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Abstract—We show that complex (scale-free) network topolo- characteristics (e.g., occupation, age, city of dwelliofgheir

gies naturally emerge from hyperbolic metric spaces. Hypdrolic
geometry facilitates maximally efficient greedy forwardirg in
these networks. Greedy forwarding is topology-oblivious.Nev-
ertheless, greedy packets find their destinations witi00% prob-
ability following almost optimal shortest paths. This remakable
efficiency sustains even in highly dynamic networks. Our finthgs
suggest that forwarding information through complex netwaks,
such as the Internet, is possible without the overhead of esting
routing protocols, and may also find practical applicationsin
overlay networks for tasks such as application-level routig,
information sharing, and data distribution.

connections.

Much later, Jon Kleinberg offered the first popular ex-
planation of this surprising effect [5]. In his model, each
node, in addition to being part of the graph representing the
global network topology, resides in a coordinate space—a
grid embedded in the Euclidean plane. The coordinates of a
node in the plane, its address, abstracts information abeut
destination in Milgram’s experiments. Each node knowstdl) i
coordinates; 2) the coordinates of its neighbors; and 3) the
coordinates of the destination written on the packet. Given

these three pieces of information, the node can route dyeedi

. . ) by selecting its direct neighbor closest to the destinatiche
Routing information is the most basic and, perhaps, the mﬁi\ne

cqmplicated function that networks penforrr]. Convention lCIearIy, the described greedy forwarding strategy can be

wisdom states that to find paths to destlnatl_ons th_rough tQﬁ’icientonly if the network topology is in some way congru-

complex network maze, nodes must collect|vely_ d|§covereeht with the underlying space. But the Kleinberg model does

current state of the network topology by exchanging mform:ﬁot (try to) reproduce the basic topological propertiesauial

tion about the status of their connections to other nodes T'ﬁetworks through which messages were traveling in Milgsam'’

COfT|1.mUI|‘?IC¢’.it|9n ove;head IS considered one qf the mhos'?g”%liperiments. For instance, the model produces éniggular
scaling limitations of our primary communication techrg graphs while social networks, the Internet, and many other

today, including the Internet [1] and emerging wireless a mplex networks [6] are known to becale-free meaning

sensor networks [2]. Finding intended communication g At- i) the distributionP(k) of node degrees in a network
in other networks, such as P2P overlays, relies on floodingy ,\vs power lawsP (k) ~ k7 with exponenty often lying

based m‘?c,hanism& random wa}lks, and other teChniqLﬁéweenQ and 3; and ii) the network has strong clustering,
whose efficiency may be unpredictable, and overhead COsts o large number of triangular subgraphs [7].

unbounded 3]. _ . Our work follows Kleinberg’s formalism. We assume that
However, many networks in nature can somehow “roufg,qes in complex networks exist in some spaces that underlie

traffic” efficiently. That is, nodes in these networks can-effyo observed network topologies. We call these sphizigen

ciently find intended communication targets even though the, oric spaces The observed network topology is coupled

do not possess any global view of the system. Milgram's 1969 e hidden space geometry in the following way: a link
experiment [4] showed a classic demonstration of this &ffeganveen two nodes in the topology exists with a certain

Milgram asked some random individuals—sources—to se bability that depends on the distance between the two

a letter to a specific person—the destination, described BYqes in the hidden geometry. A plausible explanation for
name, occupation, age, and city of residence. The SOUrG8s W k|einberg model's inability to naturally produce scédee
asked to pass the letter to friends chosen to maximize §ags|qgies is that the spaces hidden beneath such topslogie
probability of the letter reaching its destination. Theutes .o ot Euclidean planes.

were surprising: many of the letters reached their destina-rne primary contribution of this paper is the demonstration
tion by making only a small number of hops, even thoug,: 4 simple mechanism of network growth irhgperbolic
nodes had no global knowledge of the human acquaintang@gen metric spaceaturally leads to the emergence of scale-
network topology, except their local connections and somg.q topologies. One attractive property of such topolegse
that greedy forwarding using node coordinates in the hyper-
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bolic space results in 100% reachability with nearly optima
path lengths even under dynamic network conditions, witk li
failures and node arrivals and departures. Most impostant!
nodes do not change their coordinates upon network topology
changes. Therefore, nodes do not have to exchange anygoutin



information even in dynamic networks. Our work thus pavdserms of associated routing overhead costs. See Section V fo
a path to nearly optimal forwarding in complex networksa discussion of potential applications.
such as the Internet, without expensive and brittle routingAs mentioned earlier, the first popularization of greedy
protocols. Our results may also find practical applications routing as a mechanism that might be responsible for efficien
overlay networks for tasks such as application-level rayti forwarding “in the dark”, i.e., without the knowledge of
information sharing, and data distribution. network topology, is due to Jon Kleinberg [5]. A vast amount
The rest of the paper is organized as follows. In Section oF literature followed this seminal work, as reviewed in J11
we discuss related work. In Section Il we reveal the co®ther works, dealing with hyperbolic geometry in the networ
nection between scale-free network topologies and hygfierbaontext, include [12], [13], [14], [15]. No earlier work has
geometries, and present a simple model that builds soate-fconsideredhiddenhyperbolic geometries, which can be used to
networks using such geometries. This model builds a netwaKiciently guide the forwarding process on complex netwgork
as a whole at once. In the same section we demonstrate thEinally, there has been a great deal of research trying to
remarkable efficiency and robustness of greedy forwarding éxplain the scale-free structure of complex networks [16],
dynamic scenarios with link failures. Since in many praaticamong which preferential attachment [17] appears to be the
applications nodes may arrive to the system gradually, most popular. However, no existing effort has considered
Section IV we extend our model for scale-free networksidden hyperbolic geometry as a possible explanation.
that grow in hyperbolic spaces. We demonstrate that greedYII
forwarding strategies are still extremely efficient, everder '
highly dynamic network conditions with nodes randomiyarri In this section we first provide high-level intuition behind
ing and departing the system. We discuss practical apjglitat the connection between scale-free network topologies and
of our findings in Section V, and conclude with directions foRyperbolic geometries. We then proceed by presenting a sim-

SCALE-FREE NETWORKS AND HYPERBOLIC SPACES

future research in Section VI. ple model where scale-free topologies naturally emerge fro
such geometries, and demonstrate the remarkable efficancy
Il. RELATED WORK greedy forwarding strategies that use these geometries.

The most relevant earlier work is the groundbreaking re:
sult by Robert Kleinberg, who shows in [8] how any given . . .
graph can be embedded in the hyperbolic plane such thairh.e main metnc_ property of hyperbollc ggometry that we
greedy forwarding can achievel0% reachability. However, use in thl_s paper is the.exponentla_l expansion of. space. For
to construct the embedding one needs to know the graygmple, in the hyperbolic plane, which is the two-dimenalo

Intuition

topology in advance. R. Kleinberg’'s work has been recen _ertlaolic jpf;:ce of ne?ativg_ cur\;atuze_al, the 'e”‘gtz of
complemented by the work in [9], where the authors propo e(grce anth € aret;a\ ?] a disc ot ra 'g“s qrﬁ ?Sin_rf
a simple technique for online embedding of any given gra QW(C.OS B .1)’ ot growing as~ e wit ’ €
in the hyperbolic plane. The graph can also be dynamic, perbolic plane is thus metrically equivalent to&ary tree,

the sense that once the initial graph is embedded, its tgpold'e" a tree with the average branching factor equal tadeed,

can change, and greedy forwarding can still mainteia% In a b-ary tree, the analogies of the circle length or disc area
reachability' are the number of nodes at distance exadtlyr not more

R—1
While [8] and [9] show how anygiven graph can be than R hops from the root. These numbers dbet+ 1)b

R i R
embedded in a hyperbolic space so that greedy forwardi 9d((b+.1)b —2)/(b-1), both growing as- b=, Informally,
perbolic spaces can therefore be thought of as “contisuou

maintain 100% reachability, here we approach the proble ons” of t oth " fh boli N
from the opposite direction. We fix the hyperbolic space aﬁ’(?rs'gnsf 0 dr_ees. ) ertprfger Les 0 yrngr Olic geosnetr
construct graphs in it in the simplest possible manner. gn be found in various (ex). 00KS, €.9., [18]. .

show that the resulting graphs are rasty graphs butscale- . TO see why this exponential expansion of hldde_n shace
free graphs,naturally congruent with underlying hyperbolicIS intrinsic to scale-free networks, obserye that thelrotop
geometry. That is, we do nothing to enforce these graphsotgy reprgs_ents_ the structure of connections or interagtion
be scale-free; their scale-free topology emerges n la @mong dlstlngwshable,_he_tero_geneous elements abstraste
consequence of underlying hyperbolic geometry. Becauserliﬂdei: 'I(;hehheterogetz)nelt()jll|mplles that nodes can be ?jomehow
this congruency, greedy forwarding strategies are makma assined, however broadly, mto_altaxonomy, \.€., N0CEs ca
efficient, even in presence of network dynamics. In terms F_Sp“.t Into Iarge_groups consisting of smaller subgroups,
practical applications, the studies in [8] and [9] are moPﬁ{h'C_T_]hm tulrnt_conﬁ!st Ol; (;\;len smaII(re]r subsubgro(;Jps,band SO
suitable for cases where the initial network topology ieatty on. 1he refalionships between such groups and subgroups,

globally known, and where the costs associated with suEﬁ”ed com_mumt_les [19]'_ can be approximated by ”e?"'ke
ructures, in which the distance between two nodes esifnat

. . t
global knowledge are low, while our work here is mor - .
applicable to cases where networks are formed dynamicall w similar they are [20], [21]. The smaller the distance, th

where we do not know their exact topology in advance, su ore similar the two nodes are, and the more likely they are

as in Overlay network appllcatlons, [3]' [10]' and tq .cgse.slm this paper, symbols~’ and ‘~’ mean, respectivelyproportional to
where such global topology awareness may be prohibitive dnd approximately equal



connected. Importantly, the node classification hieraroégd other centered at distance r from the center of the first disc.

not be strictly a tree. Approximate “tree-ness,” which can Hts approximate, simplified expression is:

formally expressed solely in terms of the metric structuire o 9 9
i)t e

a space [22], makes the hidden space hyperbblic. k(r) ~ - e 2"+ (11—~ T
™o — 5 ™o — 5
B. Models of scale-free networks in hyperbolic spaces where the limita. — L is k() — N (1+Z) e~ 47 3 From

We now put our intuitive considerations to qualitativeEquation (3) we see that(rr) decreases exponentially, i.e.,
grounds. We want to see what network topologies emergg:) ~ ¢=4", with g = sifa>iandg=aif a < 3.
in the simplest possible settings involving hidden hyp&cbo Therefore,7(k) ~ —< Ink. Given f(r) from Equation (1),

metric spaces. Specifically, we use the following stratemy f is easy to see thgp(k) ~ f(F(k) |7 (k)| ~ k=7 with

formulate a network model. We specify: 1) the hyperbolic — 2 | 1 Thus,y =2a+1if o > 2 andy=2if a < L.
space; 2) the distribution of nodes in it, i.e., the node den- ” — T

sity; and 3) the connection probability as a function of the \we thus see that by changing which according to our tree
hyperbolic distance between nodes, i.e., we connect a pairgpalogy regulates the average branching factor of the hidde
nodes located at hyperbolic distan¢avith some probability tree-like hierarchy, we can construct power-law graphs wit
p(d). any exponenty > 2, as observed in a majority of known

The simplest hyperbolic space is the two-dimensional hiomplex networks, including the Internet [7].
perbolic plane of constant negative curvaturewe discussed  Tne average node degrée= foR k(r)f(r)dr, is:
earlier. The simplest way to plad€ nodes on the hyperbolic
plane is to distribute them uniformly over a disc of radius P N 2a%e
R. The hyperbolically uniform node[densjity implies that we - T (a _ %)2
assign the angular coordinatés € [0,27] to nodes with o -
the uniform densityf(9) = 1/(2x), while the density for n [((r =2)a® — (m —1)a? + 5F) R — 20 7
the radial coordinater € [0, R] is exponential f(r) = 7 (o — %)2
sinhr/(coshR — 1) ~ "~ ~ e, as the circle length at
distancer from the disc center i@ sinhr (vs. f(r) ~ r in
the Euclidean plane, where the circle lengti2is’). We can
also generalize the model by distributing nodes non-unifpr
on the disc using:

,%R

)

where the limity — isk — N2 (1+ £) e~2R_Therefore,
given a targetk, a target exponent, which is related tox

via Equation (2), and the number of nod¥s the right value

for the hyperbolic disc radiug is (numerically) computed by
the above formula. From the formula, we can also see that the

Fr) = «asinh ar ~ e —R) | par ) relationship betweerk and N is approximately logarithmic,
coshaR — 1 ’ ie., R~InN.
with o = 1 corresponding to the hyperbolically uniform node Theorem 1 states that the degree distribution is a power law,
density. but it does not give its exact expression. Skipping calgurat

The simplest connection probability we could think ofhiS expression is:
is the step functiop(d) = ©(R — d), meaning that we oo I (k — 20, €)
connect a pair of nodes with polar coordinateséd) and P(k) = 2a€ A ’ (4)
(r',0") by a link only if the hyperbolic distance between 3 : .
them isd < R, whered is given by the hyperbolic law of where¢ = k(2a —1)/(20) andI' is the incomplete gamma

cosines:coshd = coshr coshr’ — sinhr sinh 1" cos Af), with foglltjl:) rr11.etworks also possess strong clustering. Strong clus
Af = |0 — 0’| mod 7. The following theorem states that the P 9 9. 9

node degree distribution in the resulting network is a powé?”.ng’ or large numbers of tnangles |n_generqteq netwosks .
law. a simple consequence of the triangle inequality in the metri

Theorem 1: The described model produces graphs with theace: Indeed,-lf nodeis close .to node in the plane, and
ower law node degree distribution: IS cIo_se toa third npde, _thena is also close ta: because of
P ’ the triangle inequality. Since all three nodes are closeatdhe
B _ 20 +1 if a>1, other, links between all of them forming triangléc exist.
P(k) ~ k™7, withy = 5 o< L (2)  In Figures 1(a) and 1(b) we show, in log-log scale, the
-2 degree distributior?(k) and average clustering as a function
Proof: We first compute the average degfde) of nodes Of the node degreg(k) [24], for modeled networks withV =
located at distance from the disc center. Such nodes aré0000 andk = 6.5. We observe agreement between simulation
connected to all nodes in the intersection area of the twesdigesults and the analytical prediction for the degree distion

of the same radiu®, one in which all nodes reside, and thdn Equation (4). In Figures 1(c) and 1(d) we compare the same
statistics between the modeled networks with= 2.1, and
2We call the spachiddento emphasize that the distance between two nodes
in it is a measure of how similar they are; itrist their shortest path distance 3We omit the intermediate calculations for brevity. All theitted calcu-
in the observable network graph as in [12], [13], [14], [15]. lations can be found in the technical report [23].
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Fig. 1. The first two plots show the degree distributiBiik), and average clustering(k) of k-degree nodes. The degree distribution foe= 2.5 is not
shown for clarity. Solid lines in the first plot are the theaaa prediction given by Equation (4). The last two plotowhthe same statistics for simulated
networks withy = 2.1 vs. AS topologies from RouteViews BGP tables [25] and DIME&¢route data [26].

the AS Internet topologies from RouteViews BGP tables [25hortest pathsin summary, GF is exceptionally efficient in
and DIMES traceroute data [26]. The degree distribution Btatic networks, especially for the smafs observed in the
our networks is remarkably close to the empirical AS degreast majority of complex networks [7]. The two GF algorithms
distribution. The shape of the clustering curgg) in our vyield high success ratios close toand optimal (or almost
networks is similar to the Internet's. In [27] we also showeptimal) path lengths, i.e., stretch closeltoThe reason for

how clustering can be matched exactly. this remarkable GF performance is the congruency between
the network topology and the underlying hyperbolic geogetr
C. Greedy forwarding as visually demonstrated in Figure 3.

We now evaluate the performance of greedy forwarding
(GF) strategies on our modeled networks. A node’s address is TN R
its hyperbolic coordinates, and each node knows only its own X 1 /7
address, the addresses of its neighbors, and the destinatio
address written in the packet. GF forwards a packet at each
hop to the neighbor closest to the destination in the hypierbo -
space. We present simulation results for two simple forms of IS
GF, original (OGF) andmodified(MGF). The OGF algorithm : w
drops the packet if the current hop idagal minimum mean-
ing that it does not have any neighbor closer to the destinati .
than itself. The MGF algorithm excludes the current hop from
any distance comparisons, and finds the neighbor closest to
the destination. The packet is dropped only if this neigtibor
the same as the packet’s previous hop. We report the folpwin
metrics: (i) the percentage of successful pathswhich is the
proportion of paths that reach their destinations; andtii@
average and maximum stretch of successful paths, denotedrigy3. Visualization of a modeled network embedded in theshiyolic plane,

5 and ma respectively. The stretch is defined as the rati@yd 9reedy forwarding in it. The figure shows two hyperbdljcstraight lines,
5 XS) P y ?2., geodesics, the dashed curves, vs. the greedy pathsplit lines, between

between the hop-lengths of greedy paths and the corresp®nghe’ same source-destination nodes. The source is the tlpdcinode, and
shortest paths in the graph. the destinations are marked by crosses. The geodesics aedygpaths are
We initially focus on static networks, where the networg.plmox"“ate'y congruent as they follow the same patterat §oing to the
isc center, and then veering off towards the destination.
topology does not change, and then emulate network topology
dynamics by randomly removing one or more links from
the topology. As before, we fix the target number of nodes Link failures. We next study the GF performance in dy-
in the network toN = 10000 and its average degree tonamic scenarios with link failures. We consider the follogi
k = 6.5, which roughly matches the Internet's AS topologywo link-failure scenarios. In Scenariovle remove a percent-
For each generated network, we extract the Giant Connectagep,., ranging from0% to 30%, of all links in the network,
Component (GCC), and perform GF betwed900 random recompute the GCC, and compute the new successygtia
source-destination pairs. In Scenario 2 we provide a finer-grain view focusing on
Static networks. Figures 2(a) and 2(b) show the resultpaths that used a removed link. We remove one link from
for static networks of different degree exponentWe see the network, recompute the GCC, and find the percentbge
that the success ratip, increases and the stretch decrease$ successful paths, only among those previously sucdessfu
as we decrease to 2. For example, fory = 2.1, i.e., paths that traversed the removed link and belong to the new
equal to~y observed in the AS Internet, OGF and MGKSGCC. We repeat the procedure fo000 random links, and
yield p, = 0.99920 and p, = 0.99986, with the OGF's report the average value fof. Figures 2(c) and 2(d) present
maximum stretch ofl, meaning thatall greedy paths are the results. We see that for smalk, the success ratip?<?

a0
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Fig. 2. Performance of greedy forwarding (GF).

remains remarkably high, for all meaningful valuesppf For number of nodes in the network, including itsel,(i) = i;
example, MGF on networks with = 2.1 andp, < 0.1, yields (i) a system pre-specified parameterfor the node radial
pe® > 0.99. Note that the simultaneous failure 6% of density, which as before, will determine the exponent of the
the links in networks like the Internet is a rare catastrophéegree distributiory; and (iii) a system pre-specified constant
but even in this case GF is still efficient. The percentglgef ¢, which will determine the average node degree as will be
MGF paths that used a removed link and that found a by-paselained below. Then, to connect to the network, the node
after its removal is also remarkably high, closelt% for performs the following operations inspired by the model in
small v’s. We do not present the stretch results for brevitgection lllI:

In both scenarios, and for aif's, the average stretch remains . select an angular coordinate uniformly distributed in

remarkably low, belowl.1. [0, 27];

In summary, GF is not only efficient in static networks, butj;. compute the current hyperbolic disk radiii) accord-
its efficiency is also remarkably robust with respect to roelw ingto R(i) = L1In %, i.e.,i = ce®R(;
topology dynamics. Thanks to high path diversity in scaéef i, select a radial coordinate € [0, R(i)], according to the
networks, there are many shortest paths, disjoint over some propability density functiory (r|R(i)) = —osilar) _
links or nodes, between the same source and destinatiochwhi a(r—R(3)). cosflaR()-1

e
connect to every node < j < i, already in the network,
for which the hyperbolic distance to it, denoted &y,

all closely follow their geodesics. Link removals affectrs®

shortest paths, but others remain, and greedy forwarding ca”

use the underlying hyperbolic “guidance system” to find them satisfiesd;; < R(i). 4
Greedy forwarding modifications. Although the success , Y= " i

ratios in scale-free networks with smalk are extremely close  1© build the network in a fully decentralized manner, each

to 1, they are not exactly. However, since the performance?TVing node must be able wiscoverthe current number of

of our simple GF strategies deteriorates quite slowly witodes in it, and the nodes to connect to, i.e. its neighboes. W

increasing network dynamics, we can expect that simple ¢l present a tephmque for th'§ Igter. Before d0|_ng SO, We

modifications can achievi®d0% success ratio and small stretcl@nalyze_ the statistical characteristics of the resultiatvork

even in more extreme dynamic network conditions than thogéoologles, and show that t_hey.are s_cale-free.

we have studied above. We will check our expectations inAs before, strong clustering is a direct consequence of the

the next section, in scenarios with random node arrivals afjigndle inequality in the hidden space, but we have to show
departures. that the node degree distribution follows a power law at any

time instance, as soon as the number of nodes in the network
IV. NETWORKS GROWING IN HYPERBOLIC SPACES is sufficiently large. The analysis becomes more complitate

The model we presented in the previous section genera@%@” in Section Ill, because the hyperbolic disc radius.is no
a whole network at once. However, in many applications, tﬁg}nger constant, but grows with the number of nodes in the

network topology is formed by nodes gradually arriving ovefetWwork. _ _ B _
time. In this section, we extend our model for scale-free net 10 Proceed, we first compute: (1) the probability density

works that grow in hyperbolic spaces. We then demonstrate finction f(r,t) of the radial coordinate of a randomly

remarkable efficiency of greedy forwarding in highly dynamiselected node when the number of nodes in the network is

conditions, with nodes randomly arriving and departing tiePme valuet > 1, and (2) the average degrdér, t) of

system. nodes located at distaneefrom the disc center. Having the
expressions forf (r, t) andk(r,t) ready, we can then tell how
A. Growing model these quantities scale as a functionrofand use arguments

We assume that the network initially consists(ohodes. similar to those in the proof of Theorem 1 to find the degree
We number each arriving node by its order of arrival. We , o o o
. . To maintain graph connectedness at any time instance, inoaéing such
do not co.nS|der node departures for now. A n_eW node coordinates thatl;; > R(i) Vj can randomly re-select new coordinates until
1 that arrives to the system needs to know: (i) the curremt < R(:) for at'least onej.



distribution. The derivation off(r,t) and k(r,t) is in the In Figure 4, we check the accuracy of our analytic pre-
Appendix. Below we present the final expressions and shdlictions. The figure is for a synthetic network growing with
that the degree distribution is a power law. parametersy = 0.75, i.e., targety = 2.5, andc¢ = 0.0014,

Let R(t) be the hyperbolic disc radius when the number adfe., targetk(t) = 6.5 whent = 10000. Figure 4(a) shows, in
nodes in the network is. According to the modelR(t) =

it _The approximate expression for the node radial density S
f(T, t) IS: e o ~Theory f{w
e 3 = |
F(rt) = a®(R(t) — r)e RO, (5) v °
. Ew
leading to: 1 | )
Lemma 1: Forr < R(t) andt > 1, f(r,t) ~ e". N ;5;
Fora > 1, the average node degree as a functiom ahd (a) (b)

t is, approximately: ) - )
PP y Fig. 4. (a)k(r,t) att = 10000, and (b) degree ccdf at various

1 — e—a(R()-7)
k(r,t) ~t {P(r) TR —

@) —P<r>>}, 6)

o B(t) ) semi-log scale, that Equation (6) closely matches simarati
where: Figure 4(b) shows, in log-log scale, the node degree ccdfeas t
202 200 o network grows, i.e., at various The ccdf approximately fol-
G(r) = (1 T (e 1) +(1- a1 )O”) € lows a power law with the slope, i.e., exponent1, © virtually
2 ; 9 independent of, as Theorem 2 predicts. The exponents
+L12e_%r, (7) approximately2.5. We further observe that the ccdf is slightly
m(a—3) shifting to the right, indicating that the average node degn
P(r) = 2 ot _ 1 “2ang—ar (g the networ.k grows slowly. At = 10000 the average Qegree is
(o — %) 2(a — %) ’ 6.5768, which is very close to our target value. Similar results
o ] ] ] hold for other parameter values.
and the limita — 3 is well defined.® The equations above
lead to: B. Decentralized implementation

Lemma 2: Fora > L andt>> 1, k(r,t) ~ e~ 2". ) . . ) .
Taken togetherath_e tho Iem>?nas a(l;)v)e reesult in: As mentioned earlier, to build a network in a decentralized
. 1 manner, each arriving node must be able to discover its

Theorem 2: The described growing model with > 3
I growing Wi = 3 ﬁighbors and the current number of nodes in the network.

roduces graphs with a power law node degree distributi . . . :
?D(k: £) ~ kg,7 pwhere'y _ Sa 1 g gelow we describe an efficient and simple greedy algorithm
Proof: The proof is similar to that of Theorem 1. I:0r|mplement|ng these tasks. This algorithm is just an example

¢ sufficiently large, by Lemma 2k(r, ) ~ e, Hence, and other techniques and qptimizations are possible.
7(k,t) ~ —2Ink. By Lemma 1,f(r, t) ~ ¢, approximately. I_n_ a nutshe!l, the algorithm operates as follows. _Each
Therefore, P(k,t) ~ f(i(k,t),t)|[7(k,{)] ~ k=7, with arriving nod_e first contacts a random node currently in the
v =2a+1. - nhetwork, (\;vhlch acits at_s hootstliag ng:jeTh(ta boclztsltzraphnﬁde
=\ _ RO 7 .. then sends amxploration packeto the network. Each hop
The average node degréel) = J, " k(r, 1) f(r, 1)dr is: that receives the packet writes in it its id and coordinasss,
k(t) = 2ac (e(ozf%)R(t)C1 — aR(t)2Cy — R(t)Cs5 — 04) ., Wwell as the ids and coordinates off all its neighbors, and the
9) forwards the packet to ithighest degree neighbahat has
203 o, = 2a—m(a—1) C. — Dotseen the packet before. The process terminates when all
m(a—3)32a—3)" 2 2r(a—g) 3 neighbors of a node have seen the packet. Below we describe
maotp G4 = s Sg(af;)z + 1), and the limita. — 3 the process in more detail.
is again well defined. sing tquation (9) we can thus chooseThe exploration packet starts from the bootstrap node and
constantc to set the average node degree to a target valkeeps a list of the node ids it has visited, denotediiy It
in synthetic networks grown to a target size For fixed also keeps a list of node ids along with their corresponding
cand a — % the first exponential term in Equation (9)coordinates, denoted Hy-. Each node that receives the packet
vanishes, and:(t) grows very slowly witht, as a function records its own id intoLy, and its id and coordinates into
of Int, since R(t) = ilnﬁ. This property is desirable, asLc. Further, it also records the id and the corresponding
in practical applications, we want the average node degreecbordinates of each of its neighbors intg:. The node then
depend weakly on the system size. Interestingly, by Theoresmlects from its neighbors that are not included.in, the one
2, a = % yields degree exponent = 2, which as we have with the maximum degree, and forwards the packet to it. The
seen in Section IIl, also maximizes the efficiency of greedyrocess terminates when all neighbors of a node are listed in

forwarding.

where C;

81f pdf P(k) is a power law with exponent, then ccdfP(k > k') is a
SFora < % Equation (6) does not hold. See [23] for more details. power law with exponenty — 1.



Ly, in which case the exploration packet is sent back to tlee reach steady state. The average degree grows initiadly an
bootstrap node. The list¢ is then given to the arriving node.then stabilizes above, but close to, our target valué.sf 8
This process, calledearch utilizing high degree nodeis Figure 5(b) shows the node degree ccdf. The degree exponent
very efficient in power law graphs. In particular, for degress v ~ 2, and it does not change as the network grows, as
exponents2 < v < 3, the exploration packet can discoveexpected.
a large percentage of nodes in the graph along with theirAs mentioned in Section Ill, we expect simple GF mod-
coordinates (recorded i.c), by traversing only a small ifications to achieve better performance than our OGF and
number of hops- N5 (recorded inLy/), see Chaptet3 in MGF strategies, even in highly dynamic network conditions.
[16]. Having an estimate of the number of nodes, the arrivilfe check these expectations with Beavity-Pressure Greedy
node can compute the current hyperbolic disc radius, andRarwarding algorithm (GPGF) from [9], described below.
turn, its own coordinates. Knowing the hyperbolic disc uadi ~ Gravity-Presure Greedy Forwarding (GPGHBach packet
the coordinates of the nodes, and their ids, it can also ceenpoarries a bit to indicate whether the packet isGnavity or
to which nodes it should connect. Pressureforwarding mode. The packet starts in Gravity mode,
One possible modification of the above basic techniquevgere the forwarding procedure is exactly the same as in
to impose an upper bound on the size of the list. Once our OGF algorithm. However, if the packet reaches a local
such a bound is reached, the currdnt list is returned to minimum, it is not dropped as in OGF. Instead, it first records
the bootstrap node, and then cleared in the explorationgbackhe distance of the local minimum to the destination, whieh w
This extension adds control on the maximum size that tigall current local-minimum distangcend then enters Pressure

exploration packet can have. mode. In Pressure mode, the packet maintains a list of the
. nodes in the network it has visited since it entered this mode
C. Greedy forwarding and the number of visits to each node. A node that receives

We now evaluate via simulation the performance of greedje packet determines all neighbors that the packet hasdisi
forwarding in highly dynamic conditions, with random nodéhe least number of times, selects among those the one with
arrivals and departures. Our setup is as follows. the minimum distance to the destination, and forwards the

Without loss of generality, time is slotted. During eachaimpacket to this neighbor. This process continues until thoketa
slot, a new node arrives w.p.= 0.1, and each node currently€ither reaches the destination or a node whose distance to th
in the network departs w.p; = 10-5. Initially the network destination is smaller than the current local-minimumatise.
consists of0 nodes. An arriving node joins the networkin the latter case, the packet switches back to and continues

according to our growing model. It also discovers the currelf the Gravity mode.
number of nodes in it and their coordinates according to Regardless of underlying space geometry, the success ratio
the procedure described earlier. In our experiments beiawv ©f GPGF is guaranteed to be always = 1 [9], which
exploration packet discovef§% of nodes in the network on We confirm in Figure 5(c). What isiot guaranteed by the
average, by traversing only5% of all nodes. If all neighbors algorithm is thestretch which can be enormous, as in the
of a node depart, the node re-initiates the join process Wgrst case a packet can visii nodes in the network to find
reconnect to the network. To ensure that the network remaiffs destination. However, in Figure 5(d) we see that GPGF's
connected, we assume that the first,.. = 200 nodes never Stretch is exceptionally low in our networks. In particular
depart. According to our growing model, these nodes wiye see that the average stretehiemains extremely close to
have high degrees. High degree nodes are required to nraintai While the maximum stretch m&x) never exceedsg. As
connectivity in scale-free graphs [16]. See also the diions before, this remarkable efficiency is due to the congruemey b
in Section V. tween scale-free network topology and underlying hypécbol
The average number of nodes in the network grows and sggometry, which persists even in highly dynamic conditions
bilizes at the steady state valtigeady = & +tssare = 10200. 7
Note thatgstf—ardf ~ 2%. We set the system parameters to _ _ _ _ _ o
a = 0.5 and¢ = 0.01, which according to our earlier analysis, N this section we discuss potential practical application
correspond to the average node degre/_e(ﬁiteady) —¢.5and Of our re§ults. One of such applications is overlay network
degree exponent = 2. Recall from Section IIl thaty = 2 construction [3], [10]. Indeed, the idea of using an undedy
maximizes the efficiency of greedy forwarding, and makes ti§gometry to guide the forwarding process is similar in spiri
average degree depend logarithmically on the network size@ Distributed Hash Table (DHT) overlay architectures [3].
Figure 5(a) shows the average node degtegas a function In overlay networks, messages searching for data content ar

of the current number of nodeédn the network, until and when usually greedily forwarded, based on some distance médric,
the node in the network responsible for the data, usually the

7In the steady state we still have node arrivals and departuret the node that is closer to the data in terms of the distance metric

network does not grow on average. Indeed;(¥) is the average number of

nodes in some time slat, excluding the firsts:are Nodes, and(s + 1) is 8The observed discrepancy is due to that the network is netiggoexactly

the corresponding number in slst+ 1, then(s + 1) = #(s)(1 — ¢) +p, according to the model. Instead, it growss average The exact analysis

leading to the steady state value i lim; oo #(s) = £. Adding tstare  accounting for the specifics of the node arrival and deparstochastic

to this last quantity yield$s;eqqy- processes is beyond the scope of this paper.

V. DISCUSSION
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Fig. 5. Dynamic networks.

The main objective is to have a low average node degree, and here are several interesting directions for future wonke O
a short average hop-length of search paths [3]. Both metrissto explore other techniques for decentralized implement
should grow slowly with the number of nodes in the networtion. Another is the design of greedy forwarding stratetfies
N. The best efficiency witlD (In In V)-long search paths, andcould also be used for improving other network performance
O(1) average node degree, can be achieved only in scale-freetrics, e.g., strategies that could avoid congestionsarea
networks since only in scale-free networks do shortestgpatherform load-balancing, and so on.
grow as~ Inln N, independently of the average node degree Finally, our results suggest that forwarding information
[16]. Therefore, given that greedy paths are approximatahrough existing scale-free networks, e.g., the Intersiepuld
shortest in our networks, a property we proved in [28], oure possible without routing overhead. Therefore, one of the
results can be used for overlay network construction amdost interesting, yet challenging, future work directigmshe
routing [10] to improve routing/search efficiency. following inverse problemCan we embed angeal scale-free
However, by no means do we propose a solution which ietwork, e.g., the Internet topology, into a hyperboliccgpa
better than all existing overlay architecturesaihaspects. For so that we can greedily forward through this embedding with
example, it is often desirable that all nodes in a networkehagimilar efficiency? How can each node compute its coordmate
similar degrees, which is not the case with scale-free ndisvo in the spacehaving no global knowledge of the network
Another concern may be that while scale-free networks a@pology so that the resulting embedding is congruent with
robust to random node failures/departures, they are valther the space, requiring no coordinate and routing updatesiéven
to failures of the highest degree nodes, resulting in nékwothe network is highly dynamic?
disconnection [16]. To address this concern, one may censid
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APPENDIX— GROWING MODEL ANALYSIS

R. Since, given the value d? a node computes its radial coor-
dinater according tof (| R) ~ ae®"~®) andr < R < R(t),
we can write f(r,t) = fTR(t)f(r|R)f(R,t)dR. Performing
the integration, we get Equation (5).

We now proceed witlk(r, ¢). Its computation is rather long,

and we omit it for brevity, see [23]. We can brekk, t) into
two parts. The first part;,.;:(r, t) is the initial average degree

of nodes with radial coordinate i.e., the average number of
nodes already in the network, to which the node connects upon
its arrival. The second pa#t,..,(r,t) is the average number

of new connections to nodes at coming from new nodes
arriving to the system after. Clearly(r,t) = kinit(r,t) +

M. Gromov, Metric Structures for Riemannian and Non-Riemanniarknew(T, t)-

We first computek;,;;(r,t). Suppose that the node at
computed a disc radius equal fbwhen it arrived. According
to our model, the node then connected to all other nodes in the
network, for which the hyperbolic distance to it wds< R.
The average number of these nodes, denoted;Ry(r|R),
can be computed [23], and its approximate expression for
3 iS kinit (r|R) &~ ce®TG(r), whereG(r) as given by Equation
).

To obtaink;,; (r,t), we now have to remove the condition
on R from ki, (r|R) by accounting for all possibleR
with » < R < R(t). To do so, we need the conditional
probability density forR, given that a node’s radial coordi-
nate isr, denoted byf(R,t|r). Given f(r|R), f(R,t) and
f(r,t), we havef(R,t|r) = LURIED “and ki (rt) =

Ry - f(rt)
® kinit (r|R) f(R, t|r)dR.

T

Here we consider a growing network at some time instancewe now proceed with,,c., (r,t). Let N,c,, be the number

where the number of nodes in it is some valuand derive the
expressions for the node radial densfty-, ¢) and the average

of new nodes that arrived to the system after a node with radia
coordinater. Clearly, the computed hyperbolic disc radis

node degreé:(r,t). We number each node by its order obf a new such node satisfies< R’ < R(t). According to
arrival. Recall that there are no node departures, and #wdt eoyr model, the new node connects to the node atly if the
nodei > 1 that arrives to the system computes a hyperboliyperbolic distance to it ig < R'. In [23] we show that if

disc radiusk(i) = 1 In L. The radial coordinate € [0, R(i)]

of nodes is distributed according to the densifyr|R(i)) =~
aea(rfR(i)).

We start with f(r,t). Let {R(1)...R(¢t)} be the sequence
of the hyperbolic disc radii that nodefdl...t} compute on

o> % the probability that a new node connects to the node at
r is approximately independent of the exact valuef¥fand
depends only om. This probability, denoted by(r), can be
easily computed, and is given by Equation (8).

Now, given that the node at was thei** node arrival,

their arrival, and letk be the random variable representingy, .~ = ¢ — i. If k., (r,ti) denotes the average number
the computed disc radius of a randomly selected node fr§p new connections to node we can writek,c., (r, t|i) ~

{1...

3

t}. It is easy to see that fare {1...t}, P(R < R(i))
i ce®®D_ a(RG)—R(®))
t — cexR(®) o .

We treatR as a continuous random variable. As we see
Section IV this does not affect the accuracy of the predictio

Therefore, if we denote by’ (R, t) = e*(E~E(1) the distribu-

(t —3)P(r) = (t — ce®FD)P(r). To find Epew (1, 1), We need
to remove the condition on the index In other words, we
feed to account again for alk with r < R < R(t). The
conditional density ofR, f(R,t|r), was computed earlier.
Therefore, kpew(r,t) ~ [t — ce*®)P(r) f(R, t|r)dR.

~
~

tion function of the computed disc radiug then the proba- adding ;. (r, t) and ke, (r,t), and performing the integra-

bility density function ofR, denoted byf (R, t), is f(R,t) =
ae*(F=E(1) and it is obtained by differentiating (R, t) w.r.t.

tion, we getk(r, ¢) given by Equation (6).



