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Analysis of Smart Piezo-Magneto-Thermo-Elastic
Composite and Reinforced Plates:
Part I – Model Development
Abstract: A comprehensive micromechanical model for
the analysis of a smart composite piezo-magneto-thermo-
elastic thin plate with rapidly-varying thickness is devel-
oped in the present paper. A rigorous three-dimensional
formulation is used as the basis of multiscale asymptotic
homogenization. The asymptotic homogenization model
is developed using static equilibrium equations and the
quasi-static approximation of Maxwell’s equations. The
work culminates in the derivation of a set of differential
equations and associated boundary conditions. These sys-
tems of equations are called unit cell problems and their
solution yields such coefficients as the effective elastic,
piezoelectric, piezomagnetic, dielectric permittivity and
others. Among these coefficients, the so-called product co-
efficients are also determined which are present in the be-
havior of the macroscopic composite as a result of the in-
teractions and strain transfer between the various phases
but can be absent from the constitutive behavior of some
individual phases of the composite material. The model
is comprehensive enough to allow calculation of such lo-
cal fields as mechanical stress, electric displacement and
magnetic induction. In part II of this work, the theory is
illustrated by means of examples pertaining to thin lam-
inated magnetoelectric plates of uniform thickness and
wafer-type smart composite plates with piezoelectric and
piezomagnetic constituents. The practical importance of
the model lies in the fact that it can be successfully em-
ployed to tailor the effective properties of a smart compos-
ite plate to the requirements of a particular engineering
application by changing certain geometric or material pa-
rameters. The results of themodel constitute an important
refinement over previously established work. Finally, it is
shown that in the limiting case of a thin elastic plate of uni-
form thickness the derivedmodel converges to the familiar
classical plate model.
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1 Introduction
Significant advancements in the production and applica-
tion of composites coupled with emerging technologies
in the fields of sensors and actuators have permitted the
integration of smart composites in an increasingly larger
number of engineering applications. Of particular interest
among smart composites is the class of structures which
include both piezoelectric and piezomagnetic phases. The
strain transfer and general interactions between the vari-
ous phases of these composites give rise to the so-called
product properties, see Newnham et al. [1]. These proper-
ties are found in the behavior of the macroscopic compos-
ite but are usually absent from the constituent behavior of
the individual phases. Examples of product properties are
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the magnetoelectric, pyromagnetic and pyroelectric prop-
erties, see Nan et al. [2], Bichurin et al. [3]. The magneto-
electric property is the behavior which governs the gen-
eration of an electric displacement when a magnetic field
is applied and vice-versa. In particular, applying a mag-
netic field induces a mechanical strain in the piezomag-
netic phase. In turn, provided that there is satisfactory de-
gree of bonding between the two constituents, this mag-
netically induced strain is transferred to the piezoelectric
phase which then produces an electric field. Likewise, the
pyroelectric and pyromagnetic product properties refer to
the generation of an electric or magnetic field when a ther-
mal load is applied.

The unique properties of magnetoelectric composites
render them suitable candidates for a broad range of novel
practical applications in the form of components, devices
and systems. For example their sensitivity to external stim-
uli (electric and magnetic fields, temperature etc.) can
be exploited for frequency tunable devices such as res-
onators and filters, magnetic field sensors, energy harvest-
ing transducers, miniature antennas, etc. [3–9]. Other at-
tractive potential applications of some classes ofmagneto-
electric composites include data storage devices and spin-
tronics [10], biomedical sensors for EEG/MEG and other
relevant equipment [11, 12] etc. In view of the aforemen-
tioned (and many more) practical applications, the main
objective of this work is to develop accuratemicromechan-
ical models that can be used to design magnetoelectric
and general smart composite and reinforced plates. The
model must be comprehensive enough to afford the de-
signer significant flexibility with regards to both the struc-
tural make-up and the overall geometry of the given struc-
tures.

The use of composites and smart composites in new
engineering applications is often limited due to the lack of
reliable data concerning their long-termbehavior. This dis-
advantage could be successfully mitigated if the behavior
of such structures could be determined at the design stage.
This can be effectively achieved via the development of ac-
curate micromechanical models. To be useful, these mod-
els must be comprehensive enough to capture all the im-
portant behavioral characteristics of the composite struc-
ture. At the same time, they must not be too complicated
to be used effectively, efficiently and expediently. Ideally,
and in order to be readily amenable to design, such mod-
els should lead to closed-form expressions for the determi-
nation of effective properties in terms of the material and
geometric parameters of the constituents and the macro-
scopic structure.

Despite the increased interest in the magnetoelectric
effect and other product properties, little research work

pertaining to the micromechanical modeling of this be-
havior exists. As expected, both analytical and numerical
(principally finite element-based) approaches have been
examined and implemented. Noteworthy among the an-
alytical models are the works of Harshe et al. [13, 14]
and Avellaneda and Harshe [15], Huang et al. [16–19],
Bichurin et al. [20, 21], Soh and Liu [22], Bravo-Castillero
et al. [23], Ni et al. [24] Akhabarzadeh et al. [25], and oth-
ers. Harshe et al. [13, 14] and Avellaneda and Harshe [15]
obtain the magnetoelectric coefficients of 2-2 piezoelec-
tric/magnetostrictive multilayer composites for mechani-
cally free and clamped structures. Huang and Kuo [16] de-
veloped a comprehensive model pertaining to piezoelec-
tric/piezomagnetic composites on the basis of the classical
works of Eshelby [26] and Mori-Tanaka [27]. In particular,
their model incorporated reinforcements in the form of el-
lipsoidal inclusions which allowed the reinforcement ge-
ometry to vary from thin flakes to long continuous fibers.
The determination of Eshelby-like tensors [26] allowed the
authors to compute not only the effective properties, but
also the local fields around the inclusions and the perti-
nent stress concentration factors. Using the Mori-Tanaka
approach [27] the interactions between the constituent
phases were also examined. In an extension of this work,
Huang [17] obtained closed-form solutions for a trans-
versely isotropic matrix and reinforcements in the shape
of elliptic cylinders, circular cylinders, disks and ribbons.
The resulting expressions are functions of the inclusion
properties and geometry, as well as the pertinent volume
fractions. In another work, Huang et al. [18] examined
the magnetoelectric effect in piezoelectric/piezomagnetic
bilayers under coupled bending and stretching loading
conditions. They discovered that the magnetoelectric cou-
pling coefficients in this case were significantly higher
than in the case of pure stretching. In an interesting new
study based on their earlier works, Huang et al. [19] ob-
tained the magnetoelectric coefficients in composites of
continuous piezoelectric fibers embedded in a piezomag-
netic matrix. The authors also obtained an analytical ex-
pression for the optimized fiber volume fraction for maxi-
mizing the magnetoelectric coupling coefficients. Surpris-
ingly, their results indicated that the optimum volume
fraction is a function of the elastic properties of the con-
stituents and is independent of the magnetic and electric
properties.

Bichurin et al. [20] investigated the magnetoelectric
effect in ferromagnetic/piezoelectric multilayer compos-
ites using a two-step approach. In the first step they
wrote down the constitutive relationships of the individ-
ual phases and in the second they used the corresponding
expressions of the macroscopic composite. The same au-
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thors, Bichurin et al [21], extended their work to magneto-
electric nanocomposites. Soh and Liu [22] adopted a new
approach in deriving eight sets of constitutive equations
characterizing magnetoelectric composites directly from
eight thermodynamic potentials. The theoretical frame-
work of their study is important in that it established the
necessary relationships that must exist between the vari-
ousmaterial constants that appear in the constitutive laws.
Bravo-Castillero et al. [23] used generalized test functions
to avoid singularities that occur due to the discontinu-
ity at the interphase between the constituents. To illus-
trate their model they obtained closed-form expressions
for the effective properties of piezoelectric/piezomagnetic
laminates. Ni et al. [24] investigated the magnetoelectric
properties of 3-ply polycrystalline multiferroic laminates
consisting of a piezoelectric lamina sandwiched between
two ferromagnetic ones. In their modeling approach, the
authors applied a magnetic field and determined the in-
duced electric displacement. They computed the magne-
toelectric coupling coefficients as ratios of applied mag-
netic field to induced polarization. Their work showed
that themagnetoelectric constants depend strongly on the
orientation of the magnetic fields. Akbarzadeh et al. [25]
considered, among others, the pyroelectric coefficients
when analyzing the thermo-electro-magneto-elastic be-
havior of rotating functionally graded piezoelectric cylin-
ders. Other works can be found in Kirchner et al. [28], Pan
and Heyliger [29], Benveniste [30], Nan et al. [31], Spy-
ropoulos et al. [32] and others.

Naturally, the finite element technique has proven a
popular method for analyzing magnetoelectric compos-
ites. In this respect, special consideration must be given
to the works of Tang and Yu [33, 34], who employed the
variational asymptoticmethod to investigate periodic two-
phase and three-phase structures. Starting from the to-
tal electromagnetic enthalpy or thermodynamic potential,
the authors then applied constraint minimization. The
pertinent equations were solved using the finite element
technique. The authors illustrated their model by consid-
ering two types of fiber-reinforced composites; one con-
sisted of piezoelectric fibers embedded in a piezomagnetic
matrix and the other of piezoelectric and piezomagnetic
fibers embedded in an elastic matrix. Their calculated ef-
fective coefficients agreed well with other reported values.
Sunar et al. [35] used the finite elementmethod to examine
piezoelectric/piezomagnetic composites. The authors be-
gan by defining two energy functionals and then applied
Hamilton’s principle to derive the constitutive equations
for the smart structure. The authors then employed a finite
element approach to a barium titanate/cobalt ferrite two-
layer composite. In particular they examined the genera-

tion of a magnetic field when an applied electrostatic field
induces a piezoelectricmechanical strain. The authors’ re-
sults conformed fairly well to those obtained via a simple
analytical technique. Other work can be found in Lee et
al. [36], Liu et al. [37], Mininger et al. [38], Sun et al. [39]
and others.

The micromechanical modeling of periodic compos-
ites and smart composites is characterized by rapidly
varying material coefficients with period “ε”, the charac-
teristic dimension of the periodicity or unit cell. At the
same time, the dependent local fields such as mechani-
cal stress, magnetic induction and electric displacement
are functions of both periodic (microscopic) and non-
periodic (macroscopic) variables. The coupling of the mi-
croscopic and macroscopic scales renders even the nu-
merical analysis of the aforementioned structures rather
cumbersome. Further, an analytic solution is unattain-
able in all but the simplest geometries. These prob-
lems could be overcome if the two scales were decou-
pled and each handled separately. An effective tech-
nique which can be used to achieve precisely this is that
of asymptotic homogenization. The mathematical frame-
work of asymptotic homogenization can be found in Ben-
soussan et al. [40], Sanchez-Palencia [41], Bakvalov and
Panasenko [42] and Cioranescu and Donato [43]. Many
problems in elasticity, thermoelasticity and piezoelastic-
ity have been solved via asymptotic homogenization. Ex-
amples can be found in Kalamkarov [44], Kalamkarov
and Kolpakov [45], Kalamkarov andGeorgiades [46], Geor-
giades et al. [47], Hassan et al. [48], Saha et al. [49],
Guedes and Kikuchi [50], Sevostianov and Kachanov [51]
and many others.

Currently, the preponderance of uses of compositema-
terials is in the form of plate and shell structural mem-
bers, the strength and reliability of which, combined with
reduced weight and concomitant material savings, offer
the designer very impressive possibilities inmany applica-
tions. It often happens that the reinforcing elements such
as fibers form a regular array with a period much smaller
than the characteristic dimension of the composite struc-
ture; consequently asymptotic homogenization analysis is
applicable.

Homogenized models of plates with periodic non-
homogeneities in tangential coordinates have been devel-
oped in this way by Duvaut [52], Duvaut and Metellus [53],
Adrianov and Manevitch [54], Adrianov et al. [55] and oth-
ers. Particularly noteworthy is themodified technique em-
ployed by Caillerie [56, 57] in his conduction studies. In
particular, two sets of microscopic variables were intro-
duced, one of which pertained to the tangential directions
(characterized by periodicity) while the other variable re-
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lated to the transverse direction inwhichnoperiodicity ex-
ists. Kohn and Vogelius, [58, 59] adopted this approach in
their study of the pure bending of a thin, linearly elastic
homogeneous plate.

Kalamkarov [44], developed general homogenized
composite shell models by applying the modified two-
scale asymptotic method directly to three-dimensional
elastic and thermoelastic problems for a thin curvilinear
composite layer with rapidly varying thickness. Challag-
ulla et al. [60] employed this methodology to develop rig-
orous asymptotic homogenization models for thin smart
composite shells and illustrated their results by means
of interesting and practically important examples includ-
ing single-walled carbon nanotubes. Kalamkarov and Kol-
pakov [61] developed a new model for the analysis of
clamped piezoelastic plates. Hadjiloizi et al. [62] imple-
mented a general model (based on the time-varying form
ofMaxwell’s equations and the dynamic force balance) for
themicromechanical dynamic analysis ofmagnetoelectric
thin plateswith rapidly varying thickness. In [62] however,
only an in-plane temperature variation is taken into con-
sideration and therefore any out-of-plane thermal effects
are ignored. Thus, unlike in the present work, the out-of-
plane thermal expansion, pyroelectric and pyromagnetic
coefficients were not captured in [62]. As a further conse-
quence, in the general field expressions for the force and
moment resultants, electric and magnetic fields etc. the
influence of the out-of-plane temperature variation is ne-
glected. More importantly however, the micromechanical
model in [62] was only applied to simple laminated plates.
One can certainly not argue against the practical signifi-
cance of such structures; on the other hand it is evident
that laminates offer little design flexibility with respect to
geometry which limits their application potential. In con-
trast, the model developed in the present paper allows for
explicitly different periodicity in the tangential directions
of the structure. This feature makes the model much more
amenable to the analysis and design of not only laminated
plates, but also reinforced plates such as wafer- and rib-
reinforced structures shown in Section 7. Such structures
were not at all considered in [62].

Also relevant to the present papers are the works
of Hadjiloizi et al. [63, 64] and Kalamkarov and Geor-
giades [65], Georgiades and Kalamkarov [66]. In [63, 64],
Hadjiloizi et al. developed two general three-dimensional
models for magnetoelectric composites. One model used
dynamic force and thermal balance and the time-varying
form of Maxwell’s equations to determine closed-form ex-
pressions for the effective properties. The second model
used the quasi-static approximation of the aforemen-
tioned constitutive equations. However, these models are

three-dimensional in nature and as such cannot capture
the mechanical, thermal, etc. behavior that is related to
bending, twisting and general out-of-plane deformation
as well as electric and magnetic field generation. The
model developed in the current work and its companion
paper [67] however, accomplishes precisely this; it em-
ploys a modified asymptotic homogenization technique,
whichmakes use of two sets of microscopic variables (and
is therefore quite different than the “classical” schemes
of [63], [64]) that permit the decoupling of the in-plane
and out-of plane behavior of the structure under consid-
eration. For example, the elastic coefficients are separated
into the familiar extensional, bending and coupling coef-
ficients. This is not possible to achieve with the 3Dmodels
in [63] and [64]. Essentially, the twomodels are applicable
to entirely different geometries. The 3D models in [63, 64]
can be used to analyze structures of comparable dimen-
sions (such as thick laminates) but cannot be used for thin
structures such as wafer- and rib-reinforced plates. The
micromechanical models developed in the current works
however are applicable to structures with a much smaller
dimension in the transverse direction than in the other two
directions. Thus, it can be used in the design and analy-
sis of composite and reinforced plates such as the afore-
mentioned wafer- and rib-reinforced structures (see Sec-
tion 7), three-layered honeycomb-cored magnetoelectric
plates, thin laminates etc.

In [65] and [66], Kalamkarov and Georgiades per-
formed only a semi-coupled analysis of a composite or re-
inforced plate and therefore the resulting expressions of
the effective coefficients donot reflect the influence of such
parameters as the electric permittivity, magnetic perme-
ability, primary magnetoelectricity etc. The present work
and its companionpaper [67] however, performa fully cou-
pled analysis and as a consequence the expressions for the
effective coefficients involve all pertinent material param-
eters. As an example, the effective elastic coefficients de-
pend not only on the elastic properties of the constituent
materials, but also on the piezoelectric, piezomagnetic,
magnetic permeability, dielectric permittivity and other
parameters. The same holds true for the remaining effec-
tive coefficients. In a sense, the thermoelasticity, piezo-
electricity and piezomagnetism problems are entirely cou-
pledand the solutionof oneaffects the solutions of theoth-
ers. This feature is captured in the present papers, but not
in previously publishedworks, such as [65] and [66]. Thus,
the results presented here represent an important refine-
ment of previously established results. To the authors’ best
knowledge, this is the first time that completely coupled
piezo-magneto-thermo-elastic effective coefficients for re-
inforced plates have been presented and analyzed.
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In view of the practical applicationsmentioned earlier
on in this Section, the primary importance of this work lies
in the fact that it develops a novelmicromechanical model
that leads to closed-form design-oriented equations eas-
ily integrated inMATLABTM or other similar software pack-
ages. These equations can be used to analyze and design
magnetoelectric andother smart composite and reinforced
plates with a broad range of geometries. The results of the
developed models show improved accuracy as compared
to previously published results.

In particular, the present paper deals with the devel-
opment of appropriate micromechanical models to exam-
ine the quasi-static plane stress solution of the aforemen-
tioned magnetoelectric composite and reinforced plates.
Thework is implemented in twoparts. In part II [67] the de-
rivedmodels are applied to the practically important cases
of thin magnetoelectric laminates and wafer-reinforced
magnetoelectric plates. Our overall objectives are to: (a)
obtain expressions for the dependent field variables, (b)
derive closed-form expressions for all effective coefficients
including product properties, (c) compare the results of
ourmodelwith those of othermodels and illustrate, where
possible, the improvements over previously established
results. Following this introduction, the basic relations of
the three-dimensional problem are formulated in Section
2 and the two-scale asymptotic expansions for the dis-
placement and stress fields are introduced in Section 3.
The equilibrium equations and pertinent boundary con-
ditions are derived in Section 4 followed by the determi-
nation of the unit cell problems in Section 5. The govern-
ing equations and the effective coefficients of the homoge-
nized plate are obtained in Section 6 in which a compari-
son of the homogenized plate with a smart composite lam-
ina is also performed. Section 7 is a brief overview of the
structures to be considered in Part II [67] of this work, and
finally section 8 concludes this paper.

2 Problem Formulation
Consider a thin smart layer representing an inhomoge-
neous solidwithwavy surfaces, containing a large number
of periodically arranged actuators as shown in Fig. 1. This
periodic structure is obtained by repeating a certain small
unit cell Ωδ in the x1 − x2 plane (Fig. 1). In the parlance
of asymptotic homogenization the unit cell is thus some-
times referred to as a “periodicity cell”, [46–48]. All three
pertinent coordinates are assumed to have been made di-
mensionless by division by a certain characteristic dimen-
sion of the body, L. Note that the shape of the top and bot-

tom surfaces of the layer is determined by the type of the
surface reinforcement (for example by the shape of stiff-
eners or reinforcing ribs) or actuator (when the actuator is
surface attached and not embedded within the structure).
The surfaces can be plane if surface reinforcements or ac-
tuators are not used. In the context of the presentwork, the
meaning of actuator (piezoelectric, piezomagnetic, mag-
netostrictive etc.) is a device that can be used to induce
stresses and strains in a coordinated fashion [64–66].

Furthermore, it is assumed that stress concentrations
and/or property variations at the interphase region be-
tween the matrix and the reinforcements and/or actua-
tors are negligible. Essentially, it is assumed that the inter-
phase regions are highly localized and do not contribute
significantly to the integral over the entire unit cell do-
main. In practical terms, the error incurred will be neg-
ligible if the dimensions of the actuators/reinforcements
are much smaller than the spacing between them. As
an indication, we note that for the purely elastic case,
Kalamkarov [44] showed that if the spacings between the
unit cells are at least ten times bigger than the thickness of
the reinforcements then the error in the values of the effec-
tive elastic coefficients incurred by ignoring the regions of
overlap between the reinforcements is less than 1%.

The unit cell of the problem is defined by the following
inequalities (see Fig. 1),{︁

− δh12 < x1 < δh1
2 , − δh22 < x2 < δh2

2 , S− < x3 < S+
}︁
,

where S± = ± δ2 ± δF
±
(︁
x1
δh1 ,

x2
δh2

)︁
(2.1)

and the microscopic behavior of this smart structure is
characterized by means of the following boundary value
problem:

∂σij
(︁
x1, x2, x3, x1

δh1 ,
x2
δh2

)︁
∂xj

= Pi
(︂
x1, x2, x3,

x1
δh1

, x2δh2

)︂
(2.2a)

∂Di
(︁
x1, x2, x3, x1

δh1 ,
x2
δh2

)︁
∂xi

= 0 (2.2b)

∂Bi
(︁
x1, x2, x3, x1

δh1 ,
x2
δh2

)︁
∂xi

= 0 (2.2c)

As well, the irrotational electric and magnetic (in the
absence of free conduction currents) fields may be written
down as the gradients of scalar functions, φ and ψ.

Ei
(︂
x1, x2, x3,

x1
δh1

, x2δh2

)︂
= −

∂φ
(︁
x1, x2, x3, x1

δh1 ,
x2
δh2

)︁
∂xi

(2.2d)
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Figure 1: Thin smart composite plate with rapidly varying thickness
and its periodicity cell.

Hi
(︂
x1, x2, x3,

x1
δh1

, x2δh2

)︂
= −

∂ψ
(︁
x1, x2, x3, x1

δh1 ,
x2
δh2

)︁
∂xi

(2.2e)
In Eqs. 2.2a- 2.2e, σij is the mechanical stress, Di and Bi
are, respectively, the electric displacement and magnetic
induction, Ei and Hi are the electric and magnetic fields
and Pi represents a generic body force. Eq. 2.2a represents
the static equilibriumequations andEqs. 2.2b and 2.2c rep-
resent the quasi-static approximation of Maxwell’s Equa-
tions. It should be noted that all field variables defined
thus far are characterized by both periodic (dependence
on xi/δhi) and non-periodic components (dependence on
xi) as is expected for the periodic structure of Fig. 1, see for
example Kalamkarov and Georgiades [65].

We will further assume that the top and bottom sur-
faces of the plate, S±, have the following boundary condi-
tions:

σijnj= pi , Dini= 0, Bini= 0, on S± (2.3a)

where for the surfaces x3 = S± (x1, x2) we have the follow-
ing unit normal vector, see Kalamkarov [44]:

n± =
(︂
∓ ∂S

±

∂x1
,∓ ∂S

±

∂x2
, 1

)︂[︃(︂
∂S±
∂x1

)︂2
+
(︂
∂S±
∂x2

)︂2
+ 1

]︃−1/2
(2.3b)

The first expression in 2.3a is the familiar Cauchy’s Law,
the second implies that we have no free surface electrical
charge and the third indicates that the normal component
of themagnetic inductionfield is continuous at the top sur-
face. InEq. 2.3b, pi (not to be confusedwithbody forces, Pi)

represents the surface tractions (external forces per unit
area acting on the top and bottom surfaces of the plate,
see Kalamkarov [44]). On the lateral surfaces we will as-
sume the following boundary conditions (where ui is the
mechanical displacement):

ui = 0, φ = δ2e
(︂
x1, x2, x3,

x1
δh1

, x2δh2

)︂
,

ψ = δ2h
(︂
x1, x2, x3,

x1
δh1

, x2δh2

)︂
(2.3c)

The boundary value problem of Eqs. 2.2a – 2.2c must be
complemented by the appropriate constitutive equations
in the form of:

σij
(︁
xi ,

xα
δhα

)︁
=Cijkl

(︁
x3,

xα
δhα

)︁ ∂uk (︁xi , xα
δhα

)︁
∂xl

+ ekij
(︁
x3,

xα
δhα

)︁ ∂φ (︁
xi , xα

δhα

)︁
∂xk

+ Qkij
(︁
x3,

xα
δhα

)︁ ∂ψ (︁
xi , xα

δhα

)︁
∂xk

− δΘij
(︁
x3,

xα
δhα

)︁
T
(︁
xi ,

xα
δhα

)︁
(2.4a)

Di
(︁
xi ,

xα
δhα

)︁
=δ

{︂
eijk

(︁
x3,

xα
δhα

)︁ ∂uk
∂xl

(︁
xi ,

xα
δhα

)︁
−εij

(︁
x3,

xα
δhα

)︁ ∂φ (︁
xi , xα

δhα

)︁
∂xk

−λij
(︁
x3,

xα
δhα

)︁ ∂ψ (︁
xi , xα

δhα

)︁
∂xk

+δξ i
(︁
x3,

xα
δhα

)︁
T
(︁
xi ,

xα
δhα

)︁}︁
(2.4b)

Bi
(︁
xi ,

xα
δhα

)︁
=δ

{︂
Qijk

(︁
x3,

xα
δhα

)︁ ∂uk
∂xl

(︁
xi ,

xα
δhα

)︁
−λij

(︁
x3,

xα
δhα

)︁ ∂φ (︁
xi , xα

δhα

)︁
∂xk

−µij
(︁
x3,

xα
δhα

)︁ ∂ψ (︁
xi , xα

δhα

)︁
∂xk

+δηi
(︁
x3,

xα
δhα

)︁
T
(︁
xi ,

xα
δhα

)︁}︁
(2.4c)

Here, ekl = ∂uk/∂xl is the second order strain field,
and Cijkl, eijk, Qijk, and Θij are the tensors of the elastic,
piezoelectric, piezomagnetic and thermal expansion coef-
ficients respectively. Finally, εij, λij, µij, ξi and ηi represent,
respectively, the dielectric permittivity, the magnetoelec-
tric, the magnetic permeability, the pyroelectric and the
pyromagnetic tensors. We reiterate that as a consequence
of the fact that the composite layer is periodic only in the
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tangential directions the material parameters are depen-
dent on xα/δhα and x3 while the dependent field variables
are also dependent on xα = (x1, x2). Eqs. 2.4b and 2.4c
show that the constituents of the structure under investi-
gation may, if desired, exhibit magnetoelectric, pyroelec-
tric and pyromagnetic characteristics; Newnham et al. [1]
refer to this as the “primary” effect.However, it is more
likely that these product properties only appear in the be-
havior of the macroscopic composite as a consequence of
the interactions between the various phases as explained
in the previous section. In Eq. 2.4a and in the sequel Ro-
man letters, i, j, k, . . . will vary from 1 to 3,while their Greek
counterparts, α, β, 𝛾, . . . will assume values of 1 or 2 only.

3 Asymptotic analysis and basic
assumptions

The overall objective of this paper is to obtain general
expressions for the effective coefficients (including prod-
uct properties) and the dependent field variables for mag-
netoelectric thin plates with rapidly varying thickness.
In order to be able to obtain the aforementioned expres-
sions in a form that is immediately comparable to other
works, and, more importantly, readily applicable to com-
posite and reinforced structures of different geometrical
and compositional make-up, the following procedure will
be adhered to in Sections 3-6 of this work. We begin with
the asymptotic expansions of all field variables of interest
in terms of the dimensionless thickness of the plate δ. Re-
alizing that we can obtain all desirable information via the
determination of the mechanical displacement and elec-
tric and magnetic potentials, we recast each of the three
governing equations 2.2a – 2.2c and associated bound-
ary conditions 2.3a as functions of the leading terms of
the asymptotic expansions of the mechanical stress, elec-
tric displacement and magnetic induction. The resulting
three equations/boundary conditions are then expressed
in terms of the desired mechanical displacement, ui, and
electric andmagnetic potentials,φ andψ respectively. The
mathematical form of these latter expressions is such that
it permits us to write down the solutions for ui, φ and ψ
as linear combinations involving a set of so-called local
functions. The independence of the local functions allows
us to group them together into different sets of problems
called unit cell problems which are solved entirely on the
domain of the unit cell and are independent of the global
formulation of the original problem. The solution of the
unit cell problems eventually yields the effective or homog-
enized coefficients, after application of an associated aver-

aging or homogenization procedure. At this stage, we have
managed to essentially smooth out the sub-structural vari-
ations that exist in the original inhomogeneous composite
plate and generate an equivalent homogeneous structure
characterized by a single set of material parameters called
effective coefficients. Once these effective coefficients are
determined, awide variety of boundary value problems in-
volving a given composite geometry can be studied with
relative ease. It would not be remiss to mention at this
point that this methodology or some variant thereof has
been followed in many of the authors’ previous works, see
for example [44–49, 60–65].

It is apparent from the preceding analysis that the
smart composite structure under consideration is charac-
terized by two scales; the microscopic scale which is a
manifestation of periodicity in the tangential directions,
and the macroscopic scale which arises from the global
formulation of the problem, see Kalamkarov [44], Challag-
ulla et al [60]. To this end, we begin our analysis with the
introduction of the microscopic or “fast” variables,

y1 =
x1
δh1

, y2 =
x2
δh2

, z = x3δ (3.1)

remembering that δ is the thickness of the smart layer.
Hence, in terms of these variables, the unit cell Ωδ is de-
fined by{︂

−12 < y1 <
1
2 , −12 < y2 <

1
2 , Z− < z < Z+

}︂
,

where Z± = ±12 ± F
±(y)

and y = (y1, y2), x = (x1, x2) (3.2)

and the unit normal vector from Eq. 2.3b becomes,

n± =
(︂
∓ 1
h1
∂F±
∂y1

,∓ 1
h2
∂F±
∂y2

, 1
)︂
×[︃

1 + 1
h21

(︂
∂F±
∂y1

)︂2
+ 1
h22

(︂
∂F±
∂y2

)︂2
]︃−1/2

(3.3)

Let us now make the following asymptotic assumptions:

pα± = δ2rα (x,y) , p±3 = δ3q±3 (x,y)
Pα = δfα (x,y,z) , P3 = δ2g3 (x,y,z)

(3.4a)

Further, let us assume the following through-the-thickness
linear relationships for T, following the commonly
adopted assumption in the treatment of heat conduction
of plate and shell structures, see for example Podstrigach
and Shvets [68], Podstrigach et al. [69].

T (x,y,z) = T1(x,y,z) + zT2(x,y,z) (3.4b)

The reason for the asymptotic forms of Eqs. 2.4b, 2.4c
and 3.4a is to ensure convergence of the developed model
to its classical plate counterpart as δ → 0.
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The introduction of the fast variables necessitates the
transformation of the derivatives according to:

∂
∂xα

→ ∂
∂xα

+ 1
δhα

∂
∂yα

and ∂
∂x3

= 1
δ
∂
∂z (3.4c)

It is noted that the transformations involving x1 and x2
have the form shown in Eq. 3.4c in accordance with the
two-scale expansion formalism, see e.g. [65], whereas for
those involving x3 we have an ordinary coordinate trans-
formation. One can therefore express the dependent field
variables in powers of δ in the form of:

(i) Basic expansions

ui (x,y,z) =u(0)i (x,y,z) + δu(1)i (x,y,z)

+ δ2u(2)i (x,y,z) + O
(︁
δ3
)︁

(3.5a)

φ (x,y,z) =δ
{︁
φ(0) (x,y,z) + δφ(1) (x,y,z)

+δ2φ(2) (x,y,z) + O
(︁
δ3
)︁}︁

(3.5b)

ψ (x,y,z) =δ
{︁
ψ(0) (x,y,z) + δψ(1) (x,y,z)

δ2ψ(2) (x,y,z) + O
(︁
δ3
)︁}︁

(3.5c)

T1 (x,y,z) = T(0)1 (x,y,z) + δT(1)1 (x,y,z)

+ δ2T(2)1 (x,y,z) + O
(︁
δ3
)︁

T2 (x,y,z) =T(0)2 (x,y,z) + δT(1)2 (x,y,z)

+ δ2T(2)2 (x,y,z) + O
(︁
δ3
)︁

(3.5d)

(ii) Derived expansions

σij (x,y,z) =σ(0)ij (x,y,z) + δσ(1)ij (x,y,z)

+ δ2σ(2)ij (x,y,z) + O
(︁
δ3
)︁

(3.5e)

Bi (x,y,z) =δ
{︁
B(0)i (x,y,z) + δB(1)i (x,y,z)

+δ2B(2)i (x,y,z) + O
(︁
δ3
)︁}︁

(3.5f)

Di (x,y,z) =δ
{︁
D(0)
i (x,y,z) + δD(1)

i (x,y,z)

+δ2D(2)
i (x,y,z) + O

(︁
δ3
)︁}︁

(3.5g)

eij (x,y,z) =e(0)ij (x,y,z) + δe(1)ij (x,y,z)

+ δ2e(2)ij (x,y,z) + O
(︁
δ3
)︁

(3.5h)

Eq. 3.5h can be used in conjunction with Eq. 3.4c and
the familiar strain-displacement relationships to obtain
the following expressions for the terms of the mechanical
strain expansion:

eαβ (m) =
1
2

(︁
uα,βx (m) + uβ,αx (m) + hβ−1uα,βy (m+1)

+hα−1uβ,αy (m+1)
)︁
,

e3β (m) =
1
2

(︁
u3,βx (m) + hβ−1u3,βy (m+1) + uβ,z (m+1)

)︁
e33(m) =u3,z (m+1) m = 0, 1, 2 . . . (3.6a)

Here, and in the sequel,we adopt the following short-hand
convention (except in a few instances where the original
format is maintained for clarity):

∂φα
∂yβ

= φα,βy ,
∂φα
∂xβ

= φα,βx ,
∂φα
∂z = φα,z (3.6b)

To obtain equivalent expressions for the general terms per-
taining to the asymptotic stress field expansion we sub-
stitute expressions 3.5a- 3.5e into the constitutive equa-
tion 2.4a and compare terms with the same power of δ to
obtain:

σij (0) =Cijkα
[︁
uk,αx (0) + hα−1uk,αy (0)

]︁
+ Cijk3uk,z (0) + eαij

[︁
φ,αx

(0) + hα−1φ,αy
(1)
]︁

+ e3ijφ,z
(1) + Qαij

[︁
ψ,αx

(0) + hα−1ψ,αy
(1)
]︁
+ Q3ijψ,z

(1)

σij (n) =Cijkα
[︁
uk,αx (n) + hα−1uk,αy (n+1)

]︁
+ Cijk3uk,z (n+1) + eαij

[︁
φ,αx

(n) + hα−1φ,αy
(n+1)

]︁
+ e3ijφ,z

(n+1) + Qαij
[︁
ψ,αx

(n) + hα−1ψ,αy
(n+1)

]︁
+ Q3ijψ,z

(n+1) − Θij
[︁
T1(n−1) + zT2(n−1)

]︁
, n ≥ 1

(3.6c)

Similarly, substituting Eqs. 3.5a – 3.5d and 3.5f – 3.5g into
the constitutive relations 2.4b and 2.4c, gives the corre-
sponding terms for the electric displacement andmagnetic
induction:

Di (0) =eikα
[︁
uk,αx (0) + hα−1uk,αy (1)

]︁
+ eik3uk,z (1) − εiα

[︁
φ,αx

(0)
+ hα−1φ,αy

(1)]︁
− εi3φ,z

(1)
− λiα

[︁
ψ,αx

(0) + hα−1ψ,αy
(1)
]︁
− λi3ψ,αz

(1)

Di (n) =eikα
[︁
uk,αx (n) + hα−1uk,αy (n+1)

]︁
+ eik3uk,z (n+1) − εiαφ,αx

(0) [︁
φ,αx

(n)
+ h−1α φ,αy

(n+1)]︁
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− εi3φ,z
(n+1)
− λiα

[︁
ψ,αx

(n) + hα−1ψ,αy
(n+1)

]︁
− λi3ψ,αz

(n+1) + ξi
[︁
T1(n−1) + zT2(n−1)

]︁
, n ≥ 1

(3.6d)

Bi (0) =Qikα
[︁
uk,αx (0) + hα−1uk,αy (1)

]︁
+ Qik3uk,z (1)

− λiα
[︁
φ,αx

(0) + hα−1φ,αy
(1)
]︁
− λi3φ,z

(1)

− µiα
[︁
ψ,αx

(0) + hα−1ψ,αy
(1)
]︁
− µi3ψ,z

(1)

Bi (n) =Qikα
[︁
uk,αx (n) + hα−1uk,αy (n+1)

]︁
+ Qik3uk,z (n+1) − λiα

[︁
φ,αx

(n) + hα−1φ,αy
(n+1)

]︁
− λi3φ,z

(n+1) − µiα
[︁
ψ,αx

(n) + hα−1ψ,αy
(n+1)

]︁
− µi3ψ,z

(n+1) + ηi
[︁
T1(n−1) + zT(n−1)2

]︁
, n ≥ 1

(3.6e)

We note that for reasons of compactness, in Eqs. 3.6a and
in the sequel, we will forego the arguments of the func-
tions except when it is deemed necessary to include them
for the sake of clarity. It is also important to mention that
in the process of deriving expressions 3.6a to 3.6e it is
readily discovered that the leading terms in the asymp-
totic expansions for mechanical displacement and elec-
tric andmagnetic potentials are independent of themacro-
scopic variables, yα and z. Likewise, consideration of a
thermal conductivity boundary value problem examined
in Kalamkarov [44] and Hadjiloizi et al. [62], leads to the
same conclusion for the leading terms of the asymptotic
expansion of the temperature field, Eq. 3.5d. Collectively,
these observations are summarized as:

uj (0) = uj (0) (x) ; φ(0) = φ(0) (x) ; ψ(0) = ψ(0) (x) ;
T1(0) = T1(0) (x) ; T2(0) = T2(0) (x)

4 Balance laws, boundary
conditions and homogenization

Our ultimate objective is to derive the so-called unit cell
problems from which the effective coefficients may be ex-
tracted. To this end we substitute Eq. 3.5e into Eq. 2.2a and
then compare termswith the same power of δ to obtain the

following system of differential equations:

hβ−1σiβ,βy (0) + σi3,z (0) = 0
σiβ,βx (0) + hβ−1σiβ,βy (1) + σi3,z (1) = 0
σiβ,βx (1) + hβ−1σiβ,βy (2) + σi3,z (2) = fi
σiβ,βx (2) + hβ−1σiβ,βy (3) + σi3,z (3) = gi and
σiβ,βx (n) + hβ−1σiβ,βy (n+1) + σi3,z (n+1) = 0, n ≥ 3

(4.1)
where we define f3 = g1 = g2 = 0. Each of these differ-
ential equations must be accompanied by the appropri-
ate boundary condition. To this end, wewrite Cauchy’s ex-
pression in 2.3a as,

σijnj±= ± pi (4.2a)

where the negative sign on the right-hand side corre-
sponds to an inwardunit normal vector.We then substitute
expansion 3.5e into Eq. 4.2a to obtain, in view of Eq. 3.4a,
the followingboundary conditions to be satisfiedat the top
and bottom surfaces of the smart composite plate:

σαj (0)Nj± + δσαj (1)Nj± + δ2σαj (1)Nj± + δ3σαj (2)Nj±

+ · · · = ±ω±δ2rα±

σ3j (0)Nj± + δσ3j (1)Nj± + δ2σ3j (1)Nj± + δ3σ3j (2)Nj±

+ · · · = ±ω±δ3q3±
(4.2b)

Here, for the sake of convenience, the followingdefinitions
are made:

N± =
(︁
∓ 1
h1

∂F±
∂y1 ,∓

1
h2

∂F±
∂y2 , 1

)︁
and

ω± =
√︂
1 + 1

h12

(︁
∂F±
∂y1

)︁2
+ 1
h22

(︁
∂F±
∂y2

)︁2 (4.2c)

We recall that functions F± define the geometric profiles of
the top and bottom surfaces of the plate as shown in Fig. 1.
Finally, equating like powers of δ gives the final formof the
appropriate stress boundary conditions, namely:

σij (m)Nj± = 0, m = 0, 1
σij (2)Nj± = ±ω±ri±, r3± = 0
σij (3)Nj± = ±ω±qi±, qα± = 0
σij (n)Nj± = 0, n ≥ 4

⎫⎪⎪⎪⎬⎪⎪⎪⎭ on Z± (4.2d)

Weproceed inmuch the sameway for the electric displace-
ment problem. Accordingly, keeping Eq. 3.4c in mind, we
substitute Eq. 3.5g into the governing Eq. 2.2b and compare
terms with the same powers of δ to get the following set of
differential equations:

hβ−1Dβ,βy (0) + D3,z
(0) = 0

Dβ,βx (n) + hβ−1D(n+1)
β,βy + D3,z

(n+1) = 0 n ≥ 0 (4.3a)

The pertinent boundary conditions are obtained by substi-
tuting Eq. 3.5g into the second expression in Eq. 2.3a and
comparing terms to obtain:

Di (n)Ni±= 0 for n ≥ 0 on Z± (4.3b)
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Similar expressions are readily obtained for magnetic in-
duction from Eqs. 2.2c, 3.4c, 3.5f and the third expression
in Eq. 2.3a:

hβ−1Bβ,βy (0) + B3,z (0) = 0
Bβ,βx (n) + hβ−1Bβ,βy (n+1) + B3,z (n+1) = 0 n ≥ 0

(4.4a)

and
Bi (n)Ni±= 0 for n ≥ 0 on Z± (4.4b)

We next introduce the averaging procedure,

⟨. . .⟩ =
∫︁
Ω

(. . .) dy1dy2dz (4.5a)

defined over the volume |Ω| of the unit cell Ω with bound-
ary surface ∂Ω, and proceed to show the following rela-
tionship,

⟨
hα−1Qα,αy + Q3,z

⟩
=

1/2∫︁
−1/2

1/2∫︁
−1/2

(︀
Qi+Ni+ − Qi−Ni−

)︀
dy1dy2

(4.5b)
where N± is defined in Eq. 4.2c and Qi± are the values Qi
takes on the surfaces Z±. Starting from the divergence the-
orem we have⟨

hα−1Qα,αy + Q3,z

⟩
=
∫︀
Ωδ

(︁
hα−1Qα,αy + Q3,z

)︁
dv

=
∫︀
∂Ωδ

(︁
hα−1Qαnyα + Q3ny3

)︁
dA,

(4.5c)
where ny+(ny−) is the outward (inward) unit normal vector
defined with respect to the (y1, y2, z) coordinate system of
the unit cell and is given by:

ny± =
(︂
∓∂F

±

∂y1
,∓∂F

±

∂y1
, 1

)︂
/

√︃(︂
∂F±
∂y1

)︂2
+
(︂
∂F±
∂y2

)︂2
+ 1

(4.5d)
Now, periodicity considerations stipulate that the first in-
tegral in Eq. 4.5c reduces to∫︀

S+

(︁
hα−1Qα+nyα+ + Q3

+ny3+
)︁
dsΩ+

−
∫︀
S−

(︁
hα−1Qα−nyα− + Q3

−ny3−
)︁
dsΩ−

(4.5e)

where dsΩ+(dsΩ−) is given by:

dsΩ± =

√︃(︂
∂F±
∂y1

)︂2
+
(︂
∂F±
∂y2

)︂2
+ 1dy1dy2 (4.5f)

Finally, substituting Eq. 4.5f into Eq. 4.5e proves the result
in Eq. 4.5b on account of 4.2c.

Within the framework of the terminology adopted in
this paper, the force resultants, Niα, Qα, andmoment resul-
tants,Miα, of the homogenized plate, see Kalamkarov [44],

Gibson [70] etc., are given by:⟨︀
Nαβ

⟩︀
= δ

⟨︀
σαβ

⟩︀
, ⟨Qα⟩ = δ ⟨σα3⟩ ,

⟨︀
Mαβ

⟩︀
= δ2

⟨︀
zσαβ

⟩︀
(4.6)

To obtain the force resultants we average the expressions
in Eq. 4.1 in the sense of Eq. 4.5a andapply at the same time
the boundary conditions 4.2d and the general result 4.5b.
We get

Nαβ,xβ
(0) = 0, Nαβ,xβ

(1) + δrα*(x𝛾) = δ ⟨fα⟩ ,
Nαβ,xβ

(n) = 0 where n ≥ 2
Qβ,xβ (1) = 0, Qβ,xβ (2) + δq3

* (x𝛾) = δ ⟨g3⟩ ,
Qβ,xβ (n) = 0 where n ≥ 3

(4.7a)

where we define:

rα* (x) =
1/2∫︁

−1/2

1/2∫︁
−1/2

(︀
ω+rα+ + ω−rα−

)︀
dy1dy2

q3* (x) =
1/2∫︁

1/2

1/2∫︁
−1/2

(︀
ω+q3+ + ω−q3−

)︀
dy1dy2 (4.7b)

To obtain the moment resultants we multiply the expres-
sions in Eq. 4.1 by z and then integrate over the volume of
the unit cell to obtain, on account of the boundary condi-
tions 4.2d and Eq. 4.5b:

Mαβ,xβ
(0) + δ

⟨
Qα (1)

⟩
= 0,

Mαβ,xβ
(1) + δ2ρα* (x)−δ

⟨
Qα (2)

⟩
= δ2 ⟨zf α⟩

Mαβ,xβ
(2)−δ

⟨
Qα (3)

⟩
=0,⟨

zσ3β,xβ (2)
⟩
+ σ3* (x) = ⟨zg3⟩ ,

Mαβ,xβ
(n) = 0 where n ≥ 3

(4.7c)

Here we define:

ρα* (x) =
1/2∫︁

−1/2

1/2∫︁
−1/2

(︀
z+ω+rα+ + z−ω−rα−

)︀
dy1dy2

σ3* (x) =
1/2∫︁

−1/2

1/2∫︁
−1/2

(︀
z+ω+q3+ + z−ω−q3−

)︀
dy1dy2 (4.7d)

It will later on be seen that as a consequence of the plane
stress assumption and the fact that σαβ (0) will turn out to
be0, two important consequences of Eqs. 4.7a and4.7c are:⟨

σi3(1)
⟩
=
⟨
zσi3(1)

⟩
= 0 (4.7e)

We finally repeat this homogenization procedure on
Eqs. 4.3a and 4.4a to give the governing equations for the
averaged electric displacement andmagnetic induction in
the form of: ⟨

Dβ,xβ (n)
⟩
= 0, n ≥ 0⟨

Bβ,xβ (n)
⟩
= 0, n ≥ 0

(4.7f)
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5 Unit cell problems for
homogenized plate

Our first objective in this section is to determine the lead-
ing terms in the asymptotic expansions of mechanical
displacement and electrical and magnetic potential. To
achieve this, we substitute the first term of the asymptotic
expansion (3.5e) given in Eq. (3.6c) for n = 0 into the first
expression in (4.1) and the stress boundary condition in
(4.2d) for m = 0. After some straightforward albeit tedious
algebraic manipulations we obtain the following expres-
sion and accompanying boundary condition:

Dikuk (1)+Ciφ(1)+F iψ(1) = −Cikα (y, z) uk,αx (0) (x)
−Pαi (y, z)φk,αx (0) − Rαi (y, z)ψ(0)

k,αx{︁
Lijkuk (1)+Mijφ(1)+N ijψ(1)+Cijkαuk,αx (0) (x)

+eαijφk,αx (0) + Qαijψk,αx (0)
}︁
Nj± = 0 on Z±

(5.1)

Here, for economy of notation, we defined the following
differential operators

Lijk = Cijkα
1
hα

∂
∂yα

+ Cijk3
∂
∂z ,

Mij = eαij
1
hα

∂
∂yα

+ e3ij
∂
∂z

Nij = Qαij
1
hα

∂
∂yα

+ Q3ij
∂
∂z ,

Dij =
1
hα

∂
∂yα

Liαj +
∂
∂z Li3j

Ci =
1
hα

∂
∂yα

Miα +
∂
∂zMi3,

Fi =
1
hα

∂
∂yα

Niα +
∂
∂z Ni3

(5.2a)

and the following parameters

Cikα =
1
hβ
∂Ciβkα
∂yβ

+ ∂Ci3kα∂z , Pαi =
1
hβ
∂eiαβ
∂yβ

+ ∂eiα3∂z ,

Rαi =
1
hβ
∂Qiαβ
∂yβ

+ ∂Qiα3∂z
(5.2b)

It should be noted that each term on the right-hand side of
the first expression of Eq. 5.1 is a product of a function of
x and a function of y, z. This will play a significant role in
the general form of the solution of uk (0), φ(0) and ψ(0), as
we will see shortly.

Similarly, substitution of Eq. 3.6d for n = 0 into the first
expression in Eq. 4.3a and the associated boundary condi-
tion in Eq. 4.3b for n = 0 results in the following system:

Aj*uj (1)−L*φ(1)−M*ψ(1) = −Gkα* (y, z) u(0)k,αx (x)
+Iα* (y, z)φk,αx (0) (x) + Kα* (y, z)ψ(0)

k,αx (x){︁
Lij*uk (1)−Mi

*φ(1)−N i*ψ(1)+eijαuk,αx (0) (x)
−εiαφk,αx (0) (x) − λiαψk,αx (0) (x)

}︁
Nj± = 0 on Z±

(5.3)
Here, for the sake of convenience, we define the following
differential operators

Lij* = eijα
1
hα

∂
∂yα

+ eij3
∂
∂z , Mi

* = εiα
1
hα

∂
∂yα

+ εi3
∂
∂z

Ni* = λiα
1
hα

∂
∂yα

+ λi3
∂
∂z , Ai* =

1
hα

∂
∂yα

Lαi* +
∂
∂z L3i

*

L* = 1
hα

∂
∂yα

Mα
* + ∂

∂zM3
*, M* = 1

hα
∂
∂yα

Nα* +
∂
∂z N3

*

(5.4a)
and the following parameters

Gkα* =
1
hβ
∂eβkα
∂yβ

+ ∂e3kα∂z , Iα* =
1
hβ
∂εαβ
∂yβ

+
∂ε3β
∂z ,

Kα* =
1
hβ
∂λαβ
∂yβ

+
∂λ3β
∂z

(5.4b)
Finally, substitution of Eq. 3.6e for n = 1 into the first ex-
pression in Eq. 4.4a and the associated boundary condi-
tion in Eq. 4.4b for n = 0 results in the following system:

Ajuj (1)−Lφ(1)−Mψ(1) = −Gkα (y, z) u(0)k,αx (x)
+Iα (y, z)φ(0)

k,αx (x) + Kα (y, z)ψ
(0)
k,αx (x){︁

Lijuk (1)−Miφ(1)−N iψ(1)+qijαuk,αx (0) (x)
−λiαφk,αx (0) (x) − µiαψk,αx (0) (x)

}︁
N±j = 0 on Z±

(5.5)
Here we define the following differential operators

Lij = qijα
1
hα

∂
∂yα

+ qij3
∂
∂z , Mi = λiα

1
hα

∂
∂yα

+ λi3
∂
∂z

Ni = µiα
1
hα

∂
∂yα

+ µi3
∂
∂z , Ai =

1
hα

∂
∂yα

Lαi +
∂
∂z L3i

L = 1
hα

∂
∂yα

Mα +
∂
∂zM3, M = 1

hα
∂
∂yα

Nα +
∂
∂z N3

(5.6a)
and the following parameters

Gkα =
1
hβ
∂qβkα
∂yβ

+ ∂q3kα∂z , Iα =
1
hβ
∂λαβ
∂yβ

+
∂λ3β
∂z = Kα*,

Kα =
1
hβ
∂µαβ
∂yβ

+
∂µ3β
∂z

(5.6b)
The separation of variables on the right-hand sides of the
differential equations in (5.1), (5.3) and (5.5) allows us to
write down the solution of uk (0), φ(0) and ψ(0) in the form
of:
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ui (1) (x, y,z) = Ni kα (y,z) uk,αx (0)(x)
+Mα

i (y,z)φk,αx (0)(x) + Nα i (y,z)ψk,αx (0)(x) + ωi (x)
(5.7a)

φ(1) (x, y,z) = Akα (y,z) uk,αx (0) (x)
+Ξα (y,z)φk,αx (0) (x) + Oα (y,z)ψk,αx (0) (x) + 𝛾 (x)

(5.7b)

ψ(1) (x, y,z) = Λkα (y,z) uk,αx (0)(x)
+Zα (y,z)φk,αx (0)(x) + Γα (y,z)ψk,αx (0)(x) + ω (x)

(5.7c)
Excluding functions ωi (x), 𝛾 (x), ω (x) which are the ho-
mogeneous solutions Eqs. 5.7a, 5.7b and 5.7c, contain 9
unknown functions, Ni kα, Mi

α, Ni α, Akα, Ξα, Oα, Λkα, Zα,
Γα which are solved by back-substitution into Eqs. 5.1, 5.3
and 5.5 to generate the unit cell problems. These are:

hβ
−1bkαiβ,βy (y, z) + bi3,z

kα (y, z) = 0
with bij kα (y, z)Nj± = 0 on Z±

(5.8a)

hβ−1bα,y iβ (y, z) + bα,z i3 (y, z) = 0
with bα ij (y, z)Nj± = 0 on Z±

(5.8b)

hβ−1aα,βy iβ (y, z) + aα,z i3 (y, z) = 0
with aα ij (y, z)Nj± = 0 on Z±

(5.8c)

hβ
−1ηiαβ,βy (y, z) + η3,z

iα (y, z) = 0
with ηj iα (y, z)Nj± = 0 on Z±

(5.9a)

hβ−1aβα,βy (y, z) + a3α,z (y, z) = 0
with ajα (y, z)Nj± = 0 on Z±

(5.9b)

hβ−1𝛾βα,βα(y, z) + 𝛾3α,z(y, z) = 0
with 𝛾jα(y, z)Nj± = 0 on Zpm

(5.9c)

hβ−1δβ,βy iα (y, z) + δ3,z iα (y, z) = 0
with δj iα (y, z)Nj± = 0 on Z±

(5.10a)

hβ−1δβα,βy (y, z) + δ3α,z (y, z) = 0
with δjα (y, z)Nj± = 0 on Z±

(5.10b)

hβ−1ξβα,βy (y, z) + ξ3α,z (y, z) = 0
with ξjα (y, z)Nj± = 0 on Z±

(5.10c)

The unit cell problems can be viewed as being grouped in
three separate sets. The first set of three unit cell problems,
Eqs. 5.8a – 5.8c, pertains to the mechanical stress prob-
lem (force balance equation), the equations of the second
set, Eqs. 5.9a – 5.9c, stem fromMaxwell’s Law for the mag-
netic field, and the third set of three equations, Eqs. 5.10a –
5.10c, are related to Maxwell’s Law involving electric dis-
placement. We also note that unlike unit cell problems

in “classical” homogenization schemes, see for example
Bakhvalov and Panasenko [42], the unit cell problems in
Eqs. 5.8a- 5.10c also involve boundary conditions on the
upper and lower surfaces of the unit cell. The following
definitions are used in the aforementioned equations.

bij kα = LijmNmkα +MijAkα + NijΛkα + Cijkα (5.11a)

bα ij= LijmMα
m +MijΞα + NijZα + eαij (5.11b)

aα ij= LijmNαm +MijOα + NijΓα + Qαij (5.11c)

ηj kα= LjiNi kα−M jAkα−N j (y)Λkα+Qjkα (5.12a)

ajα= LjiMα
i−M jΞα−N jZα−λjα (5.12b)

𝛾jα= LjiNα i−M jOα−N jΓα−µjα (5.12c)

δj kα= Lji*Ni kα−M j
*Akα−N j*Λkα+ejkα (5.13a)

δjα= Lji*Mα
i−M j

*Ξα−N j*Zα−εjα (5.13b)

ξjα= Lji*Nα i−M j
*Oα−N j*Γα−λjα (5.13c)

As their name suggests, the unit cell problems are solved
entirely on the domain of the unit cell and are entirely in-
dependent of themacroscopic variable. Aswewill see later
on, nine more unit cell problems will be generated six of
whichwill relate to the out-of-plane deformation of the ho-
mogenized plate.

In the analysis of the homogenized plate model the
possibility of finding an exact solution often plays a sig-
nificant role. In our case an exact solution for k, α = 3, 1
and 3, 2 can be readily found from Eqs. 5.8a, 5.9a and 5.10a
and is of the form:

N1
31=−z; N2

31= 0; N1
32=0;

N2
32= −z; N3

31=0; N3
32 = 0;

Λ31=Λ32= 0
A31=A32= 0;

(5.14a)

With these results in mind it is readily shown that:

bij31= bij32= ηj
31= ηj

32 = δj31= δj32 = 0 (5.14b)

Since the “3” superscript in the local func-
tions bij kl , ηj kl , and δj klbecomes obsolete, only
bij αl , ηj αl , and δj αl need to be considered. Consequently,
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the 1st, 4th and 7th unit cell problems, Eqs. 5.8a, 5.9a
and 5.10a may be simplified as follows:

h−1β b
µα
iβ,βy (y, z) + b

µα
i3,z (y, z) = 0

with bµαiβ (y, z)Nj
± = 0 on Z±

(5.15a)

h−1β η
µα
β,βy (y, z) + η

µα
3,z (y, z) = 0

with bijα (y, z)Nj± = 0 on Z±
(5.15b)

h−1β δ
µα
β,βy(y, z) + δ

µα
3,z(y, z) = 0

with δj µα(y, z)Nj± = 0 on Z±
(5.15c)

Furthermore, expressions 5.7a – 5.7c are simplified as fol-
lows:

u1(1)= −zu3,1x (0)+N1
βαuβ,αx (0)+Mα

1φ,αx
(0)+Nα1ψ,αx

(0)+ω1

u2(1)= −zu3,2x (0)+N2
βαuβ,αx (0)+Mα

2φ,αx
(0)+Nα2ψ,αx

(0)+ω2

u3(1)= N3
βαuβ,αx (0)+Mα

3φ,αx
(0)+Nα3ψ,αx

(0)+ω3 (5.16a)

φ(1) = Aβαuβ,αx (0) + Ξαφ,αx
(0) + Oαψ,αx

(0) + 𝛾 (5.16b)

ψ(1) = Λβαuβ,αx (0) + Zαφ,αx
(0) + Γαψ,αx

(0) + ω (5.16c)

Further, an examination of the thermal conductivity
boundary value problem and associated Fourier’s Law
of conduction, see Kalamkarov [44], reveals that second
terms of the asymptotic expansion of the temperature field
are given by

T1(1) = βαT1,αx (0) + λ1(1), zT2(1) = βα (1)T2,αx (0) + λ2(1)

(5.17)
where βα, βα (1) are local functions similar to, for example,
Aβα in Eq. 5.16b, and λ1(1), λ2(1) are the solutions of the
homogeneous thermal conductivity boundary value prob-
lems, see Kalamkarov [44], similar to the 𝛾 or ω functions
in Eqs. 5.16b and 5.16c.

We are now in a position to compute the leading terms
in the expansions of mechanical stress, electric displace-
ment, magnetic induction and mechanical strain. We re-
call that these variables were defined in Eqs. 3.5e – 3.5h as
the “derived” variables. To this end we substitute the re-
sults of Eqs. 5.7a – 5.7c into expression 3.6c for n = 0, and
keeping Eq. 5.14b in mind, we obtain for σij (0):

σij (0) = bij αβuα,βx (0) + bα ijφ,βx
(0) + aα ijψ,βx

(0) (5.18a)

Here, definitions 5.11a – 5.11c were used. In a similar man-
ner, we substitute Eqs. 5.7a – 5.7c into the first expressions

in Eqs. 3.6d and 3.6e to obtain, in view of definitions 5.12a –
5.12c, 5.13a – 5.13c and the results in Eq. 5.14b, the lead-
ing terms in the asymptotic expansions for the electric dis-
placement and magnetic induction. They are:

Di (0) = δi αβuα,βx (0) + δiβφ,βx
(0) + ξiβψ,βx

(0) (5.18b)

Bi (0) = ηi αβuα,βx (0) + aiβφ,βx
(0) + 𝛾iβψ,βx

(0) (5.18c)

Finally, the mechanical strain is computed from Eq. 3.6a:

2eαβ (0) = Qµναβuα,βx (0) + Iαβµφ,βµ
(0) + Sαβµψ,βµ

(0)

2e3β (0) = Q̃µαβuα,βx (0) + Ĩβµφ,βµ
(0) + S̃βµψ,βµ

(0)

e33(0) = N3,z
αβuα,βx (0) +Mµ,z

3φ,βµ
(0) + Nµ,z3ψ,βµ

(0)

(5.18d)
wherein the following definitions are used:

Qµναβ =
[︁
hν−1Nµ,µyαβ +hµ−1Nν,µyαβ + δαµδβν+δανδβµ

]︁
Iαβµ =

[︁
hβ−1Mµ,βy

α + hα−1Mµ,αy
β
]︁
,

Sαβµ =
[︁
hβ−1Nµ,βyα + hα−1Nµ,αyβ

]︁
(5.19a)

Q̃µαβ =
[︁
hβ−1N3,βy

µα + Nβ,zµα
]︁
,

Ĩβµ =
[︁
hβ−1Mα,βy

3 +Mα,z
β
]︁
,

S̃βµ =
[︁
hβ−1Nα,βy3 + Nα,zβ

]︁ (5.19b)

Averaging Eqs. 5.18a- 5.18c in the sense of Eq. 4.5a gives the
pertinent homogenized expressions:⟨
σij (0)

⟩
=
⟨
bij αβ

⟩
uα,βx (0) +

⟨
bα ij

⟩
φ,αx

(0) +
⟨
aα ij

⟩
ψ,αx

(0)

(5.20a)

⟨
Di (0)

⟩
=
⟨
δi αβ

⟩
uα,βx (0) + ⟨δiα⟩φ,αx

(0) + ⟨ξiα⟩ψ,αx
(0)

(5.20b)

⟨
Bi (0)

⟩
=
⟨
âαβi

⟩
uα,βx (0) + ⟨aiα⟩φ,αx

(0) + ⟨𝛾iα⟩ψ,αx
(0)

(5.20c)
If we subsequently take the expansions in 3.5a- 3.5c and
substitute them into the boundary conditions on the lat-
eral surfaces of the thin plate in Eq. 2.3c, we arrive at
the following expressions after comparing terms with like
powers of δ:

ui (n) = 0, n ≥ 0
φ(0) = 0, φ(1) = e, φ(n) = 0, n ≥ 2
ψ(0) = 0, ψ(1) = h, ψ(n) = 0, n ≥ 2

⎫⎪⎬⎪⎭
on the
lateral
surfaces

(5.21)
If we substitute the homogenized fields given in
Eqs. 5.20a – 5.20c into both the first expression of Eq. 4.7a
and the governing equations in 4.7f for n = 0we readily see
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that the solution of the resulting differential equations, in
conjunction with the boundary conditions in Eq. 5.21, is:

uα (0) = 0; φ(0) = 0 ; ψ(0) = 0 (5.22)

It then follows from Eqs. (5.18a)-(5.18d) that:

σij (0) = 0 ; Di (0) = 0 ; Bi (0) = 0 ; eij (0) = 0
(5.23)

With these results in mind, the expressions in Eqs. 5.16a-
5.16c simplify to:

u1(1)= −zu3,1x (0)+ω1 (x)
u2(1)= −zu3,2x (0)+ω2 (x)
u3(1)= ω3 (x)

(5.24a)

φ(1) = 𝛾 (x) (5.24b)

ψ(1) = ω (x) (5.24c)

In view of the results in Eq. 5.23, the leading terms in the
asymptotic expansions for mechanical stress, electric dis-
placement,magnetic inductionandmechanical strain are,
respectively, σij (1), Di (1), Bi (1) and eij (1). We now proceed to
calculate them.To this end,we substitute Eqs. 5.24a–5.24c
into Eq. 3.6c for n = 1 to obtain:

σij (1) = Cijαβ
{︁
−zu3,αβx (0) + ωα,βx

}︁
+ Cij3βω3,βx+

+Cijkβhβ−1uk,βy (2) + Cijk3uk,z (2)

+eαij
{︁
𝛾,αx+hα−1φαy (2)

}︁
+e3ijφz (2)+

+Qαij
{︁
ω,αx+hα−1ψαy (2)

}︁
+Q3ijψz (2)+

−Θij
{︁
T1(0) + zT2(0)

}︁
(5.25a)

Similarly, Eqs. 5.24a- 5.24c are substituted into Eqs. 3.6d
and 3.6e for n = 0 to obtain the corresponding expres-
sions for the electric displacement and magnetic induc-
tion. They are of the form

Di (1) = eiαβ
{︁
−zu3,αβx (0) + ωα,βx

}︁
+ ei3βω3,βx+

+eijβhβ−1∂uj,βy (2) + eij3uj,z (2)+
−εiα

{︁
𝛾,αx+hα−1φ,αy (

2)
}︁
−εi3φz (2)+

−λiα
{︁
ω,αx+hα−1ψ,αy

(2)
}︁
−λi3ψ,z

(2)+

+ξi
{︁
T1(0) + zT2(0)

}︁
(5.25b)

Bi (1) = Qiαβ
{︁
−zu3,αβx (0) + ωα,βx

}︁
+ Qi3βω3,βx+

+Qijβhβ−1uj,βy (2) + Qij3uj,z (2)+
−λiα

{︁
𝛾,αx+hα−1φ,αy (

2)
}︁
−λi3φ,z (

2)+

−µiα
{︁
ω,αx+hα−1ψ,αy

(2)
}︁
−µi3ψ,z

(2)+

+ηi
{︁
T1(0) + zT2(0)

}︁
(5.25c)

Finally, the mechanical strain is obtained from Eqs. 3.6a
and 5.24a:

eαα (1) = −zu3,ααx (0) + ωα,αx+
+h−1α uα,αy (2), no summation on α

2e12(1) = −2zu3,x1x2 (0) + ω1,x2 + ω2,x1 + h1
−1u2,y1 (2)+

+h2−1u1,y2 (2)

2e3β (1) = ω3,βx + uβ,z (2) + hβ−1u3,βy (2),
e33(1) = u3,z (2)

(5.25d)
The next step is to solve for the next terms in the asymp-
totic expansions for the mechanical displacement and the
two potential functions.We begin by substituting Eq. 5.25a
into the second expression inEq. 4.1 and into the boundary
condition in Eq. 4.2d for m = 1. In view of Eq. 5.23 and the
definitions in Eqs. 5.2a and 5.2b, we arrive at the following
expressions:

Dijuj (2)+Ciφ(2)+F iψ(2) = −Cijαωj,αx − Pαi𝛾,αx − Rαiω,αx

+ UiT1(0) + (Θi3+zU i) T2(0)+
(︀
Ci3αβ+zCiαβ

)︀
u(0)3,xαxβ

{︁
Lijkuk (2)

+Mijφ(2)+N ijψ(2)+Cijkαωk,αx + eαij𝛾,αx + Qαijω,αx

−Θij
[︁
T1(0) + zT2(0)

]︁
− zCijαβu(0)3,xαxβ

}︁
N±j = 0 on Z±

(5.26a)

Here, we also make the following definition:

Ui = hβ−1Θiβ,yβ + Θi3,z (5.26b)

We repeat this procedure by substituting Eq. 5.25c into the
second expression in Eq. 4.4a and the boundary condition
in Eq. 4.4b for n = 1. Keeping the results in Eq. 5.23 and the
definitions in Eqs. 5.6a and 5.6b in mind, we arrive at the
following expressions:

Ajuj (2) − Lφ(2) −Mψ(2) = −Gjαωj,xα + Iα𝛾,xα + Kαω,xα

− VT1(0) + − (η3+zV) T2(0)+
(︀
Q3αβ+zGαβ

)︀
u(0)3,xαxβ

{︁
Lijuj (2)

−Miφ(2) − Niψ(2)+Qijαωj,xα − λiα𝛾,xα + −µiαω,xα

+ηi
[︁
T1(0) + zT2(0)

]︁
− zQiαβu3,xαxβ

(0)
}︁
N±i = 0 on Z±

(5.26c)

Here, we use the following definition:

V = 1
hβ
∂ηβ
∂yβ

+ ∂η3∂z (5.26d)

The last differential equation and its associated boundary
condition are determined in the same way, by substituting
Eq. 5.25b into the second expression in Eq. 4.3a and into
the boundary condition in Eq. 4.3b for n = 1. Recalling the
results in Eqs. 5.4a, 5.4b and 5.23 we obtain

Aj*uj (2) − L*φ(2) −M*ψ(2) = −Gjα*ωj,xα + Iα
*𝛾,xα + Kα

*ω,xα
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− V*T1(0) + −
(︁
ξ3+zV*

)︁
T2(0)+

(︁
e3αβ+zGαβ*

)︁
u(0)3,xα∂xβ

×
{︁
Lij*uj (2) −Mi

*φ(2) − Ni*ψ(2) + eijαωj,xα − ϵiα𝛾,xα

−λiαω,xα + ζi[T1(0) + zT2(0)] − zeiαβu3,xα∂xβ
(0)
}︁
Nj± = 0 on Z±

(5.26e)

where we use the following definition:

V* = 1
hβ
∂ξβ
∂yβ

+ ∂ξ3∂z (5.26f)

Again, we observe that all terms on the right hand side
of the differential equations in 5.26a, 5.26c and 5.26e are
products of a function of x and a function of y. This sepa-
ration of variables suggests that we canwrite down the so-
lution of uk (2) (x,y, z), φ(2) (x,y, z) and ψ(2) (x,y, z) in the
form of the following linear combinations:

ui (2) = Ni jβωj,xβ +Mα
i𝛾,xβ+Nα iω,xα+GiT1(0)+

+Gi (1)T2(0) − Ni (1)αβ û(0)3,xαxβ + ωi
(*) (x)

(5.27a)

φ(2) = Akαωk,xα + Ξα𝛾,xα ∂
∂xα + Oαω,xα + ΠT1(0)+

+Π(1)T2(0) − Aαβ (1)û(0)3,xαxβ + 𝛾* (x)
(5.27b)

ψ(2) = Λkαωk,xα + Zα𝛾,xα + Γαω,xα + ∆T(0)1 +
+∆(1)T2(0) − Λ(1)

αβ û
(0)
3,xαxβ + ω

* (x)
(5.27c)

Aswas the case in Eqs. 5.7a – 5.7c, functionsωi (*) (x), 𝛾* (x)
and ω* (x) are the homogeneous solutions and will not af-
fect our subsequent results, particularly the effective coef-
ficients. Excluding these functions, Eqs. 5.19a – 5.19b con-
tain 18 unknown functions, Ni kα, Mi

α, Ni α, Gi, Gi (1), Akα,
Ξα,Oα, Π, Π(1), Λkα, Zα, Γα, ∆, ∆(1), Ni (1)αβ, A(1)

αβ , and Λαβ
(1).

Their solution is obtained by back substitution of these
functions into Eqs. 5.27a – 5.27c and comparing similar
terms. We arrive at a set of eighteen unit cell problems the
first nine of which have already been determined and are
defined in Eqs. 5.8a – 5.10c. The remaining nine local func-
tions, Ni (1)αβ, Λαβ (1) and Aαβ (1), satisfy the following unit
cell problems:

hβ−1biβ,βy (y, z) + bi3,z (y, z) = 0
with bij (y, z)Nj± = 0 on Z±

(5.28a)

hβ−1biβ,βy (1) (y, z) + bi3,z (1) (y, z) = 0
with bij (1) (y, z)Nj± = 0 on Z±

(5.28b)

hβ−1b(1)µαiβ,βy (y, z) + bi3,z
(1)µα (y, z) = 0

with bij µα (y, z)Nj± = 0 on Z±
(5.28c)

hβ−1𝛾β,βy (y, z) + 𝛾3,z (y, z) = 0
with 𝛾j (y, z)Nj± = 0 on Z±

(5.29a)

hβ−1𝛾(1)β,βy (y, z) + 𝛾3,z
(1) (y, z) = 0

with 𝛾j
(1) (y, z)Nj± = 0 on Z±

(5.29b)

hβ−1a(1)µαβ,βy (y, z) + a3,z
(1)µα (y, z) = 0

with ai µα (y, z)Nj± = 0 on Z±
(5.29c)

hβ−1τβ,βy(y, z) + τ3,z(y, z) = 0
with τj (y, z)Nj± = 0 on Z±

(5.30a)

hβ−1τ(1)β,βy (y, z) + τ3,z
(1) (y, z) = 0

with τj (1) (y, z)Nj± = 0 on Z±
(5.30b)

hβ−1δ(1)µαβ,βy (y, z) + δ3,z
(1)µα(y, z) = 0

with δi µα (y, z)Nj± = 0 on Z±
(5.30c)

Here, we use the following definitions:

bij = LijmGm +MijΠ + Nij∆ − Θij (5.31a)

bij (1) = LijmGm (1) +MijΠ(1) + Nij∆(1) − zΘij (5.31b)

bij (1)kα = LijmNm (1)kα +MijAkα (1)−NijΛkα (1)+ zCijkα (5.31c)

𝛾j= LjiGi−M jΠ − N j∆ − ηj (5.32a)

𝛾j
(1)= LjiGi (1)−M jΠ(1)−N j∆(1)+zηj (5.32b)

ai (1)kα = LimNm (1)kα −MiAkα (1) − NiΛkα (1) + zQikα (5.32c)

τj= Lji*Gi−M j
*Π − N j*∆ + ξ j (5.33a)

τj (1)= Lji*Gi (1)−M j
*Π(1)−N j*∆(1)+zξ j (5.33b)

δi (1)kα = Lim*Nm (1)kα −Mi
*Akα (1) − Ni*Λkα (1)+zeikα (5.33c)

The presence of the z coordinate in the unit cell prob-
lems 5.28b, 5.28c, 5.29b, 5.29c as well as 5.30b, 5.30c im-
plies that these problems are related to out-of-plane defor-
mation and electric and magnetic field generation in the
homogenized plate.
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6 Effective properties of
homogenized plate and
relationships with classical plate

Substitution of Eqs. 5.27a – 5.27c into Eqs. 5.25a – 5.25c
gives the leading terms of the asymptotic expansions of
mechanical stress, electric displacement andmagnetic in-
duction in terms of the local functions obtained via the
18 unit cell problems in Eqs. 5.8a – 5.10c and 5.28a – 5.30c.

σij (1) = bij αβωα,xβ − bij (0)αβu3,xαxβ (0) + bβ
ij𝛾,xβ+

+aβ ijω,xβ + bijT1(0) + bij (1)T2(0)
(6.1a)

Di (1) = δi αβωα,xβ − δij
(1)αβu(0)3,xαxβ + δiβ𝛾,xβ+

+ξiβω,xβ + τiT1(0) + τi (1)T2(0)
(6.1b)

Bi (1) = ηi αβωα,xβ − ai (1)αβu
(0)
3,xαxβ + aiβ𝛾,xβ+

+𝛾iβωα,xβ + 𝛾iT1(0) + 𝛾i
(1)T2(0)

(6.1c)

Recalling that σij (0) = 0 from Eq. 5.23, then we may use
Eq. 4.6 to write down the in-plane force andmoment resul-
tants pertaining to the homogenized plate in a formwhich
is reminiscent of the classical composite laminate theory,
see for example Gibson [56]. Thus we have:

Nαβ = δ
⟨︀
bαβµν

⟩︀
εµν − δ2

⟨
bαβ (1)µν

⟩
u(0)3,xµxν+

+δ
⟨
bµαβ

⟩
φ*,xµ + δ

⟨
aαβµ

⟩
ψ*,xµ + δ2

⟨︀
bαβ

⟩︀
T1(0)+

+δ2
⟨
bαβ (1)

⟩
T2(0)

(6.2a)

Mαβ = δ2
⟨︀
zbαβµν

⟩︀
εµν − δ3

⟨
zbαβ (1)µν

⟩
u(0)3,xµxν+

+δ2
⟨
zbµαβ

⟩
φ*xµ + δ2

⟨
zaαβµ

⟩
ψ*xµ+

+δ3
⟨︀
zbαβ

⟩︀
T1(0) + δ3

⟨
zbαβ (1)

⟩
T2(0)

(6.2b)
To arrive at Eqs. 6.2a and 6.2b we use the following defini-
tions:

ψ*= δω, φ*= δ𝛾, vα= δωµ , εµν=
∂vµ
∂xν

(6.2c)

Likewise, we can write down the averaged electric dis-
placement and magnetic induction by applying the ho-
mogenizationproceduredirectly to Eqs. 6.1b and6.1c. Thus
we arrive at:

⟨Dα⟩ = δ
⟨︀
δαµν

⟩︀
εµν − δ2

⟨
δα (1)µν

⟩
u(0)3,xµxν+

+δ ⟨δαµ⟩φ*xµ + δ ⟨ξαµ⟩ψ*xµ + δ2 ⟨τα⟩ T1(
0)+

+δ2
⟨
τα (1)

⟩
T2(0)

(6.2d)

⟨Bα⟩ = δ ⟨ηαµν⟩ εµν − δ2
⟨
aα (1)µν

⟩
u(0)3,xµxν+

+δ ⟨aαµ⟩ 𝛾*xµ + δ ⟨𝛾αµ⟩ω*xµ + δ2 ⟨𝛾α⟩ T1(
0)+

+δ2
⟨
𝛾α (

1)
⟩
λ2*(1)

(6.2e)

Next, in view of definitions 6.2c, the expressions for the
mechanical displacement, Eqs. 5.24a and 5.27a, can be
written down as:

uβ =
{︁
vβ − x3u(0)3,βx

}︁
+δNµνβ εµν − δ

2Nβ (1)µνu(0)3,xµxν+
+δMβ

µφ*xµ + δN
β
µψ*xµ + δ2GβT1(

0)+
+δ2G(1)

β T2
(0) + δ2ωβ*

(6.2f)

u3 =
{︁
u3(0)+v3

}︁
+δN3

µνεµν − δ2N3
(1)µνu(0)3,xµxν+

+δM3
µφ*xµ + δNµ

3ψ*xµ + δ2G3T1(0)+
+δ2G3

(1)T2(0) + δ2ω3
*

(6.2g)
Finally, the expressions for the electric and magnetic po-
tentials, Eqs. 5.24b, 5.24c and 5.27b, 5.27c, may be conve-
niently written down as:

φ = δφ* + δAµαεµα − δ2A(1)
αβ û

(0)
3,xαxβ+

+δΞαφ*xα + δOαψ*xα + δ2ΠT
(0)
1 + δ2Π(1)T(0)2 + δ2𝛾*

(6.2h)

ψ = δψ* + δΛµαεµα − δ2Λ(1)
αβ û

(0)
3,xαxβ + δZαφ

*
xα+

+δΓαψ*xα + δ2∆T
(0)
1 + δ2∆(1)T(0)2 + δ2ω*

(6.2i)

Careful examination of Eqs. 6.2a – 6.2i readily reveals that
δ
⟨
bµναβ

⟩
are the extensional effective elastic coefficients,

δ2
⟨
b(1)µναβ

⟩
= δ2

⟨
zbµναβ

⟩
are the coupling effective elas-

tic coefficients and δ3
⟨
zb(1)µναβ

⟩
are the bending effective

elastic coefficients. In fact, the following correspondence
is evident, see Gibson [68].

A11 = δ
⟨
b1111

⟩
, A12 = δ

⟨
b1122

⟩
, A16 = δ

⟨
b1112

⟩
,

A22 = δ
⟨
b2222

⟩
, A26 = δ

⟨
b2212

⟩
, A66 = δ

⟨
b1212

⟩
,

B11 = δ2
⟨
zb1111

⟩
= δ2

⟨
b11(1)11

⟩
,

B12 = δ2
⟨
zb1122

⟩
= δ2

⟨
b11(1)22

⟩
,

B16 = δ2
⟨
zb1112

⟩
= δ2

⟨
b11(1)12

⟩
,

B22 = δ2
⟨
zb2222

⟩
= δ2

⟨
b22(1)22

⟩
,

B26 = δ2
⟨
zb2212

⟩
= δ2

⟨
b12(1)22

⟩
,

B66 = δ2
⟨
zb1212

⟩
= δ2

⟨
b(1)1212

⟩
,
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D11 = δ3
⟨
zb(1)1111

⟩
, D12 = δ3

⟨
zb11(1)22

⟩
,

D16 = δ3
⟨
zb11(1)12

⟩
,

D22 = δ3
⟨
zb22(1)22

⟩
, D26 = δ3

⟨
zb22(1)12

⟩
,

D66 = δ3
⟨
zb12(1)12

⟩ (6.3)

Furthermore, δ
⟨
bαβµ

⟩
,δ

⟨︀
δµνα

⟩︀
are the effective in-plane

piezoelectric coefficients, δ
⟨
aαβµ

⟩
,δ

⟨︀
ηµνα

⟩︀
the effective in-

plane piezomagnetic coefficients, −δ
⟨︀
bαβ

⟩︀
and −

⟨
b(1)αβ

⟩
the effective in-plane thermal expansion coefficients re-
lated to the mid-plane temperature variation and the
through-the-thickness linear temperature variation, re-
spectively, see Eq. 3.4b, δ2

⟨
zbαβµ

⟩
= δ2

⟨
δ(1)µνα

⟩
are the effective out-of-plane piezoelectric coefficients,
δ2

⟨
zaαβµ

⟩
= δ2

⟨
a(1)µνα

⟩
the effective out-of-plane

piezomagnetic coefficients, −δ2
⟨︀
zbαβ

⟩︀
and −δ2

⟨
zb(1)αβ

⟩
the effective out-of-plane thermal expansion coeffi-
cients, −δ ⟨δαµ⟩ and −δ ⟨𝛾αµ⟩ are, respectively, the effec-
tive dielectric permittivity and magnetic permeability,
−δ ⟨ξαµ⟩,−δ ⟨aαµ⟩ are the effective magnetoelectric coef-
ficients, δ ⟨τα⟩ and δ

⟨
τ(1)α

⟩
are the effective pyroelectric

coefficients, and δ ⟨𝛾α⟩ and δ
⟨
𝛾(1)α

⟩
the effective pyromag-

netic coefficients. Further, v1, v2 and u(0)3 represent the
displacements of the middle plane of the plate and con-
sequently ε11, ε22 and ε12 are the mid-surface strains,
see Gibson [68]. Similarly, ∂

2u(0)3
∂x21

= κx1 and ∂2u(0)3
∂x22

= κx2 are
the bending curvatures associated with bending of the
middle surface in the x1x3 and x2x3 planes, respectively,
and 2 ∂2u(0)3

∂x1∂x2 = kxy is the twisting curvature associated with
torsion of the middle surface.

It should be pointed out that in the case of the purely
elastic case, the results of this model converge exactly to
those of Kalamkarov [44], Kalamkarov and Kolpakov [45]
and Kalamkarov and Georgiades [65]. In the present work,
however, the authors adhere to a completely coupled ap-
proach, which results in significantly refined expressions
as compared to previously published results, such as those
in [65, 66, 71, 72]. All these previously published papers
employed a semi-coupled approach, resulting in expres-
sions for the effective coefficients, which do not reflect the
influence of all material parameters. For example, the ef-
fective elastic coefficients of smart laminates as well as
wafer-reinforced plates (as obtained via the semi-coupled
approach) given in [65] and [66] depend only on the elas-
tic parameters of the constituents. However, an examina-
tion of, say, unit cell problem 5.8a and associated def-
inition 5.11a will reveal that in the completely coupled

approach followed in the present work the effective in-
plane elastic coefficients are dependent on not only the
elastic properties of the constituent materials, but also
on the piezoelectric, piezomagnetic, magnetic permeabil-
ity, dielectric permittivity and other parameters. The same
is true for all remaining effective coefficients, as expres-
sions 5.11a – 5.13c and 5.31a – 5.33c reveal. In this sense,
the thermoelasticity, piezoelectricity and piezomagnetism
problems are entirely coupled, and the solution of one af-
fects the solutions of the others. This feature is captured in
the present works, but not in [65, 66, 71, 72]. For the same
reasons, if applied to the case of simple laminated struc-
tures, the work presented here represents an extension of
the classical composite laminate theory (see e.g. [70, 73])
to magneto-piezo-thermo-elastic structures. More impor-
tant, however, is the fact that the model developed in
the present work explicitly allows for different periodic-
ity in the lateral directions. As such, it is readily amenable
to the design and analysis of magnetoelectric reinforced
plates, such as the wafer-reinforced and rib-reinforced
structures shown in the next section. To the authors’ best
knowledge, this is the first time that completely coupled
piezo-magneto-thermo-elastic effective coefficients for re-
inforced plates are presented and analyzed.

7 Examples of magnetoelectric
composite and reinforced plates

The mathematical model developed in Sections 1-6 can
be used in analysis and design to tailor the effective elas-
tic, piezoelectric,magnetoelectric and other coefficients of
composite and reinforced plates (Figs. 2 and 3) to meet the
criteria of specific engineering applications. The main ob-
jective of Part II of this work [67] is precisely that.

Figure 2: Laminated magnetoelectric composite plate
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(a)

(b)

Figure 3: (a) Wafer-reinforced and (b) rib-reinforced magnetoelectric
composite plates

At this point, it is worthwhile to reiterate that the na-
ture of the reinforced structures is such that it would be
more efficient if we first considered a simpler type of unit
cell consisting of only a single reinforcement/actuator.
Having dealt with this situation, the effective coefficients
of more general structures with multiple families of re-
inforcements/actuators can readily be determined by su-
perposition. In following this procedure, one must natu-
rally accept the error incurred at the interphase and/or
regions of overlap between the actuators/reinforcements
or between the matrix and the actuators/reinforcements.
However, our approximation is quite accurate, since these
regions are highly localized and do not contribute sig-
nificantly to the integral over the entire unit cell do-
main. Essentially, the error incurred will be negligible if
the dimensions of the actuators/reinforcement are much
smaller than the spacing between them. We note for ex-
ample the asymptotic homogenization model developed
by Kalamkarov [44] for the purely elastic case of thin com-
posite plates reinforced with mutually perpendicular ribs.
In that work, he determined that if the spacing between
the unit cells is at least ten times bigger than the thick-
ness of the reinforcements the error in the values of the

effective elastic coefficients incurred by ignoring the re-
gions of overlap (between the reinforcements) is less than
1%. A complete mathematical justification for this argu-
ment in the form of the so-called principle of the split ho-
mogenized operator has been provided by Bakhvalov and
Panasenko [42].

Furthermore, we note that the general purely math-
ematical aspects of the asymptotic homogenisation pro-
cedure can be found in [41, 42]. The pertinent mathemat-
ical details for the asymptotic homogenization of thin-
walled inhomogeneous structures can be found in [56]-
[59]. The convergence of the two-scale asymptotic method
is proven in these papers on the basis of G-convergence.
These purely mathematical aspects of asymptotic homog-
enization are beyond the scope of our papers, which are
aimed at developing micromechanical models and deriv-
ing results for effective properties of magnetoelectric and
other smart structures of practical importance.

8 Summary and concluding
remarks

The method of asymptotic homogenization is used to an-
alyze a periodic smart composite plate of rapidly vary-
ing thickness with elastic, piezoelectric and piezomag-
netic constituents. A set of eighteen fully-coupled three-
dimensional local unit cell problems is derived. However,
unlike classical homogenization schemes, the derived unit
cell problems are shown to depend on boundary condi-
tions rather than periodicity in the transverse direction.
The solution of the unit cell problems yields a set of func-
tions which, when averaged over the volume of the peri-
odicity cell, can be used to determine the effective elastic,
piezoelectric, dielectric permittivity and other coefficients
of the homogenized anisotropic smart plate. Of interest
among these coefficients are the so-called product coef-
ficients, which are present in the behavior of the macro-
scopic composite as a result of the interactions between
the various phases but can be absent from the constitutive
behavior of the individual phases of the composite mate-
rial. The effective coefficients are substituted into the gov-
erning equations of the structure, which in turn yield a set
of local functions. These functions allow us to make very
accurate predictions concerning the three-dimensional lo-
cal structure of the mechanical stress and displacement
fields, electric and magnetic potentials etc.

The local problems are expressed in a form that shows
that they are completely determined by the geometrical
and material characteristics of the unit cell of the smart
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plate and are totally independent of the global formula-
tion of the original problem. It follows that derived effec-
tive coefficients are universal in nature andmay be used to
analyze different types of boundary value problems asso-
ciatedwith a given smart structure. Finally, it is shown that
in the limiting case of a thin elastic plate of uniform thick-
ness the derived model converges to the familiar classical
plate model.

Appropriately, in part II of this work, Hadjiloizi et
al. [67], illustrate the theory developed here using the
practically important examples of magnetoelectric thin
laminates and magnetoelectric wafer-reinforced compos-
ite plates. In both cases it is shown that the developed
model can be used to tailor the properties of a given struc-
ture to conform to the requirements of a particular engi-
neering application by changing appropriate geometrical
or material parameters.
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