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Analysis of Smart Piezo-Magneto-Thermo-Elastic
Composite and Reinforced Plates:
Part II – Applications
Abstract: A comprehensive micromechanical model for
the analysis of a smart composite piezo-magneto-thermo-
elastic thin plate with rapidly varying thickness is devel-
oped inPart I of thiswork. Theasymptotic homogenization
model is developedusing static equilibriumequations and
the quasi-static approximation of Maxwell’s equations.
The work culminates in the derivation of general expres-
sions for effective elastic, piezoelectric, piezomagnetic, di-
electric permittivity and other coefficients. Among these
coefficients, the so-called product coefficients are deter-
mined which are present in the behavior of the macro-
scopic composite as a result of the interactions between
the various phases but can be absent from the constitutive
behavior of some individual phases of the composite struc-
ture. Themodel is comprehensive enough to also allow for
calculation of the local fields of mechanical stresses, elec-
tric displacement andmagnetic induction. The present pa-
per determines the effective properties of constant thick-
ness laminates comprised of monoclinic materials or or-
thotropic materials which are rotated with respect to their
principal material coordinate system. A further example
illustrates the determination of the effective properties of
wafer-type magnetoelectric composite plates reinforced
with smart ribs or stiffeners oriented along the tangential
directions of theplate. For generality, it is assumed that the
ribs and the base plate are made of different orthotropic
materials. It is shown in this work that for the purely elas-
tic case the results of the derivedmodel converge exactly to
previously established models. However, in the more gen-
eral case where some or all of the phases exhibit piezo-
electric and/or piezomagnetic behavior, the expressions
for the derived effective coefficients are shown to be de-
pendent on not only the elastic properties but also on the
piezoelectric and piezomagnetic parameters of the con-
stituent materials. Thus, the results presented here rep-
resent a significant refinement of previously obtained re-
sults.
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1 Introduction
The incorporation of composites and, more recently,
nanocomposites, into new engineering applications has
been restricted to some extend by the lack of a reliable
data-base of their long-term performance characteristics
under different loading conditions. This problem has been
offset to a significant degree by the recent development
and optimization of elaborate sensor and actuator sys-
tems. On one hand, sensors can provide valuable data on
the current state and serviceability of the structure and
on the other hand the actuators can respond effectively to
changes in external conditions/stimuli such as mechani-
cal loading, electric andmagnetic field intensity, tempera-
ture etc. To enhance a structure’s ability to fulfill the re-
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quirements of a particular engineering application and
guarantee long-term reliability and sustenance, it is nec-
essary to integrate composites/nanocomposites with the
aforementioned sensors/actuators; this gives rise to smart
composites and smart nanocomposites, see for example
Kalamkarov et al. [1]. Jain and Sirkis [2] aptly compared
smart structures to biological systems. In their work they
defined the goal of smart structures as being able to re-
produce biological functions in load-bearing mechanical
systems; thus smart structures should be endowed with
a “skeletal system” to provide load-bearing capabilities, a
“nervous system”, which is a system of integrated sensors
or actuators to assess the structural health state, a “mo-
tor system” to provide adaptive response, an “immune sys-
tem” for self-healing capabilities and a “neural system” for
promoting learning and decisionmaking [2]. Suitable can-
didates for use as sensors and actuators in smart compos-
itematerials systems include electro/magneto-rheological
fluids, shape-memory alloys, piezomagnetics and magne-
tostrictives, piezoelectrics and others.

Of particular interest among smart materials are
those consisting of piezoelectric and piezomagnetic con-
stituents. Suchmagnetoelectric composites have attracted
attention both because of their significant potential for en-
gineering applications as well as the unique properties
they exhibit. In particular,magnetoelectric composites are
primarily characterized by the so-called product proper-
ties which are present in the behavior of the overallmacro-
scopic structure but are usually absent from the constitu-
tive behavior of the individual constituents, see Newnham
et al. [3], Nan et al. [4]. Examples of product properties are
the magnetoelectric effect, pyromagnetism and pyroelec-
tricity. According to Nan et al. [4] we can succinctly write
the product properties as follows:

Magnetoelectric E�ect = Magnetic
Mechanical × Mechanical

Electric

Pyroelectric E�ect = Thermal
Mechanical × Mechanical

Electric

Pyromagnetic E�ect = Thermal
Mechanical × Mechanical

Magnetic

Thus, applying an electric field to a magnetoelectric com-
posite generates mechanical displacement in the piezo-
electric phase. Provided there is a satisfactory degree
of bonding between the different constituents, this me-
chanical deformation is transferred to the piezomagnetic
phase and in turn induces a magnetic field. Thus, overall,
an applied electric field generates a magnetic field and,
conversely, an applied magnetic field produces electric
displacement. This is the magnetoelectric phenomenon.
Similarly, changing the temperature produces mechanical
strain through thermal expansion. In turn this strain gen-
eratesmagnetic induction in the piezomagnetic phase (py-

romagnetism) and electric displacement (pyroelectricity)
in the piezoelectric phase.

As a result of their unique properties magnetoelectric
composites are continuously coming into the forefront of
an increasing number of engineering applications. Typ-
ical examples include resonators, phase shifters, delay
lines and filters, magnetic field sensors, energy harvesting
transducers,miniature antennas, data storagedevices and
spintronics, biomedical sensors for EEG/MEG devices and
other relevant equipment, see [5–14].

The incorporation of smart materials and, particu-
larly, magnetoelectric composites into new engineering
applications is significantly facilitated if their properties
and coefficients can be predicted at the design stage; thus
micromechanical models are needed. These models must
be comprehensive enough to capture both the individual
behavior of the different constituents as well as the in-
fluence of the macroscopic composite. At the same time,
if the developed models are too complicated to be used
in an effective and efficient manner then they are of little
use beyond the obvious academic interest. Ideally, these
models should lead to closed-form design-oriented equa-
tions that can be programmed into a simple spread-sheet.
That way they can facilitate engineering analysis to ob-
tain a preliminary design and, if any fine-tuning is needed,
the designer can turn to a numerical model based on, for
example, the finite element technique. To this end, the
main objective of this work is the development of multi-
physics micromechanical models for the analysis and de-
sign of thin piezo-magneto-thermo-elastic composite and
reinforced plate structures. The nature of the developed
models is such that they permit the designer to readily cus-
tomize the effective properties of a given smart structure
by varying one ormore geometrical ormaterial parameters
such as the stacking sequence in a magnetoelectric lami-
nate, thickness and composition of the perpendicular ribs
of wafer-reinforced plates etc.

Among the earlier works on magnetoelectric compos-
ites are those of Harshe et al. [15, 16] and Avelaneda
and Harshe [17], who developed theoretical models to
determine the magnetoelectric coefficients of 0-3 and
2-2 piezoelectric-magnetostrictive multilayer composites.
However, deviations are observed between their results
and corresponding experimental values. Osaretin and Ro-
jas [18] purport that this discrepancy could be attributed
to poor interface coupling between the layers, as far as the
experimental results are concerned, and failure to prop-
erly incorporate the appropriate electromagnetic bound-
ary conditions as far as the theoretical models are con-
cerned. The authors then go on to develop a differentmod-
elingmethodology by solving the constitutive equations in
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each phase and then applying a field-averaging method,
see e.g. Getman [19], with pertinent boundary conditions,
to obtain the composite effective properties. Their results
agree with their counterparts from other theoretical mod-
els such as the one developed by Nan [20], who employed
aGreen’s Function approach. However, a discrepancywith
experimental results still remained which was corrected
by applying an interface coupling parameter of 0.4 (logi-
cal from a practical point of view) to the theoretical model.
Particularly noteworthy are the works of Huang and col-
laborators, [21, 23, 24]. In particular, Huang and Kuo [21]
developed a comprehensive micromechanical model for
piezoelectric-piezomagnetic composites containing ellip-
soidal inclusions. As in most other theoretical models, the
authors assumed perfect bonding between the inclusion
and the matrix and ignored any other interfacial defects.
Their modeling methodology allowed them to obtain the
coupled magneto-electro-elastic analogue of the Eshelby
tensors [22] which, as expected, are a function of the geo-
metric characteristics of the ellipsoidal inclusions as well
as the properties of the host matrix. In an extension of
this work, Huang [23] obtained closed-form solutions for
reinforcements in the shape of elliptic cylinders, circular
cylinders, disks and ribbons embedded in a transversely
isotropic matrix. Other related work on magnetoelectric
composites consisting of long piezoelectric fibers embed-
ded in a piezomagnetic matrix can be found in [24].

Hadjiloizi et al. [25, 26] employed the asymptotic ho-
mogenization technique to develop two general three-
dimensional models for magnetoelectric composites. One
model used dynamic force and thermal balance and the
time-varying form of Maxwell’s equations to determine
closed-form expressions for the complete set of the effec-
tive properties of the structure including electrical conduc-
tivity and the product properties. The second model used
the quasi-static approximation of the aforementioned con-
stitutive equations. The models were applied to the case
of thick laminates. It was shown that the results of the
quasi-static model agreed with those of other models, see
for example Bravo-Castillero et al [27]. Ni et al [28] exam-
ined the effect of the orientation of the applied electric
and magnetic fields on the magnetoelectric coupling of
polycrystalline multiferroic laminates. The authors based
their theoretical model on a three-layer sandwich lami-
nate consisting of a polycrystalline piezoelectric layer be-
tween two piezomagnetic laminae. Their model assumed
the application of dc poling electric and magnetic fields
because the constituent materials do not exhibit an appre-
ciable degree of electromechanical and magnetomechan-
ical behavior in their unpoled states. In the model an ac
magnetic field, δHj, is applied and the induced polariza-

tion, δPi, is calculated. The effective magnetoelectric coef-
ficients were then calculated as aij = δPi/δHj. The model
showed that these coefficients depended on the sumof the
in-plane piezomagnetic strains, ε11+ε22, which in turn de-
pended strongly on theorientationof the appliedmagnetic
fields relative to the laminate’s interface. Tsang et al. [29]
developed an effective medium-based micromechanical
model for 3-phase magnetoelectric composites consisting
of spherical magnetostrictive and piezoelectric particles
embedded in a conductive polymer matrix. Based on their
model, the authors calculated the magnetoelectric charge
and voltage coefficients, and the results agreed reasonably
well with corresponding experimental data. In their mod-
eling approach, Pan et al. [30] transformed a cylindrical
layered composite, consisting of piezoelectric and piezo-
magnetic laminae, into an equivalent planar one. This
modeling approach proved useful in the analysis and de-
sign of magnetoelectric devices and structures. Bichurin
et al. [31] developed a micromechanical model pertain-
ing for ferromagnetic/piezoelectric bilayered and multi-
layered composites with the electric and magnetic fields
applied in varying orientations with respect to the lam-
inates’ interface. Longitudinal and transverse magneto-
electric coefficients were calculated. Regarding the former
coefficient, the authors illustrated that earlier results [15]
were a limiting case of their theory. The same authors,
Bichurin et al. [32], extended their work to magnetoelec-
tric nanocomposites. Other relevant results can be found
in the works of Akhabarzadeh et al. [33], Soh and Liu [34],
Kirchner et al. [35], Pan and Heyliger [36], Benveniste [37],
Spyropoulos et al. [38], Tang and Yu [39, 40] and others.

The constitutive and governing equations describing
the micromechanical behavior of periodic composites and
smart composites (including the magnetoelectric compos-
ites that are of interest to us in this work) are charac-
terized by rapidly varying material coefficients. In other
words, the material coefficients are periodic with a small
period, of the order of a few micrometers or nanome-
ters. This spatial scale is typically portrayed in literature
as the microscopic or “fast” scale. Superimposed on this
scale however, one encounters a macroscopic or “slow”
scale, which is a function of the global formulation of the
problem (external loads, boundary conditions etc.) and
is “oblivious” to the substructural phenomena that take
place at the level of the reinforcement or general inclu-
sion. Consequently, any attempt to solve a problem related
to a smart composite must successfully decouple the two
scales and treat the two problems (macroscopic and mi-
croscopic) independently. One such technique that has en-
joyed significant success for many years is that of asymp-
totic homogenization. The pertinent mathematical details

Brought to you by | Cyprus University of Technology
Authenticated

Download Date | 6/21/19 8:04 AM



Analysis of Smart Piezo-Magneto-Thermo-Elastic Composite and Reinforced Plates | 35

of the technique can be found in Bensoussan et al. [41],
Sanchez-Palencia [42], Bakvalov and Panasenko [43] and
Cioranescu and Donato [44]. Many problems in elastic-
ity, thermoelasticity, and piezo-magneto-elasticity have
been solved via asymptotic homogenization. We want to
mention particularly the works of Kalamkarov [45], who
analyzed a wide variety of problems, such as compos-
ite and reinforced plates and shells, network-reinforced
shells, plates with corrugated surfaces and other struc-
tures, Kalamkarov andKolpakov [46]whoused thesemod-
els to design and optimize various composite structures
on account of strength and stiffness requirements, the
pioneering work of Guedes and Kikuchi [47] on compu-
tational aspects of homogenization, the modification of
asymptotic homogenization for problems related to elas-
ticity and thermal conductivity of thin plates appearing in
theworks of Duvaut [48, 49], Andrianov et al. [50, 51], Cail-
lerie [52, 53], Kohn and Vogelius [54–56] and many others.

Recent years have witnessed the emergence of smart
composite plates and shells as the preeminent struc-
tural members for many practical applications. Enhanced
strength, reduced weight, materials savings and ease
of fabrication are among the reasons that make these
structures attractive. More recently, advancements in the
field of nanotechnology and the increasing popularity of
nanocomposite thin films, plates and shells [57] have fur-
ther enhanced the applicationpotential of such structures.
The periodic or nearly periodic nature of smart composite
and nanocomposite plates and shells renders asymptotic
homogenization a valuable tool in their analysis, design
and optimization.

The “classical” asymptotic homogenization approach
however cannot be applied directly to a thin plate or shell
if the scale of the spatial inhomogeneity is comparable
to the thickness of the structure. In that case, a refined
approach developed by Caillerie [52, 53] in his heat con-
duction studies is needed. In particular, a two-scale for-
malism is applied, whereby a set of microscopic variables
is used for the tangential directions in which periodic-
ity exists and another microscopic variable is used for
the transverse direction in which periodicity considera-
tions do not apply. Kohn and Vogelius [54–56] adopted
this approach in their study of the pure bending of a thin,
linearly elastic homogeneous plate. Kalamkarov [45] and
Kalamkarov and Kolpakov [46] applied this modified two-
scale methodology to determine the effective elastic, ther-
mal expansion and thermal conductivity coefficients of
thin curvilinear composite layers. Challagulla et al. [58],
Georgiades et al. [59] employed this methodology to de-
velop comprehensive asymptotic homogenization models
for network-reinforced thin smart composite shells. These

authors illustrated their results by means of practically
important examples including single-walled carbon nan-
otubes, which can be treated as network-reinforced com-
posite shells in which the covalent bonds between the car-
bon atoms play the role of isotropic reinforcements em-
bedded in a matrix of zero rigidity. Kalamkarov and Geor-
giades [60] and, Georgiades and Kalamkarov [61] devel-
oped comprehensive micromechanical models for smart
composite wafer- and rib-reinforced plates. Saha et al. [62]
determined the effective elastic constants of orthotropic
honeycomb-like sandwich composite shells. Hadjiloizi et
al. [63] implemented a general model (based on the time-
varying form of Maxwell’s equations and dynamic force
balance) for the micromechanical dynamic analysis of
magnetoelectric thin plates with rapidly varying thick-
ness. In that work only an in-plane temperature varia-
tion was considered and therefore any out-of-plane ther-
mal effects were ignored. Thus, unlike in the present work,
the out-of-plane thermal expansion, pyroelectric and py-
romagnetic coefficients were not captured in [63]. More
important, however, is the fact that the micromechani-
cal model in [63] is only applied to the case of simple
laminated plates. In contrast, the model developed in the
present work explicitly allows for different periodicity in
the lateral directions. As such, it is readily amenable to the
design and analysis of magnetoelectric reinforced plates
such as the wafer-reinforced structures shown in Section
4. To the authors’ best knowledge, this is the first time
completely coupled piezo-magneto-thermo-elastic effec-
tive coefficients for reinforced plates are presented and an-
alyzed.

Also relevant to the present papers are the works
of Kalamkarov and Georgiades [60], Georgiades and
Kalamkarov [61] and Hadjiloizi et al. [25], [26]. In [60]
and [61], Kalamkarov and Georgiades developed and il-
lustrated the use of an asymptotic homogenization model
for the analysis of reinforced piezoelectric plates. In their
work, [60], [61] the authors adopted only a semi-coupled
analysis, which results in expressions for the effective co-
efficients that do not reflect the influence of such param-
eters as the electric permittivity, magnetic permeability,
primary magnetoelectricity etc. In the present work and
its companion paper [64], however, a fully coupled anal-
ysis is performed, and as a consequence the expressions
for the effective coefficients involve all pertinent mate-
rial parameters. As an example, the effective extensional
elastic coefficients are dependent on not only the elastic
properties of the constituent materials, but also on the
piezoelectric, piezomagnetic, magnetic permeability, di-
electric permittivity and magnetoelectric coefficients. The
same holds true for the remaining effective coefficients. In
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a sense, the thermoelasticity, piezoelectricity and piezo-
magnetism problems are entirely coupled, and the solu-
tion of one affects the solutions of the others. This feature
is captured in the present papers, but not in previously
published works, such as [60] and [61]. Thus, the results
presented here represent an important refinement of pre-
viously established results. To the authors’ best knowledge
completely coupled piezo-magneto-thermo-elastic effec-
tive coefficients for reinforced plates have not been pre-
sented and analyzed before.

In [25], [26], Hadjiloizi et al. developed general quasi-
static and dynamic three-dimensional models for magne-
toelectric composites. However, these models employed
the “classical” homogenization approach, see [43] for ex-
ample, and consequently could not capture the mechan-
ical, thermal, piezoelectric and piezomagnetic behavior
that is related to bending, twisting and general out-of-
plane deformation and electric and magnetic field gener-
ation. The model developed in the current work and its
companion paper [64], however, accomplishes precisely
this; it employs the modified asymptotic homogenization
technique (discussed earlier) which makes use of two sets
of microscopic variables that permit the decoupling of in-
plane and out-of-plane behavior of the structure under
consideration. For example, the elastic coefficients can
be distinguished into the familiar extensional, bending
and coupling coefficients, which is not possible to achieve
with the 3D models in [25] and [26]. What this amounts
to is the fact that the two modeling approaches are es-
sentially applicable to entirely different structures and ge-
ometries. The 3D models in [25], [26] can be used to ana-
lyze structures of comparable dimensions in the x, y, z di-
rections (such as thick laminates) but cannot be used for
thin structures such as wafer- and rib-reinforced plates.
The micromechanical models developed in the present
work, however, are applicable to structures with a much
smaller dimension in the transverse direction than in the
other two directions. Thus, they can be used in the de-
sign and analysis of an impressive range of composite
and reinforced plates such as the aforementioned wafer-
and rib-reinforced structures (see Section 4), three-layered
honeycomb-cored magnetoelectric plates, thin laminates
(Section 3) etc.

To summarize, the present paper deals with the devel-
opment and applications of appropriate plane stress mi-
cromechanical models for thin magnetoelectric compos-
ite and reinforced plates. The work is implemented in two
parts. In part I [64] the pertinent micromechanical mod-
els are derived, and the unit cell problems, from which
the effective coefficients (including the product properties)
can be extracted, are obtained. The applications of the de-

veloped models to the practically important cases of thin
composite laminates and wafer-reinforced magnetoelec-
tric plates are presented herein. Following this introduc-
tion the basic mathematical model and the pertinent unit
cell problems are reviewed in Section 2. Sections 3 and 4
present, respectively, the solution of the unit cell problems
for magnetoelectric laminates of constant thickness and
for wafer-reinforcedmagnetoelectric plates. Section 4 also
compares the results of the developed model with previ-
ously reported results, and, finally, Section 5 concludes the
work.

In view of the applications mentioned earlier in this
section, the most important aspect of this publication
is the development of closed-form design-oriented equa-
tions that can be used in the analysis and design ofmagne-
toelectric composite and reinforced plates. It is shown that
thermoelasticity, piezoelectricity and piezomagnetism are
entirely coupled and the solution of one affects the solu-
tions of the others.

2 Problem Formulation
The boundary value problem characterizing the thin smart
composite plate of rapidly varying thickness, Fig. 1 in Had-
jiloizi et al. [64], is given by:

σij,jx = Pi , Di,ix = 0, Bi,ix = 0
Ei = −φ,ix , Hi = −ψix

(2.1a)

σijnj= pi , Dini= 0, Bini= 0, on S±

ui = 0, φ = δ2e, ψ = δ2h, on lateral surfaces
(2.1b)

σij = Cijkluk,xl + ekijφ,xk + Qkijψ,xk−δΘijT
Di = δ

{︀
eijkuk,xl − εijφ,xk − λijψ,xk + δξ iT

}︀
Bi = δ

{︀
Qijkuk,xl − λijφ,xk − µijψ,xk + δηiT

}︀
(2.2a)

In these equations we use the following short-hand nota-
tion for the derivatives:

∂φα
∂yβ

= φα,βy ,
∂φα
∂xβ

= φα,βx ,
∂φα
∂z = φα,z (2.2b)

Here σij is the mechanical stress, Di and Bi are, respec-
tively, the electric displacement and magnetic induction,
Ei and Hi are the electric and magnetic fields, Pi repre-
sents a generic body force, pi represents the surface trac-
tions, and ui is the mechanical displacement. Finally, T is
the change in temperature with respect to a suitable refer-
ence. Eq. 2.1a represents the static equilibrium equations
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and the quasi-static approximation of Maxwell’s Equa-
tions. The irrotational electric and magnetic fields can be
expressed as gradients of scalar potential functions, φ
and ψ, respectively. Furthermore, ekl = ∂uk/∂xlis the sec-
ond order strain field, Cijkl, eijk, Qijk, and Θij are the ten-
sors of the elastic, piezoelectric, piezomagnetic and ther-
mal expansion coefficients respectively. Finally, εij, λij, µij,
ξi and ηi represent, respectively, the dielectric permittiv-
ity, the magnetoelectric coefficients, the magnetic perme-
ability, and the pyroelectric and pyromagnetic tensors.We
note that because the composite layer is periodic only in
the tangential directions, see Fig. 1 of Hadjiloizi et al [64],
the material parameters are dependent on xα/δhα and x3,
while the dependent field variables are also dependent
on xα = (x1, x2). In all equations we adopt the conven-
tion that Greek letters, α, β, 𝛾 etc. assume values of only
1,2, while Latin letters, a, b, c etc. take on values 1,2,3.
We finally note that the overall thickness of the struc-
ture must be small compared to the other two dimensions.
For the analysis of a thick piezo-magneto-thermo-elastic
laminate, one should consider an appropriate 3D model,
e.g. [25, 27].

The in-plane force and moment resultants pertaining
to the homogenized plate are given in Hadjiloizi et al. [64]
and are:

Nαβ = δ
⟨
bµναβ
⟩
εµν − δ2

⟨
b(1)µναβ

⟩
u(0)3,xµxν+

+δ
⟨
bαβµ
⟩
φ*,xµ + δ

⟨
aαβµ
⟩
ψ*,xµδ2

⟨︀
bαβ
⟩︀
T(0)1 +

+δ2
⟨
b(1)αβ
⟩
T(0)2

(2.3a)

Mαβ = δ2
⟨
zbµναβ

⟩
εµν − δ3

⟨
zb(1)µναβ

⟩
u(0)3,xµxν+

+δ2
⟨
zbαβµ

⟩
φ*xµ + δ2

⟨
zaαβµ

⟩
ψ*xµ + δ3

⟨︀
zbαβ

⟩︀
T(0)1 +

+δ3
⟨
zb(1)αβ

⟩
T(0)2

(2.3b)
Likewise, the averaged electric displacement and mag-
netic induction, see Hadjiloizi et al. [64], are given by:

⟨Dα⟩ = δ
⟨︀
δµνα
⟩︀
εµν − δ2

⟨
δ(1)µνα

⟩
u(0)3,xµxν+

+δ ⟨δαµ⟩φ*xµ + δ ⟨ξαµ⟩ψ*xµ + δ2 ⟨τα⟩ T(
0)
1 +

+δ2
⟨
τ(1)α
⟩
T(0)2

(2.3c)

⟨Bα⟩ = δ
⟨︀
ηµνα
⟩︀
εµν − δ2

⟨
a(1)µνα

⟩
u(0)3,xµ∂xν+

+δ ⟨aαµ⟩ 𝛾
*
xµ + δ ⟨𝛾αµ⟩ω

*
xµ + δ ⟨𝛾α⟩ T(

0)
1 +

+δ
⟨
𝛾(1)α
⟩
T(0)1

(2.3d)

Finally, the expressions for the mechanical displacement
and the electric and magnetic potentials can be written

down as:

uβ =
{︁
vβ − x3u(0)3,βx

}︁
+δNµνβ εµν − δ

2N(1)µν
β u(0)3,xµxν+

+δMβ
µφ*µx + δNβµψ*µx + δ2GβT(0)1 + δ2G(1)

β T
(0)
2 +

+δ2ω*β
(2.3e)

u3 =
{︁
u(0)3 +v3

}︁
+δNµν3 εµν − δ2N

(1)µν
3 u(0)3,xµxν+

+δM3
µφ*xµ + δN

3
µψ*xµ + δ2G3T(0)1 + δ2G(1)

3 T
(0)
2 +

+δ2ω*3
(2.3f)

φ = δφ* + δAµαεµα − δ2A(1)
αβ û

(0)
3,xαxβ + δΞαφ

*
xα+

+δOαψ*xα + δ2ΠT(
0)
1 + δ2Π(1)T(0)2 + δ2𝛾*

(2.3g)

ψ = δψ* + δΛµαεµα − δ2Λ(1)
αβ û

(0)
3,xαxβ + δZαφ

*
xα+

+δΓαψ*xα + δ2∆T(
0)
1 + δ2∆(1)T(0)2 + δ2ω*

(2.3h)

Here,δ
⟨
bµναβ
⟩
, δ2

⟨
b(1)µναβ

⟩
, δ ⟨𝛾αµ⟩, etc. are the effective co-

efficients to be determined from the following set of eigh-
teen unit cell problems, see Hadjiloizi et al. [64]:

h−1β b
µα
iβ,βy (y, z) + b

µα
i3,z (y, z) = 0

with bµαij (y, z)N±j = 0 on Z±
(2.4a)

h−1β b
iβ
α,βy (y, z) + b

i3
α,z (y, z) = 0

with bijα (y, z)N±j = 0 on Z±
(2.4b)

h−1β a
iβ
α,βy (y, z) + a

i3
α,z (y, z) = 0

with aijα (y, z)N±j = 0 on Z±
(2.4c)

h−1β biβ,βy (y, z) + bi3,z (y, z) = 0
with bij (y, z)N±j = 0 on Z±

(2.4d)

h−1β b
(1)
iβ,βy (y, z) + b

(1)
i3,z (y, z) = 0

with b(1)ij (y, z)N±j = 0 on Z±
(2.4e)

h−1β b
(1)µα
iβ,βy (y, z) + b

(1)µα
i3,z (y, z) = 0

with bµαij (y, z)N±j = 0 on Z±
(2.4f)

h−1β η
iα
β,βy (y, z) + ηiα3,z (y, z) = 0

with ηiαj (y, z)N±j = 0 on Z±
(2.5a)

h−1β aβα,βy (y, z) + a3α,z (y, z) = 0
with ajα (y, z)N±j = 0 on Z±

(2.5b)

h−1β 𝛾βα,βy (y, z) + 𝛾3α,z (y, z) = 0
with 𝛾jα (y, z)N±j = 0 on Z±

(2.5c)

h−1β 𝛾β,βy (y, z) + 𝛾3,z (y, z) = 0
with 𝛾j (y, z)N±j = 0 on Z±

(2.5d)
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h−1β 𝛾(1)β,βy (y, z) + 𝛾(1)3,z (y, z) = 0
with 𝛾(1)j (y, z)N±j = 0 on Z±

(2.5e)

h−1β a
(1)µα
β,βy (y, z) + a(1)µα3,z (y, z) = 0

with aµαi (y, z)N±j = 0 on Z±
(2.5f)

h−1β δ
iα
β,βy (y, z) + δiα3,z (y, z) = 0

with δiαj (y, z)N±j = 0 on Z±
(2.6a)

h−1β δβα,βy (y, z) + δ3α,z (y, z) = 0
with δjα (y, z)N±j = 0 on Z±

(2.6b)

h−1β ξβα,βy (y, z) + ξ3α,z (y, z) = 0
with ξjα (y, z)N±j = 0 on Z±

(2.6c)

h−1β τβ,βy (y, z) + τ3,z (y, z) = 0
with τj (y, z)N±j = 0 on Z±

(2.6d)

h−1β τ
(1)
β,βy (y, z) + τ

(1)
3,z (y, z) = 0

with τ(1)j (y, z)N±j = 0 on Z±
(2.6e)

h−1β δ
(1)µα
β,βy (y, z) + δ(1)µα3,z (y, z) = 0

with δµαi (y, z)N±j = 0 on Z±
(2.6f)

where,

bkαij = LijmNkαm +MijAkα + NijΛkα + Cijkα ,
bijα= LijmMm

α +MijΞα + NijZα + eαij
aijα= LijmNmα +MijOα + NijΓα + Qαij ,
bij = LijmGm +MijΠ + Nij∆ − Θij
b(1)ij = LijmG(1)

m +MijΠ(1) + Nij∆(1) − zΘij ,
b(1)kαij = LijmN(1)kα

m +MijA(1)
kα + NijΛ

(1)
kα + zCijkα

(2.7a)

ηkαj = LjiNkαi −M jAkα−N j (y)Λkα+Qjkα ,
ajα= LjiMi

α−M jΞα−N jZα−λjα
𝛾jα= LjiN iα−M jOα−N jΓα−µjα ,
𝛾j= LjiGi−M jΠ − N j∆ − ηj
𝛾(1)j = LjiG(1)

i −M jΠ(1)−N j∆(1)+zηj ,
a(1)kαi = LimN(1)kα

m −MiA(1)
kα − NiΛ

(1)
kα + zQikα

(2.7b)

δkαj = L*jiNkαi −M*j Akα−N*j Λkα+ejkα ,
δjα= L*jiMi

α−M*j Ξα−N*j Zα−εjα
ξjα= L*jiN iα−M*jOα−N*j Γα−λjα ,
τj= L*jiGi−M*jΠ − N*j ∆ + ξ j
τ(1)j = L*jiG(1)

i −M*jΠ(1)−N*j ∆(1)+zξ j ,
δ(1)kαi = L*imN(1)kα

m −M*i A(1)
kα − N*i Λ

(1)
kα+zeikα

(2.7c)

and Nkαm , Akα , Λkα, etc. are local functions, which define
the asymptotic expansions of the mechanical displace-
ment and electric and magnetic potentials, respectively,
see Eqs. 2.3e – 2.3h. Furthermore, Lijm, Mij, Nij etc. are
differential operators defined in Eqs. (I-6.2a), (I-6.4a) and

(I-6.6a). Note that in the previous sentence and from this
point onwards, for the sake of convenience, all equations
that are referenced from Hadjiloizi et al. [64] will be de-
noted by the uppercase letter I preceding the correspond-
ing equation number. For example, Eq. (I-5.27a) will de-
note Eq. 5.27a in Hadjiloizi et al. [64].

3 Applications of the General
Model – Constant Thickness
Laminates

We will illustrate our work by means of several examples.
The first examples are for laminates of constant thickness,
as shown in Fig. 1. As shown in the unit cell of Fig. 1,
each layer is completely determined by the parameters δ1,
δ2,. . .δMwhere M is the total number of layers. The thick-
ness of the mth layer is therefore δm-δm−1 with δ0 = 0 and
δM = 1. The real thickness of the mth layer as measured
in the original (x1,x2,x3) coordinate system is δ(δm-δm−1),
where δ is the thickness of the laminate (againwith respect
to the original coordinate system).

Figure 1: Unit cell of a laminated magnetoelectric composite plate.

It is apparent that all material parameters are inde-
pendent of y1 and y2, and consequently, all partial deriva-
tives in Eqs. 2.4a- 2.7c become ordinary derivatives with re-
spect to z. Wewill consider laminatesmade up of perfectly
bonded laminae of piezoelectric and piezomagnetic mate-
rials with the poling and magnetization directions along
the z-axis. The “perfect bonding” assumption is akin to
neglecting the interphase layers between adjacent plies.
(Because the interphase regionsmight be important in the
case of nano-laminates, application of the derived models
to such structures might need to take the interphase lay-
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ers into consideration, see for example Sevostianov and
Kachanov for particulate-reinforcednanocomposites [65]).
Furthermore, the overall thickness of the laminate is con-
sidered to be small compared to the in-plane dimensions.
For the sake of generality,wewill also assume that the con-
stituent materials are made of orthotropic materials, with
the principal material coordinate axes not necessarily co-
inciding with the y1, y2, z system but with a system that
has been rotated by an arbitrary angle with respect to the
z axis. As such, the pertinent coefficient matrices (tensors)
are the sameas those of amonoclinicmaterial, as far as the
number and location of the non-zero coefficients is con-
cerned, see Reddy [68]. Thus:⎡⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 C16
C12 C22 C23 0 0 C26
C13 C23 C33 0 0 C36
0 0 0 C44 C45 0
0 0 0 C45 C55 0
C16 C26 C36 0 0 C66

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 e31
0 0 e32
0 0 e33
e14 e24 0
e15 e25 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡⎢⎣ Θ11 Θ12 0
Θ12 Θ22 0
0 0 Θ33

⎤⎥⎦
⎡⎢⎣ ξ1
ξ2
ξ3

⎤⎥⎦

(3.1)
In Eq. 3.1 the first matrix is the elasticity tensor, the second
matrix represents the tensor of piezoelectric or piezomag-
netic coefficients, the third matrix pertains to the thermal
expansion (or dielectric permittivity/magnetic permeabil-
ity/magnetoelectric) tensor, and the last vector is the pyro-
electric or pyromagnetic tensor. We will now proceed with
the solution of the unit cell problems and the determina-
tion of general expressions for the effective coefficients.

(a) Unit Cell Problems 2.4a, 2.5a and 2.6a

To obtain the effective properties, the following pro-
cedure will be adhered to: The unit cell problems 2.4a-
2.6f will be reduced to ordinary differential equations in
z due to the aforementioned independency on y1 and y2.
The pertinent boundary conditions will also be simpli-
fied, because the normal vector N becomes (0,0,1). Sub-
sequently, the reduced unit cell problems will be solved
in a straight-forward manner, giving the coefficient func-
tions bkαij , η

µν
j , δkαj etc. as defined in Eqs. 2.7a – 2.7c. Be-

cause each of these functions is in turn a function of three
local functions (for example Eq. 2.7a shows that bkαij is a
function of Nkαm , Akα , andΛkα), we will need a total of
three unit cell problems to solve for the three unknowns.
Hence,wewill look for the threeunit cell problems that use

these same local functions. For example, local functions
Nkαm , Akα , andΛkα appear in unit cell problems 2.4a, 2.5a
and 2.6a via coefficient functions bkαij , η

µν
j and δkαj . Fi-

nally, after obtaining these local functions, we will back-
substitute them into the appropriate expressions for the
coefficient functions which in turn yield the effective co-
efficients after applying the homogenization procedure of
Eq. (I-4.5a).

Based on the above procedure, Eq. 2.4a reduces to:

dbkαi3 (z)
dz = 0 with bkαi3 (z) = 0 on Z± (3.2a)

Solving 3.2a leads to bkαi3 = 0 everywhere in the unit cell.
From Eq. (I-5.2a) and the first expression in Eq. 2.7a we
have:

bµαi3 = Ci3n3
dNµαn
dz +e3i3

dAµα
dz +Q3i3

dΛµα
dz +Ci3µα = 0 (3.2b)

Letting i = 1, 2 in Eq. 3.2b and bearing in mind the or-
thotropy of the constituents, see Eq. 3.1, we readily see
that:

∂Nµα1
∂z = ∂N

µα
2

∂z = 0 (3.2c)

For i = 3, Eq. 3.2b yields:

C33
dNµα3
dz +e33

dAµα
dz +Q33

dΛµα
dz = −C33µα (3.2d)

Eq. 3.2d contains three unknown functions, dNµα3
dz , dAµα

dz ,
dΛµα
dz . Hence, we will need two more equations which will
come from unit-cell problems 2.5a and 2.6a. Following the
same procedure as above, and keeping Eq. 3.2c in mind,
these unit-cell problems yield the following equations:

Q33
dNµα3
dz −λ33

dAµα
dz −µ33

dΛµα
dz = −Q3µα

e33
dNµα3
dz −ε33

dAµα
dz −λ33

dΛµα
dz = −e3µα

(3.2e)

Solving Eqs. 3.2d and 3.2e as a system yields the following
solution:

dNµα3
dz =

(︀
e3µαλ33 − Q3µαε33

)︀
Q33

Π̂1
+

+ λ
2
33C33µα+λ33e33Q3µα − µ33e33e3µα − µ33ε33C33µα

Π̂1
(3.2f)

dAµα
dz =

(︀
Q3µαe33+C33µαλ33

)︀
Q33+Q2

33e3µα
Π̂1

+

+−λ33C33Q3µα − µ33e33C33µα+µ33C33e3µα
Π̂1

(3.2g)
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dΛµα
dz =

(︀
−e3µαe33 − C33µαε33

)︀
Q33+e233Q3µα

Π̂1
+

+ ε33C33Q3µα+λ33e33C33µα − λ33C33e3µα
Π̂1

(3.2h)

where Π̂1= µ33C33ε33 − C33λ233+Q2
33ε33+

−2λ33Q33e33+µ33e233
(3.2i)

Using these solutions, the in-plane elastic, piezoelectric
and piezomagnetic functions (fromwhich the effective co-
efficients will be computed in the sequel) may be calcu-
lated as follows:

bµναβ= Cαβ33
dNµν3
dz +e3αβ

dΛµν
dz +Q3αβ

dAµν
dz +Cαβµν

[In − plane elastic functions]
(3.3a)

ηµνβ = 0 [In − plane piezoelectric functions] (3.3b)

δµνβ = 0 [In − plane piezomagnetic functions] (3.3c)

Two features are worth mentioning here. First of all, it can
be seen that the elastic functions (and as a consequence
the effective extensional elastic coefficients) depend not
only on the elastic parameters of the constituent phases,
but also on the piezoelectric, piezomagnetic, and magne-
toelectric coefficients, as well as the dielectric permittivi-
ties and magnetic permeabilities. This is in marked con-
trast with previous simpler models, see Kalamkarov and
Georgiades [60],whichpredicted that the extensional elas-
tic coefficients depend only on the elastic parameters of
the constituents. Therefore, the present work constitutes
an important refinement over previously established re-
sults. Also, for the case of simple laminates such as the
ones considered in this section, the work presented here
represents an extension of the classical composite lami-
nate theory (see e.g. [66], [67]) to piezo-magneto-thermo-
elastic structures. Of course, if piezoelectric and piezo-
magnetic effects are completely ignored, then Eq. 3.3a re-
duces to:

bµναβ= −Cαβ33
C33µν
C33

+Cαβµν (3.3d)

which conforms exactly to the results of Kalamkarov and
Georgiades [60], Georgiades and Kalamkarov [61] as well
as the classical composite laminate theory. The second
feature that is evident in Eqs. 3.3b and 3.3c is that the
in-plane piezoelectric and piezomagnetic functions are
zero. Clearly, this is because of the fact that the polariza-
tion/magnetization directions are the same as the stack-
ing orientation. Had we chosen polarization and magneti-
zation directions along y1 or y2 the results would be dras-
tically different. Herein lies a significant advantage of our

model: it can be tailored to meet the specific requirements
of an engineering application by changing one ormore ge-
ometric, physical or material parameters.

(b) Unit Cell Problems 2.4b, 2.5b and 2.6b

Eq. 2.4b reduces to:

dbi3α (z)
dz = 0

with bi3α (z) = 0 on Z±
(3.4a)

Solving 3.4a leads to bi3α = 0 everywhere in the unit cell.
From the second expression in Eq. 2.7a and Eq. (I-5.2a) we
have:

bi3α = Ci3n3
dMn

α
dz +e3i3

dΞα
dz +Q3i3

dZα
dz +eαi3= 0 (3.5a)

Letting n =1, 2 in Eq. 3.5a while keeping Eq. 3.1 in mind,
leads to two simultaneous equations in dM1

α
dz and dM2

α
dz . Their

solution is readily found to be:

dM1
α

dz =C45eα23−C44eα13
C44C55−C245

, dM2
α

dz =C45eα13−C55eα23
C44C55−C245

(3.5b)
Letting n = 3 in Eq. 3.5a leads to a homogeneous equation
in three unknown functions:

C33
dM3

α
dz +e33

dZα
dz +Q33

dΞα
dz = 0 (3.5c)

Asweneed twomore equations,we resort to unit cell prob-
lems 2.5b and 2.6b. Following the sameprocedure as above
we end up with:

Q33
dM3

α
dz −µ33

dZα
dz −λ33

dΞα
dz = 0

e33
dM3

α
dz −λ33

dZα
dz −ε33

dΞα
dz = 0

(3.5d)

The solution of Eqs. 3.5c and 3.5d gives:

dM3
α

dz =dZαdz =dΞαdz = 0 (3.5e)

Using Eqs. 3.5b and 3.5e we obtain the in-plane piezo-
electric, magnetoelectric and dielectric permittivity func-
tions from which their effective coefficient counterparts
may easily be determined (as will be shown shortly):

−aµα= Qµ13 C44eα13−C45eα23C44C55−C245
+Qµ23 C55eα23−C45eα13C44C55−C245

+ λµα
[Magnetoelectric functions]

(3.6a)

−δµα= eµ13 C44eα13−C45eα23C44C55−C245
+eµ23 C55eα23−C45eα13C44C55−C245

+ εµα
[Dielectric permittivity]

(3.6b)
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bµνα = 0 [In − plane piezoelectric functions] (3.6c)

The reason why the in-plane piezoelectric functions
vanishwas explained above. Also,wenote the appearance
of themagnetoelectric functions (first product properties).

(c) Unit Cell Problems 2.4c, 2.5c and 2.6c

Similarly to the previous three unit cell problems,
Eqs. 2.4c, 2.5c and 2.6c are easily solved, yielding:

dN1
α

dz =C45Qα23−C44Qα13
C44C55−C245

, dN2
α

dz =C45Qα13−C55Qα23
C44C55−C245

,

dN3
α

dz =dOαdz =dΓαdz = 0
(3.7a)

Using these results, the in-plane piezomagnetic, magnetic
permeability andmagnetoelectric functions are derived as
follows:

−𝛾µα=Qµ13
C44Qα13−C45Qα23
C44C55−C245

+Qµ23
C55Qα23−C45Qα13
C44C55−C245

+µµα
[Magnetic permeability]

(3.7b)

−ξ µα=eµ13
C44Qα13−C45Qα23
C44C55−C245

+eµ23
C55Qα23−C45Qα13
C44C55−C245

+λµα

[Magnetoelectric functions]
(3.7c)

aµνα = 0 [Piezomagnetic functions] (3.7d)

(d) Unit Cell Problems 2.4d, 2.5d and 2.6d

Proceeding as above, we arrive at the following re-
sults:

dG3
dz = λ33Q33ξ3 − Q33ε33η3−λ233Θ33

Π̂1
+

+ λ33e33η3 − µ33e33ξ3+‘µ33Θ33ε33
Π̂1

(3.8a)

d∆
dz =

−ξ3e33Q33 + Θ33ε33Q33+e233η3
Π̂1

+

+ ε33C33η3 − λ33e33Θ33 − λ33C33ξ3
Π̂1

(3.8b)

dΠ
dz =

−Q33e33η3 − Θ33λ33Q33+Q2
33ξ3

Π̂1
+

+−λ33C33η3+µ33Θ33e33+µ33C33ξ3
Π̂1

(3.8c)

∂G1
∂z = ∂G2

∂z = 0 (3.8d)

With these results we can calculate the thermal expan-
sion, pyroelectric and pyromagnetic functions related to
the mid-plane temperature variation. We recall from Eq.
(I-3.4b), that (as is customary in heat conduction studies
of thin plates and shells) we assume a temperature vari-
ation that is the superposition of a mid-plane term and a
linear through-the-thickness term. The set of coefficients
stemming from Eqs. 3.8a- 3.8d is related to the mid-plane
term. Thus:

−bαβ= −Cαβ33
dG3
dz − e3αβ

dΠ
dz − Q3αβ

d∆
dz + Θαβ

[In − plane thermal expansion functions]
(3.9a)

𝛾α= ηα [In − plane pyromagnetic functions] (3.9b)

τα= ξα [In − plane pyroelectric functions] (3.9c)

(e) Unit Cell Problems 2.4e, 2.5e and 2.6e

Following the above procedure it can be seen that:

dG(1)
3

dz = z dG3
dz ,

dΠ(1)

dz = z dΠdz ,
d∆(1)
dz = z d∆dz (3.10a)

Hence, the solution of the secondary pyroelectric and py-
romagnetic as well as in-plane thermal expansion func-
tions (all related to the through-the-thickness temperature
variation) is given simply by:

b(1)αβ = zbαβ , 𝛾(1)α = z𝛾α , τ(1)α = zτα (3.10b)

(f) Unit Cell Problems 2.4f, 2.5f and 2.6f

Similarly, solving these three unit-cell problems
yields:

b(1)µναβ = zbµναβ [Elastic coupling functions] (3.11a)

a(1)µνα = zbµνα = 0
[Out − of − plane piezoelectric functions]

(3.11b)

δ(1)µνα = zδµνα = 0
[Out − of − plane piezomagnetic functions]

(3.11c)

The last set of functions that we need to consider are the
elastic bending functions shown in Eq. (I-6.2b). It is evi-
dent that:

zb(1)µναβ = z2bµναβ [Elastic bending functions] (3.11d)

(g) Effective Coefficients and Numerical Examples
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The effective coefficients are obtained in a straightfor-
ward fashionbydirectly applying thehomogenizationpro-
cedure in Eq. (I-4.5a). For example, referring to Fig. 1, one
can see that the extensional effective elastic coefficients
are given by:⟨

bλµαβ
⟩
=

0.5∫︀
−0.5

bλµαβdz =
1∫︀
0
bλµαβdδm =

=
M∑︀
m=1

δm∫︀
δm−1

bλµαβdδm =bλµ(m)αβ (δm − δm−1)

(3.12a)
Likewise, the coupling and bending effective elastic coef-
ficients are given by:⟨

zbλµαβ
⟩

=
⟨
b(1)λµαβ

⟩
=

= 1
2

M∑︀
m=1

bλµ(m)αβ
(︀
δ2m − δ2m−1 − (δm − δm−1)

)︀
,⟨

zb(1)λµαβ

⟩
=
⟨
z2bλµαβ

⟩
=

= 1
3

M∑︀
m=1

bλµ(m)αβ
(︀
δ3m − δ3m−1 +

− 3
2
(︀
δ2m − δ2m−1

)︀
+ 3

4 (δm − δm−1)
)︀
.

(3.12b)
In the same manner, the remaining effective elastic coeffi-
cients may be determined.

We will illustrate our work by considering a simple
4-ply laminate consisting of alternating barium titanate
(top layer) and cobalt ferrite laminae. The overall thick-
ness of the laminate is 1 mm. The pertinent material pa-
rameters are given in Table 1. For the sake of discus-
sion we will further assume that the Barium Titanate is
doped with Fe so that it exhibits primary magnetoelectric-
ity. For illustration purposes only, we will presume that
the value of the magnetoelectric coefficient of bulk Fe-
doped BaTiO3 is similar to that pertaining to a nanos-
tructured counterpart, and is ∼16 mV/Oe cm, see Verma
et al. [72]. Thus, in the parlance of our present work (we
define the magnetoelectric coefficients slightly differently,
see Section 2) and for a dielectric permittivity value of
around 11.2 × 10−9C2/N m2 (Table 1) we assume that λ11 =
λ22 = λ33 is ≈2.2 × 10−10 C/A m. We will also assume that
the Fe doping does not affect the remaining properties
of BaTiO3 as shown in Table 1. Likewise, we will assume
that the cobalt ferrite is doped with the rare earth element
Dy, see Dascalu et al. [73], so that it too exhibits primary
magnetoelectricity. The pertinent magnetoelectric value
≈ −2.5 µV/Oe cm. Thus, for a dielectric permittivity value
of around 0.08 × 10−9C2/Nm2 (Table 1) we can assume that
λ11 = λ22 = λ33 is ≈0.25 x 10−15 C/A m.

Fig. 2 shows the variation of the
⟨
zb(1)2222

⟩
bending co-

efficient vs. the thickness of the BaTiO3 laminae. It can
clearly be seen that the effective elastic coefficients change

Table 1:Material properties of BaTiO3, and CoFe2O4 (Li and
Dunn [69], Yoshihiro and Tanigawa, [70], Cook et al., [71]).

BaTiO3 CoFe2O4
C11 = C22 (GPa) 166 286
C12 (GPa) 77 173
C13 = C23 (GPa) 78 170
C33 (GPa) 162 269.5
C44 = C55 (GPa) 43 45.3
e31 = e32 (C/m2) −4.4 0
e33 (C/m2) 18.6 0
e24 = e15 (C/m2) 11.6 0
ε11 = ε22 (10−9 C2/N m2) 11.2 0.08
ε33 (10−9 C2/N m2) 12.6 0.093
Q31 = Q32 (N/A m) 0 580.3
Q33 (N/A m) 0 699.7
Q24 = Q15 (N/A m) 0 550
µ11 = µ22 (10−6 N s2/C2) 5 −590
µ33 (10−6 N s2/C2) 10 157
α11 = α22 (10−6 1/K) 15.7 10
α33 (10−6 1/K) 6.4 10
ξ1 = ξ2 = ξ3 (10−4 C/m2K) 1.5 0

Figure 2: Plot of effective
⟨
zb(1)2222

⟩
bending coeflcient vs. thick-

ness of the BaTiO3 laminae.

significantly as the relative volume fractions of the con-
stituents change. Since cobalt ferrite is generally stiffer
than its barium titanate counterpart, increasing the over-
all thickness of the latter causes a corresponding reduction
in the value of the effective bending coefficients.

Fig. 3 shows the variation of the effective
⟨︀
zb1111

⟩︀
cou-

pling coefficient vs. the thickness of the BaTiO3 laminae.
As expected, the absence of barium titanate renders the
laminate symmetric andnullifies the effective coupling co-
efficients. As the thickness of this constituent increases,

Brought to you by | Cyprus University of Technology
Authenticated

Download Date | 6/21/19 8:04 AM



Analysis of Smart Piezo-Magneto-Thermo-Elastic Composite and Reinforced Plates | 43

Figure 3: Plot of effective
⟨︀
zb1111

⟩︀
coupling coeflcient vs. thickness

of the BaTiO3 laminae.

Figure 4: Plot of effective ⟨𝛾11⟩magnetic permeability coeflcient vs.
thickness of the BaTiO3 laminae.

the laminate becomes more asymmetric, and the effective
coupling coefficients increase. Finally, as the thickness of
barium titanate approaches 0.5 (which is tantamount to
having no cobalt ferrite - the entire structure is made of
BaTiO3) the effective coupling coefficients approach zero,
as the laminate approaches geometric symmetry with re-
spect to the mid-plane.

Figs. 4 and 5 show the variation of the effective mag-
netic permeability,⟨𝛾11⟩, and the magnetoelectric product
coefficient ⟨ξ11⟩. As expected, reducing the volume frac-
tion of Dy-doped CoFe2O4 results in a corresponding re-
duction of the effective magnetic permeability coefficients
and an increase in the effective magnetoelectric coeffi-
cients. What is important to emphasize here though, is
that these trends may be easily changed, if the polariza-
tion and /or magnetization directions for the constituent

materials are altered, if the nature of the doping materials
is changed, if the stacking configuration of the laminae is
rearranged etc. In essence, our derived model is compre-
hensive enough, in that it affords complete flexibility to the
designer to customize the effective properties of the smart
composite structure to conform to the requirements of a
particular engineering application. This is also evident in
the next example considered in this paper.

Figure 5: Plot of effective ⟨ξ11⟩magnetoelectric coeflcient vs. thick-
ness of the BaTiO3 laminae.

4 Applications of the General
Model – Wafer-reinforced Smart
Composite Plates

The following examples will be concerned with a differ-
ent type of structure, namely a wafer-reinforced magneto-
electric plate, shown in Fig. 6. For generality we will as-
sume that the material of the base-plate is different than
that of the ribs. For example, the base-plate may be elastic
or piezomagnetic and the ribs may be piezoelectric. Each
constituentmaterialmaybe assumed to be orthotropic.We
are interested in calculating the effective elastic, piezoelec-
tric, thermal expansion, dielectric permittivity, magneto-
electric, pyroelectric etc coefficients for this structure.

A solution of the local problems relevant to this kind
of geometry may be found assuming that the thickness of
each of the three elements of the unit cell is small in com-
parison with the other two dimensions, i.e.

t1 ≪ h2, t2 ≪ h1, H ∼ h1, h2. (4.1)

Brought to you by | Cyprus University of Technology
Authenticated

Download Date | 6/21/19 8:04 AM



44 | D. A. Hadjiloizi et al.

The local problems can then be approximately solved for
each of the unit cell elements assuming that the discon-
tinuities at the joints are highly localized. Consequently,
the local problems can be solved independently for re-
gions Ω1, Ω2 and Ω3 as shown in Fig. 7. Fig. 7 also depicts
the transformed unit cell, showing the microscopic coor-
dinates y1, y2, and z.

The analytical procedure followed in this example is
similar to its counterpart in the previous example. First
of all, the unit cell problems are simplified in each of the
three regions of the unit cell. In particular, periodicity con-
ditions in y1 and y2 reduce the pertinent partial differen-
tial equations in Region 3 to ordinary differential equa-
tions in z. Likewise, since Region 1 is thin and entirely ori-
ented in the y2 direction it is characterized by indepen-
dence in y2. Hence, the corresponding unit cell problem
is reduced from a partial differential equation in variables
y1, y2, and z into one involving y1 and z only. Similarly, the
appropriate differential equation for Region 2 is reduced
to one involving variables y2 and z only. The solution of
the unit cell problem in each region involves coefficient
functions, e.g. bkαij which in turn are functions of three un-
known local functions, e.g. Nkαm , Akα , andΛkα. Since we
need three equations to solve for the three unknown lo-
cal functions,weneed to simultaneously consider all three
unit cell problemswhich involve the given local functions.
For example, unit cell problems 2.4a, 2.5a and 2.6amust be
solved together. Once the local functions are determined,
they are back substituted into the expressions for the co-
efficient functions, Eqs. 2.7a- 2.7c, fromwhich the effective
coefficients can be readily obtained after application of the
homogenization procedure, Eq. (I-4.5a). The results from
each region are then superimposed.

As mentioned above, in following this procedure, one
must naturally accept the error incurred at the regions of
intersection between the actuators/reinforcements. How-
ever, our approximationwill be quite accurate, since these
regions of intersection are highly localized and do not con-
tribute significantly to the integral over the entire unit cell
domain. Essentially, the error incurred will be negligible,
if the dimensions of the actuators/reinforcement aremuch
smaller than the spacing between them. As an indication,
we note that Kalamkarov [45] developed an asymptotic ho-
mogenization model for thin composite plates reinforced
with mutually perpendicular wafers and concluded that
if the spacing between the unit cells is at least ten times
bigger than the thickness of the reinforcements, the error
in the values of the effective elastic coefficients incurred
by ignoring the regions of overlap between the reinforce-
ments is less than 1%. A complete mathematical justifica-
tion for this argument in the form of the so-called princi-

ple of the split homogenized operator has been provided
by Bakhvalov and Panasenko [43].

(a) Unit Cell Problems 2.4a, 2.5a and 2.6a and Effective
Extensional, Piezoelectric and Piezomagnetic Coef-
ficients

We will first tackle unit cell problem 2.4a. If we as-
sume that the structure is piece-wise homogeneous, then
the elastic coefficients in each region of Fig. 7 are uniform.
As such, in each of Ω1, Ω2, Ω3 the unit cell problem be-
comes:

1
hβ

∂τµαiβ
∂yβ

+
∂τµαi3
∂z = 0

with τµαij N
±
j = 0 on Z±

where τkαij = LijmNkαm +MijAkα + NijΛkα

(4.2a)

Now, recalling Eqs. (I-4.2c) and (I-4.5d), we canwrite down
the boundary condition in Eq. 4.2a in the form of:

1
h1
{︀
τµαi1 +Ci1µα

}︀
n±y1+

1
h2
{︀
τµαi2 +Ci2µα

}︀
n±y2

+
{︀
τµαi3 +Ci3µα

}︀
n±y3= 0 on Z±

(4.2b)

Dropping the “y” subscript and the “±” superscript for sim-
plicity, Eq. 4.2b becomes:

tµαi +Ciβµα nβhβ +Ci3µαn3= 0 on Z±

where tµαi = τµαiβ
nβ
hβ +τ

µα
i3 n3

(4.2c)

The elastic bkαij functions (from which the effective elastic
coefficients may be readily determined) are then given by:

bµαij = τ
µα
ij +Cijµα (4.2d)

In an entirely analogousmanner, unit cell problem2.5a be-
comes:

1
hβ

∂τµαβ
∂yβ

+ ∂τ
µα
3
∂z = 0

with tµα+Qβµα
nβ
hβ

+Q3µαn3= 0 on Z±

where τkαj = LjmNkαm −MjAkα − NjΛkα
and tµα = τµαβ

nβ
hβ

+τµα3 n3

(4.3a)

This problem will be solved in each of the regions
Ω1, Ω2, and Ω3 separately and will yield the in-plane ηkαj
piezomagnetic functions (whichwill later give the effective
piezomagnetic coefficients) according to:

ηµαj = τµαj +Qjµα (4.3b)
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Figure 6: Thin magnetoelectric wafer-reinforced plate and its peri-
odicity cell.

Finally, the third unit cell problem of the group, Eq. 2.6a
becomes:

1
hβ

∂πµαβ
∂yβ

+ ∂π
µα
3
∂z = 0

with rµα+eβµα
nβ
hβ

+e3µαn3= 0 on Z±

where πkαj = L*jmNkαm −M*j Akα − N*j Λkα
and rµα = πµαβ

nβ
hβ

+πµα3 n3

(4.4a)

Again, this problem will be solved in each of the regions
Ω1, Ω2, and Ω3 separately and will yield the in-plane δkαj
piezoelectric functions (which will later give the effective
piezoelectric coefficients) according to:

δµαj = πµαj +ejµα (4.4b)

As was the case of the laminate of the previous exam-
ple, we expect coupled solutions of the current unit cell
problems. Hence, Eqs. 4.2a- 4.2c will be solved in each re-
gion simultaneously with the corresponding problems in
Eqs. 4.3a and 4.4a. We begin by setting up the boundary
conditions in each region.

(i) Region Ω3.
This is defined by −1/2 < y1 < 1/2, −1/2 < y2 < 1/2,
−1/2 < z < 1/2, and boundary conditions must be sup-
plied on z = ±1/2 where n1 = n2 = 0, n3 = 1. Thus, from
Eqs. 4.2a, 4.2c, 4.3a and 4.4a, and keeping in mind that
we are dealing with orthotropic materials, see Eq. 3.1, the

Figure 7: Unit cell of smart wafer and individual elements.

boundary conditions become:

tλµα = t123 = 0 ⇒
τλµ13 = τ

λµ
23 = τ1233 = 0

t113 = −C13, t223 = −C23
τ1133 = −C13 and τ2233 = −C23

⎫⎪⎪⎪⎬⎪⎪⎪⎭ on z = ±1/2 (4.5a)

t11 = −Q31, t22 = −Q32, t12 = 0 τ113 = −Q31,
τ223 = −Q32, τ223 = 0 on z = ±1/2

(4.5b)

r11 = −e31, r22 = −e32, r12 = 0 π113 = −e31,
π223 = −e32, π223 = 0 on z = ±1/2

(4.5c)
(ii) Region Ω1.
This region is defined by −δ1/2 < y1 < δ1/2, −1/2 <
y1 < δ1/2 < y2 < 1/2, and 1/2 < z < 1/2 + H. There-
fore, boundary conditions must be supplied on z = 1/2,
z = 1/2 +H, where n1 = n2 = 0, n3 = 1 and on y1 = ± δ1/2
where n2 = n3 = 0, n1 = 1. Thus, using 4.2a, 4.2c, 4.3a
and 4.4a, the boundary conditions become:

t111 = −C11h1
, t221 = −C12h1

,

t122 = −C66h1
, t121 = t112 =

= t222 = tλµ3 = 0
τ1111 = −C11, τ2211 = −C12,
τ1212 = −C66, τ1211 = τ1112 =
= τ2212 = τλµ13 = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
on y1 = ±δ1/2

t113 = −C13, t223 = −C23,
tλµα = t123 = 0
τ1133 = −C13, τ2233 = −C23,
τλµα3 = τ1233 = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
on z = 1/2,
1/2 + H

(4.5d)
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tλµ = 0 ⇒ τλµ1 = 0 on y1 = ±δ1/2
tλλ = −Q3λ , t12 = 0 τ113 = −Q31,
τ223 = −Q32, τ123 = 0 on z = 1/2, 1/2 + H

(4.5e)

rλµ = 0 ⇒ πλµ1 = 0 on y1 = ±δ1/2
rλλ = −e3λ , r12 = 0 π113 = −e31,
π223 = −e32, π123 = 0 on z = 1/2, 1/2 + H

(4.5f)

(iii) Region Ω2.
This region is defined by−δ1/2 < y2 < δ1/2, −1/2 < y1 <
1/2 and1/2 < z < 1/2+H. Therefore, boundary conditions
must be supplied on z =½, z = 1/2 +H, where n1 = n2 = 0,
n3 = 1 and on y2 = ± δ2/2 where n1 = n3 = 0, n2 = 1. Thus,
using 4.2a, 4.2c, 4.3a and 4.4a, the boundary conditions
become:

t112 = −C12h2
, t222 = −C22h2

,

t121 = −C66h2
,

t122 = t111 = t221 = tλµ3 = 0
τ1122 = −C12, τ2222 = −C22,
τ1212 = −C66,
τ1222 = τ1112 = τ2212 = τλµ23 = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
on y1 =
= ±δ1/2

t113 = −C13, t223 = −C23,
tλµα = t123 = 0
τ1133 = −C13, τ2233 = −C23,
τλµα3 = τ1233 = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
on z = 1/2,
1/2 + H

(4.5g)

tλµ = 0 ⇒ τλµ2 = 0 on y2 = ±δ2/2
tλλ = −Q3λ , t12 = 0 τ113 = −Q31, ,
τ223 = −Q32, τ123 = 0 on z = 1/2, 1/2 + H

(4.5h)

rλµ = 0 ⇒ πλµ2 = 0 on y2 = ±δ2/2
rλλ = −e3λ , r12 = 0 π113 = −e31, ,
π223 = −e32, π123 = 0 on z = 1/2, 1/2 + H

(4.5i)

We are now ready to solve the unit cell problems
in Eqs. 4.2a, 4.3a and 4.4a. We will begin with the
τ22ij , τ22i , and π22i problems.

Region Ω3. Because of periodicity in y1 and y2, and
considering differential equations 4.2a and boundary con-
ditions 4.5a we have:

τ2213= τ2223= 0, τ2233= −C23 in Ω3 (4.6a)

The latter expression in Eq. 4.6a gives, on account of the
corresponding definition in Eq. 4.2a and the differential
operators (I-5.2a), the following equation:

C33
∂N22

3
∂z +e33

∂A22
∂z +Q33

∂Λ22
∂z = −C23 in Ω3 (4.6b)

Similarly, from the unit cell problem 4.3a and boundary
conditions 4.5b we arrive at

τ223 = −Q32 in Ω3 (4.6c)

which, on account of the pertinent definition in Eq. 4.3a
and the differential operators (I-5.2a), gives:

Q33
∂N22

3
∂z −λ33

∂A22
∂z −µ33

∂Λ22
∂z = −Q32 in Ω3 (4.6d)

In an analogous manner, unit cell problem 4.4a and
boundary conditions 4.5c give,

π223 = −e32 in Ω3 (4.6e)

and

e33
∂N22

3
∂z −ε33

∂A22
∂z −λ33

∂Λ22
∂z = −e32 in Ω3 (4.6f)

The solution of the linear systemdefined by Eqs. 4.6b, 4.6d
and 4.6f is:
∂N22

3
∂z = − (Q32ε33−λ33e32)Q33−λ233C23−λ33e33Q32

µ33C33ε33−λ233C23+Q2
33ε33−2λ33e33Q33+e233µ33

+

+ µ33e33e32+µ33C33ε33
µ33C33ε33−λ233C23+Q2

33ε33−2λ33e33Q33+e233µ33
= Π̂2

Π̂1
∂A22
∂z = (Q32e33+λ33C32)Q33+Q2

33e32−λ33C33Q32

Π̂1
+

+−µ33e33C32+µ33C33e33
Π̂1

= Π̂3

Π̂1
∂Λ22
∂z = (C32ε33+e33e32)Q33+e233Q32−λ33C33e32

Π̂1
+

+Q32ε33C33+λ33C23e33
Π̂1

= Π̂4

Π̂1
(4.6g)

We observe that these expressions are the same as those
in Eqs. 3.2f – 3.2h after letting µ = α = 2. Using these so-
lutions, functions τλµij , τ

λµ
i , π

λµ
i are readily determined as

follows:

τ2211= C13
Π̂2

Π̂1
+e31

Π̂3

Π̂1
+Q31

Π̂4

Π̂1
,

τ2222= C23
Π̂2

Π̂1
+e32

Π̂3

Π̂1
+Q32

Π̂4

Π̂1
,

τ2233= −C23,
τ22α3= τ2212= 0, τ223 = −Q32,
τ221 = τ222 = 0, π223 = −e32,
π221 = π222 = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
in Ω3 (4.7)

Region Ω1. In this region we have independence of the y2
coordinate, since the element is oriented entirely in the
y2 direction. Thus, from differential equations 4.2a and
boundary conditions 4.5d we get:

τ2213= τ2223= τ2212= 0, τ2211= −C12,
τ2233= −C23 in Ω1

(4.8a)
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The latter two expressions in Eq. 4.8a give, on account of
the corresponding definitions in Eq. 4.2a and the differen-
tial operators (I-5.2a), the following equations:

1
h1
C11

∂N22
1

∂y1
+C13

∂N22
3

∂z +

+e31
∂A22
∂z +Q31

∂Λ22
∂z = −C12

1
h1
C13

∂N22
1

∂y1
+C33

∂N22
3

∂z
+e33

∂A22
∂z +Q33

∂Λ22
∂z = −C23

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
in Ω1 (4.8b)

Similarly, from the unit cell problem 4.3a and boundary
conditions 4.5e we arrive at

τ223 = −Q32, τ221 = 0 in Ω1 (4.8c)

which, on account of the pertinent definition in Eq. 4.3a
and the differential operators (I-5.2a), gives:

1
h1
Q31

∂N22
1

∂y1
+Q33

∂N22
3

∂z − λ33
∂A22
∂z +

−µ33
∂Λ22
∂z = −Q32 in Ω1

(4.8d)

Realizing that we need one more equation, we turn our
attention to unit cell problem 4.4a and boundary condi-
tions 4.5f to get,

π223 = −e32, π221 = 0 in Ω1 (4.8e)

and

1
h1
e31

∂N22
1

∂y1
+e33

∂N22
3

∂z − ε33
∂A22
∂z −λ33

∂Λ22
∂z =

= −e32 in Ω1
(4.8f)

Eqs. 4.8b, 4.8d and 4.8f represent a system of four linear
equations in four unknowns. The solution may be given
as:

∂N22
1

∂y1
= h1

Π̂6

Π̂5
, ∂N22

3
∂z = Π̂7

Π̂5
,

∂A22
∂z = Π̂8

Π̂5
, ∂Λ22

∂z = Π̂9

Π̂5
where

(4.9a)

Π̂5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(︀
−e233 − ε33C33)Q2

31 + (2C33e31λ33+
+2ε33Q33C13 − 2C13e33λ33 +
+2e31Q33e33)Q31+
−e231C33µ33 − Q2

33C11ε33 + λ233C11C33+
+C213µ33ε33 − Q2

33e231 − C213λ233+
−2C13Q33e31λ33 − C11µ33e233+
+2µ33C13e31e33+
+2C11λ33Q33e33 − C33C11ε33µ33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.9b)

Π̂6 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(C23e33λ33−C23ε33Q33+C33e32λ33+
+Q32ε33C33 + e233Q32−e33Q33e32

)︀
Q31+

+Q33C13λ33e33+C23Q33λ33e31+
−C23µ33e33e31 − 2e33λ33Q33C12+
C33µ33e32e31 − λ233C33C12+C33C12µ33ε33+
+e233µ33C12+e33C13λ33Q32−
e33C13µ33e32 + Q2

33e31e32 + Q2
33C12ε33+

−Q33C13Q32ε33 + λ233C23C13−
C33e31λ33Q32−e33Q33e31Q32

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.9c)

Π̂7 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(e33λ33C12−2C23e31λ33−e31e33Q32+
+C13e32λ33−C12ε33Q33−e31Q33e32 −
Q32ε33C13)Q31 + (C23ε33 + e33e32)Q2

31+
+C11e33µ33e32+C11Q33Q32ε33−
C11Q33λ33e32+C11C23µ33ε33+
−C11e33λ33Q32 − λ233C11C23 + e231C23µ33
+C13e31λ33Q32 − e33µ33e31C12+
−C12µ33C13ε33−C13µ33e31e32+
+λ233C13C12 + Q33e31λ33C12+Q32Q33e231

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.9d)

Π̂8 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(−Q33e33C12 − C13e33Q32 − C23e31Q33+
−C33λ33C12 + 2e32Q33C13 + e31Q32C33 +
λ33C23C13)Q31 + (C23e33 − C33e32)Q2

31+
+C33e31µ33C12 + Q2

33e31C12+
C33C11λ33Q32 − C213λ33Q32+C213µ33e32+
+C11C23µ33e33 − C11C33µ33e32+
−C11Q2

33e32 + C11Q33e33Q32+
−C13Q33e31Q32 + λ33Q33C13C12+
−C13µ33e33C12 − C11λ33Q33C23+
−µ33C13e31C23

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.9e)

Π̂9 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(−e33e31C23 − C13e33e32+
+C33C12ε33 + C12e233
+C33e31e32 − C23C13ε33)Q31 +
C33C11λ33e32 − C33C11Q32ε33+
−e231Q32C33 − C13Q33C12ε33+
−C33λ33C12e31 + 2C13Q32e31e33+
+C11Q33e32e33 − C11λ33e33C23+
+C11Q33C23ε33 − C11e233Q32+
−Q33e33e31C12 + λ33e31C13C23+
−C213λ33e32−C13Q33e31e32+
+Q33e231C23+
Q32C213ε33 + λ33C13e33C12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.9f)
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Using these solutions, functions τλµij , τ
λµ
i , π

λµ
i are readily

determined as follows:

τ2211= −C12, τ2222= C12 Π̂6
Π̂5
+

+C23 Π̂7
Π̂5
+e32 Π̂8

Π̂5
+Q32

Π̂9
Π̂5
,

τ2233= −C23, τ22α3= τ2212= 0
τ223 = −Q32, τ221 = τ222 = 0,
π223 = −e32, π221 = π222 = 0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
in Ω1 (4.10)

Region Ω2. In this region we have independence of the y1
coordinate since the element is oriented entirely in the y1
direction. Thus, the solution of differential equations 4.2a
and boundary conditions 4.5g gives:

τ2213= τ2223= τ2212= 0, τ2211= −C22, τ2233= −C23
in Ω2

(4.11a)

The latter two expressions in Eq. 4.11a give, on account of
the corresponding definitions in Eq. 4.2a and the differen-
tial operators (I-5.2a), the following equations:

1
h2
C22

∂N22
2

∂y2
+C23

∂N22
3

∂z +

+e32
∂A22
∂z +Q32

∂Λ22
∂z = −C22

1
h1
C23

∂N22
1

∂y2
+C33

∂N22
3

∂z +

+e33
∂A22
∂z +Q33

∂Λ22
∂z = −C23

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
in Ω2 (4.11b)

We need twomore equations in order to be able to solve for
the unknown functions. Therefore, we resort to unit cell
problem 4.3a and boundary conditions 4.5h to arrive at:

τ223 = −Q32, τ222 = 0 in Ω2 (4.11c)

On account of the pertinent definition in Eq. 4.3a and
the differential operators (I-5.2a), the first expression in
Eq. 4.11c gives:

1
h2
Q32

∂N22
2

∂y2
+Q33

∂N22
3

∂z − λ33
∂A22
∂z − µ33

∂Λ22
∂z =

= −Q32 in Ω2
(4.11d)

Finally, from unit cell problem 4.4a and boundary condi-
tions 4.5i we get:

π223 = −e32, π222 = 0 in Ω2 (4.11e)

From the appropriate definition in Eq. 4.4a and the differ-
ential operators (I-5.2a) we arrive at:

1
h2
e32

∂N22
2

∂y2
+e33

∂N22
3

∂z − ε33
∂A22
∂z −λ33

∂Λ22
∂z =

= −e32 in Ω2
(4.11f)

The solution of system 4.11b, 4.11d, 4.11f is trivial requiring
only few algebraic manipulations, and is:

∂N22
2

∂y2
= −h2,

∂N22
3

∂z =∂A22
∂z = ∂Λ22

∂z = 0 (4.12)

Using these solutions, functions τλµij , τ
λµ
i , π

λµ
i are readily

determined as follows:
τ2211= −C12,
τ2222= −C22, τ2233= −C23, τ22α3= τ2212= 0
τ223 = −Q32, τ221 = τ222 = 0,
π223 = −e32, π221 = π222 = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ in Ω2

(4.13)
The solution of theτ11ij , τ11i , and π11i problems proceeds in
much the same way as outlined above. The expressions of
the appropriate local functions are given as:

τ1111= C13
Π̂*2
Π̂*1
+e31 Π̂

*
3

Π̂*1
+Q31

Π̂*4
Π̂*3
,

τ1122= C23
Π̂*2
Π̂*1
+e32 Π̂

*
3

Π̂*1
+Q32

Π̂*4
Π̂*1
,

τ1133= −C13
τ11α3= τ1112= 0, τ113 = −Q31,
τ111 = τ112 = 0, π113 = −e31, π111 = π112 = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
in Ω3

(4.14a)

τ1122= −C12, τ1111= C12
Π̂*6
Π̂*5
+C13 Π̂

*
7

Π̂*5
+

+e31 Π̂
*
8

Π̂*5
+Q31

Π̂*9
Π̂*5
, τ1133= −C13,

τ11α3= τ1112= 0
τ113 = −Q31, τ111 = τ112 = 0,
π113 = −e31, π111 = π112 = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
in Ω2 (4.14b)

τ1111= −C11, τ1122= −C12,
τ1133= −C13, τ11α3= τ1112= 0
τ113 = −Q31, τ111 = τ112 = 0,
π113 = −e31, π111 = π112 = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ in Ω1 (4.14c)

Here,material constants Π̂*1−Π̂*9 are obtained from the cor-
responding Π̂1− Π̂9 constants given in Eqs. 4.6g, 4.9b- 4.9f,
by simply switching index “1”with index “2” and index “2”
with index “1” wherever they occur.

The solution of the τ12ij , τ12i , and π12i problems pro-
ceeds in the same manner. In this case the algebraic sys-
tems involved are trivial and the expressions of the appro-
priate local functions are obtained in a straight-forward
fashion as:

τ1211= τ1222= τ1233= τ1213 =
= τ1223= τ1212 = 0,
τ121 = τ122 = τ123 = 0,
π121 = π122 = π123 = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ in Ω3 (4.15a)

τ1211= τ1222= τ1233= τ1213= τ1223= 0,
τ1212 = −C66
τ121 = τ122 = τ123 = 0,
π121 = π122 = π123 = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ in Ω1 (4.15b)
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τ1211= τ1222= τ1233= τ1213= τ1223= 0,
τ1212 = −C66
τ121 = τ122 = τ123 = 0,
π121 = π122 = π123 = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ in Ω2 (4.15c)

Before explaining how the effective coefficients may be
obtained from the aforementioned local coefficient func-
tions, we will first solve the corresponding unit cell prob-
lems associated with the out-of-plane deformation and
electric and magnetic field generation of the reinforced
magnetoelectric plate.

(b) Unit-Cell Problems 2.4f, 2.5f and 2.6f and Effec-
tive Coupling,Out-of-planePiezoelectric andOut-of-
plane Piezomagnetic Coefficients

We now turn our attention to unit cell prob-
lems 2.4f, 2.5f and 2.6f. For a piecewise homogeneous unit
cell, problem 2.4f may be expressed as:

1
hβ

∂τ(1)µαiβ
∂yβ

+
∂τ(1)µαi3
∂z = −C33µαδi3

with t(1)µαi +zCiβµα
nβ
hβ

+zCi3µαn3= 0 on Z±

where τ(1)µαij = LijmN(1)µα
m +MijA(1)

µα + NijΛ(1)
µα

and t(1)µαi = τ(1)µαiβ
nβ
hβ

+τ(1)µαi3 n3

(4.16a)
The coupling elastic b(1)µαij functions (fromwhich the effec-
tive elastic coupling coefficients may be determined) are
then given by:

b(1)µαij = τ(1)µαij +zCijµα (4.16b)

In an analogous manner, unit cell problem 2.5f becomes:

1
hβ

∂τ(1)µαβ
∂yβ

+ ∂τ
(1)µα
3
∂z = −Q3µα

with t(1)µα+zQβµα
nβ
hβ

+zQ3µαn3= 0 on Z±

where τ(1)µαj = LjmN(1)µα
m −MjA(1)

µα − NjΛ(1)
µα

and tµα = τµαβ
nβ
hβ

+τµα3 n3

(4.17a)

This problem will be solved in each of the regions Ω1, Ω2,
and Ω3 separately and will yield the out-of-plane a(1)µαj
piezomagnetic functions (which in turn give the effective
out-of-plane piezomagnetic coefficients) according to:

a(1)µαj = τ(1)µαj +zQjµα (4.17b)

Finally, the third unit cell problem that will be solved
in conjunction with the aforementioned two problems,

Eq. 2.6f, becomes:

1
hβ

∂π(1)µαβ
∂yβ + ∂π(1)µα3

∂z = −e3µα
with r(1)µα+zeβµα nβhβ +ze3µαn3= 0 on Z±

where π(1)µαj = L*jmN(1)µα
m −M*j A(1)

µα − N*j Λ(1)
µα

and r(1)µα = π(1)µαβ
nβ
hβ +π

(1)µα
3 n3

(4.18a)

Again, this problem will be solved in each of the regions
Ω1, Ω2, and Ω3 separately and will yield the out-of-plane
δ(1)µαj piezoelectric functions (which in turn give the effec-
tive out-of-plane piezoelectric coefficients) according to:

δ(1)µαj = π(1)µαj +zejµα (4.18b)

Let us begin by setting up the boundary conditions:
(i) Region Ω3. As before, boundary conditions must

be supplied on z = ±1/2 where n1 = n2 = 0, n3 = 1. Thus,
from Eqs. 4.16a, 4.17a, and 4.18a, and remembering that
we are dealing with orthotropic materials, the boundary
conditions become:

τ(1)λµ13 = τ(1)λµ23 = τ(1)1233 = 0, τ(1)1133 = −zC13,
τ(1)2233 = −zC23 on z = ±1/2

(4.19a)

τ(1)113 = −zQ31, τ(1)223 = −zQ32,
τ(1)123 = 0 on z = ±1/2

(4.19b)

π(1)113 = −zQ31, π(1)223 = −zQ32,
π(1)123 = 0 on z = ±1/2

(4.19c)

(ii) RegionΩ1. Boundary conditionsmust be supplied
on z = 1/2, z = 1/2 +H, where n1 = n2 = 0, n3 = 1 and
on y1 = ±δ1/2 where n2 = n3 = 0, n1 = 1. Thus, using
Eqs. 4.16a, 4.17a, and 4.18a, the boundary conditions be-
come:

τ(1)1111 = −zC11, τ(1)2211 = −zC12,
τ(1)1212 = −zC16, τ(1)1211 = τ(1)1112 = τ(1)2212 = τ(1)λµ13 = 0
on y1= ±δ1/2
τ(1)1133 = −zC13, τ(1)2233 = −zC23,
τ(1)λµα3 = τ(1)1233 = 0 on z =1/2, 1/2+H

(4.20a)

τ(1)λµ1 = 0 on y1 = ±δ1/2
τ(1)113 = −Q31, τ(1)223 = −Q32,
τ(1)123 = 0 on z = 1/2, 1/2 + H

(4.20b)

π(1)λµ1 = 0 on y1= ±δ1/2
π(1)113 = −ze31, π(1)223 = −ze32,
π(1)123 = 0 on z =1/2+H

(4.20c)

(iii) Region Ω2. Here, boundary conditions must be
supplied on z = 1/2, z = 1/2 +H, where n1 = n2 = 0, n3 = 1

Brought to you by | Cyprus University of Technology
Authenticated

Download Date | 6/21/19 8:04 AM



50 | D. A. Hadjiloizi et al.

and on y2 = ±δ2/2 where n1 = n3 = 0, n2 = 1. Thus, us-
ing Eqs. 4.16a, 4.17a, and 4.18a the boundary conditions
become:

τ(1)1122 = −zC12, τ(1)2222 = −zC22,
τ(1)1212 = −zC66, τ(1)1222 = τ(1)1112 = τ(1)2212 = τ(1)λµ23 = 0
on y2= ±δ2/2
τ(1)1133 = −zC13, τ(1)2233 = −zC23,
τ(1)λµα3 = τ(1)1233 = 0 on z =1/2+H

(4.21a)

τ(1)λµ2 = 0 on y2= ±δ2/2
τ(1)113 = −zQ31, τ(1)223 = −zQ32,
τ(1)123 = 0 on z =1/2+H

(4.21b)

π(1)λµ2 = 0 on y2= ±δ2/2
π(1)113 = −ze31, π(1)223 = −ze32,
π(1)123 = 0 on z =1/2+H

(4.21c)

We are now ready to solve the unit cell problems in
Eqs. 4.17a, 4.18a and 4.19a. We will begin with the
τ(1)22ij , τ(1)22i , and π(1)22i functions. Following the same
methodology as per the corresponding τ22ij , τ22i , and π22i
functions we arrive at the following system of equations in
region Ω3.⎡⎢⎢⎢⎢⎢⎣

C33
∂N3

(1)22

∂z +e33
∂A22

(1)

∂z +Q33
∂Λ22

(1)

∂z
Q33

∂N3
(1)22

∂z −λ33
∂A22

(1)

∂z −µ33
∂Λ22

(1)

∂z
e33

∂N3
(1)22

∂z −ε33
∂A22

(1)

∂z −λ33
∂Λ22

(1)

∂z

⎤⎥⎥⎥⎥⎥⎦ =

= −z

⎡⎢⎣ C23
Q32
Q32

⎤⎥⎦ in Ω3

(4.22a)
Comparing this system with Eqs. 4.6b, 4.6d and 4.6f, we
observe that the only difference is the presence of the “z”
coordinate on the right-hand side. Clearly, this is to be ex-
pected, because the three unit cell problems under discus-
sion pertain to out-of-plane deformation of the magneto-
electric composite. The solution of Eq. 4.22a is thus readily
obtained from its counterpart in Eq. 4.6g by simply multi-
plying by z. In turn, the local functions τ22ij , τ22i , π22i are
determined as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ(1)2211 = z
(︃
C13

Π̂2
Π̂1

+e31
Π̂3
Π̂1

+Q31
Π̂4
Π̂1

)︃
,

τ(1)2222 = z
(︃
C23

Π̂2
Π̂1

+e32
Π̂3
Π̂1

+Q32
Π̂4
Π̂1

)︃
τ(1)2233 = −zC23, τ(1)22α3 = τ(1)2212 = 0
τ(1)223 = −zQ32, τ(1)221 = τ(1)222 = 0
π(1)223 = −ze32, π(1)221 = π(1)222 = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
in Ω3

(4.23a)

The same conclusion, namely that τ(1)λµij = zτ(1)λµij , τ(1)λµi =
zτλµi , π

(1)λµ
i = zπλµi is also true in regionsΩ1 andΩ2. Thus:

τ(1)2211 = −zC12, τ(1)2222 =

= z
(︃
C12

Π̂6
Π̂5

+C23
Π̂7
Π̂5

+e32
Π̂8
Π̂5

+Q32
Π̂9
Π̂5

)︃
τ(1)2233 = −zC23, τ(1)22α3 = τ(1)2212 = 0
τ(1)223 = −zQ32, τ(1)221 = τ(1)222 = 0
π(1)223 = −e32, π(1)221 = π(1)222 = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
in Ω1

(4.23b)

τ(1)2211 = −zC12, τ(1)2222 = −zC22,
τ(1)2233 = −zC23, τ(1)22α3 = τ(1)2212 = 0
τ(1)223 = −zQ32, τ(1)221 = τ(1)222 = 0,
π(1)223 = −e32, π(1)221 = π(1)222 = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ in Ω2 (4.23c)

Here, functions Π̂1-Π̂9 are given in Eqs. 4.6g and 4.9b –
4.9f. Likewise, functions τ11ij , τ11i , π11i are obtained in a
similar way:

τ(1)1111 = z
(︃
C13

Π̂*2
Π̂*1

+e31
Π̂*3
Π̂*1

+Q31
Π̂*4
Π̂*1

)︃
,

τ(1)1122 = z
(︃
C23

Π̂*2
Π̂*1

+e32
Π̂*3
Π̂*1

+Q32
Π̂*4
Π̂*1

)︃
τ(1)1133 = −zC13, τ(1)11α3 = τ(1)1112 = 0
τ(1)113 = −zQ31, τ(1)111 = τ(1)112 = 0,
π(1)113 = −ze31, π(1)111 = π(1)112 = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
in Ω3

(4.24a)

τ(1)1122 = −zC12, τ(1)1111 =
= z
(︁
C12 Π̂

*
6

Π̂*5
+C13 Π̂

*
7

Π̂*5
+e31 Π̂

*
8

Π̂*5
+Q31

Π̂*9
Π̂*5

)︁
τ(1)1133 = −zC13, τ(1)11α3 = τ(1)1112 = 0
τ(1)113 = −zQ31, τ(1)111 = τ(1)112 = 0
π(1)113 = −e31, π(1)111 = π(1)112 = 0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
in Ω2 (4.24b)

τ(1)1111 = −zC11, τ(1)1122 = −zC12,
τ(1)1133 = −zC13, τ(1)11α3 = τ(1)1112 = 0
τ(1)113 = −zQ31, τ(1)111 = τ(1)112 = 0,
π(1)113 = −ze31, π(1)111 = π(1)112 = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ in Ω1 (4.24c)

In dealing with the τ(1)12ij , τ(1)12i , π(1)12i functions a slight
complication arises. In particular from unit cell prob-
lem 4.17a and boundary condition 4.20a we readily arrive
at (region Ω1):

1
h1
∂τ(1)1212
∂y1

+ ∂τ
(1)12
23
∂z = 0 (4.25a)

Expressing τ(1)1212 and τ(1)1223 in terms of the N(1)12
2 functions

by using the second expression in Eq. 4.16a, we arrive at
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Laplace’s equation, namely:

1
h21
C66

∂2N(1)12
2

∂y21
+ C44

∂2N(1)12
2

∂z2 = 0 (4.25b)

The solution of Eq. 4.25b is obtained in a straightforward
manner as:

N(1)12
2 = − h12 [H + 1] y1+

+ 2H3

π3

√︂
C66
C44

∞∑︁
n=1

[︀
1− (−1)n

]︀
sinh

(︂
nπh1
H

√︂
C66
C44

y1
)︂

n3cosh
(︂
C66
C44

nπδ1h1
2H

)︂
cos
[︂
nπ
H

(︂
z − 1

2

)︂]︂
(4.25c)

A similar solution (with the indices “1” and “2” inter-
changed) is obtained in region Ω2. Thus, the following so-
lutions are obtained in the three regions of the unit cell:

τ(1)12ij = 0
τ(1)12i = 0, π(1)12i = 0

}︃
in Ω3 (4.26a)

τ(1)1211 = τ(1)1222 = τ(1)1233 = τ(1)1213 = 0,
τ(1)121 = τ(1)123 = 0, π(1)121 = π(1)123 = 0
τ(1)1212 = −C662 [H + 1] +2Hπ2 C66Π̂10,

τ(1)1223 = −
√︀
C66C44

2H
π2 Π̂

*
10

τ(1)122 = −Q24
2H
π2

√︂
C66
C44

Π̂*10

π(1)122 = −e24
2H
π2

√︂
C66
C44

Π̂*10

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
in Ω1

(4.26b)

τ(1)1211 = τ(1)1222 = τ(1)1233 = τ(1)1223 = 0,
τ(1)122 = τ(1)123 = 0, π(1)122 = π(1)123 = 0
τ(1)1212 = −C662 [H + 1] +2Hπ2 C66Π̂11,

τ(1)1213 = −
√︀
C66C55

2H
π2 Π̂

*
11

τ(1)121 = −Q15
2H
π2

√︂
C66
C55

Π̂*11
π(1)121 = π(1)123 = 0,

π(1)121 = −e15
2H
π2

√︂
C66
C44

Π̂*11

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

in Ω2

(4.26c)

Here:

Π̂10 =
∞∑︀
n=1

[︀
1− (−1)n

]︀
cosh

(︂
nπh1
H

√︂
C44
C66

y1
)︂

n2cosh
(︂√︂

C44
C66

nπδ1h1
2H

)︂
cos
[︂
nπ
H

(︂
z − 1

2

)︂]︂

Π̂*10 =
∞∑︀
n=1

[︀
1− (−1)n

]︀
cosh

(︂
nπh1
H

√︂
C44
C66

y1
)︂

n2cosh
(︂√︂

C44
C66

nπδ1h1
2H

)︂
sin
[︂
nπ
H

(︂
z − 1

2

)︂]︂
and Π̂11 is obtained from Π̂10, with C55 replacing C44, h2
replacing h1, δ2 replacing δ1, y2 replacing y1, sinh(. . . )
replacing cosh(. . . ) and sin(. . . ) replacing cos(. . . ). Like-
wise, Π̂*11 is obtained from Π̂*10 by making the same sub-
stitutions. It would not be remiss to mention here that,
because the materials of choice in this example are or-
thotropic with the poling/magnetization direction cho-
sen as the z-axis, the τ(1)12ij problem decouples from its
τ(1)12i , π(1)12i counterparts. Hence, the elastic coefficients
in Eqs. 4.26c and 4.26d depend only on elastic parameters,
but the piezoelectric and piezomagnetic coefficients in the
latter two expressions in Eqs. 4.26c and 4.26d depend on
both elastic as well as piezoelectric/piezomagnetic mate-
rial parameters.

We are now ready to calculate the effective elastic,
piezoelectric and piezomagnetic coefficients. We first re-
call the averaging procedure defined in Eq. (I-4.5a).We can
thus easily show the following formulae:

⟨1⟩Ωα =
∫︀
Ωα

1dy1dy2dz =
Htα
hα

= F(w)α ,

⟨1⟩Ω3
= 1,

⟨z⟩Ωα =
∫︀
Ωα
zdy1dy2dz =

(︀
H2 + H

)︀
tα

2hα
= S(w)α ,

⟨z⟩Ω3
= 0,⟨︀

z2
⟩︀
Ωα

=
∫︀
Ωα
z2dy1dy2dz =

(︀
4H3 + 6H2 + 3H

)︀
tα

12hα
= J(w)α ,⟨︀

z2
⟩︀
Ω3

= 1/12,
(4.26d)

where F(w)1 , F(w)2 are cross-sectional areas (perpendicu-
lar to the orientation of the reinforcement), S(w)1 , S(w)2 are
the first moments of the cross-sections, and J(w)1 , J(w)2 are
the moments of inertia of the cross-sections of the re-
inforcing elements Ω1 and Ω2 relative to the middle
surface of the plate Ω3. Using these results, as well
as Eqs. 4.7, 4.10, 4.13, 4.14a- 4.14c, 4.15a- 4.15c, 4.23a-
4.23c, 4.24a- 4.24c, 4.26a- 4.26d and (I-6.3), the effective
extensional elastic coefficients of the magnetoelectric
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wafer are obtained as follows:⟨︀
b1111
⟩︀
=
{︁
C13 Π̂

*
2

Π̂*1
+e31 Π̂

*
3

Π̂*1
+Q31

Π̂*4
Π̂*1

+ C11
}︁(3̄)

+

+
{︁
C12 Π̂

*
6

Π̂*5
+C13 Π̂

*
7

Π̂*5
+e31 Π̂

*
8

Π̂*5
+Q31

Π̂*9
Π̂*5

+ C11
}︁(2̄)

F(w)2⟨︀
b1122
⟩︀
=
{︁
C23 Π̂

*
2

Π̂*1
+e32 Π̂

*
3

Π̂*1
+Q32

Π̂*4
Π̂*1

+ C12
}︁(3̄)

,⟨︀
b2211
⟩︀
=
{︁
C13 Π̂2

Π̂1
+e31 Π̂3

Π̂1
+Q31

Π̂4
Π̂1

+ C12
}︁(3̄)

⟨︀
b2222
⟩︀
=
{︁
C23 Π̂2

Π̂1
+e32 Π̂3

Π̂1
+Q32

Π̂4
Π̂1

+ C22
}︁(3̄)

+

+
{︁
C12 Π̂6

Π̂5
+C23 Π̂7

Π̂5
+e32 Π̂8

Π̂5
+Q32

Π̂9
Π̂5

+ C22
}︁(1̄)

F(w)1⟨︀
b1112
⟩︀
=
⟨︀
b1211
⟩︀
=
⟨︀
b2212
⟩︀
=
⟨︀
b1222
⟩︀
=
⟨
bλµ3j
⟩
= 0,⟨︀

b1212
⟩︀
= {C66}(3̄)

(4.27a)
Here, superscripts

(︀
1̄
)︀
,
(︀
2̄
)︀
,
(︀
3̄
)︀
following a set of

braces, e.g. {. . .}(1̄) denote the corresponding region of
the unit cell, and thematerial parameters in the preceding
braces pertain to the constituent material of that region.
For example, referring to the first expression in Eq. 4.27a,
all parameters within the first set of braces refer to the
material of the base plate (region Ω3), and all parameters
within the second set of braces refer to region Ω2. Like-
wise, theeffective couplingelastic coefficients are given
by: ⟨

zb1111
⟩
=
⟨
b(1)1111

⟩
=

=
{︁
C12 Π̂

*
6

Π̂*5
+C13 Π̂

*
7

Π̂*5
+e31 Π̂

*
8

Π̂*5
+Q31

Π̂*9
Π̂*5

+ C11
}︁(2̄)

S(w)2⟨
zb2222

⟩
=
⟨
b(1)2222

⟩
=

=
{︁
C12 Π̂6

Π̂5
+C23 Π̂7

Π̂5
+e32 Π̂8

Π̂5
+Q32

Π̂9
Π̂5

+ C22
}︁(1̄)

S(w)1⟨
b(1)1122

⟩
=
⟨
b(1)1122

⟩
=
⟨
b(1)1112

⟩
=
⟨
b(1)1211

⟩
=

=
⟨
b(1)2212

⟩
=
⟨
b(1)1222

⟩
=
⟨
b(1)λµ3j

⟩
= 0

(4.27b)
Finally, the effective bending elastic coefficients are
given as:⟨

zb(1)1111

⟩
= 1
12

{︁
C13 Π̂

*
2

Π̂*1
+e31 Π̂

*
3

Π̂*1
+Q31

Π̂*4
Π̂*1

+ C11
}︁(3̄)

+

+
{︁
C12 Π̂

*
6

Π̂*5
+C13 Π̂

*
7

Π̂*5
+e31 Π̂

*
8

Π̂*5
+Q31

Π̂*9
Π̂*5

+ C11
}︁(2̄)

J(w)2⟨
zb(1)1122

⟩
= 1
12

{︁
C23 Π̂

*
2

Π̂*1
+e32 Π̂

*
3

Π̂*1
+Q32

Π̂*4
Π̂*1

+ C12
}︁(3̄)

,⟨
zb(1)2211

⟩
= 1
12

{︁
C13 Π̂2

Π̂1
+e31 Π̂3

Π̂1
+Q31

Π̂4
Π̂1

+ C12
}︁(3̄)⟨

zb(1)2222

⟩
= 1
12

{︁
C23 Π̂2

Π̂1
+e32 Π̂3

Π̂1
+Q32

Π̂4
Π̂1

+ C22
}︁(3̄)

+

+
{︁
C12 Π̂6

Π̂5
+C23 Π̂7

Π̂5
+e32 Π̂8

Π̂5
+Q32

Π̂9
Π̂5

+ C22
}︁(1̄)

J(w)1⟨
zb(1)1112

⟩
=
⟨
zb(1)1211

⟩
=
⟨
zb(1)2212

⟩
=⟨

zb(1)1222

⟩
=
⟨
zbλµ3j

⟩
= 0

(4.27c)

and ⟨
zb(1)1212

⟩
= 1
12 {C66}(3̄) +

1
12 {C66}(1̄)

{︂
H3t1
h1

+

− K1}(1̄) +
1
12 {C66}(2̄)

{︂
H3t2
h2

− K2
}︂(2̄)

where K1 =
96H4

π5h1

⎯⎸⎸⎷{C66}(1̄)

{C44}(1̄)
∞∑︀
n=1

[1
n5 −

+ (
−1)n

]︀
n5 tanh

⎛⎝⎯⎸⎸⎷{C44}(1̄)

{C66}(1̄)
nπt1
2H

⎞⎠ ,
and K2 =

96H4

π5h2

⎯⎸⎸⎷{C66}(2̄)

{C55}(2̄)
∞∑︀
n=1

[1
n5 −

+ (
−1)n

]︀
n5 tanh

⎛⎝⎯⎸⎸⎷{C55}(2̄)

{C66}(2̄)
nπt2
2H

⎞⎠.
(4.27d)

As mentioned above, because the materials of
choice in this example are orthotropic with the pol-
ing/magnetization direction chosen as the z-axis, the
τ(1)12ij problem decouples from its τ(1)12i , π(1)12i coun-
terparts. Therefore, the elastic coefficients in Eqs. 4.26c
and 4.26d depend only on elastic parameters. Thus,
for the

⟨
zb(1)1212

⟩
coefficient alone, the expression in

Eq. 4.27dmatches exactly the corresponding expression in
Kalamkarov [45], Kalamkarov and Georgiades [60], Geor-
giades and Kalamkarov [61].

Using Eqs. 4.26d as well as Eqs. 4.7, 4.10, 4.13, 4.14a –
4.14c, 4.15a – 4.15c, 4.23a – 4.23c, 4.24a – 4.24c, 4.26a –
4.26d and (I-6.3), the effective in-plane,

⟨︀
δµνα
⟩︀
, and out-of-

plane,
⟨
δ(1)µνα

⟩
, piezoelectric coefficients, and the effective

in-plane,
⟨︀
âµνα
⟩︀
, and out-of-plane,

⟨
a(1)µνα

⟩
, piezomagnetic

coefficients of the magnetoelectric wafer are obtained as
follows:⟨︀

ηµνα
⟩︀
=
⟨︀
δµνα
⟩︀
=
⟨
a(1)µνα

⟩
=
⟨
δ(1)µνα

⟩
= 0 (4.28)

We observe in this example that the piezoelectric and
piezomagnetic functions are zero. Clearly, this is because
the polarization/magnetization directions were chosen to
coincide with the z-axis for all three elements of the unit
cell. Hence, the piezoelectric e11, e12, e13, e21, e22, e23 val-
ues as well as the corresponding piezomagnetic values are
zero for each constituent in each element. Had we cho-
sen the poling/magnetization direction in, say, element
Ω1 to be parallel to y1 and in element Ω2 to be parallel
to y2, then the e11, e12, e13 piezoelectric and correspond-
ing piezomagnetic coefficients would be non-zero in Ω1,
and likewise the e21, e22, e23 piezoelectric and correspond-
ing piezomagnetic coefficients would be non-zero in Ω2.
Thus, the effective in-plane and out-of-plane piezoelectric
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andpiezomagnetic coefficientswouldbenon-zero.Aswith
the previous example, this underlines one of the principal
advantages of our model; the designer has complete flexi-
bility to enhance, reduce or even suppress selected coeffi-
cients to conform to the design criteria of a particular ap-
plication, by changing one or more geometric, physical or
material parameters.

(c) Unit-Cell Problems 2.4b, 2.5b and 2.6b and Effective
Dielectric Permittivity, Magnetoelectric and Piezo-
electric coefficients

We follow the same methodology as outlined above.
For the sake of brevity we give only the final expressions.

− ⟨δ11⟩=
{︁
ε11+ e215

C55

}︁(3̄)
+
{︁
ε11+ e215

C55

}︁(2̄)
F(w)2

− ⟨δ22⟩=
{︁
ε22+ e224

C44

}︁(3̄)
+
{︁
ε22+ e224

C44

}︁(1̄)
F(w)1 ,

⟨δ12⟩ = ⟨δ21⟩ = 0

(4.29a)

− ⟨a11⟩=
{︁
λ11+ e15Q15

C55

}︁(3̄)
+
{︁
λ11+ e15Q15

C55

}︁(2̄)
F(w)2

− ⟨a22⟩=
{︁
λ22+ e24Q24

C44

}︁(3̄)
+
{︁
λ22+ e24Q24

C44

}︁(1̄)
F(w)1 ,

⟨a12⟩ = ⟨a21⟩ = 0
(4.29b)

⟨︀
bµνα
⟩︀
= 0 (4.29c)

Eqs. 4.29a give the effective dielectric permittivity coef-
ficients, Eqs. 4.29b give the first product properties we
encounter, the effective magnetoelectric coefficients, and
Eqs. 4.29c give the effective piezoelectric coefficients,
which vanish for reasons explained above.

(d) Unit-Cell Problems 2.4c, 2.5c and 2.6c and Effective
Magnetic Permeability, Magnetoelectric and Piezo-
magnetic Coefficients

As above, the effective magnetic permeability, mag-
netoelectric and piezomagnetic coefficients are given by
Eqs. 4.30a, 4.30b and 4.30c respectively.

− ⟨𝛾11⟩=
{︁
µ11+ Q

2
15
C55

}︁(3̄)
+
{︁
µ11+ Q

2
15
C55

}︁(2̄)
F(w)2

− ⟨𝛾22⟩=
{︁
µ22+ Q

2
24
C44

}︁(3̄)
+
{︁
µ22+ Q

2
24
C44

}︁(1̄)
F(w)1 ,

⟨𝛾12⟩ = ⟨𝛾21⟩ = 0
(4.30a)

− ⟨ξ11⟩=
{︁
λ11+ e15Q15

C55

}︁(3̄)
+
{︁
λ11+ e15Q15

C55

}︁(2̄)
F(w)2

− ⟨ξ22⟩=
{︁
λ22+ e24Q24

C44

}︁(3̄)
+
{︁
λ22+ e24Q24

C44

}︁(1̄)
F(w)1 ,

⟨ξ12⟩ = ⟨ξ21⟩ = 0
(4.30b)

⟨︀
aµνα
⟩︀
= 0 (4.30c)

Note that the effective magnetoelectric coefficients can be
determined via two unit cell problems, and as expected
⟨ξαµ⟩ = ⟨aαµ⟩ in this case.

(e) Unit Cell Problems 2.4d, 2.5d and 2.6d and Effective
Thermal Expansion, Pyroelectric and Pyromagnetic
coefficients

The effective thermal expansion, pyromagnetic and
pyroelectric coefficients are given by Eqs. 4.31a, 4.31b
and 4.31c, respectively. We reiterate that these effective co-
efficients are related to the mid-plane component of the
temperature variation, see Eq. (I-3.4b).

− ⟨b11⟩=
{︂
−C13 Π̂

*(Θ)
2

Π̂*(Θ)1
−e31 Π̂

*(Θ)
3

Π̂*(Θ)1
−Q31

Π̂*(Θ)4
Π̂*(Θ)1

+Θ11}(3̄) +
{︂
−C12 Π̂

*(Θ)
6

Π̂*(Θ)5
−C13 Π̂

*(Θ)
7

Π̂*(Θ)5

−e31 Π̂
*(Θ)
8

Π̂*(Θ)5
−Q31

Π̂*(Θ)9
Π̂*(Θ)5

+ Θ11

}︂(2̄)
F(w)2

− ⟨b22⟩=
{︂
−C23 Π̂(Θ)

2
Π̂*(Θ)1

−e32 Π̂(Θ)
3

Π̂*(Θ)1
−Q32

Π̂(Θ)
4

Π̂*(Θ)1

+Θ22}(3̄) +
{︂
−C12 Π̂

(Θ)
6

Π̂(Θ)
5
−C23 Π̂

(Θ)
7

Π̂(Θ)
5

−e32 Π̂
(Θ)
8

Π̂(Θ)
5
−Q32

Π̂(Θ)
9

Π̂(Θ)
5

+ Θ11

}︂(1̄)
F(w)1

⟨b12⟩ = ⟨b21⟩ = 0

(4.31a)

⟨𝛾1⟩= {η1}(3̄) + {η1}(2̄) F(w2 ,
⟨𝛾2⟩= {η2}(3̄) + {η2}(1̄) F(w)1

(4.31b)

⟨τ1⟩= {ξ1}(3̄) + {ξ1}(2̄) F(w)2 ,
⟨τ2⟩= {ξ2}(3̄) + {ξ2}(1̄) F(w)1

(4.31c)

In Eq. 4.31a, material parameters Π̂*(Θ)1 -Π̂*(Θ)9 are obtained
from the corresponding Π̂*1-Π̂*9 parameters via the follow-
ing substitutions:

C13 → −Θ33, Q31 → η3, e31 → ξ3,
C12 → −Θ22

(4.31d)

Likewise, parameters Π̂(Θ)
1 -Π̂(Θ)

9 are obtained from the cor-
responding Π̂1-Π̂9 parameters via the following substitu-
tions:

C23 → −Θ33, Q32 → η3, e32 → ξ3,
C12 → −Θ11

(4.31e)

(f) Unit Cell Problems 2.4e, 2.5e and 2.6e and Sec-
ondary Effective Thermal Expansion, Pyroelectric and Py-
romagnetic Coefficients
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The effective thermal expansion, pyromagnetic and
pyroelectric coefficients related to the linear through-the-
thickness variation of the temperature field are given by
Eqs. 4.32a, 4.32b and 4.32c, respectively.

−
⟨
b(1)11

⟩
= − ⟨zb11⟩ =

{︂
−C12 Π̂

*(Θ)
6

Π̂*(Θ)5
−C13 Π̂

*(Θ)
7

Π̂*(Θ)5

−e31 Π̂
*(Θ)
8

Π̂*(Θ)5
−Q31

Π̂*(Θ)9
Π̂*(Θ)5

+ Θ11

}︂(2̄)
S(w)2

−
⟨
b(1)22

⟩
= − ⟨zb22⟩=

{︂
−C12 Π̂

(Θ)
6

Π̂(Θ)
5
−C23 Π̂

(Θ)
7

Π̂(Θ)
5

−e32 Π̂
(Θ)
8

Π̂(Θ)
5
−Q32

Π̂(Θ)
9

Π̂(Θ)
5

+ Θ11

}︂(1̄)
S(w)1⟨

b(1)12

⟩
=
⟨
b(1)21

⟩
= 0

(4.32a)

⟨
𝛾(1)1

⟩
= ⟨z𝛾1⟩= {η1}(2̄) S(w)2 ,⟨

𝛾(1)2

⟩
= ⟨z𝛾2⟩= {η2}(1̄) S(w)1

(4.32b)

⟨
τ(1)1

⟩
= ⟨zτ1⟩= {ξ1}(2̄) S(w2 ,⟨

τ(1)2

⟩
= ⟨zτ2⟩= {ξ2}(1̄) S(w)1

(4.32c)

(g) Comparison With Other Works and Discussion
As mentioned previously, for the case of the purely

elastic case the results of this model converge exactly to
those of Kalamkarov [45], Kalamkarov and Kolpakov [46].
However, examination of Eqs. 4.27a – 4.27c, reveals that
in the general case of a smart composite structure, the
elastic coefficients are dependent on not only the elas-
tic properties of the constituent materials, but also on
the piezoelectric, piezomagnetic, magnetic permeability,
dielectric permittivity and other parameters. The same
holds true for the remaining effective coefficients. In a
sense, the thermoelasticity, piezoelectricity and piezo-
magnetism problems are entirely coupled and the solu-
tion of one affects the solutions of the others. This is cap-
tured in the present papers, but not in previously pub-
lished works. Thus, the results presented here represent
an important refinement of previously established results
such as those in Kalamkarov and Georgiades [60], Geor-
giades and Kalamkarov [61], Kalamkarov [74], Kalamkarov
and Challagulla [75]. In essence, in these previous stud-
ies semi-coupled analyses of composite and reinforced
plates are carried out and therefore the resulting expres-
sions of the effective coefficients do not reflect the influ-
ence of many parameters such as the electric permittivity,
magnetic permeability, primary magnetoelectricity etc. In
the present work however, a fully coupled analysis is per-
formed and as a consequence the expressions for the ef-
fective coefficients involve all pertinent material parame-
ters. To the authors’ best knowledge, this is the first time
that completely coupled piezo-magneto-thermo-elastic ef-
fective coefficients of reinforced plates are presented and

analyzed. Of course, the semi-coupled approach is fairly
accurate inpredictingmanyof the effective coefficients but
may err significantly in some instances such as in the pre-
diction of some of the product properties. This is also evi-
dent in corresponding micromechanical models of three-
dimensional structures. For example, the fully-coupled
approach given in Hadjiloizi et al. [25, 26], predicts the ef-
fective coefficients accurately whereas the semi-coupled
approach in Challagulla and Georgiades [76] does not pre-
dict correctly some of the effective product properties. It
is however accurate in predicting many of the remaining
effective coefficients. Finally, we reiterate that if applied
to the case of simple laminates, such as the ones consid-
ered in Section 3, the work presented here represents an
extension of the classical composite laminate theory (see
e.g. [66, 67]) to piezo-magneto-thermo-elastic structures.

Figure 8: Plot of the effective
⟨︀
b1111

⟩︀
extensional coeflcient vs.

height of the piezoelectric wafer.

It is noted that the unit-cell problems are completely
characterized by the structure of the unit cell of the mag-
netoelectric composite. It follows that the solutions of
these problems and the effective coefficients in partic-
ular, are representative of the entire macroscopic com-
posite and, once determined, they can be used to study
a wide range of boundary value problems associated
with that particular geometry. Examples include, but are
certainly not limited to, static problems (the compos-
ite can be used as a structural member in manufac-
turing and infrastructure applications), dynamic prob-
lems (aerospace, automotive, vibration-absorption appli-
cations), magnetic/electric problems (the composites can
be used as resonators, phase shifters, energy-harvesting
devices, biomedical sensors and actuators), thermochem-
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ical problems (chemical sensors) etc. Because the effec-
tive coefficients are representative of themacroscopic com-
posite, the resulting expressions can easily be integrated
in MATLABTM or other similar software packages to accu-
rately and expediently analyze the aforementioned mag-
netoelectric structures. Ordinarily, the analysis and design
of such complex geometries as shown in Fig. 6, would
require a time-consuming numerical technique (such as
the finite element method for example). The analytical
model and its accompanying closed-form expressions pre-
sented here, however, allow us to quickly perform a pre-
liminary design in a time-efficient manner. This prelimi-
nary design can then be used in conjunction with a finite
element model to refine the results if enhanced accuracy
is needed (by considering stress concentration effects for
example). Obtaining a preliminary design before employ-
ing a numerical technique speeds up the design cycle time
significantly. We finally note that the solutions of the lo-
cal and the homogenized problems, Eqs. 2.3a- 2.3h, en-
able us to make very accurate predictions about the three-
dimensional local structure of the mechanical displace-
ments, electric and magnetic potentials, force and mo-
ment resultants, electric and magnetic displacements etc.

Figure 9: Plot of the effective ⟨τ1⟩ pyroelectric coeflcient vs. height
of the piezoelectric wafer.

Before closing this section, let us examine a magneto-
electric wafer made up of a 1-mm-thick cobalt ferrite base
plate and a barium titanate wafer with a thickness of 1 mm
and height which varies from 5 to 10 mm. The material
properties are taken from Table 1. Figs. 8 and 9 show, re-
spectively, the effective extensional

⟨︀
b1111
⟩︀
coefficient and

the effective pyroelectric ⟨τ1⟩ coefficient. As expected, in-

creasing the height of the piezoelectric wafer increases the
value of both coefficients.

5 Conclusions
The method of asymptotic homogenization was used to
analyze a periodic smart composite magnetoelectric plate
of rapidly varying thickness. From a set of eighteen unit
cell problems the effective elastic, piezoelectric, magneto-
electric, pyromagnetic, thermal expansion and other coef-
ficients for thehomogenized anisotropic composite and/or
reinforced plate were derived. These effective coefficients
are universal in nature and may be utilized in studying
very different types of boundary value problems associ-
ated with a given smart composite structure.

To illustrate the use of the unit cells and the applica-
bility of the effective coefficients, two broad classes of ex-
amples were considered. The first example was concerned
with a magnetoelectric laminate consisting of alternating
piezoelectric and piezomagnetic laminae. The other ex-
ample dealt with wafer-reinforced magnetoelectric plates.
These are plates reinforced with mutually perpendicular
ribs or stiffeners. The most general case was examined
whereby the ribs had different orthotropic properties than
the base plate. The unit cell problems were solved for this
unique structure by considering each of the three regions
of the unit cell separately. In the solution, we ignored com-
plications at the regions of overlap between the actua-
tors/reinforcements because these regions are highly lo-
calized and contribute very little to the integrals over the
unit cell. The solution of the unit cell problems led to the
determination of the effective coefficients including the
product properties.

It is shown in this work that in the case of the purely
elastic case, the results of the derived model converge ex-
actly to those of Kalamkarov [45, 75], Kalamkarov and Kol-
pakov [46], Kalamkarov and Challagulla [76]. However, in
themore general casewherein someor all of the phases ex-
hibit piezoelectric and/or piezomagnetic behavior, the ex-
pressions for the derived effective coefficients were shown
to be dependent on not only the elastic properties of the
constituent materials, but also on the piezoelectric and
piezomagnetic parameters.

One of the most important features of the derived
model is that it affords complete flexibility to the designer
to tailor the effective properties of the smart composite
structure to conform to the requirements of a particular en-
gineering application by changing one ormorematerial or
geometric parameters.
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