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Abstract: We have recently solved the tumbling-snake model for concentrated polymer solutions
and entangled melts in the academic case of a monodisperse sample. Here, we extend these studies
and provide the stationary solutions of the tumbling-snake model both analytically, for small shear
rates, and via Brownian dynamics simulations, for a bidisperse sample over a wide range of shear
rates and model parameters. We further show that the tumbling-snake model bears the necessary
capacity to compare well with available linear and non-linear rheological data for bidisperse systems.
This capacity is added to the already documented ability of the model to accurately predict the shear
rheology of monodisperse systems.

Keywords: polymer melt; stochastic differential equation; link tension coefficient; entanglements;
bidisperse systems

1. Introduction

Understanding the rheological behavior of polymeric systems is of paramount importance in
current efforts to improve and optimize upon their processing properties. Polymeric systems of
industrial interest are basically never strictly monodisperse, rather they exhibit a distribution of
molecular weights. Such a complexity necessitates the modeling of polydisperse polymeric samples.

An important tool that has shown the constitutive maturity and the overwhelming capacity
to improve upon our understanding of the rheological behavior of high-molecular-weight (MW)
entangled polymer melts and concentrated polymer solutions, both under equilibrium and flow
conditions, is the tube-reptation model by de Gennes and Doi & Edwards (DE) [1–3]. According to
this model, the high-MW chains are confined within an effective mean-field tube constructed by the
topological constraints imposed by chains surrounding it. As a result, the test chain may escape the
tube only via a one-dimensional diffusion (termed reptation) along the tube’s centerline, which requires,
approximately, time equal to the reptation or disengagement time, τd. Several modifications have
emerged over the years in an attempt to deal with remaining shortcomings. Under no-flow conditions,
the incorporation of two such mechanisms were (i) contour length fluctuations (CLF), in which one
considers the breathing motion of chain ends allowing for a faster, than reptation, relaxation of chain
ends, and (ii) constraint release (CR), accounting for the dynamical release of entanglements [2,4,5].
Their incorporation allowed for a quantitative description of the linear viscoelastic (LVE) properties of
monodisperse entangled polymer systems [4–7]. Under flow, the consideration of e.g., chain stretch
due to the flow-induced stretching of the tube [8], finite extensibility, [9,10] and convective constraint
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release (CCR), accounting for an on-average release of entanglements due to flow [10–13], have
improved the comparison with rheological data, although they leave space for further improvement.

The tube-reptation model has also been applied to predicting the rheological behavior of
bidisperse polymer blends. Pattamaprom and Larson [14] compared the predictions of the
Doi-Edwards-Marrucci-Grizzuti (DEMG) [8,15] and the Mead-Larson-Doi (MLD) [16] (which added
the CCR mechanism to the DEMG model) models with their rheological data in start up of steady
shearing of concentrated bidisperse polystyrene solutions. They noted that although the MLD model is
superior in capturing the steady-state rheological behavior, it predicts lower overshoots in the transient
start up of shear than the DEMG model, whose predictions are closer to the observed results. The
MLD model has also been noted to be in good agreement with steady state and transient extensional
flow experimental data [17]. Leygue et al. [18] developed a model accounting for reptation, CLF,
CR, CCR and stretch effects, which they coined the CRAFT (constraint release on average full tensor)
model. When a polydisperse system is considered, the CCR effect must be computed from the rate
of relaxation of all components. They noted that the model was able to compare well with the shear
data of Pattamaprom and Larson [14] and the extension data of Ye et al. [17]. Read et al. [19] extended
the GLaMM (Graham, Likhtman & McLeish, Milner) model [20], known to predict the nonlinear
shear and extension behavior of entangled solutions of monodisperse linear polymers, to the case
of bidisperse polymer melts. The GLaMM model included contributions from reptation, CR, CLF
and (in the nonlinear regime) chain stretch. They added that their model compares well against
several experimental datasets on bidisperse blends, particularly predicting the onset rate of extension
hardening.

A similar, albeit different, formulation aiming to address the rheological response of high
MW polymeric melts and concentrated solutions is the model developed by Curtiss & Bird [21]
by employing a phase-space formulation within the kinetic theory of undiluted polymers [21–23].
We have recently coined it as the tumbling-snake model [24], as it allows for both orientational and
curvilinear diffusion of polymer segments. This model entails, as the original tube-reptation model,
the solution of a Fokker-Planck (FP) for the single-link distribution function, f (σ, u, t), that describes
the probability that at time t a chain segment at contour position σ ∈ [0, 1] along the chain is oriented
in direction u, with u and σ independent dynamical variables, and |u| = 1. Segmental motion is
not considered strictly as a one-dimensional reptation along the polymer’s backbone but the chain
is also allowed to explore the surrounding space perpendicular to its backbone movements (that we
may identify as CR events) controlled by model parameter ε′ ∈ [0, 1]. The strictly one-dimensional
diffusion process of Doi & Edwards is recovered when ε′ = 0, while ε′ = 1 corresponds to the absence
of curvilinear diffusion. Furthermore, the extra (polymeric) stress tensor, see Equation (1) below,
contains a term due to the anisotropy of the friction tensor, ζ = ζeq [δ− (1− ε)uu] involving the, so
called, link tension coefficient ε ∈ [0, 1]; if ε = 0 there is no friction against motion in the direction u.
The stress tensor of the Doi-Edwards model is recovered for ε = 0. This is very important as Curtiss
and Bird did not employ the concepts of the confining tube and the existence of slip-links in their
formulation. Curtiss, Bird and their coworkers solved only the analytically tractable model when
ε′ = 0 [21–23,25,26].

We have recently solved the tumbling-snake model for ε′ > 0, via the use of Brownian Dynamics
simulations, for both steady-state [24,27,28] and time-dependent shear flow [24,28], as well as to
steady-state and time-dependent uniaxial [29] and planar elongation [30]. This solution scheme entails
the numerical integration of two coupled Itô stochastic differential equations for the variables Ut

(segment unit vector realization at time t) and σt ∈ [0, 1] (relative contour position at time t) (see
Equation (5) of Ref. [30]). The only modification to the original tumbling-snake model deemed
absolutely necessary was the consideration of a variable link tension coefficient, that vanishes in the
absence of flow, and is given by ε = ε0S2

2 [24,28], where S2 denotes the 2nd rank uniaxial nematic
order parameter of polymer segments [31], and ε0 is a flow-rate independent material constant. This
modification has improved upon certain disadvantages of their original model (i.e., exhibiting a
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constant link tension coefficient): the transient shear and elongational viscosities no longer approach
constant values at small times, and spurious time oscillations of the transient second normal stress
in startup of shear flow are absent [24,28]. Furthermore, the modified version of the model no
longer violates the stress-optic rule, expected to hold close to equilibrium (at larger extensional rates
chain stretch becomes non-linear and a failure of the stress-optic rule is expected [32]). It should be
stressed that the use of a variable link tension coefficient does not serve to merely amend problematic
predictions, but it also bears a microscopic interpretation: When small deformation rates are applied
the polymer chain is expected to keep, approximately, its equilibrium configuration and thus the
tension stored in each entanglement strand should be the equilibrium one, i.e., ε→ 0 (see also Example
19.1-1 in Ref. [21]).; the same should hold at early times for any deformation rate [24,28]. This is
tantamount to having no friction against motion in the direction u, i.e., as the DE treatment.

These works illustrated that the tumbling-snake model is able of capturing the damping behavior
of the transient viscosity in start-up shear experiments at high rates [33–35]; at the same time,
it correctly predicts the absence of such undershoots in both normal stress coefficients, in line
with experimental data [24,28]. This damping behavior has been attributed to the shear-induced
rotational motion of chains [28,35], in line with atomistic non-equilibrium molecular dynamics
simulations [36–38]. As a result, similar undershoots are not expected to occur in elongational flows,
due to their irrotational character, which is indeed predicted, without further modifications, by the
tumbling-snake model [29,30]. The tumbling-snake model is also able of capturing the peculiar
experimental extensional rheological data, according to which the extensional viscosity of polymer
solutions is noted to exhibit thinning below the inverse Rouse time and thickening above, whereas
the extensional viscosity of polymer melts is monotonically decreasing irrespective of the strain
rate [39–41], by having the strength ε0 of the link tension coefficient to increase as the polymer
concentration decreases [29].

It is worthwhile stressing that the kinetic-theory-based framework employed by Bird et al. [21]
is not restricted to entangled polymer melts or concentrated polymer solutions. This is in complete
contrast to the tube-reptation theory for which the existence of the mean-field tube necessitates the
fact that the MW is beyond the entanglement threshold; strictly speaking, unentangled polymer
melts would be confined within a mean-field tube with infinite diameter. On the other hand, the
kinetic theory employed by Bird et al. has been used to tackle both dilute polymer solutions and
concentrated polymer solutions and polymer melts, see Chapters 17 and 19 of Ref. [21], respectively.
Although different mathematical expressions are employed, the same approximations are made for
both dilute and undilute polymer chains, with the exception of the mild-curvature approximation
(needed to specify that the configuration-space distribution function has significant value only for
those configurations in which the chain is approximated by a continuous curve bearing continuous
space derivatives, i.e., needed in order to define the single-link distribution function) [21]. This is also
exemplified by the comment made by Bird et al. that the parameters employed in their treatment
of entangled polymer melts or concentrated polymer solutions, ε′ and ε, roughly correspond to the
parameters σ and β employed in their kinetic-theory treatment of elastic dumbbells (see Section 13.7
of [21]). Overall, the kinetic-theory treatment employed by Bird et al. offers us the ability to employ a
unified approach to study the dynamics of polymeric systems in both their dilute and undilute states.

In industrial applications, monodisperse polymeric samples are never employed. It is for this
reason that we attempt in this work to study the rheological response for the second simplest test
case, that of a bidisperse melt of linear polymers with two chain lengths, one short and one long, both
considered to be long enough to be entangled. Such an endeavor will be vital in our efforts to provide
a rigorous modeling of the more intricate case of highly polydisperse industrial polymer resins. Such
an undertaking has not been done before in the case of the tumbling-snake model, with the exception
of the paper of [42] for the steady-state shear compliance for the analytically tractable case where
(ε′ = 0). Schieber [43,44] further considered the use of this model for a polydisperse system (when a
Flory-Schulz or a log-normal MW distribution is considered).
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The structure of this manuscript is as follows: In Section 2 we revisit the stress tensor of the
tumbling-snake model to account for polydispersity [21,42–44]. In Section 3, we provide the series
expansion of the material functions in the case of steady-state shear for small dimensionless shear rates
for comparison with limiting results presented in Section 5. Similarly, in Section 4 we derive analytic
expressions for the storage and loss moduli and the complex viscosity. In Section 5 we actually solve
the model numerically using data accumulated from the Brownian dynamics simulation executed
for the monodisperse samples [24,27,28]. We then conclude with Section 6 where we discuss the
significance of this work.

2. Stress Tensor

In the case of a polydisperse polymer with “polymerization degree” Na for species a related
to the number of entanglements , Za, introduced by Doi and Edwards, via Na = 3Za, and polymer
number density na, the time-dependent (extra or polymeric) stress tensor τ of the tumbling-snake
model subjected to a homogeneous flow field characterized by the transposed velocity gradient tensor
κ is given by [21,42–44]

−τ(t)
G

= ∑
a

wa

[
(1− ε′)

(
〈uu〉(1)a (t)− 1

3
I
)
+ 3ε′0

(
〈uu〉(2)a (t)− 1

18
I
)
+ ε Ba(t)

]
, (1)

with modulus G = ρkBT/M0, temperature T, molecular weight corresponding to the portion of the
chain corresponding to “one bead” (that, given Na = 3Za, can be related to the entanglement molecular
weight via Me = 3M0), gas constant R, unit tensor I, mass fraction wa = naNa/(∑i ni Ni), coefficients
ε′ and ε′0 interrelated via ε′0 ≡ ε′(Na − 1)2, and a link tension coefficient ε. When the polydisperse
system is comprised of components of the same chemical composition the mass and mole fractions are
identical to the volume fractions φa. We consider that ε′0 is a universal parameter and does not depend
on concentration. As mentioned above, we did not consider a constant ε, as the original treatment of
Curtiss & Bird, but related this parameter to the uniaxial order parameter S2 [24,28]. We here consider
the following generalization to be employed for polydisperse systems:

ε = ε0S2
2,av,

S2
2,av =

3
2 ∑

a
watr

(
〈uu〉(1)ani,a · 〈uu〉(1)ani,a

)
, (2)

〈uu〉(1)ani,a = 〈uu〉(1)a −
1
3

I,

The stress tensor (1) and the average uniaxial order parameter S2,av (2) involve the following
orientational averages calculated with the solution of the corresponding FP equation [21] for the
single-link orientational distribution function fa(σ, u, t)

〈uu〉(1)a (t) =
∫ 1

0
dσ
∫

du fa(σ, u, t)uu

〈uu〉(2)a (t) =
∫ 1

0
σ(1− σ)dσ

∫
du fa(σ, u, t)uu, (3)

Ba(t) = λaκ :
∫ 1

0
σ(1− σ)dσ

∫
du fa(σ, u, t)uuuu,

where
∫

du denotes an integral over the unit sphere, λa a time constant proportional to λ0 = ζa2/2kBT,

N1+β and N2
a , where β is a chain constraint exponent, N = ∑a xaNa (xa the mole fractions) and

κ : uu = (κ · u) · u stands for a two-fold contraction. It should be stressed that now the reptation or
disengagement time is not given via τd,a = λa/π2. This is due to the consideration by Doi-Edwards of
the form τd,a ∼ N3

a whereas the relaxation time selected by Curtiss-Bird also involves N in addition to
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Na [21,42]. Further note that we are adopting throughout the nomenclature of Bird et al. [21], while the
τ in (1) is a pressure tensor, and thus the negative stress tensor, in the majority of scientific literature.

3. Small Shear Rate Expansion in the Stationary State

Analytical expression of the shear material functions as expansions with respect to the shear
rate can be derived analytically following our previous work on monodisperse systems [24,27,28].
Such results are very useful, given that the error bars obtained from Brownian dynamics increase
with decreasing rate. The approach to derive analytical results is based on a spherical harmonics
expansion of the single-link distribution function around equilibrium. This has already been done
previously [24,27,28]; here we employ the expansions available for the orientational averages (3)
(see Supplementary Section A of [28] and substitute Wi with γ̇λa) and use them in the stress tensor
expression (1). To readily compare against the available theoretical expressions we will also consider
here the constant ε case.

3.1. Stationary Regime, Constant ε

Upon inserting the expansions of the orientational averages available in Equation (A1) of the
Supplementary Material of Ref. [28] into the stress tensor Equation (1) we obtain the material functions
(the shear viscosity, η ≡ −τyx/γ̇, and the two normal stress coefficients, Ψ1 ≡ −(τxx − τyy)/γ̇2 and

Ψ2 ≡ −(τyy − τzz)/γ̇2, respectively) up to second order in Wi = γ̇λL,p where λL,p = λ0N3+β
L is the

relaxation time of the pure long component

η

GλL,p
=

1
60

(
1 +

2ε

3

)
λ

λL,p
− 2

245

[
4∆3(1− ε) +

23
3

∆2

(
1− 2ε

23

)]
λ3

λ3
L,p

Wi2,

Ψ1

Gλ2
L,p

=
2∆1

15
λ2

λ2
L,p
− 4

63

(
∆5 +

3
35

∆4 − ε∆3

)
λ4

λ4
L,p

Wi2, (4)

−Ψ2

Gλ2
L,p

=
4∆1

105
(1− ε)

λ2

λ2
L,p
− 2(1− ε)

(
4∆4

5145
+

∆5

63
− ∆6

3773

)
λ4

λ4
L,p

Wi2,

where the coefficients ∆i, i = 2, .., 6 are defined in Supplementary Equation (A1b) of Ref. [28] and
λn = ∑a waλn

a , with λ ≡ λ1. These expressions match Equations (19.6-13) to (19.6-15) of [21] in the
special case ε′0 = 0.

3.2. Stationary Regime, Variable ε

If, instead of a constant link tension coefficient, we consider the variable link tension coefficient of
the tumbling snake model given by Equation (2), then, up to third order O(Wi3) we obtain

ε(γ̇) = ε0
4
75

λ2

λ2
L,p

(Γ1Wi)2 , (5)

where Γ1 is a numerical coefficient

Γ1 = 12
∞

∑
ν=1,odd

1
(πν)2K2

(6)
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that first appeared in the Supplementary Equation (A1b) of Ref. [28]. The corresponding steady-state
material functions are given, up to O(Wi3), by

η

GλL,p
=

1
60

λ

λL,p
− 2

245

(
4∆3 +

23
3

∆2

)
λ3

λ3
L,p

Wi2 + ε0
2

3375
λ2

λ2
L,p

(Γ1Wi)2 ,

Ψ1

Gλ2
L,p

=
2∆1

15
λ2

λ2
L,p
− 4

63

(
∆5 +

3
35

∆4

)
λ4

λ4
L,p

Wi2, (7)

−Ψ2

Gλ2
L,p

=
4∆1

105
λ2

λ2
L,p
− 2

(
4∆4

5145
+

∆5

63
− ∆6

3773

)
λ4

λ4
L,p

Wi2,

or

η

η0,L
=

η0

η0,L
− 24

49

(
4∆3 +

23
3

∆2

)
λ3

λ3
L,p

Wi2 + ε0
8

225
λ2

λ2
L,p

(Γ1Wi)2 ,

Ψ1

Ψ1,0,L
=

Ψ1,0

Ψ1,0,L
− 10

21∆1

(
∆5 +

3
35

∆4

)
λ4

λ4
L,p

Wi2, (8)

Ψ2

Ψ2,0,L
=

Ψ2,0

Ψ2,0,L
− 105

2∆1

(
4∆4

5145
+

∆5

63
− ∆6

3773

)
λ4

λ4
L,p

Wi2,

As first illustrated by Schieber et al. [21,42], the zero-rate material functions can alternatively be
written this way

η0

η0,L
=

(
Mn

M0

)1+β Mw

M0

Mz

M0
,

Ψ1,0

Ψ1,0,L
=

(
Mn

M0

)2+2β Mw

M0

Mz

M0

Mz+1

M0

Mz+2

M0
, (9)

Ψ2,0

Ψ1,0
= −2

7
,

where Mn is the number-averaged molecular weight, and Mw is the weight-averaged molecular weight.
Note that the ratio of the zero-rate viscometric functions is seen not to be affected by polydispersity
and is always given as Ψ2,0/Ψ1,0 = −2/7, independently of ε′0 and ε0. We have also used the
notation [21,42]

Mz+j =
∑i wi M

j+2
i

∑k wk Mj+2
k

, (10)

The quantities Mz−2 and Mz−1 are equal to Mn and Mw, respectively.

4. Linear Viscoelastic Regime

The link tension coefficient vanishes in the linear viscoelastic regime [24,28]. Thus, the expressions
for the storage and loss moduli are given as [24]

G′(ω) =
G
5 ∑

a
wa

∞

∑
ν=1,odd

8K2

(πν)4
(ωλa)2

(ωλa)2 + K2
2

,

G′′(ω) =
G
5 ∑

a
wa

∞

∑
ν=1,odd

8K2
2

(πν)4
ωλa

(ωλa)2 + K2
2

, (11)



Polymers 2019, 11, 376 7 of 19

where Kj = (1− ε′)(πν)2 + j(j + 1)ε′0. For small frequencies,

G′(ω) =
G∆1

15
(ωλ)2,

G′′(ω) =
G
60

ωλ, (12)

where ∆1 ≡ 24 ∑∞
ν=1,odd

1
(πν)4K2

, whereas for large frequencies,

G′(ω) =
G
10
[
ε′0 + 2(1− ε′)

]
,

G′′(ω) ∼ ω−1, (13)

Here we have employed Equation (B8) of Ref. [24] and G′(ω)/G = ∆1(0)(ωλ)2/15, correcting a typo
in Equation (B6) of the same reference. The magnitude of the complex viscosity is then given as

|η∗(ω)| =
√
[G′(ω)]2 + [G′′(ω)]2/ω, (14)

Thus, for small frequencies, |η∗(ω)| = η0, whereas for large frequencies,

|η∗(ω)| = G
10ω

[
ε′0 + 2(1− ε′)

]
, (15)

Note that at large frequencies both the storage modulus and the magnitude of the complex viscosity
become independent of the composition of the polydisperse sample and of all parameters with the
exception of ε′0 and G.

5. Brownian Dynamics Results

Having derived analytical expressions for the various regimes, we now turn to the presentation
of the full rate-dependent exact numerical results for the tumbling-snake model. Here we merely used
the data accumulated via the Brownian dynamics (BD) algorithm that we employed previously for
monodisperse samples [24,27]. Further, we focus in the following to bidisperse systems where the two
components, termed as the long and the short one, are of the same chemical composition (thus, the
volume fraction will be employed instead of the mass fraction).

All figures presented in this manuscript are generated using the variable link tension coefficient;
given that the constant ε predictions come with undesirable consequences, we choose not to show
these predictions. The analytical results, Equation (8), will be used to test the simulation results, and to
extend their validity to “infinitely” small shear rates, where simulation results tend to become more
difficult to sample; corresponding figures are depicted in Section 5.2.

5.1. Linear Viscoelastic Behavior

In Figure 1 we depict how the scaled zero-shear rate viscosity, η0/η0,L, panel (a), and first normal
stress coefficient, Ψ1,0/Ψ1,0,L, panel (b), vary with the volume fraction of the long chains, φL, for various
values of the parameters β and NS/NL. Note that the second normal stress coefficient is equal to
−(2/7)Ψ1,0 (Equation (9)) and thus there is no need to depict it separately. We note that under constant
β, by increasing the ratio NS/NL both material functions increases as expected, whereas when keeping
NS/NL constant and increasing β the material functions decrease. In reality, these two parameters are
not to be fitted arbitrarily against experimental data, since NS and NL are dictated by the molecular
weight of the two components and chemistry (via Me), whereas β can be obtained through the ratio
between the zero-rate viscosities of the two components (see Section 5.3). Note that by choosing to
scale the first normal stress coefficient with Ψ1,0,L then there is no dependency from the parameter ε′0.
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Figure 1. Model predictions for the zero-rate shear viscosity (a) and the first normal stress coefficient
(b), scaled with their corresponding values for the pure long component, for various model parameters
as a function of φL. NS and NL denote the polymerization degree of the short and long component,
respectively, and β is the chain constraint exponent.

Next, in Figure 2 we investigate the predictions of the tumbling-snake model for |η∗| as a function
of the dimensionless frequency (note that Rouse mode contributions are not included in Figures 2–4).
Firstly, we should note that at small frequencies the |η∗| approaches the zero-rate viscosity and thus its
value there is dictated by Equation (9). By increasing the value of ε′0 from 0 [Figure 2a] to 0.5 [Figure 2b]
the |η∗| curves shift towards larger frequencies, due to the dependency of K2 on ε′0. On the other
hand, by increasing the ratio NS/NL but keeping ε′0 constant the zero-rate viscosities, as also alluded
to previously, come closer to each other [panel (c)], whereas the opposite occurs when increasing the
value of β [panel (d)]. In all cases, however, and irrespective of the values of the parameters, the
behavior at large frequencies is seen to be depend only on ε′0 and G with a power-law exponent equal
to −1 and is given by Equation (15).

We turn to the investigation of predictions of the tumbling-snake model for the dimensionless
storage modulus, G′/G, as a function of the dimensionless frequency (Figure 3). As dictated by
Equation (12), at small frequencies G′/G scales as ∼ ω2, and by increasing φL the curves shift to
smaller frequencies. By increasing the value of ε′0 from 0 [Figure 3a] to 0.5 [Figure 3b] the G′ curves
shift slightly towards larger frequencies and upwards, due to the dependency of K2 on ε′0. On the
other hand, by increasing the ratio NS/NL but keeping ε′0 constant the curves come closer to each
other [panel (c)], whereas the opposite occurs when increasing the value of β [panel (d)]. Again, with
the exception of ε′0 and G, as was the case in Figure 2, the behavior at large frequencies is seen to be
independent of the parameter values, and is given explicitly by Equation (13).

Finally, in Figure 4 we investigate the predictions of the tumbling-snake model for the
dimensionless loss modulus, G′′/G as a function of the dimensionless frequency. G′′ is proportional
to ω at small frequencies. Upon increasing φL the curves, as was the case for the storage modulus,
shift to smaller frequencies. A second maximum appears at smaller frequencies which becomes more
pronounced as φL increases. As we increase the value of ε′0 from 0 [Figure 4a] to 0.5 [Figure 4b] the G′′

curves shift slightly towards larger frequencies and upwards, whereas, by increasing the ratio NS/NL
but keeping ε′0 constant, the curves come closer to each other [panel (c)]. Ultimately, by increasing the
value of β [panel (d)] the reversed effect takes place.
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Figure 2. Model predictions for |η∗|, scaled with the zero-rate viscosity of the pure long component, as
a function of the dimensionless frequency, ω̃ = ωλL,p, when (a) ε′0 = 0, NS/NL = 0.25, and β = 0, (b)
ε′0 = 0.5, NS/NL = 0.25, and β = 0, (c) , ε′0 = 0.5NS/NL =β = 0, and (d) ε′0 = NS/NL = β = 0.5, for
various values of φL.

Figure 3. Model predictions for the storage modulus, scaled with G, as a function of the dimensionless
frequency, ω̃ = ωλL,p, when (a) ε′0 = 0, NS/NL = 0.25, and β = 0, (b) ε′0 = 0.5, NS/NL = 0.25, and
β = 0, (c) , ε′0 = 0.5NS/NL =β = 0, and (d) ε′0 = NS/NL = β = 0.5, for various values of φL.
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Figure 4. Model predictions for the loss modulus, scaled with G, as a function of the dimensionless
frequency, ω̃ = ωλL,p, when (a) ε′0 = 0, NS/NL = 0.25, and β = 0, (b) ε′0 = 0.5, NS/NL = 0.25, and
β = 0, (c) , ε′0 = 0.5NS/NL =β = 0, and (d) ε′0 = NS/NL = β = 0.5, for various values of φL.

5.2. Non-Linear Regime

In Figure 5 we show the predictions of the variation of the shear viscosity, made dimensionless
using the zero-shear-rate viscosity of the pure long component, η/η0,L upon changing the long
component volume fraction whilst keeping NS/NL = 0.5 and β = 0. We note that for the original
Doi-Edwards model [ε′0 = ε0 = β = 0, panel (a)] by increasing the volume fraction the curves move
upwards, following Equation (8), and to smaller Wi, since the relaxation time increases as the volume
fraction increases. Note that for the pure short component, already large error bars are noted at small
shear rates; this trend is to become more severe in the two normal stress coefficients, as shown further
below in this section. We should also stress that these theoretical expressions not only provide the
zero-shear-rate asymptotes but also the downturn as Wi is further increased. By now increasing ε0 to
0.1 but keeping the non-tumbling case (ε′0 = 0) we note that the predictions in small and intermediate
Wi remain unaffected but at large Wi the shear viscosity is now seen to be the same independently
of φL. Furthermore, by keeping ε0 = 0 and considering the tumbling case (ε′0 = 0.5) we note that
the zero-shear limits are kept unchanged, as they should be, but the curves at intermediate and large
Wi are seen to shift upwards, leading to larger viscosity values [cf. panels (a) and (b)]. Finally, by
having ε′0 = 0.5 and ε0 = 0.1 once again leaves the small Wi predictions, until about Wi=100 when
φL = 1 and Wi = 103 when φL = 0, unaffected. Since at large shear rates, ε(Wi)→ ε0, the large shear
rates power-laws are the same as the one of the tumbling-snake model with a constant link tension
coefficient [27].



Polymers 2019, 11, 376 11 of 19

Figure 5. Predictions for the reduced shear viscosity, using the zero-rate viscosity of the pure long
component, as a function of dimensionless shear rate and for various values of volume fraction φL

from our analytical result Equation (8), shown by solid lines up to about Wi = 10, and from the BD
simulations (symbols) for (a) the DE model (ε′0 = ε0 = 0), (b) the analytically solvable Curtiss-Bird
model (ε′0 = 0, ε0 = 0.1) , and the tumbling snake model, when ε′0 = 0.5, and (c) , ε0 = 0, and (d) ,
ε0 = 0.1; in all cases NS/NL = 0.5 and β = 0. Note that different colors were employed for the BD
simulations (symbols) and for the analytical results at small shear rates (lines) for better visibility.

Next, Figure 6 depicts the predictions when keeping ε′0 = 0.5 and ε0 = 0.1 constant; by changing
NS/NL to 0.5 we note that both the low, as dictated by the analytical expression, and high Wi curves
come closer to the pure long one [cf. panel (a) with Figure 6d]. On the other hand, by increasing β to
0.5 the exact reverse effect is noted.

In Figure 7 we show the predictions of the variation of the first normal stress coefficient, made
dimensionless using the zero-shear-rate first normal stress coefficient of the pure long component,
Ψ1/Ψ1,0,L upon changing the long component volume fraction whilst keeping NS/NL = 0.5 and β = 0.
We note that in the case of the Doi-Edwards model [panel (a)] the small Wi predictions follow the
analytical results of Equation (8) but at large Wi, contrary to the shear viscosity cf. Figure 5a, the
predictions are the same irrespective of the volume fraction. The same is noted when having ε0 = 0.1
[panel (b)], although a slight shift upwards is noted in the intermediate and large shear rates. If we
keep ε0 = 0 and take ε′0 = 0.5 [panel (c)] then the curves move upwards slightly, keeping however
their corresponding zero-rate values unaffected, cf. Figure 7a, as was the case for the shear viscosity.
However, by having ε′0 = 0.5 and ε0 = 0.1 [panel (d)] the curves at large Wi are clearly noted to
separate.
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Figure 6. Predictions for the reduced shear viscosity as a function of dimensionless shear rate and
for various values of volume fraction φL from our analytical result Equation (8) (lines) and from the
BD simulations (symbols) for (a) β = 0 and (b) β = 0.5, keeping NS/NL = 0.5, ε′0 = 0.5, and ε0 = 0.1
constant.

Figure 7. Predictions for the reduced first normal stress coefficient, using the zero-rate first normal
stress coefficient of the pure long component, as a function of dimensionless shear rate and for various
values of volume fraction φL from our analytical result Equation (8) (lines) and from the BD simulations
(symbols) for (a) ε′0 = ε0 = 0, (b) ε′0 = 0, ε0 = 0.1, (c) ε′0 = 0.5, ε0 = 0, and (d) ε′0 = 0.5, ε0 = 0.1; in
all cases NS/NL = 0.5 and β = 0. Note that different colors were employed for the BD simulations
(symbols) and for the analytical results at small shear rates (lines) for better visibility.
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If now we keep ε′0 = 0.5 and ε0 = 0.1 constant and change NS/NL to 0.5, panel (a) of Figure 8, we
note that both the low Wi, as dictated by the analytical expression, and high Wi curves come closer to
the pure long one, whereas by increasing β to 0.5 the opposite effect is noted [panel (b)]. These are the
same conclusions as the ones reached for the shear viscosity.

Finally, we conclude by showing the predictions of the variation of the second normal stress
coefficient, as Ψ2/Ψ2,0,L as a function of Wi when changing the φL but keeping NS/NL = 0.5 and
β = 0 (Figure 9). We note that the error bars, especially for the low φL curves, are quite substantial,
to the point that a clear identification of the zero-rate limits is not possible from the BD simulations
alone, making the availability of the analytical results of Equation (8) of paramount importance.At
first, we note that by increasing the ε0 from 0 [panel (a)] to 0.1 [panel (b)] very modest changes occur
irrespective of the value of ε′0 (cf. panel (a) with (b) for ε′0 = 0 and panel (c) with (d) for ε′0 = 0.5). On
the other hand, by keeping ε0 = 0 and changing ε′0 from 0 [panel (a)] to 0.5 [panel (c)] leads to a shift
of all curves to larger shear rates. Note, however, that the curves at large shear rates are closer to the
pure long component one when ε′0 = 0.5. If then we keep ε′0 = 0.5 and ε0 = 0.1 constant and change
NS/NL to 0.5, panel (a) of Figure 10, we note that that the low, as dictated by the analytical expression,
Wi curves come closer to the pure long one, whereas by increasing β to 0.5 the opposite effect is noted
[panel (b)]. On the contrary, the predictions at large shear rates are seen to be almost unaffected by
these changes.

5.3. Comparison with Experimental Data

In this section, we compare model predictions against the linear and non-linear rheological data
of Pattamaprom and Larson [14] for highly entangled bidisperse polystyrene (PS) solutions. These
solution were at 7% volume fraction in the solvent tricresyl phosphate (TCP). The molecular weight is
ML = 8.42× 106 (Mw/Mn = 1.14) for the long component, and MS = 2.89× 106 (Mw/Mn =1.09) for
the short component. All rheological measurements presented below are depicted at 40 ◦C. Following
Pattamaprom and Larson, the value for the entanglement molecular weight in the solution was
estimated from the entanglement molecular weight in the melt via [45] Msolution

e = Mmelt
e θ−4/3, where

θ is the polymer volume fraction in the solution; for the PS solution data of Pattamaprom and Larson
θ = 0.07. Thus, using a value of Mmelt

e = 17, 000 gr/mol [45], we obtain Msolution
e = 5.89 × 105

gr/mol or that ZL = 14 and ZS = 4.9 and NL = 42 and NS = 14.7. Given that for the pure
components, η0,L/η0,S = (NL/NS)

3+β and the values of the zero-rate viscosities of the two components,
η0,L = 1.8× 104 Pa.s and η0,S = 400 Pa.s [14], we easily obtain the value of β = 0.626 and directly
employ the value of η0,L = 1.8× 104 Pa.s, which is seen to accurately predict the behavior also for
0 < φL < 1 [see Figure 11a]. The value for ε′0 = 10−3 is obtained by noting the power-law of the
shear viscosity at large shear rates (equal to −0.75) and referring to Figure 4 of Ref. [27] (for ε0 > 0).
The relaxation time of the pure long component, λL,p = 450 s is obtained by properly shifting the
predictions of the model for |η∗| [Figure 11b] and the non-linear material functions (Figure 12). Finally,
to accurately compare with the predictions of the shear viscosity we need to employ a volume-fraction
dependent ε0 of the form, ε0 = 0.18(1− 2φL/3). We had reached the same conclusion recently when
we needed to have the value of ε0 to increase as the polymer concentration, in polymer solutions,
decreases to match the behavior of the stationary extensional viscosity of PS polymer solutions [29].
This is tantamount to having the friction tensor become more isotropic with decreasing polymer
concentration. The same conclusion could be extended to bidisperse melts if we identify the short
component as acting as a solvent for the long one. This is actually the same as our previous treatment
mentioned above to match the behavior of the stationary extensional viscosity of PS polymer solutions
since the solvent employed by Huang et al. [40] in their rheological measurements is a styrene oligomer
with a MW far below the entanglement MW.
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Figure 8. Predictions for the reduced first normal stress coefficient as a function of dimensionless shear
rate and for various values of volume fraction φL from our analytical result Equation (8) (lines) and
from the BD simulations (symbols) for (a) β = 0 and (b) β = 0.5, keeping NS/NL = 0.5, ε′0 = 0.5, and
ε0 = 0.1 constant.

Figure 9. Predictions for the reduced second normal stress coefficient, using the zero-rate second
normal stress coefficient of the pure long component, as a function of dimensionless shear rate and
for various values of volume fraction φL from our analytical result Equation (8) (lines) and from the
BD simulations (symbols) for (a) ε′0 = ε0 = 0, (b) ε′0 = 0, ε0 = 0.1, (c) ε′0 = 0.5, ε0 = 0, and (d) ε′0 = 0.5,
ε0 = 0.1; in all cases NS/NL = 0.5 and β = 0. Note that different colors were employed for the BD
simulations (symbols) and for the analytical results at small shear rates (lines) for better visibility.
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Figure 10. Predictions for the reduced second normal stress coefficient as a function of dimensionless
shear rate and for various values of volume fraction φL from our analytical result Equation (8) (lines)
and from the BD simulations (symbols) for (a) β = 0 and (b) β = 0.5, keeping NS/NL = 0.5, ε′0 = 0.5,
and ε0 = 0.1 constant.

Overall, the predictions of the tumbling-snake model, both in the linear and the non-linear regime,
are noted to compare well with the experimental data. And it does so as well as other tube models
employed in the literature (see Section 1). We should here mention that the original Curtiss-Bird model,
i.e., the non-tumbling version with ε′0 = 0, fails to capture the rheological behavior at large shear rates
since for ε > 0 it predicts a constant power-law exponents of −1 and −2 for the viscosity and first
normal stress coefficient, respectively, whereas the experimental data exhibit power-law exponents
of −0.75 and −1.75, respectively. Further, the use of a constant ε value would lead to unfavorable
prediction in the transient behavior, despite having not showing it here.

Figure 11. Comparison of the predictions of the tumbling-snake model (lines) against experimental
data (symbols) [14] for (a) the zero-shear viscosity (where also the prediction for β = 0 is shown), and
(b) the |η∗|; the parameter values are NL = 42, NS = 14.7, β = 0.626, η0,L = 1.8× 104 Pa.s, ε′0 = 10−3

and λL,p = 450 s (the latter two needed only for |η∗|).
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Figure 12. Comparison of the predictions of the tumbling-snake model (lines) against experimental
data (symbols) [14] for (a) the shear viscosity, and (b) the first normal stress difference, as a function of
shear rate; in addition to the parameter values mentioned in Figure 11, a volume-fraction dependent ε0

is employed of the form ε0 = 0.18(1− 2φL/3).

6. Conclusions

In this work, we discussed the features of the tumbling-snake model for entangled bidisperse
polymer melts subjected to steady-state shear flow. Following our recent work [24,28], we employ a
variable link tension coefficient, given by ε = ε0S2

2,av [see Equation (2)], which has been noted to amend
several shortcomings of a constant link tension coefficient originally suggested by Bird et al. [21,25,26].
To the best of our knowledge, even the non-tumbling version of the model (ε′0 = 0) has not been
presented before in the case of a bidisperse system; Schieber [43,44] had only provided the predictions
for a polydisperse system. We have shown that the low shear rate predictions are in accord with the
theoretical results, Equation (8), which is important, particularly for the normal stress coefficients,
to identify accurately the zero-rate values, which are noted to depend strongly on both the volume
fraction of the long component, φL, and the ratio between the number of entanglements of the two
components, NS/NL. On the other hand, the predictions at large shear rates are seen, in many cases, to
be independent of these parameters. We have further shown that the predictions of the tumbling snake
model are in very good agreement with rheological data for highly entangled bidisperse PS solutions
in both the linear and non-linear regimes [14]. The model is as successful in predicting the linear and
non-linear rheological characteristics of bidisperse polymer blends as many tube models employed in
the past (see Section 1). These models all include the notions of reptation, CLF, CR, CCR and stretch
effects. Our current version of the tumbling snake model only includes reptation (the first term on the
right-hand side of Equation (1) in Ref. [28]) and CR effects (the second term on the right-hand side of
Equation (1) in Ref. [28]) via the orientational diffusion term in the single-link distribution function
evolution equation.

In conclusion, the tumbling-snake model, which amends the problems of the original Curtiss-Bird
model by employing a variable link-tension coefficient, has been shown able of providing a very
adequate description of the available rheological measurements of monodisperse entangled polymer
melts and concentrated polymer solutions when subjected to shear [24,27,28], uniaxial elongation [29],
and planar elongation [30], and, in this work, for entangled bidisperse polymer blends when subjected
to shear. Solving it necessitates the use of very simple Brownian dynamics simulations coupled
with the analytical predictions at small rates. By further introducing additional refinements, such as
CLFs (see e.g., [6,46,47] and references therein), flow-induced alignment of chain ends [31,48], chain
stretch [8,49], and convective constraint release [10–12], could further improve the tumbling-snake’s
model capacity to quantitatively predict the rheological response of entangled polymer melts and
concentrated polymer solutions. Especially for the latter two, special attention should be sought
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to derive the evolution equation for the single-link distribution function properly via the use of
non-equilibrium thermodynamics, particularly building upon the work of Öttinger [50].

Author Contributions: P.S.S. conceived the idea, and perfomed all calculations, P.S.S. prepared the original draft,
P.S.S and M.K.reviewed and interpreted the results, and edited all other drafts.

Funding: This work was co-funded by the European Regional Development Fund and the Republic of Cyprus
through the Research Promotion Foundation (Project No.: POST-DOC/0916/0197), and by the Swiss National
Science Foundation through grant 200021_156106.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Doi, M.; Edwards, S.F. Dynamics of concentrated polymer systems. 1. Brownian-motion in equilibrium state.
J. Chem. Soc. Faraday Trans. 2 1978, 74, 1789–1801. [CrossRef]

2. Doi, M.; Edwards, S.F. The Theory of Polymer Dynamics; Clarendon: Oxford, UK, 1986.
3. de Gennes, P.G. Reptation of a polymer chain in presence of fixed obstacles. J. Chem. Phys. 1971, 55, 572–579.

[CrossRef]
4. Watanabe, H. Viscoelasticity and dynamics of entangled polymers. Prog. Polym. Sci. 1999, 24, 1253.

[CrossRef]
5. McLeish, T.C.B. Tube theory of entangled polymer dynamics. Adv. Phys. 2002, 51, 1379–1527. [CrossRef]
6. Stephanou, P.S.; Mavrantzas, V.G. Quantitative predictions of the linear viscoelastic properties of entangled

polyethylene and polybutadiene melts via modified versions of modern tube models on the basis of atomistic
simulation data. J. Non-Newton. Fluid Mech. 2013, 200, 111–130. [CrossRef]

7. Stephanou, P.S.; Mavrantzas, V.G. Accurate prediction of the linear viscoelastic properties of highly entangled
mono and bidisperse polymer melts. J. Chem. Phys. 2014, 140, 214903. [CrossRef] [PubMed]

8. Marrucci, G.; Grizzuti, N. Fast flows of concentrated polymers—Predictions of the tube model on chain
stretching. Gazz. Chim. Ital. 1988, 118, 179–185.

9. Ianniruberto, G.; Marrucci, G. A simple constitutive equation for entangled polymers with chain stretch.
J. Rheol. 2001, 45, 1305–1318. [CrossRef]

10. Stephanou, P.S.; Tsimouri, I.C.; Mavrantzas, V.G. Flow-induced orientation and stretching of entangled
polymers in the framework of nonequilibrium thermodynamics. Macromolecules 2016, 49, 3161–3173.
[CrossRef]

11. Marrucci, G. Dynamics of entanglements: A nonlinear model consistent with the Cox-Merz rule.
J. Non-Newton. Fluid Mech. 1996, 62, 279–289. [CrossRef]

12. Ianniruberto, G.; Marrucci, G. On compatibility of the Cox-Merz rule with the model of Doi and Edwards.
J. Non-Newton. Fluid Mech. 1996, 65, 241–246. [CrossRef]

13. Ianniruberto, G.; Marrucci, G. Flow-induced orientation and stretching of entangled polymers. Philos. Trans.
R. Soc. A 2003, 361, 677–687.

14. Pattamaprom, C.; Larson, R.G. Constraint Release Effects in Monodisperse and Bidisperse Polystyrenes in
Fast Transient Shearing Flows. Macromolecules 2001, 34, 5229–5237. [CrossRef]

15. Pearson, D.S.; Kiss, A.D.; Fetters, L.J.; Doi, M. Flow-induced birefringence of concentrated polyisoprene
solutions. J. Rheol. 1989, 33, 517–535. [CrossRef]

16. Mead, D.W.; Larson, R.G.; Doi, M. A Molecular Theory for Fast Flows of Entangled Polymers. Macromolecules
1998, 31, 7895–7914. [CrossRef]

17. Ye, X.; Larson, R.G.; Pattamaprom, C.; Sridhar, T. Extensional properties of monodisperse and bidisperse
polystyrene solutions. J. Rheol. 2003, 47, 443–448. [CrossRef]

18. Leygue, A.; Bailly, C.; Keunings, R. A tube-based constitutive equation for polydisperse entangled linear
polymers. J. Non-Newton. Fluid Mech. 2006, 136, 1–16. [CrossRef]

19. Read, D.J.; Jagannathan, K.; Sukumaran, S.K.; Auhl, D. A full-chain constitutive model for bidisperse blends
of linear polymers. J. Rheol. 2012, 56, 823–873. [CrossRef]

20. Graham, R.S.; Likhtman, A.E.; McLeish, T.C.B.; Milner, S.T. Microscopic theory of linear, entangled polymer
chains under rapid deformation including chain stretch and convective constraint release. J. Rheol. 2003,
47, 1171–1200. [CrossRef]

http://dx.doi.org/10.1039/F29787401789
http://dx.doi.org/10.1063/1.1675789
http://dx.doi.org/10.1016/S0079-6700(99)00029-5
http://dx.doi.org/10.1080/00018730210153216
http://dx.doi.org/10.1016/j.jnnfm.2013.04.003
http://dx.doi.org/10.1063/1.4878500
http://www.ncbi.nlm.nih.gov/pubmed/24908037
http://dx.doi.org/10.1122/1.1402661
http://dx.doi.org/10.1021/acs.macromol.5b02805
http://dx.doi.org/10.1016/0377-0257(95)01407-1
http://dx.doi.org/10.1016/0377-0257(96)01433-4
http://dx.doi.org/10.1021/ma010101x
http://dx.doi.org/10.1122/1.550026
http://dx.doi.org/10.1021/ma980127x
http://dx.doi.org/10.1122/1.1545079
http://dx.doi.org/10.1016/j.jnnfm.2006.01.013
http://dx.doi.org/10.1122/1.4707948
http://dx.doi.org/10.1122/1.1595099


Polymers 2019, 11, 376 18 of 19

21. Bird, R.B.; Armstrong, R.C.; Hassager, O. Dynamics of Polymeric Liquids: Vol. 2, Kinetic Theory; John Wiley &
Sons: New York, NY, USA, 1987.

22. Curtiss, C.F.; Bird, R.B. A kinetic-theory for polymer melts. 1. The equation for the single-link orientational
distribution function. J. Chem. Phys. 1981, 74, 2016–2025. [CrossRef]

23. Curtiss, C.F.; Bird, R.B. A kinetic-theory for polymer melts. 2. The stress tensor and the rheological equation
of state. J. Chem. Phys. 1981, 74, 2026–2033. [CrossRef]

24. Stephanou, P.S.; Schweizer, T.; Kröger, M. Communication: Appearance of undershoots in start-up shear:
Experimental findings captured by tumbling-snake dynamics. J. Chem. Phys. 2017, 146, 161101. [CrossRef]
[PubMed]

25. Bird, R.B.; Saab, H.H.; Curtiss, C.F. A kinetic-theory for polymer melts. 4. Rheological properties for shear
flows. J. Chem. Phys 1982, 77, 4747–4757. [CrossRef]

26. Bird, R.B.; Saab, H.H.; Curtiss, C.F. A kinetic-theory for polymer melts. 3. Elongational flows. J. Phys. Chem.
1982, 86, 1102–1106. [CrossRef]

27. Stephanou, P.S.; Kröger, M. Solution of the complete Curtiss-Bird model for polymeric liquids subjected to
simple shear flow. J. Chem. Phys. 2016, 144, 124905. [CrossRef]

28. Stephanou, P.S.; Kröger, M. Non-constant link tension coefficient in the tumbling-snake model subjected to
simple shear. J. Chem. Phys. 2017, 147, 174903. [CrossRef] [PubMed]

29. Stephanou, P.S.; Kröger, M. From intermediate anisotropic to isotropic friction at large strain rates to account
for viscosity thickening in polymer solutions. J. Chem. Phys. 2018, 148, 184903. [CrossRef] [PubMed]

30. Stephanou, P.S.; Kröger, M. Tumbling-Snake Model for Polymeric Liquids Subjected to Biaxial Elongational
Flows with a Focus on Planar Elongation. Polymers 2018, 10, 329. [CrossRef]

31. Kröger, M. Models for Polymeric and Anisotropic Liquids; Springer: New York, NY, USA, 2005; Volume 675.
32. Luap, C.; Müller, C.; Schweizer, T.; Venerus, D.C. Simultaneous stress and birefringence measurements

during uniaxial elongation of polystyrene melts with narrow molecular weight distribution. Rheol. Acta
2005, 45, 83–91. [CrossRef]

33. Schweizer, T.; Hostettler, J.; Mettler, F. A shear rheometer for measuring shear stress and both normal stress
differences in polymer melts simultaneously: The MTR 25. Rheol. Acta 2008, 47, 943–957. [CrossRef]

34. Auhl, D.; Ramirez, J.; Likhtman, A.E.; Chambon, P.; Fernyhough, C. Linear and nonlinear shear flow
behavior of monodisperse polyisoprene melts with a large range of molecular weights. J. Rheol. 2008,
52, 801–835. [CrossRef]

35. Costanzo, S.; Huang, Q.; Ianniruberto, G.; Marrucci, G.; Hassager, O.; Vlassopoulos, D. Shear and extensional
rheology of polystyrene melts and solutions with the same number of entanglements. Macromolecules 2016,
49, 3925–3935. [CrossRef]

36. Sefiddashti, M.H.N.; Edwards, B.J.; Khomami, B. Individual chain dynamics of a polyethylene melt
undergoing steady shear flow. J. Rheol. 2015, 59, 1–35. [CrossRef]

37. Sefiddashti, M.H.N.; Edwards, B.J.; Khomami, B. Steady shearing flow of a moderately entangled
polyethylene liquid. J. Rheol. 2016, 60, 1227–1244. [CrossRef]

38. Kim, J.M.; Baig, C. Precise analyis of polymer rotational dynamics. Sci. Rep. 2016, 6, 19127. [CrossRef]
[PubMed]

39. Huang, Q.; Alvarez, N.J.; Matsumiya, Y.; Rasmussen, H.K.; Watanabe, H.; Hassager, O. Extensional rheology
of entangled polystyrene solutions suggests importance of nematic interactions. ACS Macro Lett. 2013,
2, 741–744. [CrossRef]

40. Huang, Q.; Mednova, O.; Rasmussen, H.K.; Alvarez, N.J.; Skov, A.L.; Almdal, K.; Hassager, O. Concentrated
polymer solutions are different from melts: Role of entanglement molecular weight. Macromolecules 2013,
46, 5026–5035. [CrossRef]

41. Huang, Q.; Hengeller, L.; Alvarez, N.J.; Hassager, O. Bridging the gap between polymer melts and solutions
in extensional rheology. Macromolecules 2015, 48, 4158–4163. [CrossRef]

42. Schieber, J.D.; Curtiss, C.F.; Bird, R.B. Kinetic Theory of Polymer melts. 7. Polydisprese Effects. Ind. Chem.
Fundam. 1986, 25, 471–475. [CrossRef]

43. Schieber, J.D. Kinetic theory of polymer melts. VIII. Rheological properties of polydisperse mixtures. J. Chem.
Phys. 1987, 87, 4917–4927. [CrossRef]

44. Schieber, J.D. Kinetic theory of polymer melts. IX. Comparisons with experimental data. J. Chem. Phys. 1987,
87, 4928–4936. [CrossRef]

http://dx.doi.org/10.1063/1.441246
http://dx.doi.org/10.1063/1.441247
http://dx.doi.org/10.1063/1.4982228
http://www.ncbi.nlm.nih.gov/pubmed/28456214
http://dx.doi.org/10.1063/1.444378
http://dx.doi.org/10.1021/j100396a011
http://dx.doi.org/10.1063/1.4944674
http://dx.doi.org/10.1063/1.4991935
http://www.ncbi.nlm.nih.gov/pubmed/29117693
http://dx.doi.org/10.1063/1.5019337
http://www.ncbi.nlm.nih.gov/pubmed/29764144
http://dx.doi.org/10.3390/polym10030329
http://dx.doi.org/10.1007/s00397-005-0452-5
http://dx.doi.org/10.1007/s00397-008-0300-5
http://dx.doi.org/10.1122/1.2890780
http://dx.doi.org/10.1021/acs.macromol.6b00409
http://dx.doi.org/10.1122/1.4903498
http://dx.doi.org/10.1122/1.4963800
http://dx.doi.org/10.1038/srep19127
http://www.ncbi.nlm.nih.gov/pubmed/26743689
http://dx.doi.org/10.1021/mz400319v
http://dx.doi.org/10.1021/ma4008434
http://dx.doi.org/10.1021/acs.macromol.5b00849
http://dx.doi.org/10.1021/i100024a003
http://dx.doi.org/10.1063/1.452804
http://dx.doi.org/10.1063/1.452805


Polymers 2019, 11, 376 19 of 19

45. Rubinstein, M.; Colby, R.H. Polymer Physics; Oxford University Press: Oxford, UK, 2003.
46. Stephanou, P.S.; Baig, C.; Mavrantzas, V.G. Toward an improved description of constraint release and

contour length fluctuations in tube models for entangled polymer melts guided by atomistic simulations.
Macromol. Theory Simul. 2011, 20, 752–768. [CrossRef]

47. Stephanou, P.S.; Baig, C.; Mavrantzas, V.G. Projection of atomistic simulation data for the dynamics of
entangled polymers onto the tube theory: Calculation of the segment survival probability function and
comparison with modern tube models. Soft Matter 2011, 7, 380–395. [CrossRef]

48. Kröger, M.; Hess, S. Viscoelasticity of polymeric melts and concentrated solutions. The effect of flow-induced
alignment of chain ends. Physica A 1993, 195, 336–353. [CrossRef]

49. Fang, J.; Kröger, M.; Öttinger, H.C. A thermodynamically admissible reptation model for fast flows of
entangled polymers. II. Model predictions for shear and extensional flows. J. Rheol. 2000, 44, 1293–1317.
[CrossRef]

50. Öttinger, H.C. Thermodynamically admissible reptation models with anisotropic tube cross sections and
convective constraint release. J. Non-Newton. Fluid Mech. 2000, 89, 165–185. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/mats.201100052
http://dx.doi.org/10.1039/C0SM00327A
http://dx.doi.org/10.1016/0378-4371(93)90162-W
http://dx.doi.org/10.1122/1.1308522
http://dx.doi.org/10.1016/S0377-0257(99)00025-7
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Stress Tensor
	Small Shear Rate Expansion in the Stationary State
	Stationary Regime, Constant 
	Stationary Regime, Variable 

	Linear Viscoelastic Regime
	Brownian Dynamics Results
	Linear Viscoelastic Behavior
	Non-Linear Regime
	Comparison with Experimental Data

	Conclusions
	References

