests that the shale fabric becomes 
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Figure 16. Nanoindentation stiffness scaling relation. 
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Figure 19. SEM Images of shales at level II (from Chevron Texaco). 

more and more dominant at larger than at smaller scales. That what changes from Level 
I to Level II is the texture. 

A clear indication of the effect of texture are mzcroindentation results obtained with 
a maximum force that is roughly 50 times greater than the one employed in the series of 
nanoindentation tests (see Table 6). The resulting maximum indentation depth in the 
nanoindentation tests is on the order of 1,000 - 5,000nm, ie. roughly 10 times greater 
than nanoindentation depths. The derived properties, therefore, should be representative 
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of shale materials on the order of tens of micrometer. The results which are summarized 
in Table 6, show a clear trend that the stiffness increases as a function of the porosity, 
and this both normal to bedding and in bedding direction: 

^3,ixp = 6.9 (6.4) - 8.0 (8.0) - 10.1 (9.9) GPa (4.44a) 

^Mxp = 9.5 (9.6) - 14.2 (15.3) - 14.9 (16.2) GPa (4.44b) 

In contrast to the nanoindentation results, there is a clear separation of the microin-
dentation stiffness scaling relation (Figure 20), and a clear one-peak distribution of the 
stiffness values (Figure 21), that are both indicative of the (micro)mechanical anisotropic 
nature of shale materials at level II. The peak values (which are given in parenthesis in 
(4.44)) are used to calculate the anisotropy ratio: 

< i x p = 1 . 5 - 1 . 9 - 1 . 6 (4.45) 

A comparison of (4.43) and (4.45) shows the added anisotropy due to the layered struc
ture, exceeding the anisotropy present at smaller scales. 

Level 'III': Macroscopic Clay-Quartz Inclusion Composite The textured clay 
composite of level II together with quartz inclusions forms a macroscopic composite 
material, that becomes visible at the sub-millimeter to millimeter scale. The material at 
this scale is composed of a textured clay matrix with an in-general abundant population 
of poorly sorted detrital grains (quartz inclusions), that are either concentrated into 
laminations located between thinner, clay-rich (or quartz starved), lens shaped lams, or 
homogeneously distributed throughout. This scale has been extensively researched, in 
the shale acoustics and exploration geophysics community, by means of compressional 
and shear-wave velocity measurements (Thomsen, 1986; Brittan et al., 1995; Tsvankin, 
1996; Hornby, 1998; Sayers, 1999; Wang, 2002; Pratson et a l , 2003), and it is now 
generally agreed that shales behave elastically as transverse isotropic media. The typical 
wave length employed in such studies operated at frequencies in the MHz range, is in 
the millimeter range, which captures well the composite stiffness of the macroscopic 
clay-quartz inclusion composite. 

Table 6 provides the values of the equivalent indentation moduli derived from UPV 
measurements of the three shale materials. It should be noted that UPV-measurements 
carried out on saturated shale materials are undrained stiffness values, which may explain 
some hydraulic stiffening effects, in addition to stiffening induced by the presence of 
quartz inclusions. For pure purpose of comparison, we calculate the anisotropy ratio: 

= 1 . 4 - 1 . 7 - 1 . 5 (4.46) 

The fact that the anisotropy of the macroscopic composite is shghtly smaller than the one 
of the textured clay composite (level II; (4.45)) is not surprising: mixing a (more-or-less) 
isotropic inclusions into an anisotropic material system reduces the anisotropy. 
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Figure 20. Microindentation scaling relation. 
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4.2 Anisotropic Microporoelasticity of Shale Materials 

The overall trend that emerges from the multiscale indentation analysis is that the 
anisotropy of shale materials increases from smaller to larger scales. 

Sources of Anisotropy Representation Our first objective is to analyze indent
ation results by means of a microporomechanics modeling approach. As an experi
mental base, we have six experimental indentation stiffness values for each shale mater-
ial: M/ , , ,p ,M3%,p ,M/ , i ,p ,M3%,M//4 ,M/ / ip (see Table 6). Using (2.44) and (2.52), 
each of these indentation stiffness values provides a snapshot of the elasticity of the stiff
ness values C/iii , C'/ggg, Cfi22^ Cn33. 7̂2̂ 323 (or C'n. C'ss. ^(2, C/3, C/4) at each considered 
scale J = I, II, III. Since there is a priori no reason that the five elasticity constants at 
different scales should coincide, there is a total of 6 knowns for a total of 15 unknowns. 
This imbalance highlights the necessity for a micromechanics approach, requiring at each 
scale three further information to complete the stiffness characterization, that cannot rely 
on an empirical choice only. The micromechanics model aims at answering the following 
questions: 

1. Level '0': In the light of the decreasing anisotropy at smaller scales, is it possible 
that the elementary building block of shale materials were isotropic? - Given the 
anisotropy of the clay minerals it is unlikely that shales at the nanoscale are mech
anical isotropic materials. However, the stiffness values of clay minerals (Table 5) 
are (at least) one order of magnitude greater than the nanoindentation stiffness val
ues (Table 6). This observation suggests that it is not the mineral elasticity itself, 
but rather the contact regions in between minerals, ie. the inter-mineral porosity, 
that governs the elasticity (See Figure 22, top right). In fact, deformation in the 
crystalline structure vis-a-vis deformation at the interface between clay particles 
involve much higher forces, energies and stiffness. The simplest continuous repres
entation of such a discrete material system comes to replace a discrete assembly 
of grains by a continuous solid phase intermixed with some porosity (Fig. 22, top 
left). This assumption (and it is one!) provides a convenient way to localize the 
total elastic deformation in a conceptual continuous pure clay phase, whereas it 
physically occurs both in very stiff clay flakes and in the contact regions between 
them. The two possible sources of anisotropy are then the anisotropy of the solid 
phase and the pore morphology Given the trend that clay minerals appear in pack
ages, forming the surrounding solid of the porosity, it is convenient to attribute the 
entire anisotropy at the scale of the elementary building block of shale materials, 
to the pore morphology by assuming the pure clay phase isotropic. This reduces 
the number of unknowns to three: two elastic constants and the pore aspect ratio. 
More specifically, since the shape of clay particles can be approached by the one of 
flat ellipsoids, we will assume that the pores have the same morphology: an oblate 
spheroid with a varying aspect ratio p = h/D, where h is the thickness and D 
the diameter of the pore (Figure 22, bottom left). Hornby et al. (1994) choose a 
unique value for the pore aspect ratio in his model, 1/20, equivalent to the one of 
clay particles. The pore aspect ratio depends more generally on other parameters 
as well, like pore pressure and depth (Jacobsen et al., 2003). Moreover, if we con-
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Figure 22. Three steps to model the shale elementary building block from level 0 (top 
right) to level 1 (bottom right): The first and second ones show the continuous and 
isotropic representation of clay particles (1) and simplified manifestation of porosity (2); 
the third one regards it as a (micro)homogeneous phase. 

sider that the pores are the sole source of the shale anisotropy at level '0' defined 
by a unique value of p, one should expect a significant decrease in macroscopic 
anisotropy with decreasing porosity, other parameters being equal. 

2. Level T : / / the shale building block is clearly anisotropic, why did nanoindentation 
operated to nanoindentation depths of 100 and 400 nm which activate approxim
ately a bulk comparable to the shale building block, give very close average values 
when performed in bedding or normal to bedding planes! - The nanoindentation 
results show a fair amount of randomness of the distribution of the stiffness in the 
microstructure. However, since the stiffness distributions in different indentation 
directions do not coincide (see Figure 16), the randomness of the extracted prop
erties should not be attributed to randomness in a mechanical sense, ze. isotropy. 
Instead, it appears as a consequence of the randomness of the indentation locus 
defined by the grid size that is much larger than both the indentation depth and 
the distance in between clay particles. In other words, the elementary building 
blocks -and the associated anisotropy- manifest themselves at a scale that is much 
smaller than the indentation grid size. As a consequence the statistical averages of 
nanoindentation stiffness values are not averages in the sense of a mechanical homo-
genization; but reflect the orientations of shale building blocks encountered in both 
in-bedding and normal-to-bedding tests as shown on Figure 23. For instance, if the 
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Figure 23. Nanoindentation on a shale elementary building block, level I (left). The 
indentation stiffness depends on the orientation of the pores, ie of the building block. In 
the remarkable case where all orientations are uniformly distributed in the shale (right), 
the average indentation modulus of a grid of tests does not depend on the indented surface 
orientation. The stiffness frequency exhibits an interesting two-peak distribution. 

pore orientation of building blocks has a uniform orientation distribution, then the 
statistical average of individual stiffness values would be the same for in-bedding 
and the normal-to-bedding indentations, although the stiffness distribution in each 
indentation direction contains a large range of values (Fig. 23). The highest (resp. 
lowest) expected stiffness is obtained when the pore normal direction is perpen
dicular (resp. parallel) to the axis of indentation. Any difference in between the 
two averages can be explained by a non-uniform orientation distribution function 
(ODF) of pores, flakes or shale building blocks. This non-uniform orientation dis
tribution is a third model parameter capturing the disorder of shale materials at 
level I. 

3. Level 'IF: How does the pore morphology from the building block translates into 
the pronounced anisotropy of the layered shale structure? - The microindentation 
results display a (more-or-less) clear one-peak distribution, so that values obtained 
at this scale can be associated with averages in a mechanical homogenization sense, 
averaging stiffness values of shale building blocks over a large volume. At this scale, 
the anisotropy increases for all shales which suggests that an additional morpholo
gical feature appears. Porosity, pore shape and orientation distribution functions 
are already determining the anisotropy in the statistical analysis of nanoindent
ation. The only possible reason that remains is a particular spatial distribution 
of shale building blocks. From SEM pictures at that scale, the orientation of the 
flakes is locally variable, but some wavy separation lines in the bedding directions 
indicate a clear privileged direction (Figure 19). This can be translated in a schem
atic laminate of shale building blocks oriented in the bedding directions, where 
each layer corresponds to one particular orientation of building blocks, as Figure 
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Figure 24. The schematic layered model for the shale microfabric. Each layer is defined 
by a unique orientation of pores, ie shale building blocks. The resulting laminate is 
aligned along the shale bedding planes. 

24 shows. Similar to a brick wall composed of bricks and joints, such a representa
tion suggests that horizontal pores (joints) are connected whereas vertical ones are 
interrupted, so that the pronounced anisotropy of shales at larger scales appears 
as a consequence of the connectivity of pores, with lower stiffness values in the 
direction normal to bedding (axis x3) than in-bedding (axis xl and x2). 

The suggested microporomechanics representation of shale materials is no-doubt re
ductionist, reducing the complexity of shales to an isotropic pure clay phase, an oriented 
pore space and an orientation distribution function. The model has a total of four model 
parameters, if we exclude the two volume fractions, porosity and inclusion, which are 
generally known from independent measurements. The porosity at level I and II is the 
same, while the porosity at level III is related to the former by: 

C-(l-//)0o' (4.47) 

Given this reduced number of model input parameters, we use the four indentation 
stiffness values M/exp,M3 ^^p, Mf ^^p, Mg^^p as a first data set for a cahbration of the 
model. Using the calibrated model parameters, we then predict the macroscopic stiffness, 
and compare these predictions with the stiffness values from a second independent data 
set obtained by UPV-measurements. 

Level '0': Shale Building Block We assume that the shale building bock is com
posed of a solid phase and a porosity, for which the classical relations of anisotropic 
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poroelasticity apply (Coussy, 2004): 

P 
= b : E + 

Â  

(4.48a) 

(4.48b) 

where Chom is the stiffness tensor, b the 2nd order tensor of Biot coefficients, and Â  the 
solid Biot modulus. The homogenization rules for this classical poroelastic material sys
tem are well established by now (Chateau and Dormieux, 2002; Dormieux and Bourgeois, 
2003): 

^hom 

b^ 

1 

= {l-MC,:{Aiz))y^ 

= d:<f>,{A{z))y^=d:{l-C;':Cl^) 

= 6:Cj':{h-4>oS) 

(4.49a) 

(4.49b) 

(4.49c) 

where C^ is the stiffness tensor of the (assumed) isotropic clay solid (bulk modulus kg, 
shear modulus gs): 

Cs = 3ksS+2gsK (4.50) 

where we recaU that Jijki—^l'^ {SijSki) and K = E - J; I is the fourth order identity 
tensor lij^i = \{^ik^ji + ^u^jk)^ and 6ij is the Kronecker delta. Furthermore, A(z) 
is a forth-order strain localization tensor, which concentrates the macroscopic strain 
tensor prescribed at the boundary into the microscopic solid phase. For the solid-pore 
morphology, a good estimate of the volume averages (A {z))y^ and (A {z))y is provided 
by the Mori-Tanaka scheme (see e.g. Zaoui (2002)): 

{Hz)\ \est ( 1 - 4 ) 1 + 4 ( I -S^)" 

.U)>v = (i-s^) ^ (1 -4 )1+4(I - s^) -

(4.51) 

(4.52) 

where §^ is the Eshelby tensor (Eshelby, 1957) that depends on the aspect ratio p = h/D 
of the pores and the Poisson's ratio of the matrix (see Appendix). Using the estimate 
(4.51) in (4.49a) yields the homogenized stiffness of a transversely isotropic material 
in the principle material axis, defined by the pore plane that extends in the xV x x2' 
plane, and whose normal is oriented in direction x3'. In this base, the components of the 
stiffness tensor are of the form (2.40), and the tensor of Biot coefficients is a diagonal 
tensor having as components: 

bij = 

bii 0 0 

hii 0 

^33 

(4.53) 

where hn and 633 represent the Biot coefficients in the horizontal and vertical direction 
in the shale building block: 

6n = 4>1>[A%%^^ + A'^^' 

633 = 4>i[2A%%^^ 
1122 "T 

est 1̂  Aest 1 
"1" ^0,3333j 

• ^ 0 a i 3 3 j (4.54a) 

(4.54b) 
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It is convenient to express the homogenized stiffness of the shale building block in a 
coordinate system (a:l,x2, x3), in which the pore plane's normal orientation is defined 
by the Euler angles 6 and if (See Figure 25): 

n = sin ^ cos ifei-\- sin 6 sin v? 62 + cos 9 e^ (4.55) 

0 = (p = 0 corresponds to a pore plane oriented by the normal pointing in direction x3; 
and 6 = 7r/2, (f = 0 and 6 = O^f = 0 corresponds to pore planes oriented by a unit 
normal in direction xl and x2, respectively. The relations between the second order 
strain and stress tensors in the reference and rotated configurations are given by: 

,<p 

= R{e,if)-Eo'R{e,ff 

= R(^,(/.).Eo-R(^,(/:^)^ 

(4.56a) 
(4.56b) 

where R(^, f) is the rotation matrix: 

cos ((f) 
sin {(f) 

0 

— sin (if) 
cos {(f) 

0 
(4.57) 

[ 1 0 0 
Rij{e,f)= 0 cos(6>) -sin((9) 

[ 0 sin(<9) cos(<9) 

Using (4.56) in (4.48), the poroelastic constants read in the rotated configuration: 

CLm(^,<^) = R(^,(/p)-CL^(0,0).R(^,(/ .)^ (4.58a) 

h^ie,f) = R{e,if)'W{0,0)'R{e,ff (4.58b) 

Level ' I ' : Statist ical Averages We consider that the mean nanoindentation results 
represent statistical averages of a representative sample of indentation tests on elementary 
building blocks present on a specific surface (Fig. 17). The statistical average of the 
indentation tests on this surface oriented in the xJ—direction is: 

f^Mj -

1 P'^ n27V 

- / Mj{e,f)sm0d(fde (4.59) 

where Mj{6, f) is the indentation modulus of a single indentation test on an elementary 
building block rotated by Euler angles 6 and (f w.r.t. the indentation axis xJ. Assuming 
the function to be continuous, the indentation modulus has two extrema: a minimum for 
indentation normal to the pore plane, ie. n • e j = 1, and a maximum for indentation in 
the pore plane, ie. n-ej = 0: 

Mn-ej = 

Mn-ej = 

1^ Mj {0, (f) = min M 

0=> Mj {0, f) = max M 

(4.60a) 

(4.60b) 

Combining (4.55) with (4.60), we recognize for indentation in bedding directions (axis 
xl and x2) and normal to it (axis x3): 

minM =Mi(7r/2,0) = M2 (7r/2,7r/2) =M^{0,if) 
maxM =Mi(0, (^) = M2 (0, (̂ ) =M3(7r/2,(^) 

-Mi(6/,7r/2) =M2(e ,0 ) 
(4.61) 
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Shale 
building 
block 

Figure 25. (top) The orientation of a transverse isotropic shale elementary building 
block is defined by the direction of its axis of symmetry, with the two Euler angles 6 and 
(f in the cartesian system 0x1X2X3; (bottom) Schematic representation of the surface 
Green function extreme profiles, when the axes of material symmetry and indentation 
(X3) form any angle 6. Without loss of generality we consider here ^ == 7r/2, and the 
extremal values of W, Hi and i/2, are obtained in the Xiand X2 directions. 
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The minimum value minM is strictly the indentation modulus for indentation in the 
symmetry axis of a transversely isotropic material, which is related to the elastic constants 
Chom(0,0) through (2.44). Similarly, the maximum value maxM is the indentation 
modulus for indentation in the plane of symmetry of a transversely isotropic material, 
which is related to Chom (0,0) through (2.52). For any other orientation of the pore 
plane defined by cos^' {6, cp) = n- ej, the link between the indentation modulus Mj {6') 
and the elasticity of the building block Chom (0,0) is estimated from a generahzation of 
(2.52): 

T^y riKriL 

satisfying: 

Mj{e'^^) = minM (4.63a) 

Mj{e'^7^/2) = maxM (4.63b) 

where HK — H{6' = O) and HL = {O' — 7r/2) are the extreme values of the Green's 
function angular part r]{0') given by (2.35)^^ and are represented schematically on Figure 
25. However, in contrast to the closed form expressions (2.44) and (2.52), these extreme 
values cannot be expressed in closed form for 9' =]0,7r/2[, and need to be numerically 
evaluated. 

Relation (4.62) contains not only the elastic stiffness information of the elementary 
building block, but as well the distribution of indentation moduli as a function of the 
pore plane orientation cos 9' = n- ej situated in between the two extrema, min M and 
max M. This distribution corresponds to a uniform orientation distribution of building 
blocks {ie. pore orientations) on a specific surface. It implies that shale building blocks 
have their axis of symmetry pointing in all directions with uniform probability density. 
A refinement of this theory can be achieved by considering an orientation distribution 
function W{9^ip) in the evaluation of the statistical average (4.59): 

f^Mj-:r / ^^ (^' ^) ^ ( ^ ' ^) ^^ ^ ^^ ^^ (4.64) 

This orientation distribution function needs to satisfy: 

-1 pTT /•27r 

— / / W{9, if) sin 9 dipd9 = 1 (4.65) 

For shale materials, orientation distribution functions were first introduced by Sayers 
(1994), and have gained some popularity as an important tool to account for a non
uniform distribution of the orientation of clay particles, that can be determined experi
mentally (see e.g. Johansen et al. (2004)). We employ this concept here to account for a 

^^This interpolation of the extreme values of the Green's function angular part T]{0') is justified 
by the fact that the half-space Green function, 7r-periodic by definition, conserves its eveness, 
because of a material plane symmetry. 
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Freq. M̂  M t -/̂ M < A 
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Figure 26. Average and distribution of indentation moduli in the two indented direction 
at the nano-scale. The anisotropy depends on the anisotropy of the shale building blocks, 
and on the orientation distribution function and the k factor. 

non-uniform orientation distribution of building blocks; and chose a 7r-periodic Gaussian 
like function: 

W{9, k) = Wk cosh(A: cos 6) (4.66) 

where Wk = 2/fccoshA: is a normahzation constant, and k a parameter referring to the 
degree of preferred alignment: A: = 0 means an absence of any preferred alignment, and 
fc > 0 induces a second source of anisotropy in the shale micromechanics model. 

The resulting statistical average (4.64) illustrated on Figure 26 depends on the elastic 
constants of the isotropic solid clay phase -bulk modulus A:̂ , shear modulus gs (see 
(4.50))-, the pore aspect ratio p = h/D and the k— factor; in addition to the clay 
porosity 0 ; and provides a direct link between the 4 -f- 1 model parameters and the 
experimental mean nanoindentation stiffness values Mf ^̂ p 
respectively the anisotropy ratio M/g^p/M^ ̂ ^p-

fiM^ and M/e^p = fiM, 3 ' 

Level 'II': Microporoelasticity of Porous Laminates We consider that the tex
tured clay layer composite has an infinite number of layers, each being characterized by 
the orientation of the pores {O^ip) (Fig. 24). The microindentation results are averages 
in the sense of micromechanics theory of a layered composite. The inherent assumption 
in layered composites mechanics is that the strain parameters ^n , £22, ^12 are uniform, 
as well as the stress components ais , cr23, 0-33. This is true for laminates with vanishing 
layer thicknesses, which is a special case of the scale separability condition (2.53). There 
are many different formulations for stress-strain averages of laminates. The one we re
tain here is the method proposed by El Omri et al. (2000), which provides an explicit 
formulation of the laminate stiffness tensor as a function of each layer stiffness, using 
stress-strain hybrid averages. We extend this method to the porous laminate, for which 
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the layer behavior is defined by the poroelastic state equation: 

cTij = Cijki £ki - hj P 

The idea is to rewrite the poroelastic state equation in a plane-antiplane basis: 

CTA 

Cpp 

CAP 

CPA 

CAA 

ep 

SA 

bp 

bA 

(4.67) 

(4.68) 

where subscript P refers to the plane components 11, 22,12, whereas subscript A refers 
to the anti-plane components 31,23,33, and the subscript A^P to the permuted config
uration. Adopting the matrix representation of second and forth order tensors proposed 
by Helnwein (2001), which is different from the classical Voigt representation, the plane-
aniplane components of any symmetric second order tensor aij are obtained from: 

a = : P : ( ap aA ) = { a n 

yielding: 

{ ap aA ) = P^ : a = ( a n 

where the matrix operator P reads: 

P -

• 1 0 0 0 0 0 • 
0 1 0 0 0 0 
0 0 0 1 0 0 
0 0 0 0 0 1 
0 0 0 0 1 0 
0 0 1 0 0 0 

^22 0-33 \ / 2 ' a 2 3 V^asi 

n 

0-22 \/2~ai2 v ^ a s i \/2"o23 033 ) 

(4.69) 

(4.70) 

j - i 

1 
0 
0 
0 
0 
0 

0 
1 
0 
0 
0 
0 

0 
0 
0 
1 
0 
0 

0 
0 
0 
0 
0 
1 

0 
0 
0 
0 
1 
0 

0 
0 
1 
0 
0 
0 

(4.71) 

The plane-antiplane components in (4.68) thus read: 

( ap GA f = P^ 

( ep SA f = P^ 

( bp bA f = P^ 

Similarly, the stiffness components are obtained from: 

e 

b 

C A,P 
Cpp CpA 

CAP CAA 
= P ^ : C 

(4.72a) 

(4.72b) 

(4.72c) 

(4.73) 

where C = C(^Q^ (^5^) is the stiffness tensor of each layer, given by (4.58a) in function 
of the elastic constants of the building block and the orientation of the pore plane (^, (p). 
Implemented in matrix form, its components read (Helnwein, 2001): 

a ijkl 

Ci 111 

sym 

Cu22 Cnss 
C'2222 C'2233 

C'aass 

v 2 C i i 2 3 

\ /2C2223 

V2C3323 

2(^2323 

V^Cnsi 
V^C'2231 

v2C'3331 

2C2331 
2C3131 

V^Ciiu 
V2C2212 

V2C3312 

2C2312 

2C3112 

2C1212 

(4.74) 
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The plane-antiplane representation allows for the following remarkable averaging rela
tions: 

sp = sp = Ep = ( Ell E22 v 2 E12 ) 
n 

(^A = 0^=^A= { \ /2 E31 V2 ^23 ^33 ) 

(4.75a) 

(4.75b) 

The remaining stress and strain components, not included in laminate averaging relations 
(4.75) are obtained from a partial inversion of (4.68): 

crp 

SA 

kpp kpA 

kAP kAA 

Ep 

^A 
Ip 
IA 

where 
kpp = Cpp - CpA Cj^j^ CAP Ip = bp + CpA C^^ bA 

-AA kAA = C, ^ 

kpA = -k^p = cpA Cj^\ 

Averaging (4.76) yields: 

IA = -CAA ^A 

(4.76) 

(4.77) 

EA 

kpp kpA 

kAP kAA 

Ep 

^A 

Finally, after partial inversion, we obtain: 

S p /^hom /^hom 
^PP ^ P 4 
Chom 

A ] 'AP 

'PA 
/^hom 
^ A . 'AA 

Ep 
EA 

V\ T-

^hom 

P[ ĥom 

(4.78) 

(4.79) 

where 

-1 -r-C^T = kpp - kpA {kAA) ' kAP ?)hom ^ ^^ ^ ^^^ (fc^^j ' i^ 

^ A T = [kAA) (4.80) 

c^x - {c^^^y = kpA • (kxx) - 1 Lhom 
^A (kAA) IA 

The homogenized stiffness of the porous laminate in the original configuration is obtained 
by inverse application of (4.73): 

C^L = P : Ch°™ : P^ (4.81) 

Similarly, application of (4.72c) yields the tensor of Biot coefficients in the original basis: 

b^^ = P : b|\^^ (4.82) 

The last poroelastic constant, the Biot modulus A/", is a scalar which is not affected by 
the rotation of the porosity. As a consequence, the Biot modulus is uniform throughout 
the layered system, and coincides with the solid Biot modulus of the layered composite, 
N^^ = N^, given by (4.49c). 
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Last, the volume average operation in (4.78) of the stiffness matrices ku reads for a 
uniform orientation distribution of the pore planes in the laminate: 

= ^ r r ku{e,if)sm{0)dipde (4.83) kij 

Similarly to (4.64) it is appropriate to introduce a non-uniform orientation distribution 
to account for some degree of preferred alignment: 

^ = ^ / / ^IJ(^^ ̂ ) ^ ( ^ ' ^) MO)d^de (4.84) 

where W{6, k) is the orientation distribution function (4.66). The same non-uniform ori
entation average operation is applied to all averages in (4.80); including the one involved 
in the determination of the Biot coefficients. 

The resulting homogenized stiffness (4.81) of the porous clay laminate, therefore, 
depends on the elastic constants of the isotropic solid clay phase -bulk modulus kg, shear 
modulus gs (see (4.50))-, the pore aspect ratio p — h/D and the k— factor; in addition 
to the clay porosity c/)̂  = 0^^. Using C{[^ from (4.81) in (2.44) and (2.52) provides 
the link between these 4 -h 1 model parameters, and the microindentation stiffness values 
^/,ixp and Mg^^^p, respectively the anisotropy ratio M/^^p/Mg^^^p. 

Level III: Addition of Inclusions Into an Anisotropic Porous Matrix We con
sider shale materials at the macroscopic scale to be composed of a textured porous 
matrix and (mainly) quartz inclusions of approximately spherical shape that are ran
domly distributed throughout the anisotropic porous matrix VM (Fig. 27). Except for 
the anisotropy of the matrix, the microporomechanics problem is very similar to the one 
we encountered for cement-based materials. Proceeding as before, we adopt a continuous 
description of the stress field in the heterogeneous r.e.v.: 

in Vui •CT{z) = (C{z):e {z) + cr^ {z) (4.85) 

together with the following distributions of the elastic properties C {z) and the eigenstress 
tT^(^): 

C (z) = ( ^^. V ^ a^ [z) = ( : ^ ^ J ^̂  ^^ (4.86) 

where CM — ^iom ^^ ^^^ stiffness tensor of the porous clay laminate (4.81), C^ = 
3kiS-\-2giK is the stiffness tensor of the (assumed isotropic) quartz inclusion phase; and 
bM = b^^ is the second order Biot coefficient tensor of the porous clay laminate (4.82). 
Following the linear microporomechanics approach, we decompose the problem in (the 
meanwhile classical) two sub-problems: 

1. The first sub-problem corresponds to drained conditions, for which p = 0. We 
assume that the r.e.v. is subjected to a uniform displacement boundary condition, 
so that the solid boundary conditions to which the solid phase is subjected read 
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Inclusions 

Figure 27. Macroscopic shale model: an anisotropic porous matrix of clay containing 
randomly distributed spherical inclusions. 

(see relation (3.10)): 

cr • n = 0 

(4.87a) 

(4.87b) 

on dViii 

onlsf 

The macroscopic strain tensor E is related to the microscopic strain by the strain 
localization condition: 

e'{z)=A{z):E (4.88) 

A (z) satisfies the compatibility condition: 

E = £ ^ ( Z ) ^ I = ( 1 - / , ) ' 'VM + /z (4.89) 

where fi = Vi/Vjjj = 1 — / M is the inclusion volume fraction. Use of (4.88) in 
(4.85) together with the elastic distribution (4.86) yields after volume averaging, 
the macroscopic stress, and the homogenized stiffness of the composite: 

S ' = a' U) = C ^ l : E; C^^^ = C M + / / (C, - C M ) : 

The change of the porosity in the subproblem reads: 

'Vi 

{4>-4>o) 
III JII E 

(4.90) 

(4.91) 

where b^^^ is the second order tensor of homogenized Biot coefficients. 
2. The second sub-problem we consider is the zero-displacement boundary problem, 

whereas the porosity is pressurized. Using Levine's theorem (3.14) for the eigen-
stress distribution (4.86), we obtain the macroscopic stress and the homogenized 
Biot coefficients: 

S " = CTP {Z) •.k{z) = -W"p- W = bM : (I - /i {k)v,) (4.92) 
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The change of the porosity in the subproblem reads: 

(0 - 0 o ) ' " ] " = ( ! - / . ) (bM : {e")y^ + ^ ) (4.93) 

where NM = N^^. We ehminate {e'')y in (4.93) to the benefit of pressure p, by 

considering the stress average in this sub-problem, in which E' ' = e" {z) = 0: 

= ( C M - Q ) : (1 - / , ) {e")y^ - (1 - h) hMP 

Thus, from the equahty of (4.92) and (4.94): 

(1 - / , ) (s")v^ = - ( C M - Q ) - ^ : ( b ^ " - (1 - fi) bM) P 

Finally, use of (4.95) in (4.93) yields: 

(4.94) 

(4.95) 

/ / / 

Nin N, M 
- fihM •• ( C M - Q ) - ' : bM : ( I - {A)yJ (4.96) 

In summary, a superposition of the two subproblems yields the macroscopic state 
equations of the shale composite material: 

together with the poroelastic properties: 

C^om = C M + / / ( Q - C M ) : 

,/// W" = hM:{l-fi{A)yJ 

(4.97a) 

(4.97b) 

(4.98a) 

(4.98b) 

^ = ^ + / i b M : ( Q - C M ) ~ ' : b M : ( l - ( A ) v - J (4.98c) 

The input to this homogenization step are the poroelastic properties of the porous clay 
laminate, C M = £^om,ii ^ y^^ _ ^^11^ j \ ^ ^ _ jy//^ ^j^^ (quartz) inclusion volume fraction 
fi, and an estimate of the volume average of the inclusion strain concentration tensor 
{A)y_. Given the matrix-inclusion morphology, such an estimate is suitably provided by 
the Mori-Tanaka scheme: 

.est 
( 1 - / Z ) I I + /Z( I I + P ^ : ( Q - C M ) ) (4.99) 

where P ^ is the so-called P-tensor that can be obtained from the matrix Green's func
tion G^^{x — x^) which expresses the displacement at point x in direction i in a linear 
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elastic solid of stiffness C° (= C M for the Mori-Tanaka scheme (Zaoui, 2002)) subjected 
to a unit force 6{x — x') applied in direction k at the point x': 

^ijki — ~ \ 9 (d^ ( [ G f̂c(x - x:)dv) /dxjdx^ (4.100) 
\ \Jv ) / (ij)(kl) 

where {ij){kl) stands for the symmetrization with respect to (ij) and {kl). The expression 
of the P-tensor for spherical inclusions in a transversely isotropic matrix can be found 
in Laws (1985), and is given in the Appendix. 

4.3 Calibr at ion-Validat ion 

The load bearing phase in shales is essentially a colloidal system of clay particles in 
which repulsive contact forces are in equilibrium with cohesive bonds. Like other natural 
composites, it behaves macroscopically as an elastic solid but with a particular micro-
structure. One could (and it has been!) argue(d) that continuum-based micromechanics 
is not the best theory suited for shales multiscale mechanical modeling. However, it may 
be the best currently available as far as (poro)elastic properties are concerned. Elastic 
homogenization theories for particulate systems are still very limited, and could not be 
used anyway with the continuum analysis of indentation tests. 

The present model relies on two main assumptions: (1) The porous clay phase of shale 
is a continuous solid with pores; and (2) the pure clay stiffness is isotropic. By means 
of these two assumptions, we arrive at reducing the total numbers of model degrees of 
freedom to four: the elastic constants of the isotropic solid clay phase -bulk modulus 
ks, shear modulus QS (see (4.50)) or plane stress modulus Mg and Poisson's ratio i^^-, 
the pore aspect ratio p — h/D and the k— factor. To complete the model we need to 
calibrate and vahdate the model. This will be achieved in two steps: 

• For the calibration, we will only use the four results of the nano- and microin-
dentation analysis from level I and II, and search for each shale material (porosity 
and inclusion volume fraction given) for the optimum set of model parameters 
(Ms, ẑ s, p, k) that best fit the experimental constraints: 

^ l , e x p - M M i ( ^ s , i ^ s , P , A ; ) 

ML exp | i (4.101) 

where \i^j is the statistical model average (4.64), My {J = 1,3) is the model 
indentation modulus given by an application of the model stiffness Ĉ ^̂ ^̂  from 
(4.81) in (2.44) and (2.52), and ej are some prescribed (absolute) error values. 
Ideally, e/ = 0. 

• For validation purposes, we use a second experimental data set for each shale 
material: the dynamic elastic stiffness values determined by UPV measurements, 
Cexp'̂ ^" -̂ We compare these dynamic values to the undrained model stiffness values, 
which are obtained from the poroelastic model properties C ôm^ b^^^, N^^^ (relation 
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Shale # 

^s [1] 1 
Ms [GPa] 

P [1] 
k [1] 1 

L 1 
0.4 

32 .0-36.7 
0.054 

0.48 
34.2 - 38.9 

0.0515 

1 0-9 

2 

0.4 
36.4 - 38.0 

0.036 

0.48 
38.5-41.0 

0.034 
3.4 

3 

0.315 
36.3 

0.0155 

0.415 
38.7 

0.0148 
1.4 

Table 7. Summary of model calibration procedure. 

(4.98)), through (see e.g. Coussy (1995)): 

where M^^^ is the overall Biot modulus: 

1 1 
-h 

with K-f"^ the fluid bulk modulus. The validation then reads: 

III plll.dyn _ (Tilll.un 
^exp ^hom <e' 

(4.102) 

(4.103) 

(4.104) 

Calibration: A Unique Clay Solid Stiffness? Table 7 provides a summary of the 
cahbration procedure. An interesting observation is that the plane-stress modulus of the 
pure clay phase, Ms ~ Es/ (l — z^ )̂, is almost the same for all three shale materials 
(and even more so for the Young's modulus Es\), which are quite different in mineralogy, 
burial depth, porosity, etc. It is somewhat smaller than the indentation modulus of pure 
mineral crystals (compare with Table 5), and clearly greater than average indentation 
stiffness values obtained by nanoindentation at larger scales. The main difference in 
between the different shale materials is the pore aspect ratio p and the alignment factor 
k. The first scales almost linearly with the clay porosity, p — c0^ (where c = 0.1745), 
whereas the second appears to be unrelated to the porosity and the pore aspect ratio, as 
one should expect for an independent (random) model variable. 

Validation: Drained and Undrained Poroelastic Properties Table 8 provides a 
summary of the predicted (drained) poroelastic properties at different scales for the three 
shale materials considered in this study. The input parameters are the values from Table 
7. It is worth noting that the difference in between the Biot coefficients strongly reflects 
the anisotropy induced by the pore aspect ratio. Use of the level III values in (4.102) yields 
the undrained stiffness values to be compared with the experimental dynamic stiffness 
values. The comparison of experimental vs. predicted undrained stiffness properties is 
displayed in Figure 28. Since this data set has not been used in the calibration of the 
model parameters, the good agreement is a good indication of the model's capability 
to capture the essential poroelastic behavior of shale materials, by means of four model 
parameters. Two of the model parameters, the elastic constants of the pure clay phase, 
seem to be (almost) independent of the specific shale material, and in particular of the 
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Figure 28. Predicted vs. measured C^j, for the three indented shales using the cahbrated 
input parameters, and for six other shales (J = Jurassic shale; K = Kimmeridge shale; 
C = Cretaceous shale). 

mineralogy. A third model parameter, the pore aspect ratio, appears to be related to 
the porosity; most probably as a result of the burial diagenesis: the greater the burial 
depth, the higher the packing density of the clay particles. Such high packing densities are 
indicative of a more ordered structure of the shale building blocks (clay particle packages) 
at level 0. For the same porosity, this increases the likelihood of pore connectivity at 
the nanoscale, which we capture through the pore aspect ratio. The anisotropy induced 
by the pore aspect ratio can be considered as the base source of anisotropy of shales. A 
second source of anisotropy of shales stems from some preferential orientation of building 
blocks at larger scales (level I and II), which is captured in our model through the 
fc—factor. The fc—factor which is the only remaining (true) degree of freedom of the 
model, increases the base anisotropy. Motivated from nanoindentation results and SEM 
and ESEM images of shale materials, it is very likely that a preferred alignment of 
building blocks relates to silt-size inclusions that may disturb the deposition alignment 
of clay particles in the course of the deposition history. It should therefore be related 
to size and distribution of inclusions within the porous clay laminate. However, based 
on the multiscale investigation of three shale materials only, it is still to early to be 
conclusive. 

Finally, Figure 28 also displays a comparison of predicted vs. experimental values 
for some other shale materials found in the literature. What is given for these shale 
materials is the porosity, the inclusion volume fraction and the clay mineralogy. The 
input for the predictions are the elastic constants of the pure clay phase (M^ = 35 GPa, 
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Level 0 

Level I 
61 = 0 
(p = 0 

Level II 

Level III 

Shale # 

^. [1] 
Ms [GPa] 
Cn [ 
Cl2 [ 
Cn [ 
C'sa [ 
C44 [ 
^'ii [ 
'>33 [ 
TV [ 
Cn [ 
Ci2 [ 

C'ls [ 
C'sa [ 
C44 [ 

611 [ 
^33 1 
N 1 
Cn [ 
C12 

Cl3 
^ • 3 3 
C44 

611 
^22 

nPa| 
f;Pa| 
f^Pal 
f;Pa| 
;;pa| 
i | 
i | 
GPa] 
GPa] 
GPa] 
GPa] 
GPa] 
GPa] 
1] 
1] 
GPa] 
GPa] 
GPa] 
GPa] 
GPa] 
GPa] 
1] 
1] 

1 N [GPa] 

IL 1 J 
1 -̂"̂  1 

32.0 
26.2 
11.3 
2.3 
3.3 
2 

0.74 
0.95 
5.13 
13.2 
4.4 
2.4 
6.8 
3.3 

0.87 
0.92 
5.13 
18.1 
6.4 
3.5 
10.3 
4.8 
0.82 
0.89 

1 6.1 

0.48 1 
34.2 
25.3 
13.3 
2.8 
3.0 
1.7 

0.94 
0.99 
4.46 
11.9 
4.6 
2.7 
6.2 
2.8 

0.94 
0.99 
4.46 
16.5 
6.5 
3.7 
9.3 
4.8 
0.92 
0.95 

1 5.3 

2 ] 
0.4 1 
38.0 
32.9 
14.4 
3.1 
4.5 
2.7 

0.68 
0.93 
5.99 
19.2 
6.6 
2.8 
6.6 
4.2 
0.82 
0.92 
5.99 
30.2 
11.2 
4.8 
13.1 
7.3 

0.73 
0.87 
7.7 

0.48 1 
41.0 
34.9 
18.7 
4.2 
4.5 
2.5 
0.92 
0.98 
5.63 
19.1 
7.7 
3.4 
6.5 
3.8 
0.96 
0.98 
5.63 
29.8 
12.5 
5.5 
12.8 
6.8 
0.85 
0.92 
7.2 

3 

0.315 1 
36.3 
35.8 
11.3 
1.9 
4.2 
3.0 
0.39 
0.78 
15.8 
19.0 
5.1 
2.1 
8.4 
5.0 

0.58 
0.70 
15.8 
36.6 
11.5 
8.1 
25.1 
10.5 
0.50 
0.62 

1 20.3 

0.415 
38.7 
39.3 
17 
3.0 
4.4 
2.8 
0.56 
0.78 
25.7 
19.7 
6.4 
3.1 
8.7 
4.8 
0.67 
0.73 
25.7 
42.8 
18.5 
15.4 
32.8 
10.4 
0.56 
0.58 

1 32.3 

Table 8. Predicted poroelastic properties at different scales. 

Vs = 0.4), and the pore aspect ratio determined from the clay matrix porosity. The 
fc—factor was interpolated from the values of our three shale materials. The comparison 
of predicted vs. experimental dynamic measurements shows generally a good agreement 
for all shale materials, in which the clay phase is the load bearing phase. Some limitations 
of the predictive capabilities of our model relate to either high silt inclusion materials 
or extremely low or high porosity shale materials. Both limitations are probably due 
to limitations of the homogenization scheme we employ. Indeed, the schemes employed 
assume that the load bearing phase is the clay phase (and not the inclusion phase), so 
that predictions will certainly be inaccurate for high quartz inclusion shale materials. 
Furthermore, it is quite unlikely that the schemes can capture extremely high packing 
density beyond 90% {ie. ultra-low porosity materials) or extremely low packing density, 
ie, much below the random close-packed hmit (RCP). From packing theory, it is known 
that such high packing densities can only be achieved by different sized solid building 
blocks, and would probably require considering several pore families. 
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5 Conclusions 

We raised the question whether it were possible to break down natural porous material 
systems down to a scale where materials no longer change from one material to another, 
and to upscale ('nanoengineer') the behavior from the nanoscale to the macroscale of 
engineering applications. Based on a combination of indentation analysis and micro
poromechanics analysis of cement-based materials and shale materials, the tentatively 
answer is yes! 

1. Level '0': At a nanoscale, most geomaterials are colloidal material systems, in which 
repulsive contact forces are in equilibrium with cohesive bonds. The material re
sponse at very fine scales is dominated by these surface properties, rather than by 
mineral properties. It is most likely that the scale of material invariant properties 
of natural composites is related to the predominant effect of such surface prop
erties, which no-doubt depend on the type of mineral bonding. We come to this 
conclusion from the backanalysis of measured nanoindentation results of cement-
based materials and shales, that seem to converge towards a single set of material 
properties for each class of materials: the C-S-H solid stiffness and the pure clay 
solid phase properties. 

2. Level T': At a scale of tens of nanometers, most geomaterials possess characteristic 
packing densities, as a consequence of the material genesis, ie. hydration in the 
case of cement-based materials; deposition and burial diagenesis in the scale of 
shales. This packing density defines a particular solid-pore space microstructure, 
unique for each class of materials. In the case of cement-based materials, these are 
the LD- and HD-C-S-H packing; and in the case of shales, it is the shale building 
block, ie. the packages of clay particles. The material invariant properties (from 
level '0') and the packing mode (from level T ) translate into a base mechanics 
behavior. The porosity ('one minus packing density') which manifests itself at this 
scale, defines much of the poromechanics behavior of natural composites at larger 
scales. 

3. Level TF: At a micrometer scale, the behavior of natural composites is a con
sequence of texture; ie. the LD-/HD-C-S-H volume proportions of cement-based 
materials, and the porous clay laminate structure of shales. Texture can explain 
much of the large variety of geomaterials. For instance, the lower strength of heat 
cured cement-based materials appears as a consequence of the conversion of LD-
C-S-H into HD-C-S-H, creating a net macroporosity. In the case of shales, it is the 
preferred alignment of building blocks increasing the elastic anisotropy. 

4. Level TIF: All things come together at the macroscale, where the textured load 
bearing porous material and inclusions (sand and aggregates in the case of mortar 
and concrete; quartz, feldspar, pyrite, etc. in the case of shales) determine the 
mechanical behavior of natural composites. 

Our experimental microporomechanics analysis focussed primarily on the poroelastic 
behavior of natural composites, for which a combination of advanced experimental in
dentation techniques and linear microporoelasticity theory provides a unique opportunity 
to understand and assess nanoproperties and microstructure, as a new basis for the engin-
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eering prediction of macroscopic poroelastic properties of natural composite materials. 
Things will still take some time regarding strength properties, requiring advances in 
the interpretation of strength properties from indentation tests and in non-linear mi-
croporomechanics, to ultimately arrive at identifying material invariant nanostrength 
properties. This is a formidable challenge! 
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6 Appendix: Eshelby and P tensors 

6.1 Oblate spheroidal inclusion in an isotropic matrix 

The non-zero components of the Eshelby tensor S for oblate spheroidal inclusions of 
aspect ratio p = h/D < 1 in a matrix of Poisson's ratio iy read: 
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533n = ^ ^ / : 3 + ^ i ^ / 3 = 5 3 3 . 
87r(l - I/) 87r(l — v) 

where: 

/ l = /2 = ^ ^ - ^ { c O S - V - p ( l - p ^ ) ^ / ' } , ^ 

ip' - 1) 

( / 1 - / 3 ) 

/ i3 = / 2 3 = , 2 i w 3/33 - 47r/p^ - 2/13 

^11 = -̂ 22 = /l2 = TT - /13/4 = 7T • ^ 

4{p^ - 1) 

Note tha t the Eshelby tensor in matr ix notationis is not symmetric {Sujj ^ Sjju). 

6.2 Spherica l Inc lus ion in a Transverse ly I sotropic M a t r i x 

The P tensor has the form of the stiffness tensor of a transverse isotropic material: 

^2222 = A m , A2I I = -^1122, ^ 3 1 1 = A133, -̂ 2323 — ^ 3 1 3 , ^212 = l / 2 ( P l l l l — P1122) 

where: 

3 1 
A m — j7^i(C'445C'33 — 26*44,(744 — C33) + -—hil, —1) 

A122 = — ^ ( ^ 4 4 , 6 3 3 — 2C44,C44 — C33) — -—72(1, —1) 

A133 = 7-^1 (^' ~^13 — ^44, Ci3 + C44) 

•A333 — i:h{^^ CIICA,A — Cii) 

A313 = ^ / i ( C n , - 2 ( C i i + Ci3) ,Cn+C33 + 2 C i 3 ) - ^ / 2 ( 0 , - l ) 

and 
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^^ ' " ' ' " ^ C33C44 I I {1 _ (1 _ ^2)^2}3/2-1^2 + ( ! _ ^2)^2} 1^2+ ( ! _ ^ 2 ) ^ 2 } ^ 

/ + m^2 

/

I 

where 7^, 7^ are the roots of: 

C33C44X — (C11C33 — 2C13C44 — Ci3)a: + C11C44 = 0 




