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TBI results in significant cognitive impairments and in altered brain functional connectivity.

However, no studies explored so far, the relationship between global functional

connectivity and cognitive outcome in chronic moderate-severe TBI. This proof of

principle study employed the intrinsic connectivity contrast, an objective voxel-based

metric of global functional connectivity, in a small sample of chronic moderate-severe

TBI participants and a group of healthy controls matched on gender (males), age, and

education. Cognitive tests assessing executive functions, verbal memory, visual memory,

attention/organization, and cognitive reserve were administered. Group differences

in terms of global functional connectivity maps were assessed and the association

between performance on the cognitive measures and global functional connectivity was

examined. Next, we investigated the spatial extent of functional connectivity in the brain

regions found to be associated with cognitive performance, using traditional seed-based

analyses. Global functional connectivity of the TBI group was altered, compared to the

controls. Moreover, the strength of global functional connectivity in affected brain areas

was associated with cognitive outcome. These findings indicate that impaired global

functional connectivity is a significant consequence of TBI suggesting that cognitive

impairments following TBI may be partly attributed to altered functional connectivity

between brain areas involved in the specific cognitive functions.

Keywords: traumatic brain injury, resting state, functional connectivity, cognitive outcome, intrinsic connectivity

contrast

INTRODUCTION

Traumatic brain injury (TBI) represents amajormedical, public health and socioeconomic problem
worldwide (1–3). According to the World Health Organization (WHO), TBI will surpass many
diseases as the major cause of death and disability by the year 2020. Indeed, it has been estimated
that globally at least 10 million people per year sustain a TBI that is serious enough to result in
death or hospitalization. The number of people who have been hospitalized with at least one TBI
has been estimated at 57 million, but the proportion of those living with TBI-related disability is
still unknown (2).
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Approximately 10% of patients with mild TBI, 66% of patients
with moderate TBI and all patients with severe TBI will require
extensive and costly rehabilitation services due to the effects of
their injury (4). In general, TBI is more common in young adults
which places a high burden on society because of many life years
lost due to disability. TBI results in the greatest number of years
lived with a disability due to trauma in Europe (5, 6); the annual
cost of traumatic brain injuries is estimated at approximately
US$400 billion (7).

Much research has documented that patients with TBI
have reduced capacity for activities including functional
independence, studying, employment, leisure activities, as well
as for personal and social relationships (8–13). Perhaps most
importantly, TBI results in significant cognitive dysfunctions,
such as attention deficits, memory impairments, and executive
functions problems, which relate to mental slowness and reduced
processing speed (14–18). Such impairments are thought to be
the result of structural brain damage that occurs during the early
stage of TBI but importantly, as we now know, continues during
the chronic stages of the disease (19, 20).

Recent work indicates that patients with moderate-severe TBI
exhibit significant alterations in gray matter volume that are
associated with cognitive deficits (21). These effects were found
to persist during the chronic stages and at several years post
injury supporting the notion that TBI is a long-term condition
with chronic implications rather than a static condition following
a short recovery phase. Other studies using diffusion tensor
imaging (DTI) and/or functional magnetic resonance imaging
(fMRI) demonstrated that TBI damages white matter tracts
altering structural brain connectivity, which, in turn, may impact
functional brain connectivity (22–27).

Evidence of impaired white matter tracts connecting distant
brain regions that comprise structural brain networks raises the
question as to how TBI affects the functional connectivity of
brain areas critical for cognitive functions. Indeed, several recent
studies, demonstrated that these abnormalities correlate with
the cognitive impairment of patients with mild TBI and are
predictive of the cognitive recovery of these patients following a
rehabilitation period (23, 28–33).

Despite such plethora of evidence demonstrating altered
brain functional connectivity in mild TBI, evidence examining
the relationship between cognitive impairment and functional
connectivity in patients with moderate-severe chronic TBI is
scarce. Previous studies on moderate-severe TBI focused mainly
on investigating long-distance interactions between remote brain
regions that produce distributed brain networks with distinct
functions, termed intrinsic connectivity networks (ICNs). In
traditional seed-based analyses, brain areas within ICNs show
highly consistent interactions in a pattern that reflects the
underlying anatomical structure of white matter connections. A
number of ICNs have been identified with abnormalities in TBI
patients, including the default mode network [DMN; V. (34–
38)], the motor network (39), the thalamic network (40, 41), the
executive control network (39, 42), as well as interhemispheric
functional connectivity (43).

However, one limitation of this approach is that it restricts
analyses due to the requirement to a priori identify ROIs

in seed-based analyses. Instead, the intrinsic connectivity
contrast [ICC (44)] has been recently suggested as an
approach which allows identification of brain areas with altered
functional connectivity without any a priori information that can
subsequently be used as seeds in traditional seed-based analyses.
Once this is done, the relationship between brain areas with
altered functional connectivity and cognitive performance can
be examined and contrasted with healthy controls. Our purpose
in this proof-of-principle study was to investigate whether
this approach can be useful in identifying the relationship
between brain areas with altered functional connectivity and their
relationship to cognitive outcome in participants with moderate-
severe TBI.

We collected resting-state fMRI data and employed the ICC
index, a whole-brain voxel-based measure that produces global
functional connectivity maps. The ICC index relies on network
theory representing the connectivity of each single voxel to
the rest of the gray matter voxels in the brain based on the
presence of functional connections and the strength of such
connections. As mentioned above, in contrast to the traditional
ROI methods that require a priori knowledge for the choice
and the selection of the ROIs, this index does not require any
a priori information or assumptions (44, 45). Our first main aim
was to calculate the within-group functional connectivity maps
of the participants with TBI and the matched healthy control
groups. We computed the ICC relationship with the cognitive
measures of executive functions, verbal memory, visual memory,
attention/organization, and cognitive reserve, reflecting areas of
deficits documented in the chronic TBI literature (15, 21, 46).
Following this step, we examined between-group differences
in the spatial extent of functional connectivity in the brain
regions found to be associated with cognitive performance, using
traditional seed-based analyses.

This proof of principle study can contribute toward
understanding the neural correlates of cognitive impairments
in patients with brain injury. We hypothesized that the global
functional connectivity patterns of participants with TBI as
indexed by the ICC would be impaired (compared to healthy
controls), and that local deficits would include areas associated
with the cognitive outcome of the participants with TBI.

MATERIALS AND METHODS

Participants
Eleven participants with TBI were matched to eleven
neurologically healthy participants on age, gender and education.
All participants were right-handed. Two participants with TBI
were subsequently excluded from the analysis due to technical
difficulties (one participant was claustrophobic and could not
enter the bore of the MRI scanner and the MR images of another
participant with TBI were presented with significant motion
artifacts rendering the imaging data unusable). The participants
with TBI were referred from collaborating physicians using a
rolling admission process. Table 1 provides the demographics,
time since injury (time lapse between TBI and MRI scan), and
injury causes for the remaining nine participants with TBI.
Primary causes of TBI were as follows: 44% of the participants
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TABLE 1 | Demographics and mechanisms of injury for TBI participants.

TBI Gender Age Education GOSe Days in hospital TSI (months) Antiepileptic drugs Mechanism of injury

1 M 24 15 4 36 60 Yes Motor cycle injury

2 M 29 12 8 28 166 No Fall (work or other non-sports related injury)

3 M 29 14 5 70 176 No Fall (work or other non-sports related injury)

4 M 60 11 5 7 156 Yes Motor vehicle crash

5 M 24 14 3 61 84 No Pedestrian with vehicle collision

6 M 47 12 6 30 274 No Motor vehicle crash

7 M 30 18 7 30 179 Yes Motor cycle injury

8 M 35 17 7 25 27 No Fall (work or other non-sports related injury)

9 M 29 16 8 7 24 Yes Object fall

M, male; GOSe, Glaston Outcome Scale Extended; TSI, Time since injury.

(4 participants with TBI) were injured in motor vehicle
accidents and another 33% (3 participants with TBI) were
injured as a result of work-related falls. The remaining 22% (2
participants with TBI) were injured as a result of falling objects
and pedestrian-vehicle collision. All of the TBI participants
showed microbleeds on the fluid-attenuated inversion recovery
(FLAIR) images. None of the healthy participants showed any
microbleeds.

In the present study we recruited only male participants
with TBI who had not received any systematic post-acute
rehabilitation, which allowed us to avoid the confounding
effects of sex and systematic post-injury rehabilitation. Previous
research has shown that systematic post-injury rehabilitation
results in significant improvements in cognitive functioning of
people with TBI (15, 47, 48), whereas research on the effects of
sex on cognitive outcome in people with TBI is very limited and
often contradictory (49–51).

The inclusion/exclusion criteria included a primary diagnosis
of a moderate-to-severe head injury which was determined by
at least three of the following indices: (1) initial Glasgow Coma
Scale score of <12, (2) abnormal initial computed tomography
(CT) or MRI findings indicating acute central nervous system
pathology, (3) length of impaired consciousness >20min as
specified by the emergency records, (4) length of post-traumatic
amnesia >24 h as specified in the acute hospital/emergency
records, (5) length of acute hospital stay >3 days, (5) abnormal
neurological examination on hospital admission and discharge
indicating focal sensory and motor deficits, or changes in mental
status attributed to brain injury, (6) medical complications
secondary to the brain injury, and (7) head injury classification as
moderate-severe according to hospital records. Other inclusion
criteria consisted of the Rancho Los Amigos Scale Level VI
or higher (which indicates appropriate, goal-oriented behavior,
and post-traumatic amnesia resolution). Additionally, time since
injury was at least 24 months prior to the study recruitment
(mean = 127.33, SD = 83.68 months in the studied group). All
participants were native speakers of the Greek language with
an age range of 24 to 60 years old (M = 34.11, SD = 11.92),
whilst their education ranged from 11 to 18 years (M = 14.12,
SD = 2.40). None of the participants had received systematic
and comprehensive post-acute rehabilitation in the past or at
the time of study recruitment. Some of the participants received
inpatient rehabilitation services and fragmented individualized

outpatient treatment during the acute phase of their recovery.
All participants were residing at home at the time of study
participation.

The exclusion criteria consisted of the presence of a
penetrating head injury, a diagnosis of a stroke at the time of
injury, a premorbid central nervous system disorder or learning
disability, a premorbid major depression or other significant
psychiatric disorder as defined by the Diagnostic and Statistical
Manual of Mental Disorders (DSM-V), (52) an active or current
alcohol, drug or other controlled substance abuse that would
interfere with participation in the study and presence of aphasia
with the exception of mild to moderate word finding problems.

All participants in the healthy control (HC) groupwere Greek-
speaking males with no history of a neurological condition
or brain trauma, documented psychiatric history, learning
disability, or substance abuse. The HC group had an age range of
23 to 60 years old (M = 36.55, SD= 11.18) and education ranged
from 8 to 17 years (M = 13.36, SD= 2.98).

Each participant gave written informed consent prior to his
participation in the study, as approved by the Cyprus National
Bioethics committee.

Neuropsychological Measures
Neuropsychological performance was assessed with a battery
of neuropsychological tests which comprised the following
conceptually motivated constructs: executive functions, verbal
memory, visual memory, attention/organization and cognitive
reserve.

The executive functions construct included the Symbol Digits
Modalities Test (53), the Trail Making Tests A and B (54) and the
Control Oral Word Association Test [Animal naming and words
from letter F (55)].

The Verbal Memory construct included the Greek adaptation
of the Auditory Verbal Learning Test [total score in trials 1-5,
difference score between trial 5 and trial 1, short delay free recall,
long delay free recall, and list A true positive recognition score
(46)] the Digit Span Forward and Backwards total score [adapted
Wechsler Memory Scale-Revised, WMS-R (56)], and the Greek
adaptation of the paragraphs from the WMS-R Logical Memory
I and II [sum of the score of the free recall and the sum of the
delayed recall (56)].

The Visual Memory construct included the Rey Complex
Figure Test [immediate recall, delayed recall, recognition total
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score (57)], the Visual Span Forward and Backwards [from the
WMS-R (56)], the spatial visual short-term memory (VSTM)
capacity estimate, and the object VSTM capacity estimate
[adapted from (21)]. For the spatial and object VSTM capacity
tasks, each participant’s capacity was assessed using a staircase
procedure that estimates the number of spatial locations and the
number of objects that a participant can keep in VSTM.

The Attention/Organization construct included the Rey
Complex Figure Test [copy and time to copy (57)], and the
Distractibility index and the mean reaction time (RT) in a
response competition task (21, 58).

The Cognitive Reserve construct included the Pseudowords
test [adapted from the Wechsler Individual Achievement Test
Second Edition; WIAT-II (59)], and the Peabody Picture
Vocabulary Test [Greek adaptation from the PPVT-4 (60, 61)].

Standard Score Transformation
We followed a standard procedure for calculating composite
scores by combining scores from the various tests into the
conceptually motived constructs [e.g., (21, 62)], although the
validity and reliability of this approach was not tested herein.
This approach greatly facilitates examining the association
between performance on the cognitive measures and global
functional connectivity. Performance scores from each of
the relevant cognitive and experimental tests are combined
into composite scores representing the conceptually motivated
constructs of executive functions, verbal memory, visual
memory, attention/organization, and cognitive reserve. Each
participant’s score from each of the individual measures was
transformed into a standard score (z-score) based on the mean
and the standard deviation of the HC group, in order to allow
group comparisons. For this reason, the mean score of the HC
group in Table 2 is omitted.

Standard scores from tasks where a higher score indicated
worst performance (e.g., response times) were transformed by
being multiplied with minus one such that higher scores in all
tasks indicated better performance. The resulting standard scores
from each of the measures were then averaged together to derive
a score for each of the constructed measures.

MRI Data Acquisition and Analysis
MR images were acquired with a 3.0-T scanner (Achieva,
Philips Medical Systems, Best, The Netherlands). The built-in
quadrature RF body coil and a phased array 8-channel head
coil were used for proton excitation and signal detection,

TABLE 2 | Performance of TBI participants on cognitive measures.

Measure Mean (SD) t df P Cohen’s d

Verbal Memory −0.77 (0.93) 2.12 18 0.025 0.87

Visual Memory −0.73 (1.36) 1.63 18 0.060 0.70

Executive Functions −3.10 (4.47) 2.29 18 0.017 0.93

Attention/Organization −1.46 (1.79) 2.50 18 0.011 0.99

Cognitive Reserve −0.90 (1.69) 1.56 18 0.070 0.67

SD, standard deviation; df, degrees of freedom; P, one-tailed.

respectively. The scanning session included other standard pulse
sequences [e.g., T1-weighted rapid acquisition gradient-echo, T2-
weighted turbo spin echo, diffusion weighted imaging, diffusion
tensor imaging, fluid-attenuated inversion recovery (FLAIR) and
susceptibility-weighted imaging (SWI)] to exclude significant
brain pathology of a different etiology.

fMRI assessment involved a resting state scan with series of
160 volumes for which participants were instructed to not think
of anything in particular and to keep their eyes open. After
the scanning session, participants confirmed they had kept their
eyes open during the scan and had not fallen asleep. None of
the participants underwent an MRI under general anesthesia
or sedation. Data were acquired using a spin echo EPI (echo-
planar imaging) pulse sequence with the following parameters:
TR = 3,000ms, TE = 70ms, flip angle = 90◦, acquisition voxel
size = 2.4 × 2.4 × 4.0mm, reconstruction voxel size= 1.8 × 1.8
× 4.0mm, slices per volume= 28.

Prior to preprocessing, the first five fMRI volumes were
removed to eliminate saturation effects and achieve steady-
state magnetization. Images were preprocessed using Statistical
Parametric Mapping 12 (SPM12) (Wellcome Trust Center
for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm/software/
spm8/) implemented inMatLab R2015 (Mathworks, Natick, MA,
USA). Images were slice time corrected, realigned and unwarped,
coregistered (without reslice) to the individual participant’s
morphological scan, spatially smoothed with a narrow Gaussian
kernel of 8mm at full width half maximum FWHM, and
spatially normalized to a standard EPI template in the Montreal
Neurological Institute (MNI) space. Visual inspection after
every step was performed to ensure appropriate quality of
preprocessing. The CONN fMRI functional connectivity toolbox
(63) was used to calculate the intrinsic connectivity contrast
(ICC) of each participant. Before the ICC calculation we used
CompCor, a strict noise reduction method, to remove data
components attributable to the signal from white matter and
cerebrospinal fluid (64). The method is based on white matter
and cerebrospinal fluid masks from the T1-weighted segmented
images and eliminates the need for global signal normalization
(65, 66). The demographic factors of Age and Education, and
the six subject-specific realignment parameters with their first
order derivatives were also factored-out before calculating the
ICC index (67). A temporal filter of 0.009 and 0.08Hzwas applied
to focus on low-frequency fluctuations (68).

Anatomical brain regions were found using SPM Anatomy
toolbox (69, 70) and MRIcroN (71).

Intrinsic Connectivity Contrast Analyses
The Intrinsic Connectivity Contrast (ICC) is a voxel-wise index
(a single number for each voxel) that represents how well-
connected each voxel is to the rest of the gray matter in the brain
(44). Following the calculation of the resting state ICC map for
each participant, the images were entered into a single multiple
regression analysis in SPM12. The design matrix of the model
included the following regressors: group (TBI vs. HC) and one
regressor for each of the cognitive measures (i.e., the composite
scores of executive function, verbal memory, visual memory,
attention/organization and cognitive reserve). The design matrix
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also included age, years of education, and time since injury as
regressors of no interest. To capture any motion-related artifacts,
motion parameters were also included in the model. Sex was not
included in the design matrix since all participants were males.
Automatic orthogonalization in SPM was applied to address the
problem of collinear regressors in the model. Following false
discovery rate (FDR) correction for multiple comparisons across
the whole brain, a statistical threshold of p < 0.05 was used.

Associations between the estimated neuropsychological
measures and ICCs were tested using a voxel–wise approach
within the general linear model framework. Specifically,
we assessed the whole brain correlation between each
neuropsychological measure and the voxel level ICC of each
group, as well as the interaction between the neuropsychological
measure and the variable Group (participants with TBI vs. HC)
in the multiple regression model described above.

Seed-Based Analyses
The ICC index is a global functional connectivity index and
does not provide information on the spatial extent of functional
connectivity. For this reason and, in order to calculate within-
group functional connectivity maps of the regions found to
be associated with each of the neuropsychological measures,
we employed seed-based analysis using the CONN fMRI
toolbox. This analysis also allowed us to examine between-group
(participants with TBI vs. HC) spatial differences in network
integrity.

RESULTS

Demographics and MRI
Two-tailed, two-sample t-tests revealed that the groups with
TBI and HC participants were very similar in terms of age and
education (all t < 1). Any significant differences in the following
comparisons between the two groups cannot, thus, be attributed
to sample differences in terms of gender, age or education.

Structural and morphological imaging findings in TBI
participants included atrophy, impaired white mater integrity,
gliosis, and haemosiderin depositions (demonstrated in SWI
images). All of the above findings are compatible with chronic
head trauma. None of the healthy participants showed any
microbleeds. Neither superficial siderosis nor other significant
pathology was detected in any participant.

Cognitive Measures
One-tailed independent samples t-tests were conducted in order
to compare the performance of the two groups on the constructed
measures of Verbal Memory, Visual Memory, Executive
Functions, Attention/Organization, and Cognitive Reserve. As
shown in Table 2, compared to the non-injured HC participants,
the performance of participants with TBI was significantly
lower on the neuropsychological constructed measures of Verbal
Memory, Attention, and Executive Functions. The performance
on the remaining twomeasures of Visual Memory (p= 0.06) and
Cognitive Reserve (p = 0.07) did not differ significantly between
the two groups.

Intrinsic Connectivity Contrast
Figure 1 depicts the within-group ICC maps for the TBI and the
HC groups showing that HC brains appear to be more connected
than TBI patients’ brains. Specifically, in both groups, within-
group high ICC was observed in posterior regions including
the lateral occipital cortex, the angular gyrus, the occipital
pole, the supramarginal gyrus, the superior parietal lobule, and
the precuneus. High ICC maps were also observed in the
frontal pole, the middle frontal gyrus, and the superior frontal
gyrus.

However, of main interest here are specific areas that
correlate with the cognitive measures. Several brain areas in
the group with TBI, described in Table 3, exhibited significant
correlations between the cognitive constructed measures and
the corresponding within-group ICC maps. Specifically, the

FIGURE 1 | Within-group ICC maps for both groups. Results are presented on inflated brains created using the BrainNet tool (72). Images are displayed in

neurological convention (left is left). Color scale represents t-score values.
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within-group ICC maps at the left medial Temporal pole,
exhibited a significant positive correlation with Executive
Functions scores, whereas the left Putamen exhibited a significant
negative relationship. The within-group ICC maps at the
left medial temporal pole, left superior parietal lobule, right
inferior frontal gyrus, and the superior part of the right medial
frontal gyrus exhibited a significant positive correlation with
the Verbal Memory scores, whereas the right precuneus and
right angular gyrus exhibited a significant negative relationship
with the Verbal Memory scores. The left middle temporal gyrus
exhibited a significant positive correlation with Visual Memory
scores, whereas the left putamen, left superior orbital gyrus, left
hippocampus, left pallidum, and right anterior cingulate cortex
(ACC), exhibited a significant negative correlation with Visual
Memory scores. The left superior temporal gyrus exhibited a
significant positive correlation with Attention scores, whereas
the left putamen and right ACC exhibited a significant negative
correlation with Attention scores. The left superior temporal
gyrus exhibited a significant positive correlation with Cognitive
Reserve scores.

A positive correlation between the ICC score and the score
on a composite measure in the above analyses indicates that
global connectivity in a specific brain area and the corresponding
cognitive function move in the same direction, that is, increased
global connectivity of that specific brain area is associated with
better ability to exercise the corresponding cognitive function
or reduced connectivity is associated with impaired cognitive
ability. On the contrary, a negative correlation indicates that
global connectivity at a specific brain area and the corresponding
cognitive function move in opposite directions, where either
increased connectivity is associated with better cognitive ability

or reduced connectivity is associated with impaired cognitive
ability.

Significant between-group interactions of ICC correlations
with cognitive measures are shown in Figure 2. All significant
correlations were strong as indicated by all r>0.68. Specifically,
the correlation between ICC in the right middle temporal gyrus
and Executive Functions was negative in the healthy controls
and positive in the participants with TBI (Figure 2A); between
ICC in the right inferior temporal gyrus and Verbal Memory was
positive in the healthy controls and negative in the participants
with TBI (Figure 2B); between ICC in the right middle frontal
gyrus and Cognitive Reserve was positive in the healthy controls
and negative in the participants with TBI (Figure 2C); between
ICC in the left temporal pole and Cognitive Reserve was negative
in the healthy controls and positive in the participants with
TBI (Figure 2D); between ICC in the left subcallosal cortex
and Cognitive Reserve was negative in the healthy controls and
positive in the participants with TBI (Figure 2E).

Seed-Based Analyses
Figure 3 depicts the within-group functional connectivity maps
of each group calculated using as seeds the regions that exhibited
a significant relationship between the TBI within-group ICC
maps and each of the neuropsychological measures (see Table 3).
Figure 4 depicts the within-group ICCmaps calculated from seed
areas that displayed a significant between-group interaction with
the cognitive measures.

Figure 5 shows the between-group functional connectivity
differences in the TBI and healthy control groups using as seeds
the brain areas with significant relationships between the TBI
within-group ICC maps and each of the neuropsychological

TABLE 3 | Within-group correlations between ICC and cognitive measures (p-FDR < 0.05 corrected) for the TBI patients.

Neurocognitive measure Brain region Relationship

direction

MNI coordinates Cluster

size

(mm3)

T-value Cluster

p-unc.

Cluster

p-FDR
X Y Z

Executive Functions L Inferior Temporal gyrus Positive −40 8 −40 38 9.58 0.000 0.011

L Putamen Negative −10 8 −6 219 −13.30 0.000 0.000

Verbal Memory L Medial Temporal pole Positive −50 8 −28 74 12.36 0.000 0.000

L Middle Temporal gyrus Positive −62 −14 −12 50 10.83 0.000 0.001

R Inferior Frontal gyrus Positive 42 30 −22 43 10.70 0.000 0.002

L Superior Parietal lobule Positive −24 −68 64 22 9.28 0.002 0.033

R Superior Medial Frontal gyrus Positive 16 62 14 22 6.52 0.002 0.033

R Precuneus Negative 30 −56 20 68 −14.18 0.000 0.000

R Angular gyrus Negative 42 −46 22 52 −9.54 0.000 0.002

Visual Memory L Middle Temporal gyrus Positive −52 −6 −24 37 7.39 0.000 0.021

L Putamen Negative −18 20 −6 79 −17.08 0.000 0.000

R Anterior Cingulate Negative 10 28 −2 77 −11.73 0.000 0.000

L Superior Orbital Frontal gyrus Negative −12 22 −18 66 −10.92 0.000 0.000

L Hippocampus Negative −30 −32 −6 25 −10.47 0.000 0.021

L Pallidum Negative −8 2 −4 21 −8.95 0.002 0.037

Attention L Superior Temporal gyrus Positive −46 10 −24 77 8.48 0.000 0.000

L Putamen Negative −22 14 −6 52 −11.38 0.000 0.002

R Caudate Nucleus Negative 12 16 −10 34 −8.44 0.000 0.013

Cognitive Reserve L Superior Temporal gyrus Positive −46 10 −26 61 7.82 0.000 0.000

L, left hemisphere; R, right hemisphere; p-unc, p-value for the cluster uncorrected; p-FDR, p-value for the cluster corrected for multiple comparisons; T-value, t-value for peak voxel.
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FIGURE 2 | Voxel-wise correlations between ICC extracted from brain regions

depicted on the right-hand panels and individual scores in the cognitive

constructed measures along with the corresponding scatter plots (left-hand

panels). The scatter plots on the left show in detail the relationship between

ICC and cognitive measures in each of the statistical peaks for both groups

(TBI: solid lines, closed circles, HC: dashed lines, open circles). Results are

(Continued)

FIGURE 2 | overlaid onto a standard single subject T1-weighted MR-image

(ch2-template) in the MRICroN software (71). (A) Correlation between the

cognitive measure of executive function and right middle Temporal gyrus in

both groups. The correlation of ICC with executive function scores was

positive in participants with TBI [r(6) = 0.70; p = 0.04] and negative in the

healthy controls [r(9) = −0.92; p < 0.001] for the right middle temporal gyrus

[peak at x, y, z = 44, −70, 8; t(1,16) = 6.66; p-FDR < 0.05]. (B) Correlation

between verbal memory and right inferior Temporal gyrus in both groups. The

correlation of ICC with verbal memory scores was negative in participants with

TBI [r(6) = 0.79; p = 0.01] and positive in the healthy controls [r(9) = 0.85;

p = 0.001] for the right inferior Temporal gyrus [peak at x, y, z = 38, 2, −42;

t(1,16) = 6.01; p-FDR = 0.04]. (C) Correlation between cognitive reserve and

right middle Frontal gyrus in both groups. The correlation of ICC with cognitive

reserve scores exhibited a negative trend in participants with TBI but did not

reach statistical significance [r(6) = −0.46; p = 0.21], whereas it was positive

in the healthy controls [r(9) = 0.90; p < 0.001] for the right middle frontal gyrus

[peak at x, y, z = 32, 54, 30; t(1,16) = 6.13; p-FDR < 0.001]. (D) Correlation

between cognitive reserve and left Temporal pole in both groups. The

correlation of ICC with cognitive reserve scores was positive in participants

with TBI [r(6) = 0.84; p = 0.005] and negative in the healthy controls

[r(9) = −0.88; p < 0.001) for the left temporal pole [peak at x, y, z = −46, 24,

−28; t(1,16) = 6.46; p-FDR < 0.001). (E) Correlation between cognitive

reserve and left Subcallosal cortex in both groups. The correlation of ICC with

cognitive reserve scores was positive in participants with TBI [r(6) = 0.68; p <

0.05] and negative in the healthy controls [r(9) = −0.89; p <0.001] for the left

subcallosal cortex [peak at x, y, z = −6, 12, −26; t(1,16) = 6.80; p-FDR <

0.001]. Percent signal change, p.s.c.

measures. This analysis revealed that compared to the healthy
control group, participants with TBI showed greater functional
connectivity between the left middle temporal pole seed and a
region in left middle frontal sulcus [peak at x, y, z = −22, 8,
48; t(1, 16) = 3.69; pDFR = 0.022; Figure 5A], the left putamen
seed and a region in right postcentral gyrus [peak at x, y, z = 56,
−8, 36; t(1, 18) = 3.61; pDFR = 0.036; Figure 5B], and the
right angular gyrus seed and the left precuneus [peak at x, y,
z = −10, −80, 42; t(1, 17) = 3.65; pDFR = 0.001; Figure 5K].
Moreover, participants with TBI showed reduced functional
connectivity (compared to the healthy control group) between
the left pallidum seed and a region in left superior medial frontal
gyrus [peak at x, y, z = 6, 72, 10; t(1, 18) = 3.61; pDFR = 0.001;
Figure 5C], the left hippocampus seed and the right middle
frontal sulcus [peak at x, y, z = 30, 38, 26; t(1,18) = 3.61;
pDFR = 0.003; Figure 5D], the right precuneus [peak at x, y,
z = 16, −78, 48; t(1, 18) = 3.61; pDFR = 0.039; Figure 5E], the
right precentral sulcus [peak at x, y, z= 42,−12, 36; t(1, 18) = 3.61;
pDFR= 0.039; Figure 5F], the left superior occipital lobule [peak
at x, y, z = −10, −80, 42; t(1, 18) = 3.61; pDFR = 0.047;
Figure 5G], the right precentral sulcus [peak at x, y, z = 42, 2,
34; t(1, 18) = 3.61; pDFR = 0.047; Figure 5H], the left superior
orbito-frontal gyrus seed with the left calcarine sulcus [peak at
x, y, z = −14, −80, 10; t(1, 18) = 3.61; pDFR = 0.048; Figure 5I]
and the left inferior orbito-frontal gyrus [peak at x, y, z = −14,
14, −26; t(1, 18) = 3.61; pDFR = 0.048; Figure 5J], and the left
middle temporal gyrus seed and the left anterior cingulum [peak
at x, y, z= 0, 42, 0; t(1, 18) = 3.61; pDFR= 0.017; Figure 5L].

DISCUSSION

The main aim of this proof of principle study was to utilize
the ICC index to investigate whether changes in functional
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FIGURE 3 | Within-group functional connectivity maps calculated from seed areas showing significant correlations with the TBI participants. Voxels showing significant

positive functional connectivity are shown in red–yellow color scale, and voxels showing significant negative functional connectivity are shown in green-blue color scale.
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FIGURE 4 | Within-group functional connectivity maps calculated from seed

areas showing a significant interaction between the healthy controls and the

TBI participants. Voxels showing significant positive functional connectivity are

shown in red–yellow color scale, and voxels showing significant negative

functional connectivity are shown in green-blue color scale.

brain connectivity patterns in moderate-severe TBI are related
to cognitive outcome. Although TBI has been previously
associated with altered functional brain connectivity and with
impaired cognitive functioning, the relationship between these
two variables has not been explored. Due to the high prevalence
of TBI among males, we focused on a homogeneous group of
male participants with moderate-severe chronic TBI that had not
received any post-acute systematic comprehensive rehabilitation.
Studying this homogeneous group allowed us to gain a more
precise understanding of the true relationship between functional
connectivity and cognitive outcome in males by avoiding the
confounding effects of sex and rehabilitation (15, 47–51). We
utilized a novel index (ICC) to determine the global functional
connectivity at the level of individual voxels, (73) followed
by seed-based analyses to characterize the spatial extend of
functional connectivity changes. Our main finding was that
the brain areas exhibiting altered integrity of functional brain
connectivity at rest in participants with TBI, compared to
matched healthy controls, were associated with outcomes in
cognitive measures of executive function, verbal memory, visual
memory, attention/organization and cognitive reserve.

Within-group maps of the ICC were obtained in posterior
cortical areas (e.g., lateral and medial occipital areas), parietal
areas (e.g., angular gyrus and superior parietal lobe), frontal lobe
areas (including lateral, superior and medial regions), and lateral
and inferior temporal lobe areas, for both groups. However, close
visual inspection of the within-group functional connectivity
maps of participants with TBI and the corresponding maps of
healthy controls revealed that participants with TBI exhibited
similar maps albeit with more limited spatial extend. This finding
demonstrates that the strength of global connectivity between
several brain areas and the rest of the brain is altered in
chronic moderate-severe TBI, indicating that the impaired global
connectivity is a significant consequence of brain injury.

Similar reduced resting-state functional connectivity maps
have also been found in patients with mild cognitive impairment
and Alzheimer’s disease (74). In these neurodegenerative
diseases, reduced functional connectivity at rest reflects loss of
neurons that consequently affects connectivity and results in
breakdown of brain networks. It is suggested, therefore, that the
reduced structural brain connectivity [e.g., (75)] and reduced
brain volume due to the brain injury [e.g. (21)] that have
been observed previously may be responsible for the results of
altered global functional connectivity observed in this study.
Taken together with earlier findings on the impaired cognitive
functioning of the participants with TBI (compared to the healthy
controls), this study utilizing the ICC index provides a new line
of evidence for the suggestion that the injured brain remains
affected for many years after the initial insult.

The findings of the present study, using a similar methodology
to a recent report by Moreno-López et al. (73) that characterized
the association between depressive symptomatology and global
functional connectivity in TBI, complement previous reports in
highlighting that altered functional connectivity in chronic TBI
may be predictive of cognitive outcome (34–42, 76). Current
findings indicate for the first time that the strength of global
functional connectivity is related to the cognitive outcome of
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FIGURE 5 | Results of the between-group comparisons of the seed-based analyses overlaid on a template brain. Blue represents greater functional connectivity in the

TBI participants compared to the healthy controls. Red color represents greater functional connectivity in the healthy controls compared to the TBI participants. Small

brain images with green circles represent the seed area. Results are overlaid onto a standard single subject T1-weighted MR-image (ch2bet-template) in the MRICroN

software (71). Images are displayed in neurological convention (left is left). (A) Seed, left middle temporal pole. Peak, left middle frontal sulcus at x, y, z = −22, 8, 48;

t(1, 16) = 3.69; pDFR = 0.022. (B) Seed, left putamen. Peak, right postcentral gyrus at x, y, z = 56, −8, 36; t(1, 18) = 3.61; pDFR = 0.036. (C) Seed, left pallidum.

Peak, left superior medial frontal gyrus at x, y, z = 6, 72, 10; t(1, 18) = 3.61; pDFR = 0.001. (D) Seed, left hippocampus. Peak, right middle frontal sulcus at x, y,

z = 30, 38, 26; t(1, 18) = 3.61; pDFR = 0.003. (E) Seed, left hippocampus. Peak, right precuneus at x, y, z = 16, −78, 48; t(1, 18) = 3.61; pDFR = 0.039. (F) Seed,

left hippocampus. Peak, right precentral sulcus at x, y, z = 42, −12, 36; t(1, 18) = 3.61; pDFR = 0.039. (G) Seed, left hippocampus. Peak, left superior occipital lobule

[peak at x, y, z = −10, −80, 42; t(1, 18) = 3.61; pDFR = 0.047]. (H) Seed, left hippocampus. Peak, right precentral sulcus at x, y, z = 42, 2, 34; t(1, 18) = 3.61;

pDFR = 0.047. (I) Seed, left superior orbito-frontal gyrus. Peak, left calcarine sulcus [peak at x, y, z = −14, −80, 10; t(1, 18) = 3.61; pDFR = 0.048]. (J) Seed, left

superior orbito-frontal gyrus. Peak, left inferior orbito-frontal gyrus at x, y, z = −14, 14, −26; t(1, 18) = 3.61; pDFR = 0.048. (K) Seed, right angular gyrus. Peak, left

precuneus at x, y, z = −10, −80, 42; t(1, 17) = 3.65; pDFR = 0.001. (L) Seed, left middle temporal gyrus. Peak, left anterior cingulum at x, y, z = 0, 42, 0; t(1,18) =

3.61; pDFR = 0.017.

people with moderate-severe TBI, demonstrating that the ICC
index could potentially prove to be a useful imaging biomarker
in characterizing and monitoring the TBI impact on cognitive
performance.

An additional contribution of the current study may
lay in the fact that through combining the ICC index
analysis with more traditional seed-based analyses, our findings
contribute in the understanding of the relationship between
functional connectivity and cognitive processing in chronic
moderate-severe TBI, confirming well-established links between
executive functioning, verbal memory, visual memory, and
cognitive reserve, with frontal, temporal, parietal, cerebellar, and
subcortical areas.

Specifically, the regions associated here with performance
on executive functions, including the putamen, the left medial

temporal pole and the right middle temporal gyrus, have been
previously implicated in executive functions, including goal-
directed behavior (77), executive control during performance in
visuospatial tasks (78), cognitive control during goal-directed
mental simulation (79), performance in a planning task (80), and
in a divided attention task (81), interference control (82), mental
rotation (83), mental updating (84), and task switching and
resolution of competition between potentially relevant tasks (85).

With regards to verbal memory, the finding that performance
in verbal memory is associated with functional connectivity in
temporal lobe regions is consistent with models in which medial
temporal cortex is involved in semantic processing across a range
of input modalities [including verbal, visual, and tactile (86–88)].
Moreover, the right inferior frontal gyrus was previously found
to be active during reading, semantic, and phonological decision
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tasks (89) and during deep processing of verbal information in
memory (90). The left superior parietal lobule showed significant
activity during memory retrieval of verbal information (91) and
increased fMRI activity in a letter delayed recognition task (92).
These findings support the view that the short-term retention
of verbal information is supported by regions that carry out
relatively early stages of acoustic, lexical, phonological, and
speech-based processing indicating that these brain regions may
have a dual function, the short-term maintenance in addition to
the precise encoding of this information (93).

Performance in the visual memory, attention/organization
and cognitive reserve was related to global functional
connectivity in brain areas that were previously shown to exhibit
activity during corresponding experimental tasks, confirming
well-established links between cognitive performance and brain
function. For instance, the left medial temporal gyrus has been
involved in delay-period activity in a delayed match to sample
short-term memory task for visual information (94), and activity
in this area during a similar visual short-term memory task
was found to be specifically related only to memory probes
indicating that it is specifically involved in visual memory
recognition (95). Brain regions with functional connectivity
related to attention/organization were found to exhibit activity
during attention tasks. For example, in a selective attention task
of car experts, the left superior temporal gyrus showed fMRI
activity that was specific to the attended condition (96). The
left Putamen showed significantly enhanced activity associated
with cued attention shifts during an auditory selective attention
task (97), and activity in this brain area was specific to covert
attention shifts, specifically when participants performed a covert
visual assessment of a peripheral stimulus in the absence of any
saccades (98). The right Caudate nucleus showed fMRI activity
related to the attended condition in a selective attention task
of car experts (96). Taken together, these findings demonstrate
that impaired global functional connectivity is associated with
cognitive outcome and it constitutes an important consequence
of brain injury.

Comparing functional connectivity between the two groups
revealed that the direction of relationship between global
functional connectivity (as measured with the ICC index) and
measures of executive functions, verbal memory, and cognitive
reserve was found to depend on whether the participants were
TBI survivors or healthy controls. These findings indicate that
perhaps the reduced structural brain connectivity and reduced
brain volume due to the brain injury (19) result in reduced
global functional connectivity in some brain areas but also could
produce increased global functional connectivity in other brain
areas, presumably in a way that compensates for the loss of
brain volume and structural brain connectivity. Furthermore,
reductions in cognitive performance in chronic moderate-severe
TBI have been associated with reductions in white matter and
gray matter volume that was not widespread, but followed a
fronto-thalamic pattern (21).

The small sample size of the TBI group constitutes the main
limitation of the current study. Nevertheless, the validity of
the present results is enhanced by the strict inclusion/exclusion
criteria adopted, and by the homogeneity of the participants
included. Specifically, most previous studies investigating the

effects of TBI on brain structure and function are affected by the
confounding factors of comprehensive post-injury rehabilitation
and sex. Comprehensive post-injury rehabilitation has been
shown to improve cognitive functioning in TBI (15, 47, 48).
For example, Till et al. (99) showed that the best predictor of
cognitive outcome at 2-5 years post-injury was the amount of
hours of rehabilitation at 5 months postinjury, independent of
injury severity or the initial severity of cognitive impairment. The
present study avoided the confounding effects of rehabilitation
by recruiting a group of participants that had not received
comprehensive post-injury rehabilitation, thus gaining a more
accurate understanding of the true effects of chronic TBI on brain
connectivity.

Sex constitutes another confounding factor of previous
research investigating the chronic effects of TBI on the brain.
For example, in animal models of TBI, females demonstrate
better outcomes compared to males, supporting the idea that
in TBI gonadal steroids (i.e., estrogen and progesterone) may
induce neuroprotective effects in TBI (100–103). However, the
findings on the effects of sex on cognitive outcome due to TBI
in humans are still very limited and with contradictory findings
(49, 50, 103, 104). In order to circumvent possible confounding
effects of sex and due to the higher prevalence of TBI among
males, compared to females (105), the current study focused on a
homogeneous group of male TBI participants.

Future work should focus on dissociating the effects of sex
and better understand the effects of rehabilitation on brain
connectivity. Moreover, future work should investigate the
temporal pattern of the functional connectome changes related
to moderate-severe TBI and should investigate if the ICC index
can be used as a surrogate imaging biomarker for prognosis,
treatment planning and prediction of cognitive outcome in TBI.
Changes to the functionally related neural networks in the resting
state could also be studied during the recovery phase before
and after the application of state-of-the-art neurorehabilitative
interventions to assess their effectiveness. Additionally, future
studies may find it useful to employ ICC maps along with
DTI and brain volumetric data in order to provide a more
accurate characterization of the underlying neurophysiological
and structural sequalae in chronic moderate-severe TBI.

CONCLUSION

In conclusion, this study demonstrated that cognitive
impairments of participants with TBI associated with outcomes
in cognitive measures of executive functions, verbal memory,
visual memory, attention/organization, and cognitive reserve are
related to altered integrity of global functional brain connectivity
at rest. These findings, which are associated with differences
in network connectivity in frontal and temporal cortical and
subcortical networks and persist for several years after the injury,
may account for part of the unaccounted variance regarding the
neurophysiological substrates of cognitive deficits in chronic TBI.
Larger studies are warranted to validate the above findings across
the severity continuum, link ICC with anatomical connectivity
patterns (e.g., using DTI) and further explore the utility of the
ICC as an index of neuropathology following TBI.
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